code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = JukeboxTokenizer
lowerCamelCase__ = {
"""artist""": """Zac Brown Band""",
"""genres""": """Country""",
"""lyrics""": """I met a traveller from an antique land,
Who said \"Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
""",
}
@require_torch
def A ( self : str ) -> Tuple:
import torch
UpperCAmelCase : Tuple = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' )
UpperCAmelCase : Optional[Any] = tokenizer(**self.metas )['''input_ids''']
# fmt: off
UpperCAmelCase : List[Any] = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def A ( self : Optional[Any] ) -> str:
import torch
UpperCAmelCase : Tuple = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' )
UpperCAmelCase : str = tokenizer(**self.metas )['''input_ids''']
# fmt: off
UpperCAmelCase : Union[str, Any] = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 23 |
'''simple docstring'''
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Optional[int] = tau * frequency / samplerate
UpperCAmelCase : List[Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = cos(_lowerCAmelCase )
UpperCAmelCase : int = _sin / (2 * q_factor)
UpperCAmelCase : Any = (1 - _cos) / 2
UpperCAmelCase : List[Any] = 1 - _cos
UpperCAmelCase : Union[str, Any] = 1 + alpha
UpperCAmelCase : Any = -2 * _cos
UpperCAmelCase : Dict = 1 - alpha
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Any = tau * frequency / samplerate
UpperCAmelCase : Tuple = sin(_lowerCAmelCase )
UpperCAmelCase : Tuple = cos(_lowerCAmelCase )
UpperCAmelCase : Dict = _sin / (2 * q_factor)
UpperCAmelCase : int = (1 + _cos) / 2
UpperCAmelCase : List[Any] = -1 - _cos
UpperCAmelCase : Tuple = 1 + alpha
UpperCAmelCase : List[str] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha
UpperCAmelCase : Tuple = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Optional[int] = tau * frequency / samplerate
UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase )
UpperCAmelCase : Tuple = cos(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = _sin / (2 * q_factor)
UpperCAmelCase : Union[str, Any] = _sin / 2
UpperCAmelCase : Any = 0
UpperCAmelCase : int = -ba
UpperCAmelCase : Optional[Any] = 1 + alpha
UpperCAmelCase : List[Any] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha
UpperCAmelCase : int = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : List[str] = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : str = cos(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor)
UpperCAmelCase : List[str] = 1 - alpha
UpperCAmelCase : Any = -2 * _cos
UpperCAmelCase : Optional[int] = 1 + alpha
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : Optional[Any] = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = cos(_lowerCAmelCase )
UpperCAmelCase : Dict = _sin / (2 * q_factor)
UpperCAmelCase : str = 10 ** (gain_db / 40)
UpperCAmelCase : int = 1 + alpha * big_a
UpperCAmelCase : Union[str, Any] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha * big_a
UpperCAmelCase : Union[str, Any] = 1 + alpha / big_a
UpperCAmelCase : Tuple = -2 * _cos
UpperCAmelCase : Any = 1 - alpha / big_a
UpperCAmelCase : Optional[Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : Any = tau * frequency / samplerate
UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase )
UpperCAmelCase : str = _sin / (2 * q_factor)
UpperCAmelCase : List[str] = 10 ** (gain_db / 40)
UpperCAmelCase : Optional[int] = (big_a + 1) - (big_a - 1) * _cos
UpperCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos
UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos
UpperCAmelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos
UpperCAmelCase : str = 2 * sqrt(_lowerCAmelCase ) * alpha
UpperCAmelCase : Dict = big_a * (pmc + aaa)
UpperCAmelCase : Any = 2 * big_a * mpc
UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa)
UpperCAmelCase : Optional[int] = ppmc + aaa
UpperCAmelCase : Optional[Any] = -2 * pmpc
UpperCAmelCase : Optional[Any] = ppmc - aaa
UpperCAmelCase : int = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : int = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase )
UpperCAmelCase : Any = _sin / (2 * q_factor)
UpperCAmelCase : int = 10 ** (gain_db / 40)
UpperCAmelCase : List[str] = (big_a + 1) - (big_a - 1) * _cos
UpperCAmelCase : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos
UpperCAmelCase : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos
UpperCAmelCase : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos
UpperCAmelCase : List[str] = 2 * sqrt(_lowerCAmelCase ) * alpha
UpperCAmelCase : Any = big_a * (ppmc + aaa)
UpperCAmelCase : str = -2 * big_a * pmpc
UpperCAmelCase : List[Any] = big_a * (ppmc - aaa)
UpperCAmelCase : Optional[Any] = pmc + aaa
UpperCAmelCase : Any = 2 * mpc
UpperCAmelCase : str = pmc - aaa
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
| 23 | 1 |
'''simple docstring'''
import math
import sys
def snake_case_ ( _lowerCAmelCase : str ) -> str:
UpperCAmelCase : List[Any] = ''''''
try:
with open(_lowerCAmelCase , '''rb''' ) as binary_file:
UpperCAmelCase : str = binary_file.read()
for dat in data:
UpperCAmelCase : Optional[int] = f"""{dat:08b}"""
result += curr_byte
return result
except OSError:
print('''File not accessible''' )
sys.exit()
def snake_case_ ( _lowerCAmelCase : str ) -> str:
UpperCAmelCase : Dict = {'''0''': '''0''', '''1''': '''1'''}
UpperCAmelCase , UpperCAmelCase : Optional[Any] = '''''', ''''''
UpperCAmelCase : int = len(_lowerCAmelCase )
for i in range(len(_lowerCAmelCase ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
UpperCAmelCase : List[Any] = lexicon[curr_string]
result += last_match_id
UpperCAmelCase : List[str] = last_match_id + '''0'''
if math.loga(_lowerCAmelCase ).is_integer():
UpperCAmelCase : List[str] = {}
for curr_key in list(_lowerCAmelCase ):
UpperCAmelCase : Any = lexicon.pop(_lowerCAmelCase )
UpperCAmelCase : Dict = new_lex
UpperCAmelCase : Optional[Any] = last_match_id + '''1'''
index += 1
UpperCAmelCase : List[Any] = ''''''
return result
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> None:
UpperCAmelCase : Union[str, Any] = 8
try:
with open(_lowerCAmelCase , '''wb''' ) as opened_file:
UpperCAmelCase : Optional[int] = [
to_write[i : i + byte_length]
for i in range(0 , len(_lowerCAmelCase ) , _lowerCAmelCase )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('''10000000''' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(_lowerCAmelCase , 2 ).to_bytes(1 , byteorder='''big''' ) )
except OSError:
print('''File not accessible''' )
sys.exit()
def snake_case_ ( _lowerCAmelCase : str ) -> str:
UpperCAmelCase : List[Any] = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
UpperCAmelCase : Tuple = data_bits[counter:]
UpperCAmelCase : Optional[Any] = data_bits[counter + 1 :]
return data_bits
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> None:
UpperCAmelCase : Optional[Any] = read_file_binary(_lowerCAmelCase )
UpperCAmelCase : Dict = remove_prefix(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = decompress_data(_lowerCAmelCase )
write_file_binary(_lowerCAmelCase , _lowerCAmelCase )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 23 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool:
UpperCAmelCase : str = get_failure_array(_lowerCAmelCase )
# 2) Step through text searching for pattern
UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern
while i < len(_lowerCAmelCase ):
if pattern[j] == text[i]:
if j == (len(_lowerCAmelCase ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
UpperCAmelCase : Optional[Any] = failure[j - 1]
continue
i += 1
return False
def snake_case_ ( _lowerCAmelCase : str ) -> list[int]:
UpperCAmelCase : Optional[Any] = [0]
UpperCAmelCase : str = 0
UpperCAmelCase : List[str] = 1
while j < len(_lowerCAmelCase ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
UpperCAmelCase : Union[str, Any] = failure[i - 1]
continue
j += 1
failure.append(_lowerCAmelCase )
return failure
if __name__ == "__main__":
# Test 1)
UpperCamelCase__: str = "abc1abc12"
UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc"
UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc"
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
UpperCamelCase__: Tuple = "ABABX"
UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX"
assert kmp(pattern, text)
# Test 3)
UpperCamelCase__: Any = "AAAB"
UpperCamelCase__: str = "ABAAAAAB"
assert kmp(pattern, text)
# Test 4)
UpperCamelCase__: int = "abcdabcy"
UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy"
assert kmp(pattern, text)
# Test 5)
UpperCamelCase__: List[str] = "aabaabaaa"
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 23 | 1 |
'''simple docstring'''
import os
from datetime import datetime as dt
from github import Github
UpperCamelCase__: Union[str, Any] = [
"good first issue",
"feature request",
"wip",
]
def snake_case_ ( ) -> int:
UpperCAmelCase : Dict = Github(os.environ['''GITHUB_TOKEN'''] )
UpperCAmelCase : Any = g.get_repo('''huggingface/accelerate''' )
UpperCAmelCase : str = repo.get_issues(state='''open''' )
for issue in open_issues:
UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCAmelCase : i.created_at , reverse=_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = comments[0] if len(_lowerCAmelCase ) > 0 else None
UpperCAmelCase : Optional[int] = dt.utcnow()
UpperCAmelCase : Union[str, Any] = (current_time - issue.updated_at).days
UpperCAmelCase : Optional[Any] = (current_time - issue.created_at).days
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and days_since_updated > 7
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Close issue since it has been 7 days of inactivity since bot mention.
issue.edit(state='''closed''' )
elif (
days_since_updated > 23
and days_since_creation >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Add stale comment
issue.create_comment(
'''This issue has been automatically marked as stale because it has not had '''
'''recent activity. If you think this still needs to be addressed '''
'''please comment on this thread.\n\nPlease note that issues that do not follow the '''
'''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) '''
'''are likely to be ignored.''' )
if __name__ == "__main__":
main()
| 23 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
UpperCamelCase__: int = logging.get_logger(__name__)
UpperCamelCase__: Dict = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
UpperCamelCase__: Optional[Any] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = {}
with open(_lowerCAmelCase , '''r''' ) as file:
for line_number, line in enumerate(_lowerCAmelCase ):
UpperCAmelCase : List[str] = line.strip()
if line:
UpperCAmelCase : str = line.split()
UpperCAmelCase : Union[str, Any] = line_number
UpperCAmelCase : List[Any] = words[0]
UpperCAmelCase : Union[str, Any] = value
return result
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int:
for attribute in key.split('''.''' ):
UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Dict = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_lowerCAmelCase ):
UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]]
UpperCAmelCase : Dict = '''param'''
if weight_type is not None and weight_type != "param":
UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase : List[Any] = hf_pointer
for attribute in hf_param_name.split('''.''' ):
UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : int = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase : Union[str, Any] = value[0]
else:
UpperCAmelCase : List[Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase : int = value
elif weight_type == "weight_g":
UpperCAmelCase : str = value
elif weight_type == "weight_v":
UpperCAmelCase : Dict = value
elif weight_type == "bias":
UpperCAmelCase : str = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = value
else:
UpperCAmelCase : Tuple = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]:
UpperCAmelCase : List[str] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_lowerCAmelCase ):
UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]]
UpperCAmelCase : Any = '''param'''
if weight_type is not None and weight_type != "param":
UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] )
else:
UpperCAmelCase : List[Any] = key
UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0]
UpperCamelCase__: Tuple = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int:
UpperCAmelCase : List[Any] = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
UpperCAmelCase : Optional[Any] = True
if "*" in mapped_key:
UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase )
if "weight_g" in name:
UpperCAmelCase : str = '''weight_g'''
elif "weight_v" in name:
UpperCAmelCase : int = '''weight_v'''
elif "bias" in name:
UpperCAmelCase : int = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase : List[str] = '''weight'''
else:
UpperCAmelCase : Dict = None
if hf_dict is not None:
rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return is_used
return is_used
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any:
UpperCAmelCase : Dict = []
UpperCAmelCase : Dict = fairseq_model.state_dict()
UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase : Dict = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , )
UpperCAmelCase : Any = True
else:
UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f"""Unused weights: {unused_weights}""" )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1]
UpperCAmelCase : Optional[int] = name.split('''.''' )
UpperCAmelCase : Tuple = int(items[0] )
UpperCAmelCase : Tuple = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCAmelCase : Tuple = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCAmelCase : Union[str, Any] = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCAmelCase : Union[str, Any] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCAmelCase : List[str] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict:
if config_path is not None:
UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase )
else:
UpperCAmelCase : List[Any] = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = idalabel
UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase )
UpperCAmelCase : Dict = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , )
feature_extractor.save_pretrained(_lowerCAmelCase )
elif is_finetuned:
if dict_path:
UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase : Any = target_dict.pad_index
UpperCAmelCase : Tuple = target_dict.bos_index
UpperCAmelCase : Optional[int] = target_dict.eos_index
UpperCAmelCase : Union[str, Any] = len(target_dict.symbols )
UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' )
if not os.path.isdir(_lowerCAmelCase ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) )
return
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
UpperCAmelCase : List[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase : List[str] = 0
UpperCAmelCase : List[str] = 1
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer(
_lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , )
UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False
UpperCAmelCase : int = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , )
UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase )
else:
UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase )
if is_finetuned or is_seq_class:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' )
UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase )
UpperCAmelCase : Optional[int] = model[0].eval()
recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned )
hf_wavavec.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase__: Dict = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
UpperCamelCase__: Any = parser.parse_args()
UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 23 | 1 |
'''simple docstring'''
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
UpperCamelCase__: List[str] = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n"
UpperCamelCase__: Optional[Any] = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n"
UpperCamelCase__: Union[str, Any] = r"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n"
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE( datasets.Metric ):
"""simple docstring"""
def A ( self : Union[str, Any] ) -> Tuple:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' ),
'''references''': datasets.Value('''string''' ),
} ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , )
def A ( self : int , __snake_case : int , __snake_case : List[Any] ) -> Optional[Any]:
UpperCAmelCase : str = 0.0
for i, j in zip(__snake_case , __snake_case ):
n_correct += 1.0 if math_equivalence.is_equiv(__snake_case , __snake_case ) else 0.0
UpperCAmelCase : Union[str, Any] = n_correct / len(__snake_case )
return {
"accuracy": accuracy,
}
| 23 |
'''simple docstring'''
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : str ) -> int:
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case )
UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )]
UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('''.bin''' ) for f in files )
@slow
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : List[str] ) -> Dict:
UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case )
UpperCAmelCase : List[Any] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
UpperCAmelCase : Optional[Any] = 4
UpperCAmelCase : Optional[Any] = jax.device_count()
UpperCAmelCase : Tuple = num_samples * [prompt]
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[Any] = shard(__snake_case )
UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3
assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1
UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(__snake_case ) == num_samples
def A ( self : List[Any] ) -> List[str]:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case )
UpperCAmelCase : Dict = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase : Any = 50
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : int = num_samples * [prompt]
UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Dict = replicate(__snake_case )
UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Tuple = shard(__snake_case )
UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1
def A ( self : int ) -> Dict:
UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case )
UpperCAmelCase : Dict = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 )
UpperCAmelCase : List[str] = 50
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : List[Any] = num_samples * [prompt]
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[int] = shard(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def A ( self : int ) -> Any:
UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa )
UpperCAmelCase : List[str] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
UpperCAmelCase : Union[str, Any] = 50
UpperCAmelCase : Optional[int] = jax.device_count()
UpperCAmelCase : List[str] = num_samples * [prompt]
UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : str = shard(__snake_case )
UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def A ( self : Tuple ) -> Optional[Any]:
UpperCAmelCase : int = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , )
UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , )
UpperCAmelCase : Tuple = scheduler.create_state()
UpperCAmelCase : Dict = scheduler_state
UpperCAmelCase : str = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : int = jax.random.PRNGKey(0 )
UpperCAmelCase : Union[str, Any] = 50
UpperCAmelCase : Optional[Any] = jax.device_count()
UpperCAmelCase : Any = num_samples * [prompt]
UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : str = replicate(__snake_case )
UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[int] = shard(__snake_case )
UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1
def A ( self : Any ) -> Tuple:
UpperCAmelCase : List[Any] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : List[Any] = num_samples * [prompt]
UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case )
UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , )
UpperCAmelCase : Dict = replicate(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case )
UpperCAmelCase : List[str] = shard(__snake_case )
UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , )
UpperCAmelCase : int = replicate(__snake_case )
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
UpperCAmelCase : List[Any] = shard(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase : int = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1E-2
| 23 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
UpperCamelCase__: str = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> List[str]:
if isinstance(_lowerCAmelCase , torch.Tensor ):
return image
elif isinstance(_lowerCAmelCase , PIL.Image.Image ):
UpperCAmelCase : List[Any] = [image]
UpperCAmelCase : str = [trans(img.convert('''RGB''' ) ) for img in image]
UpperCAmelCase : List[Any] = torch.stack(_lowerCAmelCase )
return image
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : List[Any] ) -> List[Any]:
super().__init__()
# make sure scheduler can always be converted to DDIM
UpperCAmelCase : Union[str, Any] = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=__snake_case , scheduler=__snake_case )
def A ( self : Tuple , __snake_case : Union[str, Any] ) -> str:
if strength < 0 or strength > 1:
raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" )
def A ( self : List[str] , __snake_case : List[str] , __snake_case : Any , __snake_case : List[Any] ) -> Optional[Any]:
# get the original timestep using init_timestep
UpperCAmelCase : Optional[int] = min(int(num_inference_steps * strength ) , __snake_case )
UpperCAmelCase : Tuple = max(num_inference_steps - init_timestep , 0 )
UpperCAmelCase : Tuple = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def A ( self : Union[str, Any] , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : str=None ) -> List[Any]:
if not isinstance(__snake_case , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__snake_case )}""" )
UpperCAmelCase : Optional[Any] = image.to(device=__snake_case , dtype=__snake_case )
if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
UpperCAmelCase : Optional[int] = init_latents.shape
UpperCAmelCase : Tuple = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case )
# get latents
print('''add noise to latents at timestep''' , __snake_case )
UpperCAmelCase : List[Any] = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case )
UpperCAmelCase : Any = init_latents
return latents
@torch.no_grad()
def __call__( self : Union[str, Any] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] = None , __snake_case : float = 0.8 , __snake_case : int = 1 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : float = 0.0 , __snake_case : int = 50 , __snake_case : Optional[bool] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ) -> Union[ImagePipelineOutput, Tuple]:
self.check_inputs(__snake_case )
# 2. Preprocess image
UpperCAmelCase : int = preprocess(__snake_case )
# 3. set timesteps
self.scheduler.set_timesteps(__snake_case , device=self.device )
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.get_timesteps(__snake_case , __snake_case , self.device )
UpperCAmelCase : List[Any] = timesteps[:1].repeat(__snake_case )
# 4. Prepare latent variables
UpperCAmelCase : Union[str, Any] = self.prepare_latents(__snake_case , __snake_case , __snake_case , self.unet.dtype , self.device , __snake_case )
UpperCAmelCase : Dict = latents
# 5. Denoising loop
for t in self.progress_bar(__snake_case ):
# 1. predict noise model_output
UpperCAmelCase : List[Any] = self.unet(__snake_case , __snake_case ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
UpperCAmelCase : Any = self.scheduler.step(
__snake_case , __snake_case , __snake_case , eta=__snake_case , use_clipped_model_output=__snake_case , generator=__snake_case , ).prev_sample
UpperCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : Dict = self.numpy_to_pil(__snake_case )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=__snake_case )
| 23 |
'''simple docstring'''
import random
from .binary_exp_mod import bin_exp_mod
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int:
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
UpperCAmelCase : str = n - 1
UpperCAmelCase : List[Any] = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
UpperCAmelCase : List[str] = 0
while count < prec:
UpperCAmelCase : int = random.randint(2 , n - 1 )
UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if b != 1:
UpperCAmelCase : int = True
for _ in range(_lowerCAmelCase ):
if b == n - 1:
UpperCAmelCase : Dict = False
break
UpperCAmelCase : str = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip()))
print("Here's the list of primes:")
print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 23 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__: int = logging.get_logger(__name__)
UpperCamelCase__: List[Any] = {
"naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json",
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """donut-swin"""
lowerCamelCase__ = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : Union[str, Any] , __snake_case : List[str]=224 , __snake_case : Optional[int]=4 , __snake_case : int=3 , __snake_case : Tuple=96 , __snake_case : Union[str, Any]=[2, 2, 6, 2] , __snake_case : str=[3, 6, 12, 24] , __snake_case : List[str]=7 , __snake_case : str=4.0 , __snake_case : Tuple=True , __snake_case : Union[str, Any]=0.0 , __snake_case : str=0.0 , __snake_case : Optional[Any]=0.1 , __snake_case : Union[str, Any]="gelu" , __snake_case : str=False , __snake_case : Optional[int]=0.02 , __snake_case : List[Any]=1E-5 , **__snake_case : int , ) -> Optional[Any]:
super().__init__(**__snake_case )
UpperCAmelCase : Any = image_size
UpperCAmelCase : List[str] = patch_size
UpperCAmelCase : List[Any] = num_channels
UpperCAmelCase : Union[str, Any] = embed_dim
UpperCAmelCase : Union[str, Any] = depths
UpperCAmelCase : Any = len(__snake_case )
UpperCAmelCase : Union[str, Any] = num_heads
UpperCAmelCase : Any = window_size
UpperCAmelCase : Tuple = mlp_ratio
UpperCAmelCase : Optional[Any] = qkv_bias
UpperCAmelCase : Any = hidden_dropout_prob
UpperCAmelCase : str = attention_probs_dropout_prob
UpperCAmelCase : Dict = drop_path_rate
UpperCAmelCase : List[Any] = hidden_act
UpperCAmelCase : Union[str, Any] = use_absolute_embeddings
UpperCAmelCase : Tuple = layer_norm_eps
UpperCAmelCase : Optional[int] = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCAmelCase : str = int(embed_dim * 2 ** (len(__snake_case ) - 1) )
| 23 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__: Optional[int] = logging.get_logger(__name__)
def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]:
UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' )
if "large" in checkpoint_url:
UpperCAmelCase : Tuple = 1024
UpperCAmelCase : List[Any] = 4096
UpperCAmelCase : str = 24
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = [5, 11, 17, 23]
UpperCAmelCase : List[Any] = [256, 512, 1024, 1024]
UpperCAmelCase : Tuple = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 768
UpperCAmelCase : Tuple = [1, 1, 1, 0.5]
UpperCAmelCase : int = [256, 512, 768, 768]
UpperCAmelCase : Any = 150
UpperCAmelCase : Tuple = 16
UpperCAmelCase : Any = (1, 384, 384)
UpperCAmelCase : Optional[Any] = False
UpperCAmelCase : Tuple = '''project'''
if "ade" in checkpoint_url:
UpperCAmelCase : Any = True
UpperCAmelCase : str = 768
UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5]
UpperCAmelCase : List[Any] = 150
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = '''huggingface/label-files'''
UpperCAmelCase : Tuple = '''ade20k-id2label.json'''
UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) )
UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : List[Any] = idalabel
UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480]
return config, expected_shape
def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int:
UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias''']
for k in ignore_keys:
state_dict.pop(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' )
if "pretrained.model" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' )
if "patch_embed" in name:
UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' )
if "pos_embed" in name:
UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' )
if "attn.proj" in name:
UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "proj" in name and "project" not in name:
UpperCAmelCase : str = name.replace('''proj''' , '''projection''' )
if "blocks" in name:
UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' )
if "mlp.fc1" in name:
UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' )
if "norm1" in name and "backbone" not in name:
UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name and "backbone" not in name:
UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' )
if "scratch.output_conv" in name:
UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' )
if "scratch" in name:
UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' )
if "layer1_rn" in name:
UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' )
if "layer2_rn" in name:
UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' )
if "layer3_rn" in name:
UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' )
if "layer4_rn" in name:
UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' )
if "refinenet" in name:
UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" )
if "out_conv" in name:
UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' )
if "resConfUnit1" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' )
if "resConfUnit2" in name:
UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' )
if "conv1" in name:
UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' )
if "conv2" in name:
UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' )
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' )
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' )
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' )
if "pretrained.act_postprocess1.4" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' )
if "pretrained.act_postprocess2.3" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' )
if "pretrained.act_postprocess2.4" in name:
UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' )
if "pretrained.act_postprocess3.3" in name:
UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' )
if "pretrained.act_postprocess4.3" in name:
UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' )
if "pretrained.act_postprocess4.4" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' )
if "pretrained" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' )
if "bn" in name:
UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' )
if "head" in name:
UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' )
if "encoder.norm" in name:
UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' )
if "auxlayer" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' )
if "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' )
if ".." in name:
UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' )
if "stem.conv" in name:
UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' )
if "blocks" in name:
UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' )
if "convolution" in name and "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' )
if "layer" in name and "backbone" in name:
UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' )
if "backbone.bit.encoder.bit" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' )
if "embedder.conv" in name:
UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' )
if "backbone.bit.encoder.stem.norm" in name:
UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' )
return name
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" )
UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : int = in_proj_bias[: config.hidden_size]
UpperCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :]
def snake_case_ ( ) -> List[str]:
UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
return im
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any:
UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' )
# remove certain keys
remove_ignore_keys_(_lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase )
UpperCAmelCase : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase )
# load HuggingFace model
UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
# Check outputs on an image
UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384
UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase )
UpperCAmelCase : Dict = prepare_img()
UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' )
# forward pass
UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth
if show_prediction:
UpperCAmelCase : Dict = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCAmelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCAmelCase )
if push_to_hub:
model.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
if __name__ == "__main__":
UpperCamelCase__: Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
type=str,
help="URL of the original DPT checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=False,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
parser.add_argument(
"--model_name",
default="dpt-large",
type=str,
help="Name of the model, in case you're pushing to the hub.",
)
parser.add_argument(
"--show_prediction",
action="store_true",
)
UpperCamelCase__: Tuple = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 23 | 1 |
'''simple docstring'''
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
UpperCamelCase__: List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name
def snake_case_ ( _lowerCAmelCase : Union[List, PIL.Image.Image, torch.Tensor] ) -> List[str]:
warnings.warn(
'''The preprocess method is deprecated and will be removed in a future version. Please'''
''' use VaeImageProcessor.preprocess instead''' , _lowerCAmelCase , )
if isinstance(_lowerCAmelCase , torch.Tensor ):
return image
elif isinstance(_lowerCAmelCase , PIL.Image.Image ):
UpperCAmelCase : Optional[int] = [image]
if isinstance(image[0] , PIL.Image.Image ):
UpperCAmelCase , UpperCAmelCase : int = image[0].size
UpperCAmelCase , UpperCAmelCase : Any = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
UpperCAmelCase : Optional[int] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image]
UpperCAmelCase : Union[str, Any] = np.concatenate(_lowerCAmelCase , axis=0 )
UpperCAmelCase : str = np.array(_lowerCAmelCase ).astype(np.floataa ) / 2_5_5.0
UpperCAmelCase : Dict = image.transpose(0 , 3 , 1 , 2 )
UpperCAmelCase : Union[str, Any] = 2.0 * image - 1.0
UpperCAmelCase : Any = torch.from_numpy(_lowerCAmelCase )
elif isinstance(image[0] , torch.Tensor ):
UpperCAmelCase : List[Any] = torch.cat(_lowerCAmelCase , dim=0 )
return image
def snake_case_ ( _lowerCAmelCase : Union[List, PIL.Image.Image, torch.Tensor] ) -> Tuple:
if isinstance(_lowerCAmelCase , torch.Tensor ):
return mask
elif isinstance(_lowerCAmelCase , PIL.Image.Image ):
UpperCAmelCase : Optional[Any] = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
UpperCAmelCase , UpperCAmelCase : Optional[Any] = mask[0].size
UpperCAmelCase , UpperCAmelCase : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
UpperCAmelCase : Any = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask]
UpperCAmelCase : Union[str, Any] = np.concatenate(_lowerCAmelCase , axis=0 )
UpperCAmelCase : List[Any] = mask.astype(np.floataa ) / 2_5_5.0
UpperCAmelCase : List[Any] = 0
UpperCAmelCase : Any = 1
UpperCAmelCase : List[Any] = torch.from_numpy(_lowerCAmelCase )
elif isinstance(mask[0] , torch.Tensor ):
UpperCAmelCase : Dict = torch.cat(_lowerCAmelCase , dim=0 )
return mask
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = 42
lowerCamelCase__ = 42
def __init__( self : Tuple , __snake_case : Optional[Any] , __snake_case : str ) -> Union[str, Any]:
super().__init__()
self.register_modules(unet=__snake_case , scheduler=__snake_case )
@torch.no_grad()
def __call__( self : Union[str, Any] , __snake_case : Union[torch.Tensor, PIL.Image.Image] , __snake_case : Union[torch.Tensor, PIL.Image.Image] , __snake_case : int = 250 , __snake_case : float = 0.0 , __snake_case : int = 10 , __snake_case : int = 10 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ) -> Union[ImagePipelineOutput, Tuple]:
UpperCAmelCase : int = image
UpperCAmelCase : int = _preprocess_image(__snake_case )
UpperCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype )
UpperCAmelCase : Tuple = _preprocess_mask(__snake_case )
UpperCAmelCase : List[Any] = mask_image.to(device=self.device , dtype=self.unet.dtype )
UpperCAmelCase : Dict = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
UpperCAmelCase : Union[str, Any] = original_image.shape
UpperCAmelCase : Optional[Any] = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(__snake_case , __snake_case , __snake_case , self.device )
UpperCAmelCase : Any = eta
UpperCAmelCase : Optional[int] = self.scheduler.timesteps[0] + 1
UpperCAmelCase : Any = generator[0] if isinstance(__snake_case , __snake_case ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
UpperCAmelCase : Optional[int] = self.unet(__snake_case , __snake_case ).sample
# compute previous image: x_t -> x_t-1
UpperCAmelCase : Union[str, Any] = self.scheduler.step(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
UpperCAmelCase : Tuple = self.scheduler.undo_step(__snake_case , __snake_case , __snake_case )
UpperCAmelCase : int = t
UpperCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : Union[str, Any] = self.numpy_to_pil(__snake_case )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__snake_case )
| 23 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
UpperCamelCase__: Optional[int] = "3"
print("Python version:", sys.version)
print("transformers version:", transformers.__version__)
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
print("NCCL version:", torch.cuda.nccl.version())
except ImportError:
print("Torch version:", None)
try:
import deepspeed
print("DeepSpeed version:", deepspeed.__version__)
except ImportError:
print("DeepSpeed version:", None)
try:
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU")))
print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU")))
except ImportError:
print("TensorFlow version:", None)
| 23 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__: List[Any] = logging.get_logger(__name__)
UpperCamelCase__: List[Any] = {
"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """lxmert"""
lowerCamelCase__ = {}
def __init__( self : Tuple , __snake_case : int=30522 , __snake_case : Union[str, Any]=768 , __snake_case : List[str]=12 , __snake_case : Any=9500 , __snake_case : int=1600 , __snake_case : Any=400 , __snake_case : Dict=3072 , __snake_case : int="gelu" , __snake_case : List[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Optional[Any]=512 , __snake_case : str=2 , __snake_case : Optional[Any]=0.02 , __snake_case : Optional[Any]=1E-12 , __snake_case : Dict=9 , __snake_case : Any=5 , __snake_case : int=5 , __snake_case : Tuple=2048 , __snake_case : Union[str, Any]=4 , __snake_case : Optional[Any]=6.67 , __snake_case : Optional[int]=True , __snake_case : str=True , __snake_case : List[Any]=True , __snake_case : List[Any]=True , __snake_case : int=True , __snake_case : Dict=True , __snake_case : int=True , **__snake_case : int , ) -> Optional[int]:
UpperCAmelCase : List[str] = vocab_size
UpperCAmelCase : Optional[Any] = hidden_size
UpperCAmelCase : Tuple = num_attention_heads
UpperCAmelCase : List[str] = hidden_act
UpperCAmelCase : Optional[Any] = intermediate_size
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : Dict = attention_probs_dropout_prob
UpperCAmelCase : Tuple = max_position_embeddings
UpperCAmelCase : str = type_vocab_size
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : List[Any] = layer_norm_eps
UpperCAmelCase : List[Any] = num_qa_labels
UpperCAmelCase : Optional[Any] = num_object_labels
UpperCAmelCase : Optional[int] = num_attr_labels
UpperCAmelCase : List[Any] = l_layers
UpperCAmelCase : Optional[Any] = x_layers
UpperCAmelCase : Optional[Any] = r_layers
UpperCAmelCase : Union[str, Any] = visual_feat_dim
UpperCAmelCase : Dict = visual_pos_dim
UpperCAmelCase : Optional[int] = visual_loss_normalizer
UpperCAmelCase : Any = task_matched
UpperCAmelCase : List[Any] = task_mask_lm
UpperCAmelCase : List[str] = task_obj_predict
UpperCAmelCase : List[Any] = task_qa
UpperCAmelCase : Any = visual_obj_loss
UpperCAmelCase : Any = visual_attr_loss
UpperCAmelCase : Dict = visual_feat_loss
UpperCAmelCase : Union[str, Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers}
super().__init__(**__snake_case )
| 23 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float:
if len(_lowerCAmelCase ) == 0:
raise ValueError('''find_max() arg is an empty sequence''' )
if (
left >= len(_lowerCAmelCase )
or left < -len(_lowerCAmelCase )
or right >= len(_lowerCAmelCase )
or right < -len(_lowerCAmelCase )
):
raise IndexError('''list index out of range''' )
if left == right:
return nums[left]
UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle
UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid]
UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 23 | 1 |
'''simple docstring'''
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
UpperCamelCase__: Union[str, Any] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
def __init__( self : List[str] , __snake_case : Optional[int] , __snake_case : Tuple ) -> str:
UpperCAmelCase : Any = question_encoder
UpperCAmelCase : Dict = generator
UpperCAmelCase : int = self.question_encoder
def A ( self : Optional[int] , __snake_case : Optional[int] ) -> Optional[int]:
if os.path.isfile(__snake_case ):
raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" )
os.makedirs(__snake_case , exist_ok=__snake_case )
UpperCAmelCase : str = os.path.join(__snake_case , '''question_encoder_tokenizer''' )
UpperCAmelCase : int = os.path.join(__snake_case , '''generator_tokenizer''' )
self.question_encoder.save_pretrained(__snake_case )
self.generator.save_pretrained(__snake_case )
@classmethod
def A ( cls : List[str] , __snake_case : str , **__snake_case : str ) -> Dict:
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
UpperCAmelCase : str = kwargs.pop('''config''' , __snake_case )
if config is None:
UpperCAmelCase : List[Any] = RagConfig.from_pretrained(__snake_case )
UpperCAmelCase : int = AutoTokenizer.from_pretrained(
__snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' )
UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(
__snake_case , config=config.generator , subfolder='''generator_tokenizer''' )
return cls(question_encoder=__snake_case , generator=__snake_case )
def __call__( self : int , *__snake_case : List[str] , **__snake_case : Union[str, Any] ) -> List[str]:
return self.current_tokenizer(*__snake_case , **__snake_case )
def A ( self : Tuple , *__snake_case : str , **__snake_case : int ) -> int:
return self.generator.batch_decode(*__snake_case , **__snake_case )
def A ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : Optional[int] ) -> List[Any]:
return self.generator.decode(*__snake_case , **__snake_case )
def A ( self : Union[str, Any] ) -> Dict:
UpperCAmelCase : Tuple = self.question_encoder
def A ( self : Optional[int] ) -> Tuple:
UpperCAmelCase : int = self.generator
def A ( self : Any , __snake_case : List[str] , __snake_case : Optional[List[str]] = None , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "longest" , __snake_case : str = None , __snake_case : bool = True , **__snake_case : List[str] , ) -> BatchEncoding:
warnings.warn(
'''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '''
'''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '''
'''context manager to prepare your targets. See the documentation of your specific tokenizer for more '''
'''details''' , __snake_case , )
if max_length is None:
UpperCAmelCase : Union[str, Any] = self.current_tokenizer.model_max_length
UpperCAmelCase : int = self(
__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , max_length=__snake_case , padding=__snake_case , truncation=__snake_case , **__snake_case , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
UpperCAmelCase : Any = self.current_tokenizer.model_max_length
UpperCAmelCase : List[Any] = self(
text_target=__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case , **__snake_case , )
UpperCAmelCase : Tuple = labels['''input_ids''']
return model_inputs
| 23 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = 42
lowerCamelCase__ = 42
def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int:
super().__init__()
self.register_modules(unet=__snake_case , scheduler=__snake_case )
@torch.no_grad()
def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]:
UpperCAmelCase : str = self.unet.config.sample_size
UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size)
UpperCAmelCase : int = self.unet
UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma
UpperCAmelCase : List[Any] = sample.to(self.device )
self.scheduler.set_timesteps(__snake_case )
self.scheduler.set_sigmas(__snake_case )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample
UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample
# prediction step
UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample
UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean
UpperCAmelCase : int = sample_mean.clamp(0 , 1 )
UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=__snake_case )
| 23 | 1 |
'''simple docstring'''
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCamelCase__: Union[str, Any] = logging.get_logger(__name__)
# General docstring
UpperCamelCase__: int = "RegNetConfig"
# Base docstring
UpperCamelCase__: Optional[int] = "facebook/regnet-y-040"
UpperCamelCase__: List[str] = [1, 1088, 7, 7]
# Image classification docstring
UpperCamelCase__: Dict = "facebook/regnet-y-040"
UpperCamelCase__: Union[str, Any] = "tabby, tabby cat"
UpperCamelCase__: List[str] = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : Tuple , __snake_case : int , __snake_case : int , __snake_case : int = 3 , __snake_case : int = 1 , __snake_case : int = 1 , __snake_case : Optional[str] = "relu" , ) -> List[Any]:
super().__init__()
UpperCAmelCase : Tuple = nn.Convad(
__snake_case , __snake_case , kernel_size=__snake_case , stride=__snake_case , padding=kernel_size // 2 , groups=__snake_case , bias=__snake_case , )
UpperCAmelCase : int = nn.BatchNormad(__snake_case )
UpperCAmelCase : List[str] = ACTaFN[activation] if activation is not None else nn.Identity()
def A ( self : int , __snake_case : Any ) -> Tuple:
UpperCAmelCase : str = self.convolution(__snake_case )
UpperCAmelCase : Optional[int] = self.normalization(__snake_case )
UpperCAmelCase : List[Any] = self.activation(__snake_case )
return hidden_state
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : Dict , __snake_case : RegNetConfig ) -> str:
super().__init__()
UpperCAmelCase : Optional[Any] = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
UpperCAmelCase : Optional[Any] = config.num_channels
def A ( self : Union[str, Any] , __snake_case : Tuple ) -> Tuple:
UpperCAmelCase : List[Any] = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
UpperCAmelCase : List[str] = self.embedder(__snake_case )
return hidden_state
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : Any , __snake_case : int , __snake_case : int , __snake_case : int = 2 ) -> Optional[Any]:
super().__init__()
UpperCAmelCase : str = nn.Convad(__snake_case , __snake_case , kernel_size=1 , stride=__snake_case , bias=__snake_case )
UpperCAmelCase : List[Any] = nn.BatchNormad(__snake_case )
def A ( self : Any , __snake_case : Tensor ) -> Tensor:
UpperCAmelCase : int = self.convolution(__snake_case )
UpperCAmelCase : Union[str, Any] = self.normalization(__snake_case )
return hidden_state
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , __snake_case : int , __snake_case : int ) -> Tuple:
super().__init__()
UpperCAmelCase : Dict = nn.AdaptiveAvgPoolad((1, 1) )
UpperCAmelCase : Any = nn.Sequential(
nn.Convad(__snake_case , __snake_case , kernel_size=1 ) , nn.ReLU() , nn.Convad(__snake_case , __snake_case , kernel_size=1 ) , nn.Sigmoid() , )
def A ( self : str , __snake_case : Optional[int] ) -> Optional[int]:
# b c h w -> b c 1 1
UpperCAmelCase : str = self.pooler(__snake_case )
UpperCAmelCase : Optional[int] = self.attention(__snake_case )
UpperCAmelCase : int = hidden_state * attention
return hidden_state
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : str , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 1 ) -> Any:
super().__init__()
UpperCAmelCase : int = in_channels != out_channels or stride != 1
UpperCAmelCase : Union[str, Any] = max(1 , out_channels // config.groups_width )
UpperCAmelCase : str = (
RegNetShortCut(__snake_case , __snake_case , stride=__snake_case ) if should_apply_shortcut else nn.Identity()
)
UpperCAmelCase : Union[str, Any] = nn.Sequential(
RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__snake_case , __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act ) , RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=__snake_case ) , )
UpperCAmelCase : Optional[int] = ACTaFN[config.hidden_act]
def A ( self : List[Any] , __snake_case : Any ) -> Union[str, Any]:
UpperCAmelCase : Dict = hidden_state
UpperCAmelCase : int = self.layer(__snake_case )
UpperCAmelCase : Union[str, Any] = self.shortcut(__snake_case )
hidden_state += residual
UpperCAmelCase : str = self.activation(__snake_case )
return hidden_state
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 1 ) -> List[str]:
super().__init__()
UpperCAmelCase : Any = in_channels != out_channels or stride != 1
UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width )
UpperCAmelCase : List[str] = (
RegNetShortCut(__snake_case , __snake_case , stride=__snake_case ) if should_apply_shortcut else nn.Identity()
)
UpperCAmelCase : int = nn.Sequential(
RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__snake_case , __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act ) , RegNetSELayer(__snake_case , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=__snake_case ) , )
UpperCAmelCase : List[Any] = ACTaFN[config.hidden_act]
def A ( self : Dict , __snake_case : Any ) -> int:
UpperCAmelCase : List[str] = hidden_state
UpperCAmelCase : Optional[int] = self.layer(__snake_case )
UpperCAmelCase : Tuple = self.shortcut(__snake_case )
hidden_state += residual
UpperCAmelCase : Any = self.activation(__snake_case )
return hidden_state
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 2 , __snake_case : int = 2 , ) -> int:
super().__init__()
UpperCAmelCase : Any = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer
UpperCAmelCase : str = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
__snake_case , __snake_case , __snake_case , stride=__snake_case , ) , *[layer(__snake_case , __snake_case , __snake_case ) for _ in range(depth - 1 )] , )
def A ( self : List[str] , __snake_case : str ) -> Any:
UpperCAmelCase : int = self.layers(__snake_case )
return hidden_state
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , __snake_case : RegNetConfig ) -> Dict:
super().__init__()
UpperCAmelCase : Optional[Any] = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
__snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
UpperCAmelCase : str = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(__snake_case , config.depths[1:] ):
self.stages.append(RegNetStage(__snake_case , __snake_case , __snake_case , depth=__snake_case ) )
def A ( self : Dict , __snake_case : Tensor , __snake_case : bool = False , __snake_case : bool = True ) -> BaseModelOutputWithNoAttention:
UpperCAmelCase : Any = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
UpperCAmelCase : str = hidden_states + (hidden_state,)
UpperCAmelCase : Any = stage_module(__snake_case )
if output_hidden_states:
UpperCAmelCase : str = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=__snake_case , hidden_states=__snake_case )
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = RegNetConfig
lowerCamelCase__ = """regnet"""
lowerCamelCase__ = """pixel_values"""
lowerCamelCase__ = True
def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> Dict:
if isinstance(__snake_case , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' )
elif isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def A ( self : int , __snake_case : Dict , __snake_case : List[str]=False ) -> str:
if isinstance(__snake_case , __snake_case ):
UpperCAmelCase : Dict = value
UpperCamelCase__: List[str] = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
UpperCamelCase__: Any = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" , A__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : Dict ) -> int:
super().__init__(__snake_case )
UpperCAmelCase : Dict = config
UpperCAmelCase : List[Any] = RegNetEmbeddings(__snake_case )
UpperCAmelCase : int = RegNetEncoder(__snake_case )
UpperCAmelCase : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__snake_case )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def A ( self : Optional[Any] , __snake_case : Tensor , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
UpperCAmelCase : str = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase : Optional[Any] = self.embedder(__snake_case )
UpperCAmelCase : Dict = self.encoder(
__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case )
UpperCAmelCase : List[Any] = encoder_outputs[0]
UpperCAmelCase : Optional[int] = self.pooler(__snake_case )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__snake_case , pooler_output=__snake_case , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , A__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def __init__( self : List[str] , __snake_case : List[str] ) -> Optional[int]:
super().__init__(__snake_case )
UpperCAmelCase : Any = config.num_labels
UpperCAmelCase : List[str] = RegNetModel(__snake_case )
# classification head
UpperCAmelCase : str = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__snake_case )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def A ( self : Union[str, Any] , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[torch.LongTensor] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
UpperCAmelCase : Dict = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase : str = self.regnet(__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case )
UpperCAmelCase : Dict = outputs.pooler_output if return_dict else outputs[1]
UpperCAmelCase : Union[str, Any] = self.classifier(__snake_case )
UpperCAmelCase : Optional[int] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
UpperCAmelCase : Optional[Any] = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
UpperCAmelCase : Any = '''single_label_classification'''
else:
UpperCAmelCase : Any = '''multi_label_classification'''
if self.config.problem_type == "regression":
UpperCAmelCase : Optional[int] = MSELoss()
if self.num_labels == 1:
UpperCAmelCase : List[str] = loss_fct(logits.squeeze() , labels.squeeze() )
else:
UpperCAmelCase : str = loss_fct(__snake_case , __snake_case )
elif self.config.problem_type == "single_label_classification":
UpperCAmelCase : Union[str, Any] = CrossEntropyLoss()
UpperCAmelCase : List[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
UpperCAmelCase : Optional[int] = BCEWithLogitsLoss()
UpperCAmelCase : Optional[Any] = loss_fct(__snake_case , __snake_case )
if not return_dict:
UpperCAmelCase : Optional[int] = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states )
| 23 |
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """MCTCTFeatureExtractor"""
lowerCamelCase__ = """AutoTokenizer"""
def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str:
super().__init__(__snake_case , __snake_case )
UpperCAmelCase : List[Any] = self.feature_extractor
UpperCAmelCase : Union[str, Any] = False
def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__snake_case , **__snake_case )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
UpperCAmelCase : int = kwargs.pop('''raw_speech''' )
else:
UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case )
UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case )
UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case )
if len(__snake_case ) > 0:
UpperCAmelCase : Any = args[0]
UpperCAmelCase : Optional[int] = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case )
if text is not None:
UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case )
if text is None:
return inputs
elif audio is None:
return encodings
else:
UpperCAmelCase : str = encodings['''input_ids''']
return inputs
def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str:
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*__snake_case , **__snake_case )
UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case )
UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case )
if len(__snake_case ) > 0:
UpperCAmelCase : List[str] = args[0]
UpperCAmelCase : List[Any] = args[1:]
if input_features is not None:
UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case )
if labels is not None:
UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
UpperCAmelCase : List[str] = labels['''input_ids''']
return input_features
def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]:
return self.tokenizer.decode(*__snake_case , **__snake_case )
@contextmanager
def A ( self : Any ) -> Optional[int]:
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
UpperCAmelCase : Dict = True
UpperCAmelCase : List[Any] = self.tokenizer
yield
UpperCAmelCase : Tuple = self.feature_extractor
UpperCAmelCase : List[Any] = False
| 23 | 1 |
'''simple docstring'''
import os
import numpy
import onnx
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> int:
UpperCAmelCase : Tuple = a.name
UpperCAmelCase : Optional[Any] = b.name
UpperCAmelCase : List[str] = ''''''
UpperCAmelCase : int = ''''''
UpperCAmelCase : Optional[Any] = a == b
UpperCAmelCase : Any = name_a
UpperCAmelCase : List[str] = name_b
return res
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ) -> Any:
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_lowerCAmelCase , _lowerCAmelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCAmelCase , _lowerCAmelCase )
_graph_replace_input_with(node_proto.attribute[1].g , _lowerCAmelCase , _lowerCAmelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ) -> Any:
for n in graph_proto.node:
_node_replace_input_with(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] ) -> int:
UpperCAmelCase : Any = list(model.graph.initializer )
UpperCAmelCase : Union[str, Any] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
UpperCAmelCase : Union[str, Any] = inits[i].name
UpperCAmelCase : Tuple = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : int ) -> Tuple:
UpperCAmelCase : List[str] = os.path.dirname(_lowerCAmelCase )
UpperCAmelCase : List[str] = os.path.basename(_lowerCAmelCase )
UpperCAmelCase : int = onnx.load(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) )
UpperCAmelCase : List[str] = list(model.graph.initializer )
UpperCAmelCase : Dict = set()
UpperCAmelCase : Tuple = {}
UpperCAmelCase : Tuple = []
UpperCAmelCase : Dict = 0
for i in range(len(_lowerCAmelCase ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(_lowerCAmelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(_lowerCAmelCase )
dup_set.add(_lowerCAmelCase )
UpperCAmelCase : int = inits[j].data_type
UpperCAmelCase : Union[str, Any] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''' , _lowerCAmelCase )
total_reduced_size += mem_size
UpperCAmelCase : List[str] = inits[i].name
UpperCAmelCase : List[str] = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCAmelCase )
else:
UpperCAmelCase : List[Any] = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' )
UpperCAmelCase : Union[str, Any] = sorted(_lowerCAmelCase )
_remove_dup_initializers_from_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : List[Any] = '''optimized_''' + model_file_name
UpperCAmelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
onnx.save(_lowerCAmelCase , _lowerCAmelCase )
return new_model
| 23 |
'''simple docstring'''
from math import isclose, sqrt
def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]:
UpperCAmelCase : Optional[int] = point_y / 4 / point_x
UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4
UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100
UpperCAmelCase : List[str] = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
UpperCAmelCase : Optional[int] = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus
UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int:
UpperCAmelCase : int = 0
UpperCAmelCase : float = first_x_coord
UpperCAmelCase : float = first_y_coord
UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x)
while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0):
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F"{solution() = }")
| 23 | 1 |
'''simple docstring'''
from itertools import product
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ) -> list[int]:
UpperCAmelCase : Union[str, Any] = sides_number
UpperCAmelCase : Optional[Any] = max_face_number * dice_number
UpperCAmelCase : Tuple = [0] * (max_total + 1)
UpperCAmelCase : Optional[int] = 1
UpperCAmelCase : Union[str, Any] = range(_lowerCAmelCase , max_face_number + 1 )
for dice_numbers in product(_lowerCAmelCase , repeat=_lowerCAmelCase ):
UpperCAmelCase : Optional[Any] = sum(_lowerCAmelCase )
totals_frequencies[total] += 1
return totals_frequencies
def snake_case_ ( ) -> float:
UpperCAmelCase : str = total_frequency_distribution(
sides_number=4 , dice_number=9 )
UpperCAmelCase : int = total_frequency_distribution(
sides_number=6 , dice_number=6 )
UpperCAmelCase : str = 0
UpperCAmelCase : List[Any] = 9
UpperCAmelCase : Optional[Any] = 4 * 9
UpperCAmelCase : Tuple = 6
for peter_total in range(_lowerCAmelCase , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
UpperCAmelCase : Optional[int] = (4**9) * (6**6)
UpperCAmelCase : Union[str, Any] = peter_wins_count / total_games_number
UpperCAmelCase : Dict = round(_lowerCAmelCase , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F"{solution() = }")
| 23 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase__: str = {
"configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"],
"tokenization_lxmert": ["LxmertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: int = ["LxmertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: Union[str, Any] = [
"LxmertEncoder",
"LxmertForPreTraining",
"LxmertForQuestionAnswering",
"LxmertModel",
"LxmertPreTrainedModel",
"LxmertVisualFeatureEncoder",
"LxmertXLayer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: int = [
"TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFLxmertForPreTraining",
"TFLxmertMainLayer",
"TFLxmertModel",
"TFLxmertPreTrainedModel",
"TFLxmertVisualFeatureEncoder",
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 23 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
UpperCamelCase__: Tuple = {
"google/tapas-base-finetuned-sqa": (
"https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json"
),
"google/tapas-base-finetuned-wtq": (
"https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json"
),
"google/tapas-base-finetuned-wikisql-supervised": (
"https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json"
),
"google/tapas-base-finetuned-tabfact": (
"https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json"
),
}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """tapas"""
def __init__( self : Dict , __snake_case : Tuple=30522 , __snake_case : Dict=768 , __snake_case : Any=12 , __snake_case : List[str]=12 , __snake_case : Optional[Any]=3072 , __snake_case : Any="gelu" , __snake_case : List[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Union[str, Any]=1024 , __snake_case : List[str]=[3, 256, 256, 2, 256, 256, 10] , __snake_case : Any=0.02 , __snake_case : Optional[Any]=1E-12 , __snake_case : Optional[int]=0 , __snake_case : Tuple=10.0 , __snake_case : Any=0 , __snake_case : Optional[int]=1.0 , __snake_case : Tuple=None , __snake_case : Optional[Any]=1.0 , __snake_case : Any=False , __snake_case : Tuple=None , __snake_case : int=1.0 , __snake_case : Union[str, Any]=1.0 , __snake_case : Dict=False , __snake_case : List[Any]=False , __snake_case : Any="ratio" , __snake_case : Union[str, Any]=None , __snake_case : Union[str, Any]=None , __snake_case : int=64 , __snake_case : List[str]=32 , __snake_case : Optional[int]=False , __snake_case : Optional[int]=True , __snake_case : str=False , __snake_case : List[Any]=False , __snake_case : Any=True , __snake_case : int=False , __snake_case : Dict=None , __snake_case : Union[str, Any]=None , **__snake_case : Optional[int] , ) -> List[Any]:
super().__init__(pad_token_id=__snake_case , **__snake_case )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
UpperCAmelCase : Union[str, Any] = vocab_size
UpperCAmelCase : int = hidden_size
UpperCAmelCase : str = num_hidden_layers
UpperCAmelCase : Dict = num_attention_heads
UpperCAmelCase : int = hidden_act
UpperCAmelCase : int = intermediate_size
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : List[str] = attention_probs_dropout_prob
UpperCAmelCase : Optional[int] = max_position_embeddings
UpperCAmelCase : Any = type_vocab_sizes
UpperCAmelCase : Union[str, Any] = initializer_range
UpperCAmelCase : str = layer_norm_eps
# Fine-tuning task hyperparameters
UpperCAmelCase : List[Any] = positive_label_weight
UpperCAmelCase : Optional[Any] = num_aggregation_labels
UpperCAmelCase : Optional[Any] = aggregation_loss_weight
UpperCAmelCase : int = use_answer_as_supervision
UpperCAmelCase : int = answer_loss_importance
UpperCAmelCase : List[Any] = use_normalized_answer_loss
UpperCAmelCase : List[str] = huber_loss_delta
UpperCAmelCase : List[Any] = temperature
UpperCAmelCase : Optional[int] = aggregation_temperature
UpperCAmelCase : List[Any] = use_gumbel_for_cells
UpperCAmelCase : Optional[int] = use_gumbel_for_aggregation
UpperCAmelCase : Tuple = average_approximation_function
UpperCAmelCase : Union[str, Any] = cell_selection_preference
UpperCAmelCase : Union[str, Any] = answer_loss_cutoff
UpperCAmelCase : Tuple = max_num_rows
UpperCAmelCase : str = max_num_columns
UpperCAmelCase : Dict = average_logits_per_cell
UpperCAmelCase : int = select_one_column
UpperCAmelCase : List[Any] = allow_empty_column_selection
UpperCAmelCase : List[str] = init_cell_selection_weights_to_zero
UpperCAmelCase : int = reset_position_index_per_cell
UpperCAmelCase : int = disable_per_token_loss
# Aggregation hyperparameters
UpperCAmelCase : Union[str, Any] = aggregation_labels
UpperCAmelCase : Union[str, Any] = no_aggregation_label_index
if isinstance(self.aggregation_labels , __snake_case ):
UpperCAmelCase : List[str] = {int(__snake_case ): v for k, v in aggregation_labels.items()}
| 23 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = AltDiffusionPipeline
lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS
lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS
lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
def A ( self : Dict ) -> int:
torch.manual_seed(0 )
UpperCAmelCase : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
UpperCAmelCase : Dict = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , )
torch.manual_seed(0 )
UpperCAmelCase : Union[str, Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
UpperCAmelCase : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , )
UpperCAmelCase : List[Any] = CLIPTextModel(__snake_case )
UpperCAmelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
UpperCAmelCase : Optional[int] = 77
UpperCAmelCase : Optional[int] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def A ( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str]=0 ) -> Union[str, Any]:
if str(__snake_case ).startswith('''mps''' ):
UpperCAmelCase : str = torch.manual_seed(__snake_case )
else:
UpperCAmelCase : Tuple = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
UpperCAmelCase : Dict = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : Union[str, Any] ) -> List[str]:
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def A ( self : Tuple ) -> List[str]:
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def A ( self : Tuple ) -> Optional[int]:
UpperCAmelCase : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase : Any = self.get_dummy_components()
torch.manual_seed(0 )
UpperCAmelCase : Optional[int] = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
UpperCAmelCase : List[str] = RobertaSeriesModelWithTransformation(__snake_case )
UpperCAmelCase : str = text_encoder
UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case )
UpperCAmelCase : str = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__snake_case )
UpperCAmelCase : Optional[int] = '''A photo of an astronaut'''
UpperCAmelCase : List[Any] = alt_pipe(**__snake_case )
UpperCAmelCase : Optional[Any] = output.images
UpperCAmelCase : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase : List[str] = np.array(
[0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A ( self : int ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase : int = self.get_dummy_components()
UpperCAmelCase : int = PNDMScheduler(skip_prk_steps=__snake_case )
torch.manual_seed(0 )
UpperCAmelCase : int = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
UpperCAmelCase : Union[str, Any] = RobertaSeriesModelWithTransformation(__snake_case )
UpperCAmelCase : Union[str, Any] = text_encoder
UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case )
UpperCAmelCase : Dict = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : int = self.get_dummy_inputs(__snake_case )
UpperCAmelCase : Optional[int] = alt_pipe(**__snake_case )
UpperCAmelCase : Optional[int] = output.images
UpperCAmelCase : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase : Optional[int] = np.array(
[0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : str ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A ( self : List[Any] ) -> Any:
# make sure here that pndm scheduler skips prk
UpperCAmelCase : List[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=__snake_case )
UpperCAmelCase : Tuple = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger'''
UpperCAmelCase : Any = torch.manual_seed(0 )
UpperCAmelCase : Optional[int] = alt_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' )
UpperCAmelCase : Dict = output.images
UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase : List[str] = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A ( self : Tuple ) -> int:
UpperCAmelCase : int = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' )
UpperCAmelCase : Tuple = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=__snake_case , safety_checker=__snake_case )
UpperCAmelCase : Dict = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : Tuple = '''A painting of a squirrel eating a burger'''
UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase : List[Any] = alt_pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='''numpy''' )
UpperCAmelCase : Dict = output.images
UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase : Union[str, Any] = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 23 | 1 |
'''simple docstring'''
UpperCamelCase__: Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)]
def snake_case_ ( _lowerCAmelCase : int ) -> int:
UpperCAmelCase : Dict = 0
while number:
# Increased Speed Slightly by checking every 5 digits together.
sum_of_digits_squared += DIGITS_SQUARED[number % 100000]
number //= 100000
return sum_of_digits_squared
# There are 2 Chains made,
# One ends with 89 with the chain member 58 being the one which when declared first,
# there will be the least number of iterations for all the members to be checked.
# The other one ends with 1 and has only one element 1.
# So 58 and 1 are chosen to be declared at the starting.
# Changed dictionary to an array to quicken the solution
UpperCamelCase__: list[bool | None] = [None] * 10000000
UpperCamelCase__: Optional[int] = True
UpperCamelCase__: Any = False
def snake_case_ ( _lowerCAmelCase : int ) -> bool:
if CHAINS[number - 1] is not None:
return CHAINS[number - 1] # type: ignore
UpperCAmelCase : Optional[int] = chain(next_number(_lowerCAmelCase ) )
UpperCAmelCase : List[str] = number_chain
while number < 10000000:
UpperCAmelCase : Optional[Any] = number_chain
number *= 10
return number_chain
def snake_case_ ( _lowerCAmelCase : int = 10000000 ) -> int:
for i in range(1 , _lowerCAmelCase ):
if CHAINS[i] is None:
chain(i + 1 )
return CHAINS[:number].count(_lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"{solution() = }")
| 23 |
'''simple docstring'''
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Optional[int]:
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ) -> Dict:
UpperCAmelCase : Dict = tmp_path / '''cache'''
UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase : str = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> Optional[int]:
UpperCAmelCase : Any = tmp_path / '''cache'''
UpperCAmelCase : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Any = features.copy() if features else default_expected_features
UpperCAmelCase : List[Any] = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Dict = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''},
] , )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ) -> Tuple:
UpperCAmelCase : Optional[Any] = tmp_path / '''cache'''
UpperCAmelCase : Optional[int] = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}
UpperCAmelCase : int = features.copy() if features else default_expected_features
UpperCAmelCase : Any = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Tuple = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> Union[str, Any]:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
UpperCAmelCase : Tuple = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''}
UpperCAmelCase : List[str] = features.copy()
UpperCAmelCase : Union[str, Any] = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Tuple = tmp_path / '''cache'''
UpperCAmelCase : List[str] = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> Optional[Any]:
UpperCAmelCase : Any = tmp_path / '''cache'''
UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : List[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Dict:
if issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : str = jsonl_path
elif issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : Dict = [jsonl_path]
UpperCAmelCase : int = tmp_path / '''cache'''
UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Optional[int] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=("train",) ) -> Union[str, Any]:
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
for split in splits:
UpperCAmelCase : List[str] = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ) -> Any:
UpperCAmelCase : Optional[Any] = tmp_path / '''cache'''
UpperCAmelCase : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase : Optional[int] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read()
_check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> int:
UpperCAmelCase : Dict = tmp_path / '''cache'''
UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features
UpperCAmelCase : Union[str, Any] = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Tuple = JsonDatasetReader({'''train''': jsonl_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> Union[str, Any]:
if split:
UpperCAmelCase : Optional[int] = {split: jsonl_path}
else:
UpperCAmelCase : Any = '''train'''
UpperCAmelCase : Any = {'''train''': jsonl_path, '''test''': jsonl_path}
UpperCAmelCase : Tuple = tmp_path / '''cache'''
UpperCAmelCase : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Optional[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def snake_case_ ( _lowerCAmelCase : List[str] ) -> str:
return json.load(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Dict ) -> str:
return [json.loads(_lowerCAmelCase ) for line in buffer]
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> Dict:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write()
buffer.seek(0 )
UpperCAmelCase : Union[str, Any] = load_json_function(__snake_case )
assert isinstance(__snake_case , __snake_case )
assert isinstance(exported_content[0] , __snake_case )
assert len(__snake_case ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def A ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[Any] ) -> List[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write()
buffer.seek(0 )
UpperCAmelCase : Union[str, Any] = load_json(__snake_case )
assert isinstance(__snake_case , __snake_case )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(__snake_case ) == 10
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def A ( self : str , __snake_case : str , __snake_case : str , __snake_case : int ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write()
buffer.seek(0 )
UpperCAmelCase : Any = load_json_function(__snake_case )
assert isinstance(__snake_case , __snake_case )
assert isinstance(exported_content[0] , __snake_case )
assert len(__snake_case ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def A ( self : Any , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write()
buffer.seek(0 )
UpperCAmelCase : List[str] = load_json(__snake_case )
assert isinstance(__snake_case , __snake_case )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(__snake_case ) == 10
def A ( self : List[Any] , __snake_case : str ) -> Dict:
with pytest.raises(__snake_case ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 )
@pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] )
def A ( self : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Union[str, Any]:
UpperCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / F"""test.json.{extension}"""
UpperCAmelCase : List[Any] = str(shared_datadir / F"""test_file.json.{extension}""" )
JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write()
with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f:
UpperCAmelCase : str = f.read()
with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f:
UpperCAmelCase : Optional[int] = f.read()
assert exported_content == original_content
| 23 | 1 |
'''simple docstring'''
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : str ) -> Union[str, Any]:
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"""
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=True ) -> Any:
model.train()
UpperCAmelCase : List[Any] = model(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = F.mse_loss(_lowerCAmelCase , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str]=False ) -> str:
set_seed(42 )
UpperCAmelCase : Union[str, Any] = RegressionModel()
UpperCAmelCase : Dict = deepcopy(_lowerCAmelCase )
UpperCAmelCase : Any = RegressionDataset(length=80 )
UpperCAmelCase : Tuple = DataLoader(_lowerCAmelCase , batch_size=16 )
model.to(accelerator.device )
if sched:
UpperCAmelCase : Optional[int] = AdamW(params=model.parameters() , lr=1e-3 )
UpperCAmelCase : str = AdamW(params=ddp_model.parameters() , lr=1e-3 )
UpperCAmelCase : Union[str, Any] = LambdaLR(_lowerCAmelCase , lr_lambda=lambda _lowerCAmelCase : epoch**0.6_5 )
UpperCAmelCase : int = LambdaLR(_lowerCAmelCase , lr_lambda=lambda _lowerCAmelCase : epoch**0.6_5 )
# Make a copy of `model`
if sched:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
UpperCAmelCase , UpperCAmelCase : int = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[Any]:
# Test when on a single CPU or GPU that the context manager does nothing
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = get_training_setup(_lowerCAmelCase )
# Use a single batch
UpperCAmelCase , UpperCAmelCase : Optional[Any] = next(iter(_lowerCAmelCase ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCAmelCase ):
step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
# Sync grads
step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase : str = ddp_input[torch.randperm(len(_lowerCAmelCase ) )]
def snake_case_ ( _lowerCAmelCase : Tuple ) -> int:
# Test on distributed setup that context manager behaves properly
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = get_training_setup(_lowerCAmelCase )
# Use a single batch
UpperCAmelCase , UpperCAmelCase : List[Any] = next(iter(_lowerCAmelCase ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase : List[Any] = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCAmelCase ):
step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
# Sync grads
step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase : Optional[Any] = ddp_input[torch.randperm(len(_lowerCAmelCase ) )]
def snake_case_ ( _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Optional[int]=False ) -> Dict:
UpperCAmelCase : Union[str, Any] = Accelerator(
split_batches=_lowerCAmelCase , dispatch_batches=_lowerCAmelCase , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = get_training_setup(_lowerCAmelCase )
for iteration, batch in enumerate(_lowerCAmelCase ):
UpperCAmelCase , UpperCAmelCase : Tuple = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase : Optional[Any] = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase : List[str] = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_lowerCAmelCase ):
step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCAmelCase ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase : List[Any] = ddp_input[torch.randperm(len(_lowerCAmelCase ) )]
GradientState._reset_state()
def snake_case_ ( _lowerCAmelCase : List[str]=False , _lowerCAmelCase : str=False ) -> Optional[int]:
UpperCAmelCase : Dict = Accelerator(
split_batches=_lowerCAmelCase , dispatch_batches=_lowerCAmelCase , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = get_training_setup(_lowerCAmelCase , _lowerCAmelCase )
for iteration, batch in enumerate(_lowerCAmelCase ):
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCAmelCase , UpperCAmelCase : str = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCAmelCase )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_lowerCAmelCase ):
step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n"""
UpperCAmelCase : str = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCAmelCase ))
if accelerator.num_processes > 1:
check_model_parameters(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
GradientState._reset_state()
def snake_case_ ( ) -> Tuple:
UpperCAmelCase : Optional[Any] = Accelerator()
UpperCAmelCase : List[str] = RegressionDataset(length=80 )
UpperCAmelCase : str = DataLoader(_lowerCAmelCase , batch_size=16 )
UpperCAmelCase : List[Any] = RegressionDataset(length=96 )
UpperCAmelCase : List[Any] = DataLoader(_lowerCAmelCase , batch_size=16 )
UpperCAmelCase , UpperCAmelCase : Dict = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_lowerCAmelCase ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCAmelCase )
if iteration < len(_lowerCAmelCase ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_lowerCAmelCase ):
assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCAmelCase )
if batch_num < len(_lowerCAmelCase ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def snake_case_ ( ) -> Optional[int]:
UpperCAmelCase : int = Accelerator()
UpperCAmelCase : Any = accelerator.state
if state.local_process_index == 0:
print('''**Test `accumulate` gradient accumulation with dataloader break**''' )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('''**Test NOOP `no_sync` context manager**''' )
test_noop_sync(_lowerCAmelCase )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('''**Test Distributed `no_sync` context manager**''' )
test_distributed_sync(_lowerCAmelCase )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation, ''' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation(_lowerCAmelCase , _lowerCAmelCase )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation_with_opt_and_scheduler(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Tuple:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 23 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase__: Tuple = logging.get_logger(__name__)
UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model"}
UpperCamelCase__: Optional[int] = {
"vocab_file": {
"moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model",
"moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model",
"moussaKam/barthez-orangesum-title": (
"https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"
),
},
}
UpperCamelCase__: Dict = {
"moussaKam/mbarthez": 1024,
"moussaKam/barthez": 1024,
"moussaKam/barthez-orangesum-title": 1024,
}
UpperCamelCase__: Tuple = "▁"
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["""input_ids""", """attention_mask"""]
def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="</s>" , __snake_case : Any="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Dict , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token
UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , )
UpperCAmelCase : Optional[int] = vocab_file
UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__snake_case ) )
UpperCAmelCase : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
UpperCAmelCase : Optional[Any] = len(self.sp_model ) - 1
UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase : Optional[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case )
if token_ids_a is None:
return [1] + ([0] * len(__snake_case )) + [1]
return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1]
def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase : Tuple = [self.sep_token_id]
UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def A ( self : Dict ) -> Optional[int]:
return len(self.sp_model )
def A ( self : List[str] ) -> Dict:
UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def A ( self : Optional[Any] , __snake_case : str ) -> List[str]:
return self.sp_model.encode(__snake_case , out_type=__snake_case )
def A ( self : int , __snake_case : int ) -> int:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(__snake_case )
return spm_id if spm_id else self.unk_token_id
def A ( self : int , __snake_case : Any ) -> List[Any]:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(__snake_case )
def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]:
UpperCAmelCase : Optional[Any] = []
UpperCAmelCase : int = ''''''
UpperCAmelCase : Union[str, Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__snake_case ) + token
UpperCAmelCase : str = True
UpperCAmelCase : List[str] = []
else:
current_sub_tokens.append(__snake_case )
UpperCAmelCase : Optional[int] = False
out_string += self.sp_model.decode(__snake_case )
return out_string.strip()
def __getstate__( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = self.__dict__.copy()
UpperCAmelCase : Any = None
return state
def __setstate__( self : Optional[int] , __snake_case : Union[str, Any] ) -> List[Any]:
UpperCAmelCase : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase : Optional[Any] = {}
UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__snake_case ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase : Union[str, Any] = os.path.join(
__snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(__snake_case , '''wb''' ) as fi:
UpperCAmelCase : Any = self.sp_model.serialized_model_proto()
fi.write(__snake_case )
return (out_vocab_file,)
| 23 | 1 |
'''simple docstring'''
from math import factorial
UpperCamelCase__: dict[str, int] = {str(digit): factorial(digit) for digit in range(10)}
def snake_case_ ( _lowerCAmelCase : int ) -> int:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise TypeError('''Parameter number must be int''' )
if number < 0:
raise ValueError('''Parameter number must be greater than or equal to 0''' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowerCAmelCase ) )
def snake_case_ ( _lowerCAmelCase : int = 60 , _lowerCAmelCase : int = 1000000 ) -> int:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise TypeError('''Parameters chain_length and number_limit must be int''' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'''Parameters chain_length and number_limit must be greater than 0''' )
# the counter for the chains with the exact desired length
UpperCAmelCase : List[str] = 0
# the cached sizes of the previous chains
UpperCAmelCase : dict[int, int] = {}
for start_chain_element in range(1 , _lowerCAmelCase ):
# The temporary set will contain the elements of the chain
UpperCAmelCase : List[Any] = set()
UpperCAmelCase : List[Any] = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
UpperCAmelCase : Any = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(_lowerCAmelCase )
chain_set_length += 1
UpperCAmelCase : int = digit_factorial_sum(_lowerCAmelCase )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
UpperCAmelCase : int = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"{solution()}")
| 23 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@classmethod
def A ( cls : Union[str, Any] ) -> int:
UpperCAmelCase : Optional[Any] = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def A ( cls : List[str] ) -> Tuple:
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def A ( self : int ) -> Tuple:
UpperCAmelCase : List[Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase : Dict = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
__snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]:
UpperCAmelCase : str = True
UpperCAmelCase : int = flatten_dict(modela.params )
UpperCAmelCase : Dict = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
UpperCAmelCase : Dict = False
return models_are_equal
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
UpperCAmelCase : int = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__snake_case , __snake_case ) )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertTrue(check_models_equal(__snake_case , __snake_case ) )
def A ( self : List[str] ) -> Dict:
UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
UpperCAmelCase : Optional[int] = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertTrue(check_models_equal(__snake_case , __snake_case ) )
def A ( self : Optional[int] ) -> str:
UpperCAmelCase : Dict = '''bert'''
UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(__snake_case ):
UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertIsNotNone(__snake_case )
def A ( self : Dict ) -> List[Any]:
UpperCAmelCase : Optional[int] = '''bert'''
UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(__snake_case ):
UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertIsNotNone(__snake_case )
| 23 | 1 |
'''simple docstring'''
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
UpperCamelCase__: Union[str, Any] = 0
UpperCamelCase__: List[str] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
UpperCamelCase__: List[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
UpperCamelCase__: Union[str, Any] = tuple[int, int]
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
def __init__( self : str , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : Node | None , ) -> None:
UpperCAmelCase : int = pos_x
UpperCAmelCase : Optional[int] = pos_y
UpperCAmelCase : List[Any] = (pos_y, pos_x)
UpperCAmelCase : List[str] = goal_x
UpperCAmelCase : Dict = goal_y
UpperCAmelCase : str = g_cost
UpperCAmelCase : Dict = parent
UpperCAmelCase : Any = self.calculate_heuristic()
UpperCAmelCase : Dict = self.g_cost + self.h_cost
def A ( self : str ) -> float:
UpperCAmelCase : Dict = self.pos_x - self.goal_x
UpperCAmelCase : List[Any] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(__snake_case ) + abs(__snake_case )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : List[str] , __snake_case : Node ) -> bool:
return self.f_cost < other.f_cost
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
def __init__( self : int , __snake_case : TPosition , __snake_case : TPosition ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __snake_case )
UpperCAmelCase : Union[str, Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __snake_case )
UpperCAmelCase : Union[str, Any] = [self.start]
UpperCAmelCase : list[Node] = []
UpperCAmelCase : Any = False
def A ( self : Optional[int] ) -> list[TPosition]:
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCAmelCase : str = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(__snake_case )
self.closed_nodes.append(__snake_case )
UpperCAmelCase : Dict = self.get_successors(__snake_case )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(__snake_case )
else:
# retrieve the best current path
UpperCAmelCase : Tuple = self.open_nodes.pop(self.open_nodes.index(__snake_case ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(__snake_case )
else:
self.open_nodes.append(__snake_case )
return [self.start.pos]
def A ( self : Dict , __snake_case : Node ) -> list[Node]:
UpperCAmelCase : int = []
for action in delta:
UpperCAmelCase : str = parent.pos_x + action[1]
UpperCAmelCase : List[str] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__snake_case ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
__snake_case , __snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __snake_case , ) )
return successors
def A ( self : Tuple , __snake_case : Node | None ) -> list[TPosition]:
UpperCAmelCase : List[str] = node
UpperCAmelCase : Optional[int] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCAmelCase : Dict = current_node.parent
path.reverse()
return path
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
def __init__( self : List[str] , __snake_case : TPosition , __snake_case : TPosition ) -> None:
UpperCAmelCase : Optional[Any] = AStar(__snake_case , __snake_case )
UpperCAmelCase : Union[str, Any] = AStar(__snake_case , __snake_case )
UpperCAmelCase : Tuple = False
def A ( self : Optional[Any] ) -> list[TPosition]:
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCAmelCase : Optional[int] = self.fwd_astar.open_nodes.pop(0 )
UpperCAmelCase : Union[str, Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
__snake_case , __snake_case )
self.fwd_astar.closed_nodes.append(__snake_case )
self.bwd_astar.closed_nodes.append(__snake_case )
UpperCAmelCase : Any = current_bwd_node
UpperCAmelCase : Any = current_fwd_node
UpperCAmelCase : Optional[Any] = {
self.fwd_astar: self.fwd_astar.get_successors(__snake_case ),
self.bwd_astar: self.bwd_astar.get_successors(__snake_case ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(__snake_case )
else:
# retrieve the best current path
UpperCAmelCase : List[str] = astar.open_nodes.pop(
astar.open_nodes.index(__snake_case ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(__snake_case )
else:
astar.open_nodes.append(__snake_case )
return [self.fwd_astar.start.pos]
def A ( self : Union[str, Any] , __snake_case : Node , __snake_case : Node ) -> list[TPosition]:
UpperCAmelCase : Dict = self.fwd_astar.retrace_path(__snake_case )
UpperCAmelCase : List[str] = self.bwd_astar.retrace_path(__snake_case )
bwd_path.pop()
bwd_path.reverse()
UpperCAmelCase : Dict = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
UpperCamelCase__: List[str] = (0, 0)
UpperCamelCase__: List[Any] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
UpperCamelCase__: str = time.time()
UpperCamelCase__: Union[str, Any] = AStar(init, goal)
UpperCamelCase__: List[str] = a_star.search()
UpperCamelCase__: int = time.time() - start_time
print(F"AStar execution time = {end_time:f} seconds")
UpperCamelCase__: int = time.time()
UpperCamelCase__: str = BidirectionalAStar(init, goal)
UpperCamelCase__: str = time.time() - bd_start_time
print(F"BidirectionalAStar execution time = {bd_end_time:f} seconds")
| 23 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : str , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=8 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : int=True , __snake_case : List[Any]=99 , __snake_case : str=16 , __snake_case : Tuple=5 , __snake_case : Tuple=2 , __snake_case : str=36 , __snake_case : Dict="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=512 , __snake_case : Optional[Any]=16 , __snake_case : int=2 , __snake_case : int=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : str=None , ) -> Optional[int]:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : Tuple = batch_size
UpperCAmelCase : List[str] = seq_length
UpperCAmelCase : List[Any] = is_training
UpperCAmelCase : int = use_input_mask
UpperCAmelCase : Any = use_token_type_ids
UpperCAmelCase : str = use_labels
UpperCAmelCase : Union[str, Any] = vocab_size
UpperCAmelCase : List[str] = hidden_size
UpperCAmelCase : Optional[Any] = num_hidden_layers
UpperCAmelCase : Union[str, Any] = num_attention_heads
UpperCAmelCase : Optional[Any] = intermediate_size
UpperCAmelCase : Union[str, Any] = hidden_act
UpperCAmelCase : int = hidden_dropout_prob
UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase : Union[str, Any] = max_position_embeddings
UpperCAmelCase : str = type_vocab_size
UpperCAmelCase : List[str] = type_sequence_label_size
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Optional[Any] = num_labels
UpperCAmelCase : Optional[int] = num_choices
UpperCAmelCase : Any = scope
def A ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[int] = None
if self.use_input_mask:
UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Dict = None
if self.use_token_type_ids:
UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : str = None
UpperCAmelCase : Tuple = None
UpperCAmelCase : int = None
if self.use_labels:
UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : List[str] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self : int ) -> Tuple:
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , )
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase : Optional[Any] = self.get_config()
UpperCAmelCase : int = 300
return config
def A ( self : Optional[Any] ) -> Any:
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : Tuple = self.prepare_config_and_inputs()
UpperCAmelCase : Dict = True
UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def A ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[Any] ) -> List[str]:
UpperCAmelCase : int = MraModel(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case )
UpperCAmelCase : Optional[int] = model(__snake_case , token_type_ids=__snake_case )
UpperCAmelCase : Dict = model(__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[Any] , ) -> Tuple:
UpperCAmelCase : str = True
UpperCAmelCase : Tuple = MraModel(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Optional[int] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , )
UpperCAmelCase : Optional[Any] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , )
UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int ) -> Any:
UpperCAmelCase : Dict = MraForMaskedLM(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Dict , __snake_case : Any , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Tuple ) -> Optional[int]:
UpperCAmelCase : List[str] = MraForQuestionAnswering(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : List[Any] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int:
UpperCAmelCase : int = self.num_labels
UpperCAmelCase : Union[str, Any] = MraForSequenceClassification(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> int:
UpperCAmelCase : Tuple = self.num_labels
UpperCAmelCase : List[str] = MraForTokenClassification(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A ( self : str , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] ) -> Optional[Any]:
UpperCAmelCase : Tuple = self.num_choices
UpperCAmelCase : int = MraForMultipleChoice(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : List[str] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A ( self : str ) -> Dict:
UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : List[str] = config_and_inputs
UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = ()
def A ( self : int ) -> Union[str, Any]:
UpperCAmelCase : List[str] = MraModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 )
def A ( self : Optional[Any] ) -> str:
self.config_tester.run_common_tests()
def A ( self : Tuple ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
def A ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__snake_case )
def A ( self : Tuple ) -> Dict:
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__snake_case )
def A ( self : Tuple ) -> List[str]:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__snake_case )
def A ( self : int ) -> Dict:
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__snake_case )
def A ( self : Dict ) -> Optional[int]:
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__snake_case )
def A ( self : Any ) -> Optional[int]:
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__snake_case )
@slow
def A ( self : Dict ) -> Any:
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : str = MraModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
@unittest.skip(reason='''MRA does not output attentions''' )
def A ( self : str ) -> Optional[Any]:
return
@require_torch
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@slow
def A ( self : Tuple ) -> List[Any]:
UpperCAmelCase : int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' )
UpperCAmelCase : Optional[Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : List[Any] = model(__snake_case )[0]
UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __snake_case )
UpperCAmelCase : Any = torch.tensor(
[[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
@slow
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase : Optional[int] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' )
UpperCAmelCase : Dict = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : List[Any] = model(__snake_case )[0]
UpperCAmelCase : int = 50265
UpperCAmelCase : int = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __snake_case )
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
@slow
def A ( self : str ) -> List[Any]:
UpperCAmelCase : List[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' )
UpperCAmelCase : List[Any] = torch.arange(4096 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : Tuple = model(__snake_case )[0]
UpperCAmelCase : Optional[int] = 50265
UpperCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) )
self.assertEqual(output.shape , __snake_case )
UpperCAmelCase : Optional[int] = torch.tensor(
[[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
| 23 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = StableUnCLIPImgaImgPipeline
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
lowerCamelCase__ = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
lowerCamelCase__ = frozenset([] )
def A ( self : int ) -> Dict:
UpperCAmelCase : List[Any] = 32
UpperCAmelCase : Union[str, Any] = embedder_hidden_size
# image encoding components
UpperCAmelCase : Tuple = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
UpperCAmelCase : Any = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=__snake_case , projection_dim=__snake_case , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
UpperCAmelCase : Tuple = StableUnCLIPImageNormalizer(embedding_dim=__snake_case )
UpperCAmelCase : Union[str, Any] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
UpperCAmelCase : Tuple = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
UpperCAmelCase : Optional[int] = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__snake_case , layers_per_block=1 , upcast_attention=__snake_case , use_linear_projection=__snake_case , )
torch.manual_seed(0 )
UpperCAmelCase : Any = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='''v_prediction''' , set_alpha_to_one=__snake_case , steps_offset=1 , )
torch.manual_seed(0 )
UpperCAmelCase : Tuple = AutoencoderKL()
UpperCAmelCase : str = {
# image encoding components
'''feature_extractor''': feature_extractor,
'''image_encoder''': image_encoder.eval(),
# image noising components
'''image_normalizer''': image_normalizer.eval(),
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder.eval(),
'''unet''': unet.eval(),
'''scheduler''': scheduler,
'''vae''': vae.eval(),
}
return components
def A ( self : Dict , __snake_case : int , __snake_case : Union[str, Any]=0 , __snake_case : Union[str, Any]=True ) -> str:
if str(__snake_case ).startswith('''mps''' ):
UpperCAmelCase : Tuple = torch.manual_seed(__snake_case )
else:
UpperCAmelCase : List[str] = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
UpperCAmelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case )
if pil_image:
UpperCAmelCase : List[Any] = input_image * 0.5 + 0.5
UpperCAmelCase : int = input_image.clamp(0 , 1 )
UpperCAmelCase : Optional[int] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCAmelCase : List[Any] = DiffusionPipeline.numpy_to_pil(__snake_case )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def A ( self : List[str] ) -> Optional[Any]:
UpperCAmelCase : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase : List[str] = self.get_dummy_components()
UpperCAmelCase : int = StableUnCLIPImgaImgPipeline(**__snake_case )
UpperCAmelCase : Union[str, Any] = sd_pipe.to(__snake_case )
sd_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : int = self.get_dummy_inputs(__snake_case )
inputs.update({'''image_embeds''': None} )
UpperCAmelCase : int = sd_pipe(**__snake_case ).images
UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase : List[Any] = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def A ( self : Optional[int] ) -> Dict:
UpperCAmelCase : List[str] = torch_device in ['''cpu''', '''mps''']
self._test_attention_slicing_forward_pass(test_max_difference=__snake_case )
def A ( self : Any ) -> Optional[Any]:
UpperCAmelCase : List[str] = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=__snake_case )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def A ( self : Optional[Any] ) -> Any:
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__snake_case )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : int ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A ( self : List[str] ) -> List[Any]:
UpperCAmelCase : int = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' )
UpperCAmelCase : Optional[int] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' )
UpperCAmelCase : Any = StableUnCLIPImgaImgPipeline.from_pretrained(
'''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa )
pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 )
UpperCAmelCase : Optional[Any] = pipe(__snake_case , '''anime turle''' , generator=__snake_case , output_type='''np''' )
UpperCAmelCase : Any = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
def A ( self : Optional[int] ) -> Dict:
UpperCAmelCase : Optional[int] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' )
UpperCAmelCase : Optional[int] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' )
UpperCAmelCase : Dict = StableUnCLIPImgaImgPipeline.from_pretrained(
'''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa )
pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 )
UpperCAmelCase : Union[str, Any] = pipe(__snake_case , '''anime turle''' , generator=__snake_case , output_type='''np''' )
UpperCAmelCase : Optional[Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__snake_case , __snake_case )
def A ( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained(
'''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa )
UpperCAmelCase : Dict = pipe.to(__snake_case )
pipe.set_progress_bar_config(disable=__snake_case )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
UpperCAmelCase : List[Any] = pipe(
__snake_case , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , )
UpperCAmelCase : Any = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 23 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
expand_dims,
flatten_dict,
is_flax_available,
is_tf_available,
is_torch_available,
reshape,
squeeze,
transpose,
)
if is_flax_available():
import jax.numpy as jnp
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : Any ) -> str:
UpperCAmelCase : Any = {
'''task_specific_params''': {
'''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4},
'''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4},
'''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6},
}
}
UpperCAmelCase : int = {
'''task_specific_params.summarization.length_penalty''': 1.0,
'''task_specific_params.summarization.max_length''': 128,
'''task_specific_params.summarization.min_length''': 12,
'''task_specific_params.summarization.num_beams''': 4,
'''task_specific_params.summarization_cnn.length_penalty''': 2.0,
'''task_specific_params.summarization_cnn.max_length''': 142,
'''task_specific_params.summarization_cnn.min_length''': 56,
'''task_specific_params.summarization_cnn.num_beams''': 4,
'''task_specific_params.summarization_xsum.length_penalty''': 1.0,
'''task_specific_params.summarization_xsum.max_length''': 62,
'''task_specific_params.summarization_xsum.min_length''': 11,
'''task_specific_params.summarization_xsum.num_beams''': 6,
}
self.assertEqual(flatten_dict(__snake_case ) , __snake_case )
def A ( self : int ) -> str:
UpperCAmelCase : Any = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(transpose(__snake_case ) , x.transpose() ) )
UpperCAmelCase : str = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) )
@require_torch
def A ( self : str ) -> Union[str, Any]:
UpperCAmelCase : Any = np.random.randn(3 , 4 )
UpperCAmelCase : List[Any] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) )
UpperCAmelCase : Tuple = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : Any = torch.tensor(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) )
@require_tf
def A ( self : List[str] ) -> Optional[Any]:
UpperCAmelCase : int = np.random.randn(3 , 4 )
UpperCAmelCase : Optional[int] = tf.constant(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) )
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : str = tf.constant(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) )
@require_flax
def A ( self : Tuple ) -> Any:
UpperCAmelCase : List[Any] = np.random.randn(3 , 4 )
UpperCAmelCase : List[str] = jnp.array(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case ) , np.asarray(transpose(__snake_case ) ) ) )
UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : int = jnp.array(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(__snake_case , axes=(1, 2, 0) ) ) ) )
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.reshape(__snake_case , (4, 3) ) ) )
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.reshape(__snake_case , (12, 5) ) ) )
@require_torch
def A ( self : Union[str, Any] ) -> int:
UpperCAmelCase : Dict = np.random.randn(3 , 4 )
UpperCAmelCase : Optional[Any] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) )
UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : List[Any] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) )
@require_tf
def A ( self : int ) -> List[str]:
UpperCAmelCase : List[Any] = np.random.randn(3 , 4 )
UpperCAmelCase : List[str] = tf.constant(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) )
UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : Optional[Any] = tf.constant(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) )
@require_flax
def A ( self : Any ) -> Dict:
UpperCAmelCase : Tuple = np.random.randn(3 , 4 )
UpperCAmelCase : Union[str, Any] = jnp.array(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.asarray(reshape(__snake_case , (4, 3) ) ) ) )
UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : Optional[Any] = jnp.array(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.asarray(reshape(__snake_case , (12, 5) ) ) ) )
def A ( self : List[Any] ) -> List[Any]:
UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 )
self.assertTrue(np.allclose(squeeze(__snake_case ) , np.squeeze(__snake_case ) ) )
UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.squeeze(__snake_case , axis=2 ) ) )
@require_torch
def A ( self : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 )
UpperCAmelCase : List[str] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) )
UpperCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase : str = torch.tensor(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) )
@require_tf
def A ( self : Optional[Any] ) -> Dict:
UpperCAmelCase : int = np.random.randn(1 , 3 , 4 )
UpperCAmelCase : Optional[int] = tf.constant(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) )
UpperCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase : Optional[int] = tf.constant(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) )
@require_flax
def A ( self : List[Any] ) -> Dict:
UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 )
UpperCAmelCase : int = jnp.array(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case ) , np.asarray(squeeze(__snake_case ) ) ) )
UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase : int = jnp.array(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.asarray(squeeze(__snake_case , axis=2 ) ) ) )
def A ( self : Optional[Any] ) -> int:
UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.expand_dims(__snake_case , axis=1 ) ) )
@require_torch
def A ( self : List[str] ) -> Tuple:
UpperCAmelCase : Tuple = np.random.randn(3 , 4 )
UpperCAmelCase : Tuple = torch.tensor(__snake_case )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) )
@require_tf
def A ( self : List[str] ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 )
UpperCAmelCase : Any = tf.constant(__snake_case )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) )
@require_flax
def A ( self : Any ) -> List[Any]:
UpperCAmelCase : List[str] = np.random.randn(3 , 4 )
UpperCAmelCase : str = jnp.array(__snake_case )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.asarray(expand_dims(__snake_case , axis=1 ) ) ) )
| 23 | 1 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
UpperCamelCase__: Union[str, Any] = "examples/"
UpperCamelCase__: Optional[Any] = {
"examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"),
"init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"),
"setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","),
"doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"),
}
UpperCamelCase__: Optional[int] = {
"init": "src/diffusers/__init__.py",
"setup": "setup.py",
}
UpperCamelCase__: List[Any] = "README.md"
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> Optional[int]:
with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
UpperCAmelCase : Optional[int] = f.read()
UpperCAmelCase , UpperCAmelCase : List[Any] = REPLACE_PATTERNS[pattern]
UpperCAmelCase : List[Any] = replace.replace('''VERSION''' , _lowerCAmelCase )
UpperCAmelCase : Optional[Any] = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase )
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[int]:
for folder, directories, fnames in os.walk(_lowerCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='''examples''' )
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=False ) -> List[str]:
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if not patch:
update_version_in_examples(_lowerCAmelCase )
def snake_case_ ( ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = '''🤗 Transformers currently provides the following architectures'''
UpperCAmelCase : Optional[int] = '''1. Want to contribute a new model?'''
with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
UpperCAmelCase : Optional[Any] = f.readlines()
# Find the start of the list.
UpperCAmelCase : List[Any] = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
UpperCAmelCase : Optional[Any] = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
UpperCAmelCase : Optional[int] = lines[index].replace(
'''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , )
index += 1
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(_lowerCAmelCase )
def snake_case_ ( ) -> Optional[Any]:
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
UpperCAmelCase : Union[str, Any] = f.read()
UpperCAmelCase : int = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0]
return packaging.version.parse(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : List[str]=False ) -> Any:
UpperCAmelCase : Optional[Any] = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
UpperCAmelCase : Optional[int] = default_version.base_version
elif patch:
UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
UpperCAmelCase : Dict = input(f"""Which version are you releasing? [{default_version}]""" )
if len(_lowerCAmelCase ) == 0:
UpperCAmelCase : Tuple = default_version
print(f"""Updating version to {version}.""" )
global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase )
def snake_case_ ( ) -> Any:
UpperCAmelCase : List[Any] = get_version()
UpperCAmelCase : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
UpperCAmelCase : List[Any] = current_version.base_version
# Check with the user we got that right.
UpperCAmelCase : Optional[int] = input(f"""Which version are we developing now? [{dev_version}]""" )
if len(_lowerCAmelCase ) == 0:
UpperCAmelCase : Dict = dev_version
print(f"""Updating version to {version}.""" )
global_version_update(_lowerCAmelCase )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
UpperCamelCase__: Optional[Any] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 23 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
UpperCamelCase__: Union[str, Any] = "examples/"
UpperCamelCase__: Optional[Any] = {
"examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"),
"init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"),
"setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","),
"doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"),
}
UpperCamelCase__: Optional[int] = {
"init": "src/diffusers/__init__.py",
"setup": "setup.py",
}
UpperCamelCase__: List[Any] = "README.md"
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> Optional[int]:
with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
UpperCAmelCase : Optional[int] = f.read()
UpperCAmelCase , UpperCAmelCase : List[Any] = REPLACE_PATTERNS[pattern]
UpperCAmelCase : List[Any] = replace.replace('''VERSION''' , _lowerCAmelCase )
UpperCAmelCase : Optional[Any] = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase )
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[int]:
for folder, directories, fnames in os.walk(_lowerCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='''examples''' )
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=False ) -> List[str]:
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if not patch:
update_version_in_examples(_lowerCAmelCase )
def snake_case_ ( ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = '''🤗 Transformers currently provides the following architectures'''
UpperCAmelCase : Optional[int] = '''1. Want to contribute a new model?'''
with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
UpperCAmelCase : Optional[Any] = f.readlines()
# Find the start of the list.
UpperCAmelCase : List[Any] = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
UpperCAmelCase : Optional[Any] = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
UpperCAmelCase : Optional[int] = lines[index].replace(
'''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , )
index += 1
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(_lowerCAmelCase )
def snake_case_ ( ) -> Optional[Any]:
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
UpperCAmelCase : Union[str, Any] = f.read()
UpperCAmelCase : int = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0]
return packaging.version.parse(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : List[str]=False ) -> Any:
UpperCAmelCase : Optional[Any] = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
UpperCAmelCase : Optional[int] = default_version.base_version
elif patch:
UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
UpperCAmelCase : Dict = input(f"""Which version are you releasing? [{default_version}]""" )
if len(_lowerCAmelCase ) == 0:
UpperCAmelCase : Tuple = default_version
print(f"""Updating version to {version}.""" )
global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase )
def snake_case_ ( ) -> Any:
UpperCAmelCase : List[Any] = get_version()
UpperCAmelCase : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
UpperCAmelCase : List[Any] = current_version.base_version
# Check with the user we got that right.
UpperCAmelCase : Optional[int] = input(f"""Which version are we developing now? [{dev_version}]""" )
if len(_lowerCAmelCase ) == 0:
UpperCAmelCase : Dict = dev_version
print(f"""Updating version to {version}.""" )
global_version_update(_lowerCAmelCase )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
UpperCamelCase__: Optional[Any] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 23 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
UpperCamelCase__: Optional[Any] = logging.get_logger(__name__)
UpperCamelCase__: int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase__: Tuple = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
UpperCamelCase__: List[Any] = {
"junnyu/roformer_chinese_small": 1536,
"junnyu/roformer_chinese_base": 1536,
"junnyu/roformer_chinese_char_small": 512,
"junnyu/roformer_chinese_char_base": 512,
"junnyu/roformer_small_discriminator": 128,
"junnyu/roformer_small_generator": 128,
}
UpperCamelCase__: List[Any] = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION
lowerCamelCase__ = RoFormerTokenizer
def __init__( self : Optional[Any] , __snake_case : Optional[int]=None , __snake_case : Optional[int]=None , __snake_case : List[Any]=True , __snake_case : Optional[Any]="[UNK]" , __snake_case : List[str]="[SEP]" , __snake_case : str="[PAD]" , __snake_case : str="[CLS]" , __snake_case : List[str]="[MASK]" , __snake_case : Optional[Any]=True , __snake_case : List[Any]=None , **__snake_case : Union[str, Any] , ) -> Union[str, Any]:
super().__init__(
__snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , **__snake_case , )
UpperCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('''lowercase''' , __snake_case ) != do_lower_case
or pre_tok_state.get('''strip_accents''' , __snake_case ) != strip_accents
):
UpperCAmelCase : List[str] = getattr(__snake_case , pre_tok_state.pop('''type''' ) )
UpperCAmelCase : Union[str, Any] = do_lower_case
UpperCAmelCase : int = strip_accents
UpperCAmelCase : Optional[int] = pre_tok_class(**__snake_case )
UpperCAmelCase : int = do_lower_case
def __getstate__( self : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = self.__dict__.copy()
UpperCAmelCase : List[Any] = BertPreTokenizer()
return state
def __setstate__( self : Tuple , __snake_case : int ) -> Optional[int]:
UpperCAmelCase : Tuple = d
UpperCAmelCase : List[Any] = self.__dict__['''_tokenizer'''].get_vocab()
UpperCAmelCase : Tuple = PreTokenizer.custom(JiebaPreTokenizer(__snake_case ) )
def A ( self : List[str] , __snake_case : str , __snake_case : str=None ) -> Optional[int]:
UpperCAmelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase : List[Any] = [self.sep_token_id]
UpperCAmelCase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A ( self : Tuple , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]:
UpperCAmelCase : Optional[Any] = self._tokenizer.model.save(__snake_case , name=__snake_case )
return tuple(__snake_case )
def A ( self : str , __snake_case : List[str] , __snake_case : int=None , __snake_case : List[str]=None , __snake_case : Union[str, Any]=False , **__snake_case : List[Any] , ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = BertPreTokenizer()
return super().save_pretrained(__snake_case , __snake_case , __snake_case , __snake_case , **__snake_case )
| 23 |
'''simple docstring'''
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
UpperCamelCase__: Tuple = numpy.array([0, 0])
UpperCamelCase__: Union[str, Any] = numpy.array([0.5, 0.8660254])
UpperCamelCase__: Dict = numpy.array([1, 0])
UpperCamelCase__: int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] , _lowerCAmelCase : int ) -> list[numpy.ndarray]:
UpperCAmelCase : Union[str, Any] = initial_vectors
for _ in range(_lowerCAmelCase ):
UpperCAmelCase : Union[str, Any] = iteration_step(_lowerCAmelCase )
return vectors
def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> list[numpy.ndarray]:
UpperCAmelCase : Tuple = []
for i, start_vector in enumerate(vectors[:-1] ):
UpperCAmelCase : List[str] = vectors[i + 1]
new_vectors.append(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def snake_case_ ( _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : float ) -> numpy.ndarray:
UpperCAmelCase : List[str] = numpy.radians(_lowerCAmelCase )
UpperCAmelCase , UpperCAmelCase : Tuple = numpy.cos(_lowerCAmelCase ), numpy.sin(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = numpy.array(((c, -s), (s, c)) )
return numpy.dot(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> None:
UpperCAmelCase : List[Any] = plt.gca()
axes.set_aspect('''equal''' )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
UpperCAmelCase , UpperCAmelCase : str = zip(*_lowerCAmelCase )
plt.plot(_lowerCAmelCase , _lowerCAmelCase )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase__: List[Any] = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 23 | 1 |
'''simple docstring'''
import enum
import shutil
import sys
UpperCamelCase__ , UpperCamelCase__: Tuple = shutil.get_terminal_size()
UpperCamelCase__: int = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"}
class SCREAMING_SNAKE_CASE( enum.Enum ):
"""simple docstring"""
lowerCamelCase__ = 0
lowerCamelCase__ = 1
def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int]="" ) -> Tuple:
sys.stdout.write(str(_lowerCAmelCase ) + end )
sys.stdout.flush()
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any="" ) -> List[str]:
forceWrite(f"""\u001b[{color}m{content}\u001b[0m""" , _lowerCAmelCase )
def snake_case_ ( ) -> Any:
forceWrite('''\r''' )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : str ) -> Dict:
forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" )
def snake_case_ ( ) -> List[str]:
forceWrite(''' ''' * TERMINAL_WIDTH )
reset_cursor()
def snake_case_ ( ) -> int:
reset_cursor()
forceWrite('''-''' * TERMINAL_WIDTH )
| 23 |
'''simple docstring'''
from manim import *
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def A ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 )
UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )]
UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )]
UpperCAmelCase : Dict = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Any = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Optional[Any] = Text('''CPU''' , font_size=24 )
UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__snake_case )
UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )]
UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : List[str] = Text('''GPU''' , font_size=24 )
UpperCAmelCase : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case )
gpu.move_to([-1, -1, 0] )
self.add(__snake_case )
UpperCAmelCase : int = [mem.copy() for i in range(6 )]
UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : List[str] = Text('''Model''' , font_size=24 )
UpperCAmelCase : Tuple = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case )
model.move_to([3, -1.0, 0] )
self.add(__snake_case )
UpperCAmelCase : Any = []
for i, rect in enumerate(__snake_case ):
rect.set_stroke(__snake_case )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 )
self.add(__snake_case )
cpu_targs.append(__snake_case )
UpperCAmelCase : int = [mem.copy() for i in range(6 )]
UpperCAmelCase : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Any = Text('''Loaded Checkpoint''' , font_size=24 )
UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
UpperCAmelCase : Optional[int] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
UpperCAmelCase : str = MarkupText(
F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__snake_case , __snake_case )
UpperCAmelCase : Tuple = MarkupText(
F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , )
blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() )
UpperCAmelCase : List[Any] = MarkupText(
F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__snake_case ) , Write(__snake_case ) )
self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) )
UpperCAmelCase : Tuple = []
UpperCAmelCase : int = []
for i, rect in enumerate(__snake_case ):
UpperCAmelCase : Any = fill.copy().set_fill(__snake_case , opacity=0.7 )
target.move_to(__snake_case )
first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) )
UpperCAmelCase : List[str] = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) )
self.play(*__snake_case )
self.play(*__snake_case )
self.wait()
| 23 | 1 |
'''simple docstring'''
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import SpeechaTextFeatureExtractor
UpperCamelCase__: int = random.Random()
def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : int=None ) -> Any:
if rng is None:
UpperCAmelCase : str = global_rng
UpperCAmelCase : str = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , __snake_case : str , __snake_case : List[Any]=7 , __snake_case : Optional[int]=400 , __snake_case : List[str]=2000 , __snake_case : List[Any]=24 , __snake_case : Optional[Any]=24 , __snake_case : Dict=0.0 , __snake_case : int=16000 , __snake_case : Any=True , __snake_case : Dict=True , ) -> Tuple:
UpperCAmelCase : Tuple = parent
UpperCAmelCase : int = batch_size
UpperCAmelCase : int = min_seq_length
UpperCAmelCase : Optional[int] = max_seq_length
UpperCAmelCase : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCAmelCase : Optional[Any] = feature_size
UpperCAmelCase : Union[str, Any] = num_mel_bins
UpperCAmelCase : List[Any] = padding_value
UpperCAmelCase : Optional[Any] = sampling_rate
UpperCAmelCase : Union[str, Any] = return_attention_mask
UpperCAmelCase : str = do_normalize
def A ( self : Dict ) -> Dict:
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def A ( self : Dict , __snake_case : List[Any]=False , __snake_case : int=False ) -> List[str]:
def _flatten(__snake_case : List[Any] ):
return list(itertools.chain(*__snake_case ) )
if equal_length:
UpperCAmelCase : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
UpperCAmelCase : Optional[Any] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
UpperCAmelCase : List[Any] = [np.asarray(__snake_case ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = SpeechaTextFeatureExtractor if is_speech_available() else None
def A ( self : Union[str, Any] ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = SpeechaTextFeatureExtractionTester(self )
def A ( self : str , __snake_case : List[Any] ) -> Dict:
self.assertTrue(np.all(np.mean(__snake_case , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(__snake_case , axis=0 ) - 1 ) < 1E-3 ) )
def A ( self : Union[str, Any] ) -> int:
# Tests that all call wrap to encode_plus and batch_encode_plus
UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase : Union[str, Any] = [np.asarray(__snake_case ) for speech_input in speech_inputs]
# Test feature size
UpperCAmelCase : Optional[Any] = feature_extractor(__snake_case , padding=__snake_case , return_tensors='''np''' ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size )
# Test not batched input
UpperCAmelCase : Optional[int] = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features
UpperCAmelCase : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features
self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1E-3 ) )
# Test batched
UpperCAmelCase : Any = feature_extractor(__snake_case , return_tensors='''np''' ).input_features
UpperCAmelCase : Union[str, Any] = feature_extractor(__snake_case , return_tensors='''np''' ).input_features
for enc_seq_a, enc_seq_a in zip(__snake_case , __snake_case ):
self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
UpperCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCAmelCase : Optional[Any] = np.asarray(__snake_case )
UpperCAmelCase : Tuple = feature_extractor(__snake_case , return_tensors='''np''' ).input_features
UpperCAmelCase : Tuple = feature_extractor(__snake_case , return_tensors='''np''' ).input_features
for enc_seq_a, enc_seq_a in zip(__snake_case , __snake_case ):
self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1E-3 ) )
def A ( self : Optional[int] ) -> Any:
UpperCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase : List[str] = ['''longest''', '''max_length''', '''do_not_pad''']
UpperCAmelCase : Dict = [None, 16, None]
for max_length, padding in zip(__snake_case , __snake_case ):
UpperCAmelCase : Optional[Any] = feature_extractor(
__snake_case , padding=__snake_case , max_length=__snake_case , return_attention_mask=__snake_case )
UpperCAmelCase : Optional[Any] = inputs.input_features
UpperCAmelCase : Dict = inputs.attention_mask
UpperCAmelCase : Optional[int] = [np.sum(__snake_case ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def A ( self : Optional[Any] ) -> List[str]:
UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase : Optional[int] = ['''longest''', '''max_length''', '''do_not_pad''']
UpperCAmelCase : List[Any] = [None, 16, None]
for max_length, padding in zip(__snake_case , __snake_case ):
UpperCAmelCase : Tuple = feature_extractor(
__snake_case , max_length=__snake_case , padding=__snake_case , return_tensors='''np''' , return_attention_mask=__snake_case )
UpperCAmelCase : Optional[int] = inputs.input_features
UpperCAmelCase : int = inputs.attention_mask
UpperCAmelCase : List[str] = [np.sum(__snake_case ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def A ( self : List[str] ) -> Any:
UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase : Union[str, Any] = feature_extractor(
__snake_case , padding='''max_length''' , max_length=4 , truncation=__snake_case , return_tensors='''np''' , return_attention_mask=__snake_case , )
UpperCAmelCase : Union[str, Any] = inputs.input_features
UpperCAmelCase : int = inputs.attention_mask
UpperCAmelCase : str = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1] )
self._check_zero_mean_unit_variance(input_features[2] )
def A ( self : int ) -> int:
UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase : List[Any] = feature_extractor(
__snake_case , padding='''longest''' , max_length=4 , truncation=__snake_case , return_tensors='''np''' , return_attention_mask=__snake_case , )
UpperCAmelCase : List[str] = inputs.input_features
UpperCAmelCase : Optional[int] = inputs.attention_mask
UpperCAmelCase : Dict = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 4, 24) )
UpperCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCAmelCase : Any = feature_extractor(
__snake_case , padding='''longest''' , max_length=16 , truncation=__snake_case , return_tensors='''np''' , return_attention_mask=__snake_case , )
UpperCAmelCase : List[Any] = inputs.input_features
UpperCAmelCase : str = inputs.attention_mask
UpperCAmelCase : Any = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 6, 24) )
def A ( self : Any ) -> Any:
import torch
UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase : str = np.random.rand(100 , 32 ).astype(np.floataa )
UpperCAmelCase : int = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCAmelCase : Union[str, Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
UpperCAmelCase : int = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def A ( self : Optional[Any] , __snake_case : Optional[int] ) -> Optional[Any]:
from datasets import load_dataset
UpperCAmelCase : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' )
# automatic decoding with librispeech
UpperCAmelCase : Union[str, Any] = ds.sort('''id''' ).select(range(__snake_case ) )[:num_samples]['''audio''']
return [x["array"] for x in speech_samples]
def A ( self : Dict ) -> Optional[Any]:
# fmt: off
UpperCAmelCase : Dict = np.array([
-1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41,
-1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28,
-1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25,
] )
# fmt: on
UpperCAmelCase : List[str] = self._load_datasamples(1 )
UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCAmelCase : Optional[int] = feature_extractor(__snake_case , return_tensors='''pt''' ).input_features
self.assertEquals(input_features.shape , (1, 584, 24) )
self.assertTrue(np.allclose(input_features[0, 0, :30] , __snake_case , atol=1E-4 ) )
| 23 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
)
UpperCamelCase__: str = None
UpperCamelCase__: int = {
"7B": 11008,
"13B": 13824,
"30B": 17920,
"65B": 22016,
"70B": 28672,
}
UpperCamelCase__: List[Any] = {
"7B": 1,
"7Bf": 1,
"13B": 2,
"13Bf": 2,
"30B": 4,
"65B": 8,
"70B": 8,
"70Bf": 8,
}
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : List[Any]=256 ) -> Optional[Any]:
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def snake_case_ ( _lowerCAmelCase : List[str] ) -> str:
with open(_lowerCAmelCase , '''r''' ) as f:
return json.load(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ) -> Optional[Any]:
with open(_lowerCAmelCase , '''w''' ) as f:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=True ) -> List[Any]:
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp''' )
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
UpperCAmelCase : List[str] = read_json(os.path.join(_lowerCAmelCase , '''params.json''' ) )
UpperCAmelCase : str = NUM_SHARDS[model_size]
UpperCAmelCase : Any = params['''n_layers''']
UpperCAmelCase : str = params['''n_heads''']
UpperCAmelCase : Any = n_heads // num_shards
UpperCAmelCase : List[str] = params['''dim''']
UpperCAmelCase : Optional[Any] = dim // n_heads
UpperCAmelCase : str = 1_0_0_0_0.0
UpperCAmelCase : Optional[int] = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
UpperCAmelCase : Tuple = params['''n_kv_heads'''] # for GQA / MQA
UpperCAmelCase : Optional[int] = n_heads_per_shard // num_key_value_heads
UpperCAmelCase : Optional[Any] = dim // num_key_value_heads
else: # compatibility with other checkpoints
UpperCAmelCase : List[str] = n_heads
UpperCAmelCase : Optional[int] = n_heads_per_shard
UpperCAmelCase : List[str] = dim
# permute for sliced rotary
def permute(_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=n_heads , _lowerCAmelCase : int=dim , _lowerCAmelCase : Dict=dim ):
return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase ).transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase )
print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
UpperCAmelCase : int = torch.load(os.path.join(_lowerCAmelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' )
else:
# Sharded
UpperCAmelCase : Optional[Any] = [
torch.load(os.path.join(_lowerCAmelCase , f"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' )
for i in range(_lowerCAmelCase )
]
UpperCAmelCase : Any = 0
UpperCAmelCase : str = {'''weight_map''': {}}
for layer_i in range(_lowerCAmelCase ):
UpperCAmelCase : Optional[Any] = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
UpperCAmelCase : Optional[int] = {
f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute(
loaded[f"""layers.{layer_i}.attention.wq.weight"""] ),
f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute(
loaded[f"""layers.{layer_i}.attention.wk.weight"""] ),
f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""],
f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""],
f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""],
f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""],
f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""],
f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""],
f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
UpperCAmelCase : List[str] = {
f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][
f"""layers.{layer_i}.attention_norm.weight"""
].clone(),
f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][
f"""layers.{layer_i}.ffn_norm.weight"""
].clone(),
}
UpperCAmelCase : Union[str, Any] = permute(
torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for i in range(_lowerCAmelCase )
] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) )
UpperCAmelCase : Optional[Any] = permute(
torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for i in range(_lowerCAmelCase )
] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , )
UpperCAmelCase : str = torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for i in range(_lowerCAmelCase )
] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = torch.cat(
[loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_lowerCAmelCase )] , dim=1 )
UpperCAmelCase : Any = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_lowerCAmelCase )] , dim=0 )
UpperCAmelCase : str = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_lowerCAmelCase )] , dim=1 )
UpperCAmelCase : Tuple = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_lowerCAmelCase )] , dim=0 )
UpperCAmelCase : Any = inv_freq
for k, v in state_dict.items():
UpperCAmelCase : List[Any] = filename
param_count += v.numel()
torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) )
UpperCAmelCase : Optional[int] = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
UpperCAmelCase : str = {
'''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''],
'''model.norm.weight''': loaded['''norm.weight'''],
'''lm_head.weight''': loaded['''output.weight'''],
}
else:
UpperCAmelCase : Any = {
'''model.norm.weight''': loaded[0]['''norm.weight'''],
'''model.embed_tokens.weight''': torch.cat(
[loaded[i]['''tok_embeddings.weight'''] for i in range(_lowerCAmelCase )] , dim=1 ),
'''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_lowerCAmelCase )] , dim=0 ),
}
for k, v in state_dict.items():
UpperCAmelCase : Optional[int] = filename
param_count += v.numel()
torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) )
# Write configs
UpperCAmelCase : Union[str, Any] = {'''total_size''': param_count * 2}
write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , '''pytorch_model.bin.index.json''' ) )
UpperCAmelCase : int = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1
UpperCAmelCase : Tuple = params['''multiple_of'''] if '''multiple_of''' in params else 256
UpperCAmelCase : Any = LlamaConfig(
hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_lowerCAmelCase , )
config.save_pretrained(_lowerCAmelCase )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('''Loading the checkpoint in a Llama model.''' )
UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('''Saving in the Transformers format.''' )
model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> List[str]:
# Initialize the tokenizer based on the `spm` model
UpperCAmelCase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" )
UpperCAmelCase : List[Any] = tokenizer_class(_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
def snake_case_ ( ) -> List[Any]:
UpperCAmelCase : int = argparse.ArgumentParser()
parser.add_argument(
'''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , )
parser.add_argument(
'''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , )
parser.add_argument(
'''--output_dir''' , help='''Location to write HF model and tokenizer''' , )
parser.add_argument('''--safe_serialization''' , type=_lowerCAmelCase , help='''Whether or not to save using `safetensors`.''' )
UpperCAmelCase : List[Any] = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
UpperCAmelCase : Optional[int] = os.path.join(args.input_dir , '''tokenizer.model''' )
write_tokenizer(args.output_dir , _lowerCAmelCase )
if __name__ == "__main__":
main()
| 23 | 1 |
'''simple docstring'''
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : UNetaDModel , __snake_case : DDPMScheduler , __snake_case : Any , ) -> Union[str, Any]:
super().__init__()
UpperCAmelCase : str = value_function
UpperCAmelCase : Optional[Any] = unet
UpperCAmelCase : List[str] = scheduler
UpperCAmelCase : Optional[int] = env
UpperCAmelCase : Tuple = env.get_dataset()
UpperCAmelCase : Union[str, Any] = {}
for key in self.data.keys():
try:
UpperCAmelCase : List[Any] = self.data[key].mean()
except: # noqa: E722
pass
UpperCAmelCase : int = {}
for key in self.data.keys():
try:
UpperCAmelCase : Optional[int] = self.data[key].std()
except: # noqa: E722
pass
UpperCAmelCase : str = env.observation_space.shape[0]
UpperCAmelCase : Tuple = env.action_space.shape[0]
def A ( self : Dict , __snake_case : Any , __snake_case : Tuple ) -> str:
return (x_in - self.means[key]) / self.stds[key]
def A ( self : List[str] , __snake_case : List[Any] , __snake_case : List[Any] ) -> Dict:
return x_in * self.stds[key] + self.means[key]
def A ( self : Union[str, Any] , __snake_case : Any ) -> Any:
if type(__snake_case ) is dict:
return {k: self.to_torch(__snake_case ) for k, v in x_in.items()}
elif torch.is_tensor(__snake_case ):
return x_in.to(self.unet.device )
return torch.tensor(__snake_case , device=self.unet.device )
def A ( self : int , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : int ) -> Optional[Any]:
for key, val in cond.items():
UpperCAmelCase : str = val.clone()
return x_in
def A ( self : str , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] ) -> int:
UpperCAmelCase : Union[str, Any] = x.shape[0]
UpperCAmelCase : Union[str, Any] = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
UpperCAmelCase : Optional[Any] = torch.full((batch_size,) , __snake_case , device=self.unet.device , dtype=torch.long )
for _ in range(__snake_case ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
UpperCAmelCase : List[Any] = self.value_function(x.permute(0 , 2 , 1 ) , __snake_case ).sample
UpperCAmelCase : Optional[int] = torch.autograd.grad([y.sum()] , [x] )[0]
UpperCAmelCase : List[str] = self.scheduler._get_variance(__snake_case )
UpperCAmelCase : List[str] = torch.exp(0.5 * posterior_variance )
UpperCAmelCase : str = model_std * grad
UpperCAmelCase : Tuple = 0
UpperCAmelCase : Any = x.detach()
UpperCAmelCase : Tuple = x + scale * grad
UpperCAmelCase : Tuple = self.reset_xa(__snake_case , __snake_case , self.action_dim )
UpperCAmelCase : Optional[int] = self.unet(x.permute(0 , 2 , 1 ) , __snake_case ).sample.permute(0 , 2 , 1 )
# TODO: verify deprecation of this kwarg
UpperCAmelCase : List[str] = self.scheduler.step(__snake_case , __snake_case , __snake_case , predict_epsilon=__snake_case )['''prev_sample''']
# apply conditions to the trajectory (set the initial state)
UpperCAmelCase : Dict = self.reset_xa(__snake_case , __snake_case , self.action_dim )
UpperCAmelCase : str = self.to_torch(__snake_case )
return x, y
def __call__( self : List[str] , __snake_case : int , __snake_case : Any=64 , __snake_case : Dict=32 , __snake_case : Union[str, Any]=2 , __snake_case : Any=0.1 ) -> List[Any]:
# normalize the observations and create batch dimension
UpperCAmelCase : Dict = self.normalize(__snake_case , '''observations''' )
UpperCAmelCase : Tuple = obs[None].repeat(__snake_case , axis=0 )
UpperCAmelCase : str = {0: self.to_torch(__snake_case )}
UpperCAmelCase : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
UpperCAmelCase : Tuple = randn_tensor(__snake_case , device=self.unet.device )
UpperCAmelCase : Optional[Any] = self.reset_xa(__snake_case , __snake_case , self.action_dim )
UpperCAmelCase : Optional[Any] = self.to_torch(__snake_case )
# run the diffusion process
UpperCAmelCase , UpperCAmelCase : Tuple = self.run_diffusion(__snake_case , __snake_case , __snake_case , __snake_case )
# sort output trajectories by value
UpperCAmelCase : int = y.argsort(0 , descending=__snake_case ).squeeze()
UpperCAmelCase : str = x[sorted_idx]
UpperCAmelCase : Dict = sorted_values[:, :, : self.action_dim]
UpperCAmelCase : List[Any] = actions.detach().cpu().numpy()
UpperCAmelCase : Tuple = self.de_normalize(__snake_case , key='''actions''' )
# select the action with the highest value
if y is not None:
UpperCAmelCase : Union[str, Any] = 0
else:
# if we didn't run value guiding, select a random action
UpperCAmelCase : Any = np.random.randint(0 , __snake_case )
UpperCAmelCase : Optional[Any] = denorm_actions[selected_index, 0]
return denorm_actions
| 23 |
'''simple docstring'''
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Optional[int] = tau * frequency / samplerate
UpperCAmelCase : List[Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = cos(_lowerCAmelCase )
UpperCAmelCase : int = _sin / (2 * q_factor)
UpperCAmelCase : Any = (1 - _cos) / 2
UpperCAmelCase : List[Any] = 1 - _cos
UpperCAmelCase : Union[str, Any] = 1 + alpha
UpperCAmelCase : Any = -2 * _cos
UpperCAmelCase : Dict = 1 - alpha
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Any = tau * frequency / samplerate
UpperCAmelCase : Tuple = sin(_lowerCAmelCase )
UpperCAmelCase : Tuple = cos(_lowerCAmelCase )
UpperCAmelCase : Dict = _sin / (2 * q_factor)
UpperCAmelCase : int = (1 + _cos) / 2
UpperCAmelCase : List[Any] = -1 - _cos
UpperCAmelCase : Tuple = 1 + alpha
UpperCAmelCase : List[str] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha
UpperCAmelCase : Tuple = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Optional[int] = tau * frequency / samplerate
UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase )
UpperCAmelCase : Tuple = cos(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = _sin / (2 * q_factor)
UpperCAmelCase : Union[str, Any] = _sin / 2
UpperCAmelCase : Any = 0
UpperCAmelCase : int = -ba
UpperCAmelCase : Optional[Any] = 1 + alpha
UpperCAmelCase : List[Any] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha
UpperCAmelCase : int = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : List[str] = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : str = cos(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor)
UpperCAmelCase : List[str] = 1 - alpha
UpperCAmelCase : Any = -2 * _cos
UpperCAmelCase : Optional[int] = 1 + alpha
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : Optional[Any] = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = cos(_lowerCAmelCase )
UpperCAmelCase : Dict = _sin / (2 * q_factor)
UpperCAmelCase : str = 10 ** (gain_db / 40)
UpperCAmelCase : int = 1 + alpha * big_a
UpperCAmelCase : Union[str, Any] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha * big_a
UpperCAmelCase : Union[str, Any] = 1 + alpha / big_a
UpperCAmelCase : Tuple = -2 * _cos
UpperCAmelCase : Any = 1 - alpha / big_a
UpperCAmelCase : Optional[Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : Any = tau * frequency / samplerate
UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase )
UpperCAmelCase : str = _sin / (2 * q_factor)
UpperCAmelCase : List[str] = 10 ** (gain_db / 40)
UpperCAmelCase : Optional[int] = (big_a + 1) - (big_a - 1) * _cos
UpperCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos
UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos
UpperCAmelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos
UpperCAmelCase : str = 2 * sqrt(_lowerCAmelCase ) * alpha
UpperCAmelCase : Dict = big_a * (pmc + aaa)
UpperCAmelCase : Any = 2 * big_a * mpc
UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa)
UpperCAmelCase : Optional[int] = ppmc + aaa
UpperCAmelCase : Optional[Any] = -2 * pmpc
UpperCAmelCase : Optional[Any] = ppmc - aaa
UpperCAmelCase : int = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : int = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase )
UpperCAmelCase : Any = _sin / (2 * q_factor)
UpperCAmelCase : int = 10 ** (gain_db / 40)
UpperCAmelCase : List[str] = (big_a + 1) - (big_a - 1) * _cos
UpperCAmelCase : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos
UpperCAmelCase : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos
UpperCAmelCase : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos
UpperCAmelCase : List[str] = 2 * sqrt(_lowerCAmelCase ) * alpha
UpperCAmelCase : Any = big_a * (ppmc + aaa)
UpperCAmelCase : str = -2 * big_a * pmpc
UpperCAmelCase : List[Any] = big_a * (ppmc - aaa)
UpperCAmelCase : Optional[Any] = pmc + aaa
UpperCAmelCase : Any = 2 * mpc
UpperCAmelCase : str = pmc - aaa
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
| 23 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__: List[Any] = logging.get_logger(__name__)
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]:
UpperCAmelCase : Dict = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
('''cls_token''', '''vit.embeddings.cls_token'''),
('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''),
('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''),
('''pos_embed''', '''vit.embeddings.position_embeddings'''),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
UpperCAmelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('''norm.weight''', '''vit.layernorm.weight'''),
('''norm.bias''', '''vit.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ) -> List[Any]:
for i in range(config.num_hidden_layers ):
if base_model:
UpperCAmelCase : Optional[Any] = ''''''
else:
UpperCAmelCase : Any = '''vit.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Optional[int] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" )
UpperCAmelCase : str = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : List[str] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase : Any = in_proj_bias[: config.hidden_size]
UpperCAmelCase : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : Dict = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : int = in_proj_bias[-config.hidden_size :]
def snake_case_ ( _lowerCAmelCase : Optional[Any] ) -> str:
UpperCAmelCase : Tuple = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ) -> Dict:
UpperCAmelCase : Union[str, Any] = dct.pop(_lowerCAmelCase )
UpperCAmelCase : Any = val
def snake_case_ ( ) -> List[str]:
UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Dict = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
return im
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any]=True ) -> Union[str, Any]:
UpperCAmelCase : str = ViTConfig()
# patch_size
if model_name[-1] == "8":
UpperCAmelCase : Optional[Any] = 8
# set labels if required
if not base_model:
UpperCAmelCase : Optional[Any] = 1000
UpperCAmelCase : str = '''huggingface/label-files'''
UpperCAmelCase : Any = '''imagenet-1k-id2label.json'''
UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase : Union[str, Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : Any = idalabel
UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
UpperCAmelCase : List[Any] = 384
UpperCAmelCase : Tuple = 1536
UpperCAmelCase : int = 12
UpperCAmelCase : Optional[Any] = 6
# load original model from torch hub
UpperCAmelCase : List[Any] = torch.hub.load('''facebookresearch/dino:main''' , _lowerCAmelCase )
original_model.eval()
# load state_dict of original model, remove and rename some keys
UpperCAmelCase : List[Any] = original_model.state_dict()
if base_model:
remove_classification_head_(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = create_rename_keys(_lowerCAmelCase , base_model=_lowerCAmelCase )
for src, dest in rename_keys:
rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# load HuggingFace model
if base_model:
UpperCAmelCase : Union[str, Any] = ViTModel(_lowerCAmelCase , add_pooling_layer=_lowerCAmelCase ).eval()
else:
UpperCAmelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval()
model.load_state_dict(_lowerCAmelCase )
# Check outputs on an image, prepared by ViTImageProcessor
UpperCAmelCase : str = ViTImageProcessor()
UpperCAmelCase : int = image_processor(images=prepare_img() , return_tensors='''pt''' )
UpperCAmelCase : Dict = encoding['''pixel_values''']
UpperCAmelCase : List[Any] = model(_lowerCAmelCase )
if base_model:
UpperCAmelCase : Any = original_model(_lowerCAmelCase )
assert torch.allclose(_lowerCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 )
else:
UpperCAmelCase : int = original_model(_lowerCAmelCase )
assert logits.shape == outputs.logits.shape
assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 )
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCAmelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase__: Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="dino_vitb16",
type=str,
help="Name of the model trained with DINO you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--base_model",
action="store_true",
help="Whether to only convert the base model (no projection head weights).",
)
parser.set_defaults(base_model=True)
UpperCamelCase__: Optional[int] = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 23 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool:
UpperCAmelCase : str = get_failure_array(_lowerCAmelCase )
# 2) Step through text searching for pattern
UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern
while i < len(_lowerCAmelCase ):
if pattern[j] == text[i]:
if j == (len(_lowerCAmelCase ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
UpperCAmelCase : Optional[Any] = failure[j - 1]
continue
i += 1
return False
def snake_case_ ( _lowerCAmelCase : str ) -> list[int]:
UpperCAmelCase : Optional[Any] = [0]
UpperCAmelCase : str = 0
UpperCAmelCase : List[str] = 1
while j < len(_lowerCAmelCase ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
UpperCAmelCase : Union[str, Any] = failure[i - 1]
continue
j += 1
failure.append(_lowerCAmelCase )
return failure
if __name__ == "__main__":
# Test 1)
UpperCamelCase__: str = "abc1abc12"
UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc"
UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc"
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
UpperCamelCase__: Tuple = "ABABX"
UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX"
assert kmp(pattern, text)
# Test 3)
UpperCamelCase__: Any = "AAAB"
UpperCamelCase__: str = "ABAAAAAB"
assert kmp(pattern, text)
# Test 4)
UpperCamelCase__: int = "abcdabcy"
UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy"
assert kmp(pattern, text)
# Test 5)
UpperCamelCase__: List[str] = "aabaabaaa"
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 23 | 1 |
'''simple docstring'''
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCamelCase__: Optional[Any] = logging.get_logger(__name__)
UpperCamelCase__: Any = "▁"
UpperCamelCase__: List[str] = {
"vocab_file": "vocab.json",
"spm_file": "sentencepiece.bpe.model",
}
UpperCamelCase__: Any = {
"vocab_file": {
"facebook/s2t-small-librispeech-asr": (
"https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json"
),
},
"spm_file": {
"facebook/s2t-small-librispeech-asr": (
"https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model"
)
},
}
UpperCamelCase__: Optional[int] = {
"facebook/s2t-small-librispeech-asr": 1024,
}
UpperCamelCase__: Union[str, Any] = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"]
UpperCamelCase__: Optional[int] = {"mustc": MUSTC_LANGS}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = MAX_MODEL_INPUT_SIZES
lowerCamelCase__ = ["""input_ids""", """attention_mask"""]
lowerCamelCase__ = []
def __init__( self : List[Any] , __snake_case : str , __snake_case : Any , __snake_case : List[str]="<s>" , __snake_case : str="</s>" , __snake_case : str="<pad>" , __snake_case : Any="<unk>" , __snake_case : str=False , __snake_case : List[Any]=False , __snake_case : List[Any]=None , __snake_case : Optional[Any]=None , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Optional[Any] , ) -> None:
UpperCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , do_upper_case=__snake_case , do_lower_case=__snake_case , tgt_lang=__snake_case , lang_codes=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , )
UpperCAmelCase : Union[str, Any] = do_upper_case
UpperCAmelCase : int = do_lower_case
UpperCAmelCase : Dict = load_json(__snake_case )
UpperCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()}
UpperCAmelCase : Tuple = spm_file
UpperCAmelCase : Any = load_spm(__snake_case , self.sp_model_kwargs )
if lang_codes is not None:
UpperCAmelCase : List[str] = lang_codes
UpperCAmelCase : int = LANGUAGES[lang_codes]
UpperCAmelCase : Any = [F"""<lang:{lang}>""" for lang in self.langs]
UpperCAmelCase : Optional[int] = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs}
UpperCAmelCase : Optional[int] = self.lang_tokens
UpperCAmelCase : List[str] = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
UpperCAmelCase : str = {}
@property
def A ( self : Dict ) -> int:
return len(self.encoder )
@property
def A ( self : Optional[Any] ) -> str:
return self._tgt_lang
@tgt_lang.setter
def A ( self : List[str] , __snake_case : int ) -> None:
UpperCAmelCase : List[Any] = new_tgt_lang
self.set_tgt_lang_special_tokens(__snake_case )
def A ( self : int , __snake_case : str ) -> None:
UpperCAmelCase : Optional[Any] = self.lang_code_to_id[tgt_lang]
UpperCAmelCase : Any = [lang_code_id]
def A ( self : Tuple , __snake_case : str ) -> List[str]:
return self.sp_model.encode(__snake_case , out_type=__snake_case )
def A ( self : str , __snake_case : Union[str, Any] ) -> Union[str, Any]:
return self.encoder.get(__snake_case , self.encoder[self.unk_token] )
def A ( self : str , __snake_case : int ) -> str:
return self.decoder.get(__snake_case , self.unk_token )
def A ( self : Tuple , __snake_case : List[str] ) -> str:
UpperCAmelCase : List[Any] = []
UpperCAmelCase : Tuple = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
UpperCAmelCase : Any = self.sp_model.decode(__snake_case )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
UpperCAmelCase : List[Any] = []
else:
current_sub_tokens.append(__snake_case )
UpperCAmelCase : Optional[Any] = self.sp_model.decode(__snake_case )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def A ( self : Any , __snake_case : List[str] , __snake_case : Optional[int]=None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case )
UpperCAmelCase : Tuple = [1] * len(self.prefix_tokens )
UpperCAmelCase : Optional[int] = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(__snake_case )) + suffix_ones
return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones
def A ( self : Union[str, Any] ) -> Dict:
UpperCAmelCase : List[Any] = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ) -> Dict:
UpperCAmelCase : Optional[int] = self.__dict__.copy()
UpperCAmelCase : str = None
return state
def __setstate__( self : str , __snake_case : Dict ) -> None:
UpperCAmelCase : Tuple = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase : List[str] = {}
UpperCAmelCase : Optional[Any] = load_spm(self.spm_file , self.sp_model_kwargs )
def A ( self : List[Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]:
UpperCAmelCase : List[Any] = Path(__snake_case )
assert save_dir.is_dir(), F"""{save_directory} should be a directory"""
UpperCAmelCase : Dict = save_dir / (
(filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file''']
)
UpperCAmelCase : Union[str, Any] = save_dir / (
(filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file''']
)
save_json(self.encoder , __snake_case )
if os.path.abspath(self.spm_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __snake_case )
elif not os.path.isfile(self.spm_file ):
with open(__snake_case , '''wb''' ) as fi:
UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(__snake_case )
return (str(__snake_case ), str(__snake_case ))
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor:
UpperCAmelCase : int = sentencepiece.SentencePieceProcessor(**_lowerCAmelCase )
spm.Load(str(_lowerCAmelCase ) )
return spm
def snake_case_ ( _lowerCAmelCase : str ) -> Union[Dict, List]:
with open(_lowerCAmelCase , '''r''' ) as f:
return json.load(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str ) -> None:
with open(_lowerCAmelCase , '''w''' ) as f:
json.dump(_lowerCAmelCase , _lowerCAmelCase , indent=2 )
| 23 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
UpperCamelCase__: int = logging.get_logger(__name__)
UpperCamelCase__: Dict = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
UpperCamelCase__: Optional[Any] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = {}
with open(_lowerCAmelCase , '''r''' ) as file:
for line_number, line in enumerate(_lowerCAmelCase ):
UpperCAmelCase : List[str] = line.strip()
if line:
UpperCAmelCase : str = line.split()
UpperCAmelCase : Union[str, Any] = line_number
UpperCAmelCase : List[Any] = words[0]
UpperCAmelCase : Union[str, Any] = value
return result
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int:
for attribute in key.split('''.''' ):
UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Dict = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_lowerCAmelCase ):
UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]]
UpperCAmelCase : Dict = '''param'''
if weight_type is not None and weight_type != "param":
UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase : List[Any] = hf_pointer
for attribute in hf_param_name.split('''.''' ):
UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : int = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase : Union[str, Any] = value[0]
else:
UpperCAmelCase : List[Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase : int = value
elif weight_type == "weight_g":
UpperCAmelCase : str = value
elif weight_type == "weight_v":
UpperCAmelCase : Dict = value
elif weight_type == "bias":
UpperCAmelCase : str = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = value
else:
UpperCAmelCase : Tuple = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]:
UpperCAmelCase : List[str] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_lowerCAmelCase ):
UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]]
UpperCAmelCase : Any = '''param'''
if weight_type is not None and weight_type != "param":
UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] )
else:
UpperCAmelCase : List[Any] = key
UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0]
UpperCamelCase__: Tuple = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int:
UpperCAmelCase : List[Any] = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
UpperCAmelCase : Optional[Any] = True
if "*" in mapped_key:
UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase )
if "weight_g" in name:
UpperCAmelCase : str = '''weight_g'''
elif "weight_v" in name:
UpperCAmelCase : int = '''weight_v'''
elif "bias" in name:
UpperCAmelCase : int = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase : List[str] = '''weight'''
else:
UpperCAmelCase : Dict = None
if hf_dict is not None:
rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return is_used
return is_used
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any:
UpperCAmelCase : Dict = []
UpperCAmelCase : Dict = fairseq_model.state_dict()
UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase : Dict = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , )
UpperCAmelCase : Any = True
else:
UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f"""Unused weights: {unused_weights}""" )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1]
UpperCAmelCase : Optional[int] = name.split('''.''' )
UpperCAmelCase : Tuple = int(items[0] )
UpperCAmelCase : Tuple = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCAmelCase : Tuple = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCAmelCase : Union[str, Any] = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCAmelCase : Union[str, Any] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCAmelCase : List[str] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict:
if config_path is not None:
UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase )
else:
UpperCAmelCase : List[Any] = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = idalabel
UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase )
UpperCAmelCase : Dict = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , )
feature_extractor.save_pretrained(_lowerCAmelCase )
elif is_finetuned:
if dict_path:
UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase : Any = target_dict.pad_index
UpperCAmelCase : Tuple = target_dict.bos_index
UpperCAmelCase : Optional[int] = target_dict.eos_index
UpperCAmelCase : Union[str, Any] = len(target_dict.symbols )
UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' )
if not os.path.isdir(_lowerCAmelCase ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) )
return
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
UpperCAmelCase : List[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase : List[str] = 0
UpperCAmelCase : List[str] = 1
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer(
_lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , )
UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False
UpperCAmelCase : int = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , )
UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase )
else:
UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase )
if is_finetuned or is_seq_class:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' )
UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase )
UpperCAmelCase : Optional[int] = model[0].eval()
recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned )
hf_wavavec.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase__: Dict = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
UpperCamelCase__: Any = parser.parse_args()
UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 23 | 1 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCamelCase__: str = logging.get_logger(__name__)
UpperCamelCase__: List[Any] = {
"facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """detr"""
lowerCamelCase__ = ["""past_key_values"""]
lowerCamelCase__ = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self : Tuple , __snake_case : Any=True , __snake_case : int=None , __snake_case : Dict=3 , __snake_case : Optional[Any]=100 , __snake_case : str=6 , __snake_case : Tuple=2048 , __snake_case : int=8 , __snake_case : List[Any]=6 , __snake_case : Optional[int]=2048 , __snake_case : Tuple=8 , __snake_case : Tuple=0.0 , __snake_case : Union[str, Any]=0.0 , __snake_case : str=True , __snake_case : Tuple="relu" , __snake_case : Optional[Any]=256 , __snake_case : Optional[Any]=0.1 , __snake_case : Dict=0.0 , __snake_case : Any=0.0 , __snake_case : Union[str, Any]=0.02 , __snake_case : Tuple=1.0 , __snake_case : Optional[int]=False , __snake_case : Union[str, Any]="sine" , __snake_case : Optional[Any]="resnet50" , __snake_case : str=True , __snake_case : List[Any]=False , __snake_case : Tuple=1 , __snake_case : Union[str, Any]=5 , __snake_case : Optional[int]=2 , __snake_case : int=1 , __snake_case : Optional[int]=1 , __snake_case : Union[str, Any]=5 , __snake_case : Any=2 , __snake_case : Optional[int]=0.1 , **__snake_case : Any , ) -> Any:
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
UpperCAmelCase : Optional[Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(__snake_case , __snake_case ):
UpperCAmelCase : Union[str, Any] = backbone_config.get('''model_type''' )
UpperCAmelCase : List[Any] = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase : int = config_class.from_dict(__snake_case )
# set timm attributes to None
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = None, None, None
UpperCAmelCase : Optional[Any] = use_timm_backbone
UpperCAmelCase : Union[str, Any] = backbone_config
UpperCAmelCase : List[str] = num_channels
UpperCAmelCase : Optional[Any] = num_queries
UpperCAmelCase : str = d_model
UpperCAmelCase : List[Any] = encoder_ffn_dim
UpperCAmelCase : Tuple = encoder_layers
UpperCAmelCase : str = encoder_attention_heads
UpperCAmelCase : List[Any] = decoder_ffn_dim
UpperCAmelCase : List[Any] = decoder_layers
UpperCAmelCase : List[str] = decoder_attention_heads
UpperCAmelCase : List[str] = dropout
UpperCAmelCase : Union[str, Any] = attention_dropout
UpperCAmelCase : int = activation_dropout
UpperCAmelCase : Union[str, Any] = activation_function
UpperCAmelCase : Any = init_std
UpperCAmelCase : List[str] = init_xavier_std
UpperCAmelCase : Dict = encoder_layerdrop
UpperCAmelCase : Optional[int] = decoder_layerdrop
UpperCAmelCase : Optional[int] = encoder_layers
UpperCAmelCase : Tuple = auxiliary_loss
UpperCAmelCase : Union[str, Any] = position_embedding_type
UpperCAmelCase : Union[str, Any] = backbone
UpperCAmelCase : Optional[int] = use_pretrained_backbone
UpperCAmelCase : Optional[Any] = dilation
# Hungarian matcher
UpperCAmelCase : Optional[int] = class_cost
UpperCAmelCase : Optional[int] = bbox_cost
UpperCAmelCase : Tuple = giou_cost
# Loss coefficients
UpperCAmelCase : List[str] = mask_loss_coefficient
UpperCAmelCase : Union[str, Any] = dice_loss_coefficient
UpperCAmelCase : Optional[Any] = bbox_loss_coefficient
UpperCAmelCase : Tuple = giou_loss_coefficient
UpperCAmelCase : Dict = eos_coefficient
super().__init__(is_encoder_decoder=__snake_case , **__snake_case )
@property
def A ( self : Optional[Any] ) -> int:
return self.encoder_attention_heads
@property
def A ( self : int ) -> int:
return self.d_model
@classmethod
def A ( cls : List[Any] , __snake_case : PretrainedConfig , **__snake_case : str ) -> str:
return cls(backbone_config=__snake_case , **__snake_case )
def A ( self : Union[str, Any] ) -> Dict[str, any]:
UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase : Any = self.backbone_config.to_dict()
UpperCAmelCase : int = self.__class__.model_type
return output
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = version.parse("""1.11""" )
@property
def A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
] )
@property
def A ( self : List[str] ) -> float:
return 1E-5
@property
def A ( self : str ) -> int:
return 12
| 23 |
'''simple docstring'''
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : str ) -> int:
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case )
UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )]
UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('''.bin''' ) for f in files )
@slow
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : List[str] ) -> Dict:
UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case )
UpperCAmelCase : List[Any] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
UpperCAmelCase : Optional[Any] = 4
UpperCAmelCase : Optional[Any] = jax.device_count()
UpperCAmelCase : Tuple = num_samples * [prompt]
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[Any] = shard(__snake_case )
UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3
assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1
UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(__snake_case ) == num_samples
def A ( self : List[Any] ) -> List[str]:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case )
UpperCAmelCase : Dict = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase : Any = 50
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : int = num_samples * [prompt]
UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Dict = replicate(__snake_case )
UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Tuple = shard(__snake_case )
UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1
def A ( self : int ) -> Dict:
UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case )
UpperCAmelCase : Dict = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 )
UpperCAmelCase : List[str] = 50
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : List[Any] = num_samples * [prompt]
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[int] = shard(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def A ( self : int ) -> Any:
UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa )
UpperCAmelCase : List[str] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
UpperCAmelCase : Union[str, Any] = 50
UpperCAmelCase : Optional[int] = jax.device_count()
UpperCAmelCase : List[str] = num_samples * [prompt]
UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : str = shard(__snake_case )
UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def A ( self : Tuple ) -> Optional[Any]:
UpperCAmelCase : int = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , )
UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , )
UpperCAmelCase : Tuple = scheduler.create_state()
UpperCAmelCase : Dict = scheduler_state
UpperCAmelCase : str = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : int = jax.random.PRNGKey(0 )
UpperCAmelCase : Union[str, Any] = 50
UpperCAmelCase : Optional[Any] = jax.device_count()
UpperCAmelCase : Any = num_samples * [prompt]
UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : str = replicate(__snake_case )
UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[int] = shard(__snake_case )
UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1
def A ( self : Any ) -> Tuple:
UpperCAmelCase : List[Any] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : List[Any] = num_samples * [prompt]
UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case )
UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , )
UpperCAmelCase : Dict = replicate(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case )
UpperCAmelCase : List[str] = shard(__snake_case )
UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , )
UpperCAmelCase : int = replicate(__snake_case )
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
UpperCAmelCase : List[Any] = shard(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase : int = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1E-2
| 23 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
UpperCamelCase__: Optional[Any] = logging.get_logger(__name__)
def snake_case_ ( _lowerCAmelCase : List[Any] ) -> List[List[ImageInput]]:
if isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(_lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(_lowerCAmelCase ):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""" )
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = ["""pixel_values"""]
def __init__( self : Optional[int] , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 255 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , **__snake_case : Dict , ) -> None:
super().__init__(**__snake_case )
UpperCAmelCase : List[Any] = size if size is not None else {'''shortest_edge''': 256}
UpperCAmelCase : Union[str, Any] = get_size_dict(__snake_case , default_to_square=__snake_case )
UpperCAmelCase : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase : Union[str, Any] = get_size_dict(__snake_case , param_name='''crop_size''' )
UpperCAmelCase : Any = do_resize
UpperCAmelCase : Optional[int] = size
UpperCAmelCase : List[str] = do_center_crop
UpperCAmelCase : Union[str, Any] = crop_size
UpperCAmelCase : Dict = resample
UpperCAmelCase : str = do_rescale
UpperCAmelCase : List[str] = rescale_factor
UpperCAmelCase : List[str] = offset
UpperCAmelCase : Tuple = do_normalize
UpperCAmelCase : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def A ( self : str , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Union[str, Any] , ) -> np.ndarray:
UpperCAmelCase : int = get_size_dict(__snake_case , default_to_square=__snake_case )
if "shortest_edge" in size:
UpperCAmelCase : str = get_resize_output_image_size(__snake_case , size['''shortest_edge'''] , default_to_square=__snake_case )
elif "height" in size and "width" in size:
UpperCAmelCase : Optional[int] = (size['''height'''], size['''width'''])
else:
raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case )
def A ( self : Dict , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[str] , ) -> np.ndarray:
UpperCAmelCase : Optional[Any] = get_size_dict(__snake_case )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(__snake_case , size=(size['''height'''], size['''width''']) , data_format=__snake_case , **__snake_case )
def A ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : bool = True , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[int] , ) -> Union[str, Any]:
UpperCAmelCase : List[str] = image.astype(np.floataa )
if offset:
UpperCAmelCase : List[Any] = image - (scale / 2)
return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case )
def A ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[int] , ) -> np.ndarray:
return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case )
def A ( self : int , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray:
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
if offset and not do_rescale:
raise ValueError('''For offset, do_rescale must also be set to True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase : Optional[int] = to_numpy_array(__snake_case )
if do_resize:
UpperCAmelCase : Optional[int] = self.resize(image=__snake_case , size=__snake_case , resample=__snake_case )
if do_center_crop:
UpperCAmelCase : str = self.center_crop(__snake_case , size=__snake_case )
if do_rescale:
UpperCAmelCase : Union[str, Any] = self.rescale(image=__snake_case , scale=__snake_case , offset=__snake_case )
if do_normalize:
UpperCAmelCase : Tuple = self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case )
UpperCAmelCase : int = to_channel_dimension_format(__snake_case , __snake_case )
return image
def A ( self : Optional[Any] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : int , ) -> PIL.Image.Image:
UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase : Tuple = resample if resample is not None else self.resample
UpperCAmelCase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase : Dict = offset if offset is not None else self.offset
UpperCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase : str = image_std if image_std is not None else self.image_std
UpperCAmelCase : Optional[int] = size if size is not None else self.size
UpperCAmelCase : Optional[Any] = get_size_dict(__snake_case , default_to_square=__snake_case )
UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase : str = get_size_dict(__snake_case , param_name='''crop_size''' )
if not valid_images(__snake_case ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
UpperCAmelCase : Union[str, Any] = make_batched(__snake_case )
UpperCAmelCase : List[Any] = [
[
self._preprocess_image(
image=__snake_case , do_resize=__snake_case , size=__snake_case , resample=__snake_case , do_center_crop=__snake_case , crop_size=__snake_case , do_rescale=__snake_case , rescale_factor=__snake_case , offset=__snake_case , do_normalize=__snake_case , image_mean=__snake_case , image_std=__snake_case , data_format=__snake_case , )
for img in video
]
for video in videos
]
UpperCAmelCase : Dict = {'''pixel_values''': videos}
return BatchFeature(data=__snake_case , tensor_type=__snake_case )
| 23 |
'''simple docstring'''
import random
from .binary_exp_mod import bin_exp_mod
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int:
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
UpperCAmelCase : str = n - 1
UpperCAmelCase : List[Any] = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
UpperCAmelCase : List[str] = 0
while count < prec:
UpperCAmelCase : int = random.randint(2 , n - 1 )
UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if b != 1:
UpperCAmelCase : int = True
for _ in range(_lowerCAmelCase ):
if b == n - 1:
UpperCAmelCase : Dict = False
break
UpperCAmelCase : str = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip()))
print("Here's the list of primes:")
print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 23 | 1 |
'''simple docstring'''
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def snake_case_ ( _lowerCAmelCase : List[str] ) -> str:
def wrapper(*_lowerCAmelCase : str , **_lowerCAmelCase : Tuple ):
UpperCAmelCase : int = timeit.default_timer()
UpperCAmelCase : int = func(*_lowerCAmelCase , **_lowerCAmelCase )
UpperCAmelCase : Dict = timeit.default_timer() - starttime
return delta
UpperCAmelCase : List[str] = func.__name__
return wrapper
def snake_case_ ( _lowerCAmelCase : dict , _lowerCAmelCase : Any=100 , _lowerCAmelCase : Optional[int]=None ) -> Optional[int]:
UpperCAmelCase : Tuple = []
UpperCAmelCase : Optional[Any] = seq_shapes or {}
for i in range(_lowerCAmelCase ):
UpperCAmelCase : List[str] = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(_lowerCAmelCase , _ArrayXD ):
UpperCAmelCase : List[str] = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(_lowerCAmelCase , datasets.Value ):
if v.dtype == "string":
UpperCAmelCase : Any = '''The small grey turtle was surprisingly fast when challenged.'''
else:
UpperCAmelCase : List[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item()
elif isinstance(_lowerCAmelCase , datasets.Sequence ):
while isinstance(_lowerCAmelCase , datasets.Sequence ):
UpperCAmelCase : Union[str, Any] = v.feature
UpperCAmelCase : Union[str, Any] = seq_shapes[k]
UpperCAmelCase : List[str] = np.random.rand(*_lowerCAmelCase ).astype(v.dtype )
UpperCAmelCase : List[Any] = data
dummy_data.append((i, example) )
return dummy_data
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any]=100 , _lowerCAmelCase : Dict=None ) -> Union[str, Any]:
UpperCAmelCase : List[str] = generate_examples(_lowerCAmelCase , num_examples=_lowerCAmelCase , seq_shapes=_lowerCAmelCase )
with ArrowWriter(features=_lowerCAmelCase , path=_lowerCAmelCase ) as writer:
for key, record in dummy_data:
UpperCAmelCase : Union[str, Any] = features.encode_example(_lowerCAmelCase )
writer.write(_lowerCAmelCase )
UpperCAmelCase , UpperCAmelCase : int = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" )
UpperCAmelCase : List[str] = datasets.Dataset.from_file(filename=_lowerCAmelCase , info=datasets.DatasetInfo(features=_lowerCAmelCase ) )
return dataset
| 23 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__: Optional[int] = logging.get_logger(__name__)
def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]:
UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' )
if "large" in checkpoint_url:
UpperCAmelCase : Tuple = 1024
UpperCAmelCase : List[Any] = 4096
UpperCAmelCase : str = 24
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = [5, 11, 17, 23]
UpperCAmelCase : List[Any] = [256, 512, 1024, 1024]
UpperCAmelCase : Tuple = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 768
UpperCAmelCase : Tuple = [1, 1, 1, 0.5]
UpperCAmelCase : int = [256, 512, 768, 768]
UpperCAmelCase : Any = 150
UpperCAmelCase : Tuple = 16
UpperCAmelCase : Any = (1, 384, 384)
UpperCAmelCase : Optional[Any] = False
UpperCAmelCase : Tuple = '''project'''
if "ade" in checkpoint_url:
UpperCAmelCase : Any = True
UpperCAmelCase : str = 768
UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5]
UpperCAmelCase : List[Any] = 150
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = '''huggingface/label-files'''
UpperCAmelCase : Tuple = '''ade20k-id2label.json'''
UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) )
UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : List[Any] = idalabel
UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480]
return config, expected_shape
def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int:
UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias''']
for k in ignore_keys:
state_dict.pop(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' )
if "pretrained.model" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' )
if "patch_embed" in name:
UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' )
if "pos_embed" in name:
UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' )
if "attn.proj" in name:
UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "proj" in name and "project" not in name:
UpperCAmelCase : str = name.replace('''proj''' , '''projection''' )
if "blocks" in name:
UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' )
if "mlp.fc1" in name:
UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' )
if "norm1" in name and "backbone" not in name:
UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name and "backbone" not in name:
UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' )
if "scratch.output_conv" in name:
UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' )
if "scratch" in name:
UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' )
if "layer1_rn" in name:
UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' )
if "layer2_rn" in name:
UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' )
if "layer3_rn" in name:
UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' )
if "layer4_rn" in name:
UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' )
if "refinenet" in name:
UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" )
if "out_conv" in name:
UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' )
if "resConfUnit1" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' )
if "resConfUnit2" in name:
UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' )
if "conv1" in name:
UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' )
if "conv2" in name:
UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' )
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' )
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' )
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' )
if "pretrained.act_postprocess1.4" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' )
if "pretrained.act_postprocess2.3" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' )
if "pretrained.act_postprocess2.4" in name:
UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' )
if "pretrained.act_postprocess3.3" in name:
UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' )
if "pretrained.act_postprocess4.3" in name:
UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' )
if "pretrained.act_postprocess4.4" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' )
if "pretrained" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' )
if "bn" in name:
UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' )
if "head" in name:
UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' )
if "encoder.norm" in name:
UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' )
if "auxlayer" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' )
if "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' )
if ".." in name:
UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' )
if "stem.conv" in name:
UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' )
if "blocks" in name:
UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' )
if "convolution" in name and "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' )
if "layer" in name and "backbone" in name:
UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' )
if "backbone.bit.encoder.bit" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' )
if "embedder.conv" in name:
UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' )
if "backbone.bit.encoder.stem.norm" in name:
UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' )
return name
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" )
UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : int = in_proj_bias[: config.hidden_size]
UpperCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :]
def snake_case_ ( ) -> List[str]:
UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
return im
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any:
UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' )
# remove certain keys
remove_ignore_keys_(_lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase )
UpperCAmelCase : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase )
# load HuggingFace model
UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
# Check outputs on an image
UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384
UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase )
UpperCAmelCase : Dict = prepare_img()
UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' )
# forward pass
UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth
if show_prediction:
UpperCAmelCase : Dict = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCAmelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCAmelCase )
if push_to_hub:
model.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
if __name__ == "__main__":
UpperCamelCase__: Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
type=str,
help="URL of the original DPT checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=False,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
parser.add_argument(
"--model_name",
default="dpt-large",
type=str,
help="Name of the model, in case you're pushing to the hub.",
)
parser.add_argument(
"--show_prediction",
action="store_true",
)
UpperCamelCase__: Tuple = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 23 | 1 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class SCREAMING_SNAKE_CASE( A__ , A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = IFImgaImgSuperResolutionPipeline
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""}
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} )
lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {"""latents"""}
def A ( self : int ) -> List[str]:
return self._get_superresolution_dummy_components()
def A ( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any=0 ) -> Union[str, Any]:
if str(__snake_case ).startswith('''mps''' ):
UpperCAmelCase : Union[str, Any] = torch.manual_seed(__snake_case )
else:
UpperCAmelCase : Optional[int] = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
UpperCAmelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case )
UpperCAmelCase : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__snake_case ) ).to(__snake_case )
UpperCAmelCase : List[str] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def A ( self : int ) -> Optional[int]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def A ( self : List[Any] ) -> Dict:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def A ( self : Any ) -> Any:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def A ( self : Dict ) -> Any:
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def A ( self : Optional[int] ) -> Any:
self._test_save_load_local()
def A ( self : Tuple ) -> List[Any]:
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 23 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
UpperCamelCase__: Optional[int] = "3"
print("Python version:", sys.version)
print("transformers version:", transformers.__version__)
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
print("NCCL version:", torch.cuda.nccl.version())
except ImportError:
print("Torch version:", None)
try:
import deepspeed
print("DeepSpeed version:", deepspeed.__version__)
except ImportError:
print("DeepSpeed version:", None)
try:
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU")))
print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU")))
except ImportError:
print("TensorFlow version:", None)
| 23 | 1 |
'''simple docstring'''
from __future__ import annotations
from cmath import sqrt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> tuple[complex, complex]:
if a == 0:
raise ValueError('''Coefficient \'a\' must not be zero.''' )
UpperCAmelCase : List[Any] = b * b - 4 * a * c
UpperCAmelCase : int = (-b + sqrt(_lowerCAmelCase )) / (2 * a)
UpperCAmelCase : List[Any] = (-b - sqrt(_lowerCAmelCase )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def snake_case_ ( ) -> Union[str, Any]:
UpperCAmelCase , UpperCAmelCase : List[str] = quadratic_roots(a=5 , b=6 , c=1 )
print(f"""The solutions are: {solutiona} and {solutiona}""" )
if __name__ == "__main__":
main()
| 23 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float:
if len(_lowerCAmelCase ) == 0:
raise ValueError('''find_max() arg is an empty sequence''' )
if (
left >= len(_lowerCAmelCase )
or left < -len(_lowerCAmelCase )
or right >= len(_lowerCAmelCase )
or right < -len(_lowerCAmelCase )
):
raise IndexError('''list index out of range''' )
if left == right:
return nums[left]
UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle
UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid]
UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 23 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCamelCase__: str = logging.get_logger(__name__)
UpperCamelCase__: str = {"vocab_file": "vocab.json"}
UpperCamelCase__: Optional[int] = {
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
UpperCamelCase__: List[str] = {"mgp-str": 27}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any]="[GO]" , __snake_case : List[Any]="[GO]" , __snake_case : Union[str, Any]="[s]" , __snake_case : Optional[Any]="[GO]" , **__snake_case : List[Any] ) -> Union[str, Any]:
super().__init__(
unk_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , **__snake_case , )
with open(__snake_case , encoding='''utf-8''' ) as vocab_handle:
UpperCAmelCase : Union[str, Any] = json.load(__snake_case )
UpperCAmelCase : Optional[int] = {v: k for k, v in self.vocab.items()}
@property
def A ( self : Union[str, Any] ) -> List[str]:
return len(self.vocab )
def A ( self : Dict ) -> List[Any]:
return dict(self.vocab , **self.added_tokens_encoder )
def A ( self : int , __snake_case : Union[str, Any] ) -> Dict:
UpperCAmelCase : int = []
for s in text:
char_tokens.extend(__snake_case )
return char_tokens
def A ( self : Optional[int] , __snake_case : List[str] ) -> List[Any]:
return self.vocab.get(__snake_case , self.vocab.get(self.unk_token ) )
def A ( self : Optional[Any] , __snake_case : Optional[int] ) -> int:
return self.decoder.get(__snake_case )
def A ( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__snake_case ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(__snake_case ) )
return
UpperCAmelCase : List[str] = os.path.join(
__snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' )
return (vocab_file,)
| 23 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = 42
lowerCamelCase__ = 42
def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int:
super().__init__()
self.register_modules(unet=__snake_case , scheduler=__snake_case )
@torch.no_grad()
def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]:
UpperCAmelCase : str = self.unet.config.sample_size
UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size)
UpperCAmelCase : int = self.unet
UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma
UpperCAmelCase : List[Any] = sample.to(self.device )
self.scheduler.set_timesteps(__snake_case )
self.scheduler.set_sigmas(__snake_case )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample
UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample
# prediction step
UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample
UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean
UpperCAmelCase : int = sample_mean.clamp(0 , 1 )
UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=__snake_case )
| 23 | 1 |
'''simple docstring'''
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class SCREAMING_SNAKE_CASE( datasets.BeamBasedBuilder ):
"""simple docstring"""
def A ( self : Dict ) -> Tuple:
return datasets.DatasetInfo(
features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=__snake_case , )
def A ( self : Union[str, Any] , __snake_case : List[str] , __snake_case : str ) -> Optional[Any]:
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )]
def A ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Optional[Any] ) -> Optional[Any]:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(__snake_case )
class SCREAMING_SNAKE_CASE( datasets.BeamBasedBuilder ):
"""simple docstring"""
def A ( self : Tuple ) -> Union[str, Any]:
return datasets.DatasetInfo(
features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=__snake_case , )
def A ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] ) -> Tuple:
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} )
]
def A ( self : Tuple , __snake_case : Tuple , __snake_case : str ) -> str:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(__snake_case )
def snake_case_ ( ) -> Optional[Any]:
return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )]
def snake_case_ ( ) -> Union[str, Any]:
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )]
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
@require_beam
def A ( self : Tuple ) -> Dict:
UpperCAmelCase : Dict = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase : str = DummyBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) )
UpperCAmelCase : str = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , __snake_case )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case )
self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
@require_beam
def A ( self : List[Any] ) -> List[Any]:
import apache_beam as beam
UpperCAmelCase : Tuple = beam.io.parquetio.WriteToParquet
UpperCAmelCase : List[str] = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase : Any = DummyBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' )
with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock:
UpperCAmelCase : str = partial(__snake_case , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
__snake_case , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
__snake_case , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) )
UpperCAmelCase : Any = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , __snake_case )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) )
self.assertTrue(
os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
@require_beam
def A ( self : Optional[Any] ) -> List[str]:
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase : Any = DummyBeamDataset(cache_dir=__snake_case )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def A ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase : List[str] = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
UpperCAmelCase : List[str] = NestedBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) )
UpperCAmelCase : List[Any] = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , __snake_case )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case )
self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
| 23 |
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """MCTCTFeatureExtractor"""
lowerCamelCase__ = """AutoTokenizer"""
def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str:
super().__init__(__snake_case , __snake_case )
UpperCAmelCase : List[Any] = self.feature_extractor
UpperCAmelCase : Union[str, Any] = False
def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__snake_case , **__snake_case )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
UpperCAmelCase : int = kwargs.pop('''raw_speech''' )
else:
UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case )
UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case )
UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case )
if len(__snake_case ) > 0:
UpperCAmelCase : Any = args[0]
UpperCAmelCase : Optional[int] = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case )
if text is not None:
UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case )
if text is None:
return inputs
elif audio is None:
return encodings
else:
UpperCAmelCase : str = encodings['''input_ids''']
return inputs
def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str:
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*__snake_case , **__snake_case )
UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case )
UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case )
if len(__snake_case ) > 0:
UpperCAmelCase : List[str] = args[0]
UpperCAmelCase : List[Any] = args[1:]
if input_features is not None:
UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case )
if labels is not None:
UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
UpperCAmelCase : List[str] = labels['''input_ids''']
return input_features
def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]:
return self.tokenizer.decode(*__snake_case , **__snake_case )
@contextmanager
def A ( self : Any ) -> Optional[int]:
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
UpperCAmelCase : Dict = True
UpperCAmelCase : List[Any] = self.tokenizer
yield
UpperCAmelCase : Tuple = self.feature_extractor
UpperCAmelCase : List[Any] = False
| 23 | 1 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def snake_case_ ( _lowerCAmelCase : Optional[Any] ) -> Any:
UpperCAmelCase : Union[str, Any] = SwinConfig(image_size=192 )
if "base" in model_name:
UpperCAmelCase : List[str] = 6
UpperCAmelCase : int = 128
UpperCAmelCase : str = (2, 2, 18, 2)
UpperCAmelCase : List[Any] = (4, 8, 16, 32)
elif "large" in model_name:
UpperCAmelCase : List[str] = 12
UpperCAmelCase : List[str] = 192
UpperCAmelCase : List[str] = (2, 2, 18, 2)
UpperCAmelCase : int = (6, 12, 24, 48)
else:
raise ValueError('''Model not supported, only supports base and large variants''' )
UpperCAmelCase : Union[str, Any] = window_size
UpperCAmelCase : Union[str, Any] = embed_dim
UpperCAmelCase : Union[str, Any] = depths
UpperCAmelCase : Tuple = num_heads
return config
def snake_case_ ( _lowerCAmelCase : Tuple ) -> int:
if "encoder.mask_token" in name:
UpperCAmelCase : str = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' )
if "encoder.patch_embed.proj" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "encoder.patch_embed.norm" in name:
UpperCAmelCase : Any = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' )
if "attn.proj" in name:
UpperCAmelCase : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
UpperCAmelCase : Optional[int] = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
UpperCAmelCase : str = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
UpperCAmelCase : Any = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
UpperCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' )
if name == "encoder.norm.weight":
UpperCAmelCase : List[Any] = '''layernorm.weight'''
if name == "encoder.norm.bias":
UpperCAmelCase : List[Any] = '''layernorm.bias'''
if "decoder" in name:
pass
else:
UpperCAmelCase : str = '''swin.''' + name
return name
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple ) -> Dict:
for key in orig_state_dict.copy().keys():
UpperCAmelCase : List[str] = orig_state_dict.pop(_lowerCAmelCase )
if "attn_mask" in key:
pass
elif "qkv" in key:
UpperCAmelCase : Optional[int] = key.split('''.''' )
UpperCAmelCase : Any = int(key_split[2] )
UpperCAmelCase : Tuple = int(key_split[4] )
UpperCAmelCase : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
UpperCAmelCase : Optional[int] = val[:dim, :]
UpperCAmelCase : Union[str, Any] = val[
dim : dim * 2, :
]
UpperCAmelCase : List[Any] = val[-dim:, :]
else:
UpperCAmelCase : List[Any] = val[
:dim
]
UpperCAmelCase : List[Any] = val[
dim : dim * 2
]
UpperCAmelCase : List[Any] = val[
-dim:
]
else:
UpperCAmelCase : Any = val
return orig_state_dict
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> int:
UpperCAmelCase : int = torch.load(_lowerCAmelCase , map_location='''cpu''' )['''model''']
UpperCAmelCase : Dict = get_swin_config(_lowerCAmelCase )
UpperCAmelCase : Any = SwinForMaskedImageModeling(_lowerCAmelCase )
model.eval()
UpperCAmelCase : str = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
UpperCAmelCase : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : int = ViTImageProcessor(size={'''height''': 192, '''width''': 192} )
UpperCAmelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
UpperCAmelCase : int = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' )
with torch.no_grad():
UpperCAmelCase : Dict = model(**_lowerCAmelCase ).logits
print(outputs.keys() )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCAmelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCAmelCase )
if push_to_hub:
print(f"""Pushing model and image processor for {model_name} to hub""" )
model.push_to_hub(f"""microsoft/{model_name}""" )
image_processor.push_to_hub(f"""microsoft/{model_name}""" )
if __name__ == "__main__":
UpperCamelCase__: List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="swin-base-simmim-window6-192",
type=str,
choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"],
help="Name of the Swin SimMIM model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path",
default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth",
type=str,
help="Path to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
UpperCamelCase__: Tuple = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 23 |
'''simple docstring'''
from math import isclose, sqrt
def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]:
UpperCAmelCase : Optional[int] = point_y / 4 / point_x
UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4
UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100
UpperCAmelCase : List[str] = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
UpperCAmelCase : Optional[int] = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus
UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int:
UpperCAmelCase : int = 0
UpperCAmelCase : float = first_x_coord
UpperCAmelCase : float = first_y_coord
UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x)
while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0):
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F"{solution() = }")
| 23 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCamelCase__: Any = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: Tuple = [
"UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST",
"UniSpeechForCTC",
"UniSpeechForPreTraining",
"UniSpeechForSequenceClassification",
"UniSpeechModel",
"UniSpeechPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
UpperCamelCase__: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 23 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase__: str = {
"configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"],
"tokenization_lxmert": ["LxmertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: int = ["LxmertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: Union[str, Any] = [
"LxmertEncoder",
"LxmertForPreTraining",
"LxmertForQuestionAnswering",
"LxmertModel",
"LxmertPreTrainedModel",
"LxmertVisualFeatureEncoder",
"LxmertXLayer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: int = [
"TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFLxmertForPreTraining",
"TFLxmertMainLayer",
"TFLxmertModel",
"TFLxmertPreTrainedModel",
"TFLxmertVisualFeatureEncoder",
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 23 | 1 |
'''simple docstring'''
from __future__ import annotations
import typing
from collections import Counter
def snake_case_ ( _lowerCAmelCase : int ) -> typing.Counter[int]:
UpperCAmelCase : typing.Counter[int] = Counter()
for base in range(1 , max_perimeter + 1 ):
for perpendicular in range(_lowerCAmelCase , max_perimeter + 1 ):
UpperCAmelCase : List[str] = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(_lowerCAmelCase ):
UpperCAmelCase : Dict = int(base + perpendicular + hypotenuse )
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def snake_case_ ( _lowerCAmelCase : int = 1000 ) -> int:
UpperCAmelCase : str = pythagorean_triple(_lowerCAmelCase )
return triplets.most_common(1 )[0][0]
if __name__ == "__main__":
print(F"Perimeter {solution()} has maximum solutions")
| 23 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = AltDiffusionPipeline
lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS
lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS
lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
def A ( self : Dict ) -> int:
torch.manual_seed(0 )
UpperCAmelCase : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
UpperCAmelCase : Dict = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , )
torch.manual_seed(0 )
UpperCAmelCase : Union[str, Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
UpperCAmelCase : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , )
UpperCAmelCase : List[Any] = CLIPTextModel(__snake_case )
UpperCAmelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
UpperCAmelCase : Optional[int] = 77
UpperCAmelCase : Optional[int] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def A ( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str]=0 ) -> Union[str, Any]:
if str(__snake_case ).startswith('''mps''' ):
UpperCAmelCase : str = torch.manual_seed(__snake_case )
else:
UpperCAmelCase : Tuple = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
UpperCAmelCase : Dict = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : Union[str, Any] ) -> List[str]:
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def A ( self : Tuple ) -> List[str]:
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def A ( self : Tuple ) -> Optional[int]:
UpperCAmelCase : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase : Any = self.get_dummy_components()
torch.manual_seed(0 )
UpperCAmelCase : Optional[int] = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
UpperCAmelCase : List[str] = RobertaSeriesModelWithTransformation(__snake_case )
UpperCAmelCase : str = text_encoder
UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case )
UpperCAmelCase : str = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__snake_case )
UpperCAmelCase : Optional[int] = '''A photo of an astronaut'''
UpperCAmelCase : List[Any] = alt_pipe(**__snake_case )
UpperCAmelCase : Optional[Any] = output.images
UpperCAmelCase : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase : List[str] = np.array(
[0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A ( self : int ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase : int = self.get_dummy_components()
UpperCAmelCase : int = PNDMScheduler(skip_prk_steps=__snake_case )
torch.manual_seed(0 )
UpperCAmelCase : int = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
UpperCAmelCase : Union[str, Any] = RobertaSeriesModelWithTransformation(__snake_case )
UpperCAmelCase : Union[str, Any] = text_encoder
UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case )
UpperCAmelCase : Dict = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : int = self.get_dummy_inputs(__snake_case )
UpperCAmelCase : Optional[int] = alt_pipe(**__snake_case )
UpperCAmelCase : Optional[int] = output.images
UpperCAmelCase : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase : Optional[int] = np.array(
[0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : str ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A ( self : List[Any] ) -> Any:
# make sure here that pndm scheduler skips prk
UpperCAmelCase : List[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=__snake_case )
UpperCAmelCase : Tuple = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger'''
UpperCAmelCase : Any = torch.manual_seed(0 )
UpperCAmelCase : Optional[int] = alt_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' )
UpperCAmelCase : Dict = output.images
UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase : List[str] = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A ( self : Tuple ) -> int:
UpperCAmelCase : int = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' )
UpperCAmelCase : Tuple = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=__snake_case , safety_checker=__snake_case )
UpperCAmelCase : Dict = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : Tuple = '''A painting of a squirrel eating a burger'''
UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase : List[Any] = alt_pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='''numpy''' )
UpperCAmelCase : Dict = output.images
UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase : Union[str, Any] = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 23 | 1 |
'''simple docstring'''
import random
from .binary_exp_mod import bin_exp_mod
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int:
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
UpperCAmelCase : str = n - 1
UpperCAmelCase : List[Any] = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
UpperCAmelCase : List[str] = 0
while count < prec:
UpperCAmelCase : int = random.randint(2 , n - 1 )
UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if b != 1:
UpperCAmelCase : int = True
for _ in range(_lowerCAmelCase ):
if b == n - 1:
UpperCAmelCase : Dict = False
break
UpperCAmelCase : str = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip()))
print("Here's the list of primes:")
print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 23 |
'''simple docstring'''
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Optional[int]:
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ) -> Dict:
UpperCAmelCase : Dict = tmp_path / '''cache'''
UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase : str = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> Optional[int]:
UpperCAmelCase : Any = tmp_path / '''cache'''
UpperCAmelCase : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Any = features.copy() if features else default_expected_features
UpperCAmelCase : List[Any] = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Dict = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''},
] , )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ) -> Tuple:
UpperCAmelCase : Optional[Any] = tmp_path / '''cache'''
UpperCAmelCase : Optional[int] = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}
UpperCAmelCase : int = features.copy() if features else default_expected_features
UpperCAmelCase : Any = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Tuple = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> Union[str, Any]:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
UpperCAmelCase : Tuple = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''}
UpperCAmelCase : List[str] = features.copy()
UpperCAmelCase : Union[str, Any] = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Tuple = tmp_path / '''cache'''
UpperCAmelCase : List[str] = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> Optional[Any]:
UpperCAmelCase : Any = tmp_path / '''cache'''
UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : List[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Dict:
if issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : str = jsonl_path
elif issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : Dict = [jsonl_path]
UpperCAmelCase : int = tmp_path / '''cache'''
UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Optional[int] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=("train",) ) -> Union[str, Any]:
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
for split in splits:
UpperCAmelCase : List[str] = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ) -> Any:
UpperCAmelCase : Optional[Any] = tmp_path / '''cache'''
UpperCAmelCase : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase : Optional[int] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read()
_check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> int:
UpperCAmelCase : Dict = tmp_path / '''cache'''
UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features
UpperCAmelCase : Union[str, Any] = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Tuple = JsonDatasetReader({'''train''': jsonl_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> Union[str, Any]:
if split:
UpperCAmelCase : Optional[int] = {split: jsonl_path}
else:
UpperCAmelCase : Any = '''train'''
UpperCAmelCase : Any = {'''train''': jsonl_path, '''test''': jsonl_path}
UpperCAmelCase : Tuple = tmp_path / '''cache'''
UpperCAmelCase : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Optional[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def snake_case_ ( _lowerCAmelCase : List[str] ) -> str:
return json.load(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Dict ) -> str:
return [json.loads(_lowerCAmelCase ) for line in buffer]
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> Dict:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write()
buffer.seek(0 )
UpperCAmelCase : Union[str, Any] = load_json_function(__snake_case )
assert isinstance(__snake_case , __snake_case )
assert isinstance(exported_content[0] , __snake_case )
assert len(__snake_case ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def A ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[Any] ) -> List[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write()
buffer.seek(0 )
UpperCAmelCase : Union[str, Any] = load_json(__snake_case )
assert isinstance(__snake_case , __snake_case )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(__snake_case ) == 10
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def A ( self : str , __snake_case : str , __snake_case : str , __snake_case : int ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write()
buffer.seek(0 )
UpperCAmelCase : Any = load_json_function(__snake_case )
assert isinstance(__snake_case , __snake_case )
assert isinstance(exported_content[0] , __snake_case )
assert len(__snake_case ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def A ( self : Any , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write()
buffer.seek(0 )
UpperCAmelCase : List[str] = load_json(__snake_case )
assert isinstance(__snake_case , __snake_case )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(__snake_case ) == 10
def A ( self : List[Any] , __snake_case : str ) -> Dict:
with pytest.raises(__snake_case ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 )
@pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] )
def A ( self : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Union[str, Any]:
UpperCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / F"""test.json.{extension}"""
UpperCAmelCase : List[Any] = str(shared_datadir / F"""test_file.json.{extension}""" )
JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write()
with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f:
UpperCAmelCase : str = f.read()
with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f:
UpperCAmelCase : Optional[int] = f.read()
assert exported_content == original_content
| 23 | 1 |
'''simple docstring'''
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
def __init__( self : Optional[Any] ) -> None:
UpperCAmelCase : dict[str, TrieNode] = {} # Mapping from char to TrieNode
UpperCAmelCase : str = False
def A ( self : Tuple , __snake_case : list[str] ) -> None:
for word in words:
self.insert(__snake_case )
def A ( self : Union[str, Any] , __snake_case : str ) -> None:
UpperCAmelCase : Any = self
for char in word:
if char not in curr.nodes:
UpperCAmelCase : str = TrieNode()
UpperCAmelCase : str = curr.nodes[char]
UpperCAmelCase : Optional[Any] = True
def A ( self : Optional[Any] , __snake_case : str ) -> bool:
UpperCAmelCase : str = self
for char in word:
if char not in curr.nodes:
return False
UpperCAmelCase : List[str] = curr.nodes[char]
return curr.is_leaf
def A ( self : List[str] , __snake_case : str ) -> None:
def _delete(__snake_case : TrieNode , __snake_case : str , __snake_case : int ) -> bool:
if index == len(__snake_case ):
# If word does not exist
if not curr.is_leaf:
return False
UpperCAmelCase : Union[str, Any] = False
return len(curr.nodes ) == 0
UpperCAmelCase : Optional[Any] = word[index]
UpperCAmelCase : str = curr.nodes.get(__snake_case )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
UpperCAmelCase : Union[str, Any] = _delete(__snake_case , __snake_case , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , __snake_case , 0 )
def snake_case_ ( _lowerCAmelCase : TrieNode , _lowerCAmelCase : str ) -> None:
if node.is_leaf:
print(_lowerCAmelCase , end=''' ''' )
for key, value in node.nodes.items():
print_words(_lowerCAmelCase , word + key )
def snake_case_ ( ) -> bool:
UpperCAmelCase : List[str] = '''banana bananas bandana band apple all beast'''.split()
UpperCAmelCase : int = TrieNode()
root.insert_many(_lowerCAmelCase )
# print_words(root, "")
assert all(root.find(_lowerCAmelCase ) for word in words )
assert root.find('''banana''' )
assert not root.find('''bandanas''' )
assert not root.find('''apps''' )
assert root.find('''apple''' )
assert root.find('''all''' )
root.delete('''all''' )
assert not root.find('''all''' )
root.delete('''banana''' )
assert not root.find('''banana''' )
assert root.find('''bananas''' )
return True
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : bool ) -> None:
print(str(_lowerCAmelCase ) , '''works!''' if passes else '''doesn\'t work :(''' )
def snake_case_ ( ) -> None:
assert test_trie()
def snake_case_ ( ) -> None:
print_results('''Testing trie functionality''' , test_trie() )
if __name__ == "__main__":
main()
| 23 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase__: Tuple = logging.get_logger(__name__)
UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model"}
UpperCamelCase__: Optional[int] = {
"vocab_file": {
"moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model",
"moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model",
"moussaKam/barthez-orangesum-title": (
"https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"
),
},
}
UpperCamelCase__: Dict = {
"moussaKam/mbarthez": 1024,
"moussaKam/barthez": 1024,
"moussaKam/barthez-orangesum-title": 1024,
}
UpperCamelCase__: Tuple = "▁"
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["""input_ids""", """attention_mask"""]
def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="</s>" , __snake_case : Any="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Dict , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token
UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , )
UpperCAmelCase : Optional[int] = vocab_file
UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__snake_case ) )
UpperCAmelCase : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
UpperCAmelCase : Optional[Any] = len(self.sp_model ) - 1
UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase : Optional[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case )
if token_ids_a is None:
return [1] + ([0] * len(__snake_case )) + [1]
return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1]
def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase : Tuple = [self.sep_token_id]
UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def A ( self : Dict ) -> Optional[int]:
return len(self.sp_model )
def A ( self : List[str] ) -> Dict:
UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def A ( self : Optional[Any] , __snake_case : str ) -> List[str]:
return self.sp_model.encode(__snake_case , out_type=__snake_case )
def A ( self : int , __snake_case : int ) -> int:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(__snake_case )
return spm_id if spm_id else self.unk_token_id
def A ( self : int , __snake_case : Any ) -> List[Any]:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(__snake_case )
def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]:
UpperCAmelCase : Optional[Any] = []
UpperCAmelCase : int = ''''''
UpperCAmelCase : Union[str, Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__snake_case ) + token
UpperCAmelCase : str = True
UpperCAmelCase : List[str] = []
else:
current_sub_tokens.append(__snake_case )
UpperCAmelCase : Optional[int] = False
out_string += self.sp_model.decode(__snake_case )
return out_string.strip()
def __getstate__( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = self.__dict__.copy()
UpperCAmelCase : Any = None
return state
def __setstate__( self : Optional[int] , __snake_case : Union[str, Any] ) -> List[Any]:
UpperCAmelCase : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase : Optional[Any] = {}
UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__snake_case ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase : Union[str, Any] = os.path.join(
__snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(__snake_case , '''wb''' ) as fi:
UpperCAmelCase : Any = self.sp_model.serialized_model_proto()
fi.write(__snake_case )
return (out_vocab_file,)
| 23 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase__: str = {
"configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"],
"tokenization_luke": ["LukeTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: Dict = [
"LUKE_PRETRAINED_MODEL_ARCHIVE_LIST",
"LukeForEntityClassification",
"LukeForEntityPairClassification",
"LukeForEntitySpanClassification",
"LukeForMultipleChoice",
"LukeForQuestionAnswering",
"LukeForSequenceClassification",
"LukeForTokenClassification",
"LukeForMaskedLM",
"LukeModel",
"LukePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
UpperCamelCase__: List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 23 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@classmethod
def A ( cls : Union[str, Any] ) -> int:
UpperCAmelCase : Optional[Any] = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def A ( cls : List[str] ) -> Tuple:
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def A ( self : int ) -> Tuple:
UpperCAmelCase : List[Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase : Dict = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
__snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]:
UpperCAmelCase : str = True
UpperCAmelCase : int = flatten_dict(modela.params )
UpperCAmelCase : Dict = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
UpperCAmelCase : Dict = False
return models_are_equal
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
UpperCAmelCase : int = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__snake_case , __snake_case ) )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertTrue(check_models_equal(__snake_case , __snake_case ) )
def A ( self : List[str] ) -> Dict:
UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
UpperCAmelCase : Optional[int] = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertTrue(check_models_equal(__snake_case , __snake_case ) )
def A ( self : Optional[int] ) -> str:
UpperCAmelCase : Dict = '''bert'''
UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(__snake_case ):
UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertIsNotNone(__snake_case )
def A ( self : Dict ) -> List[Any]:
UpperCAmelCase : Optional[int] = '''bert'''
UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(__snake_case ):
UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertIsNotNone(__snake_case )
| 23 | 1 |
'''simple docstring'''
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
UpperCamelCase__: Optional[Any] = (
"This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate "
"library. You can have a look at this example script for pointers: "
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py"
)
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any ) -> List[str]:
warnings.warn(_lowerCAmelCase , _lowerCAmelCase )
requires_backends(_lowerCAmelCase , '''sklearn''' )
return (preds == labels).mean()
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ) -> List[str]:
warnings.warn(_lowerCAmelCase , _lowerCAmelCase )
requires_backends(_lowerCAmelCase , '''sklearn''' )
UpperCAmelCase : int = simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] ) -> List[str]:
warnings.warn(_lowerCAmelCase , _lowerCAmelCase )
requires_backends(_lowerCAmelCase , '''sklearn''' )
UpperCAmelCase : List[Any] = pearsonr(_lowerCAmelCase , _lowerCAmelCase )[0]
UpperCAmelCase : List[Any] = spearmanr(_lowerCAmelCase , _lowerCAmelCase )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> Union[str, Any]:
warnings.warn(_lowerCAmelCase , _lowerCAmelCase )
requires_backends(_lowerCAmelCase , '''sklearn''' )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ), f"""Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}"""
if task_name == "cola":
return {"mcc": matthews_corrcoef(_lowerCAmelCase , _lowerCAmelCase )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
elif task_name == "mrpc":
return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase )
elif task_name == "sts-b":
return pearson_and_spearman(_lowerCAmelCase , _lowerCAmelCase )
elif task_name == "qqp":
return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
elif task_name == "qnli":
return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
elif task_name == "rte":
return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
elif task_name == "wnli":
return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
elif task_name == "hans":
return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
else:
raise KeyError(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> Dict:
warnings.warn(_lowerCAmelCase , _lowerCAmelCase )
requires_backends(_lowerCAmelCase , '''sklearn''' )
if len(_lowerCAmelCase ) != len(_lowerCAmelCase ):
raise ValueError(f"""Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}""" )
if task_name == "xnli":
return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )}
else:
raise KeyError(_lowerCAmelCase )
| 23 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : str , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=8 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : int=True , __snake_case : List[Any]=99 , __snake_case : str=16 , __snake_case : Tuple=5 , __snake_case : Tuple=2 , __snake_case : str=36 , __snake_case : Dict="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=512 , __snake_case : Optional[Any]=16 , __snake_case : int=2 , __snake_case : int=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : str=None , ) -> Optional[int]:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : Tuple = batch_size
UpperCAmelCase : List[str] = seq_length
UpperCAmelCase : List[Any] = is_training
UpperCAmelCase : int = use_input_mask
UpperCAmelCase : Any = use_token_type_ids
UpperCAmelCase : str = use_labels
UpperCAmelCase : Union[str, Any] = vocab_size
UpperCAmelCase : List[str] = hidden_size
UpperCAmelCase : Optional[Any] = num_hidden_layers
UpperCAmelCase : Union[str, Any] = num_attention_heads
UpperCAmelCase : Optional[Any] = intermediate_size
UpperCAmelCase : Union[str, Any] = hidden_act
UpperCAmelCase : int = hidden_dropout_prob
UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase : Union[str, Any] = max_position_embeddings
UpperCAmelCase : str = type_vocab_size
UpperCAmelCase : List[str] = type_sequence_label_size
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Optional[Any] = num_labels
UpperCAmelCase : Optional[int] = num_choices
UpperCAmelCase : Any = scope
def A ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[int] = None
if self.use_input_mask:
UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Dict = None
if self.use_token_type_ids:
UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : str = None
UpperCAmelCase : Tuple = None
UpperCAmelCase : int = None
if self.use_labels:
UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : List[str] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self : int ) -> Tuple:
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , )
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase : Optional[Any] = self.get_config()
UpperCAmelCase : int = 300
return config
def A ( self : Optional[Any] ) -> Any:
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : Tuple = self.prepare_config_and_inputs()
UpperCAmelCase : Dict = True
UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def A ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[Any] ) -> List[str]:
UpperCAmelCase : int = MraModel(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case )
UpperCAmelCase : Optional[int] = model(__snake_case , token_type_ids=__snake_case )
UpperCAmelCase : Dict = model(__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[Any] , ) -> Tuple:
UpperCAmelCase : str = True
UpperCAmelCase : Tuple = MraModel(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Optional[int] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , )
UpperCAmelCase : Optional[Any] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , )
UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int ) -> Any:
UpperCAmelCase : Dict = MraForMaskedLM(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Dict , __snake_case : Any , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Tuple ) -> Optional[int]:
UpperCAmelCase : List[str] = MraForQuestionAnswering(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : List[Any] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int:
UpperCAmelCase : int = self.num_labels
UpperCAmelCase : Union[str, Any] = MraForSequenceClassification(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> int:
UpperCAmelCase : Tuple = self.num_labels
UpperCAmelCase : List[str] = MraForTokenClassification(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A ( self : str , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] ) -> Optional[Any]:
UpperCAmelCase : Tuple = self.num_choices
UpperCAmelCase : int = MraForMultipleChoice(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : List[str] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A ( self : str ) -> Dict:
UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : List[str] = config_and_inputs
UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = ()
def A ( self : int ) -> Union[str, Any]:
UpperCAmelCase : List[str] = MraModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 )
def A ( self : Optional[Any] ) -> str:
self.config_tester.run_common_tests()
def A ( self : Tuple ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
def A ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__snake_case )
def A ( self : Tuple ) -> Dict:
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__snake_case )
def A ( self : Tuple ) -> List[str]:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__snake_case )
def A ( self : int ) -> Dict:
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__snake_case )
def A ( self : Dict ) -> Optional[int]:
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__snake_case )
def A ( self : Any ) -> Optional[int]:
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__snake_case )
@slow
def A ( self : Dict ) -> Any:
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : str = MraModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
@unittest.skip(reason='''MRA does not output attentions''' )
def A ( self : str ) -> Optional[Any]:
return
@require_torch
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@slow
def A ( self : Tuple ) -> List[Any]:
UpperCAmelCase : int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' )
UpperCAmelCase : Optional[Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : List[Any] = model(__snake_case )[0]
UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __snake_case )
UpperCAmelCase : Any = torch.tensor(
[[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
@slow
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase : Optional[int] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' )
UpperCAmelCase : Dict = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : List[Any] = model(__snake_case )[0]
UpperCAmelCase : int = 50265
UpperCAmelCase : int = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __snake_case )
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
@slow
def A ( self : str ) -> List[Any]:
UpperCAmelCase : List[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' )
UpperCAmelCase : List[Any] = torch.arange(4096 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : Tuple = model(__snake_case )[0]
UpperCAmelCase : Optional[int] = 50265
UpperCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) )
self.assertEqual(output.shape , __snake_case )
UpperCAmelCase : Optional[int] = torch.tensor(
[[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
| 23 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
UpperCamelCase__: Optional[Any] = logging.get_logger(__name__)
if is_vision_available():
import PIL
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = ["""pixel_values"""]
def __init__( self : List[Any] , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 255 , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = True , **__snake_case : List[str] , ) -> None:
super().__init__(**__snake_case )
UpperCAmelCase : Any = size if size is not None else {'''shortest_edge''': 224}
UpperCAmelCase : int = get_size_dict(__snake_case , default_to_square=__snake_case )
UpperCAmelCase : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase : List[str] = get_size_dict(__snake_case , default_to_square=__snake_case , param_name='''crop_size''' )
UpperCAmelCase : Any = do_resize
UpperCAmelCase : List[Any] = size
UpperCAmelCase : str = resample
UpperCAmelCase : Tuple = do_center_crop
UpperCAmelCase : Any = crop_size
UpperCAmelCase : str = do_rescale
UpperCAmelCase : int = rescale_factor
UpperCAmelCase : Union[str, Any] = do_normalize
UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
UpperCAmelCase : Dict = image_std if image_std is not None else OPENAI_CLIP_STD
UpperCAmelCase : List[Any] = do_convert_rgb
def A ( self : Union[str, Any] , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[Any] , ) -> np.ndarray:
UpperCAmelCase : List[str] = get_size_dict(__snake_case , default_to_square=__snake_case )
if "shortest_edge" not in size:
raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__snake_case , size=size['''shortest_edge'''] , default_to_square=__snake_case )
return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case )
def A ( self : Tuple , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Union[str, Any] , ) -> np.ndarray:
UpperCAmelCase : Tuple = get_size_dict(__snake_case )
if "height" not in size or "width" not in size:
raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(__snake_case , size=(size['''height'''], size['''width''']) , data_format=__snake_case , **__snake_case )
def A ( self : Any , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ) -> List[str]:
return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case )
def A ( self : List[Any] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Dict , ) -> np.ndarray:
return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case )
def A ( self : List[str] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : int = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , **__snake_case : Optional[int] , ) -> PIL.Image.Image:
UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase : str = size if size is not None else self.size
UpperCAmelCase : Dict = get_size_dict(__snake_case , param_name='''size''' , default_to_square=__snake_case )
UpperCAmelCase : List[str] = resample if resample is not None else self.resample
UpperCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase : Any = get_size_dict(__snake_case , param_name='''crop_size''' , default_to_square=__snake_case )
UpperCAmelCase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std
UpperCAmelCase : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
UpperCAmelCase : List[str] = make_list_of_images(__snake_case )
if not valid_images(__snake_case ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
UpperCAmelCase : str = [convert_to_rgb(__snake_case ) for image in images]
# All transformations expect numpy arrays.
UpperCAmelCase : Union[str, Any] = [to_numpy_array(__snake_case ) for image in images]
if do_resize:
UpperCAmelCase : int = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images]
if do_center_crop:
UpperCAmelCase : Optional[Any] = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images]
if do_rescale:
UpperCAmelCase : Optional[int] = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images]
if do_normalize:
UpperCAmelCase : int = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images]
UpperCAmelCase : List[Any] = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images]
UpperCAmelCase : Tuple = {'''pixel_values''': images}
return BatchFeature(data=__snake_case , tensor_type=__snake_case )
| 23 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
expand_dims,
flatten_dict,
is_flax_available,
is_tf_available,
is_torch_available,
reshape,
squeeze,
transpose,
)
if is_flax_available():
import jax.numpy as jnp
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : Any ) -> str:
UpperCAmelCase : Any = {
'''task_specific_params''': {
'''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4},
'''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4},
'''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6},
}
}
UpperCAmelCase : int = {
'''task_specific_params.summarization.length_penalty''': 1.0,
'''task_specific_params.summarization.max_length''': 128,
'''task_specific_params.summarization.min_length''': 12,
'''task_specific_params.summarization.num_beams''': 4,
'''task_specific_params.summarization_cnn.length_penalty''': 2.0,
'''task_specific_params.summarization_cnn.max_length''': 142,
'''task_specific_params.summarization_cnn.min_length''': 56,
'''task_specific_params.summarization_cnn.num_beams''': 4,
'''task_specific_params.summarization_xsum.length_penalty''': 1.0,
'''task_specific_params.summarization_xsum.max_length''': 62,
'''task_specific_params.summarization_xsum.min_length''': 11,
'''task_specific_params.summarization_xsum.num_beams''': 6,
}
self.assertEqual(flatten_dict(__snake_case ) , __snake_case )
def A ( self : int ) -> str:
UpperCAmelCase : Any = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(transpose(__snake_case ) , x.transpose() ) )
UpperCAmelCase : str = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) )
@require_torch
def A ( self : str ) -> Union[str, Any]:
UpperCAmelCase : Any = np.random.randn(3 , 4 )
UpperCAmelCase : List[Any] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) )
UpperCAmelCase : Tuple = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : Any = torch.tensor(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) )
@require_tf
def A ( self : List[str] ) -> Optional[Any]:
UpperCAmelCase : int = np.random.randn(3 , 4 )
UpperCAmelCase : Optional[int] = tf.constant(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) )
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : str = tf.constant(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) )
@require_flax
def A ( self : Tuple ) -> Any:
UpperCAmelCase : List[Any] = np.random.randn(3 , 4 )
UpperCAmelCase : List[str] = jnp.array(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case ) , np.asarray(transpose(__snake_case ) ) ) )
UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : int = jnp.array(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(__snake_case , axes=(1, 2, 0) ) ) ) )
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.reshape(__snake_case , (4, 3) ) ) )
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.reshape(__snake_case , (12, 5) ) ) )
@require_torch
def A ( self : Union[str, Any] ) -> int:
UpperCAmelCase : Dict = np.random.randn(3 , 4 )
UpperCAmelCase : Optional[Any] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) )
UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : List[Any] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) )
@require_tf
def A ( self : int ) -> List[str]:
UpperCAmelCase : List[Any] = np.random.randn(3 , 4 )
UpperCAmelCase : List[str] = tf.constant(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) )
UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : Optional[Any] = tf.constant(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) )
@require_flax
def A ( self : Any ) -> Dict:
UpperCAmelCase : Tuple = np.random.randn(3 , 4 )
UpperCAmelCase : Union[str, Any] = jnp.array(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.asarray(reshape(__snake_case , (4, 3) ) ) ) )
UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : Optional[Any] = jnp.array(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.asarray(reshape(__snake_case , (12, 5) ) ) ) )
def A ( self : List[Any] ) -> List[Any]:
UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 )
self.assertTrue(np.allclose(squeeze(__snake_case ) , np.squeeze(__snake_case ) ) )
UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.squeeze(__snake_case , axis=2 ) ) )
@require_torch
def A ( self : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 )
UpperCAmelCase : List[str] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) )
UpperCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase : str = torch.tensor(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) )
@require_tf
def A ( self : Optional[Any] ) -> Dict:
UpperCAmelCase : int = np.random.randn(1 , 3 , 4 )
UpperCAmelCase : Optional[int] = tf.constant(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) )
UpperCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase : Optional[int] = tf.constant(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) )
@require_flax
def A ( self : List[Any] ) -> Dict:
UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 )
UpperCAmelCase : int = jnp.array(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case ) , np.asarray(squeeze(__snake_case ) ) ) )
UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase : int = jnp.array(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.asarray(squeeze(__snake_case , axis=2 ) ) ) )
def A ( self : Optional[Any] ) -> int:
UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.expand_dims(__snake_case , axis=1 ) ) )
@require_torch
def A ( self : List[str] ) -> Tuple:
UpperCAmelCase : Tuple = np.random.randn(3 , 4 )
UpperCAmelCase : Tuple = torch.tensor(__snake_case )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) )
@require_tf
def A ( self : List[str] ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 )
UpperCAmelCase : Any = tf.constant(__snake_case )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) )
@require_flax
def A ( self : Any ) -> List[Any]:
UpperCAmelCase : List[str] = np.random.randn(3 , 4 )
UpperCAmelCase : str = jnp.array(__snake_case )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.asarray(expand_dims(__snake_case , axis=1 ) ) ) )
| 23 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__: Any = logging.get_logger(__name__)
UpperCamelCase__: Optional[Any] = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """trocr"""
lowerCamelCase__ = ["""past_key_values"""]
lowerCamelCase__ = {
"""num_attention_heads""": """decoder_attention_heads""",
"""hidden_size""": """d_model""",
"""num_hidden_layers""": """decoder_layers""",
}
def __init__( self : Optional[Any] , __snake_case : Any=50265 , __snake_case : Optional[Any]=1024 , __snake_case : str=12 , __snake_case : List[Any]=16 , __snake_case : Any=4096 , __snake_case : List[str]="gelu" , __snake_case : Tuple=512 , __snake_case : Optional[int]=0.1 , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : int=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=0.0 , __snake_case : Dict=True , __snake_case : List[str]=False , __snake_case : Tuple=True , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=1 , __snake_case : str=0 , __snake_case : Dict=2 , **__snake_case : Any , ) -> Dict:
UpperCAmelCase : Optional[Any] = vocab_size
UpperCAmelCase : Any = d_model
UpperCAmelCase : Dict = decoder_layers
UpperCAmelCase : str = decoder_attention_heads
UpperCAmelCase : str = decoder_ffn_dim
UpperCAmelCase : List[str] = activation_function
UpperCAmelCase : Optional[Any] = max_position_embeddings
UpperCAmelCase : List[Any] = dropout
UpperCAmelCase : List[str] = attention_dropout
UpperCAmelCase : str = activation_dropout
UpperCAmelCase : Dict = init_std
UpperCAmelCase : Optional[Any] = decoder_layerdrop
UpperCAmelCase : Tuple = use_cache
UpperCAmelCase : str = scale_embedding
UpperCAmelCase : str = use_learned_position_embeddings
UpperCAmelCase : str = layernorm_embedding
super().__init__(
pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , **__snake_case , )
| 23 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
UpperCamelCase__: Union[str, Any] = "examples/"
UpperCamelCase__: Optional[Any] = {
"examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"),
"init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"),
"setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","),
"doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"),
}
UpperCamelCase__: Optional[int] = {
"init": "src/diffusers/__init__.py",
"setup": "setup.py",
}
UpperCamelCase__: List[Any] = "README.md"
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> Optional[int]:
with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
UpperCAmelCase : Optional[int] = f.read()
UpperCAmelCase , UpperCAmelCase : List[Any] = REPLACE_PATTERNS[pattern]
UpperCAmelCase : List[Any] = replace.replace('''VERSION''' , _lowerCAmelCase )
UpperCAmelCase : Optional[Any] = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase )
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[int]:
for folder, directories, fnames in os.walk(_lowerCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='''examples''' )
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=False ) -> List[str]:
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if not patch:
update_version_in_examples(_lowerCAmelCase )
def snake_case_ ( ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = '''🤗 Transformers currently provides the following architectures'''
UpperCAmelCase : Optional[int] = '''1. Want to contribute a new model?'''
with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
UpperCAmelCase : Optional[Any] = f.readlines()
# Find the start of the list.
UpperCAmelCase : List[Any] = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
UpperCAmelCase : Optional[Any] = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
UpperCAmelCase : Optional[int] = lines[index].replace(
'''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , )
index += 1
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(_lowerCAmelCase )
def snake_case_ ( ) -> Optional[Any]:
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
UpperCAmelCase : Union[str, Any] = f.read()
UpperCAmelCase : int = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0]
return packaging.version.parse(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : List[str]=False ) -> Any:
UpperCAmelCase : Optional[Any] = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
UpperCAmelCase : Optional[int] = default_version.base_version
elif patch:
UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
UpperCAmelCase : Dict = input(f"""Which version are you releasing? [{default_version}]""" )
if len(_lowerCAmelCase ) == 0:
UpperCAmelCase : Tuple = default_version
print(f"""Updating version to {version}.""" )
global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase )
def snake_case_ ( ) -> Any:
UpperCAmelCase : List[Any] = get_version()
UpperCAmelCase : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
UpperCAmelCase : List[Any] = current_version.base_version
# Check with the user we got that right.
UpperCAmelCase : Optional[int] = input(f"""Which version are we developing now? [{dev_version}]""" )
if len(_lowerCAmelCase ) == 0:
UpperCAmelCase : Dict = dev_version
print(f"""Updating version to {version}.""" )
global_version_update(_lowerCAmelCase )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
UpperCamelCase__: Optional[Any] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 23 | 1 |
'''simple docstring'''
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
UpperCamelCase__: Union[str, Any] = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : Optional[int] , __snake_case : Path , __snake_case : Union[str, None] = None , __snake_case : Union[List[str], None] = None , __snake_case : Union[str, List[str], None] = None , __snake_case : bool = True , ) -> Tuple:
UpperCAmelCase : Optional[Any] = [file for file in os.listdir(__snake_case ) if os.path.isfile(os.path.join(__snake_case , __snake_case ) )]
if identifier is not None:
UpperCAmelCase : str = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(__snake_case , __snake_case ):
for n_ in n_identifier:
UpperCAmelCase : Dict = [file for file in files if n_ not in file]
else:
UpperCAmelCase : Dict = [file for file in files if n_identifier not in file]
UpperCAmelCase : int = ignore_files or []
ignore_files.append('''__init__.py''' )
UpperCAmelCase : List[str] = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('''Testing''' , __snake_case )
if only_modules:
UpperCAmelCase : List[str] = file.split('''.''' )[0]
try:
UpperCAmelCase : Dict = getattr(__snake_case , __snake_case )
UpperCAmelCase : Optional[int] = doctest.DocTestSuite(__snake_case )
UpperCAmelCase : str = unittest.TextTestRunner().run(__snake_case )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F"""{module_identifier} is not a module.""" )
else:
UpperCAmelCase : Any = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def A ( self : Any ) -> Tuple:
UpperCAmelCase : List[str] = Path('''src/transformers''' )
UpperCAmelCase : int = '''modeling'''
UpperCAmelCase : Tuple = [
'''modeling_ctrl.py''',
'''modeling_tf_ctrl.py''',
]
self.analyze_directory(__snake_case , identifier=__snake_case , ignore_files=__snake_case )
def A ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase : List[Any] = Path('''src/transformers''' )
UpperCAmelCase : Tuple = '''tokenization'''
self.analyze_directory(__snake_case , identifier=__snake_case )
def A ( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase : Union[str, Any] = Path('''src/transformers''' )
UpperCAmelCase : str = '''configuration'''
self.analyze_directory(__snake_case , identifier=__snake_case )
def A ( self : int ) -> Dict:
UpperCAmelCase : Union[str, Any] = Path('''src/transformers''' )
UpperCAmelCase : str = ['''configuration''', '''modeling''', '''tokenization''']
self.analyze_directory(__snake_case , n_identifier=__snake_case )
def A ( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase : Dict = Path('''docs/source''' )
UpperCAmelCase : Union[str, Any] = ['''favicon.ico''']
self.analyze_directory(__snake_case , ignore_files=__snake_case , only_modules=__snake_case )
| 23 |
'''simple docstring'''
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
UpperCamelCase__: Tuple = numpy.array([0, 0])
UpperCamelCase__: Union[str, Any] = numpy.array([0.5, 0.8660254])
UpperCamelCase__: Dict = numpy.array([1, 0])
UpperCamelCase__: int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] , _lowerCAmelCase : int ) -> list[numpy.ndarray]:
UpperCAmelCase : Union[str, Any] = initial_vectors
for _ in range(_lowerCAmelCase ):
UpperCAmelCase : Union[str, Any] = iteration_step(_lowerCAmelCase )
return vectors
def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> list[numpy.ndarray]:
UpperCAmelCase : Tuple = []
for i, start_vector in enumerate(vectors[:-1] ):
UpperCAmelCase : List[str] = vectors[i + 1]
new_vectors.append(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def snake_case_ ( _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : float ) -> numpy.ndarray:
UpperCAmelCase : List[str] = numpy.radians(_lowerCAmelCase )
UpperCAmelCase , UpperCAmelCase : Tuple = numpy.cos(_lowerCAmelCase ), numpy.sin(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = numpy.array(((c, -s), (s, c)) )
return numpy.dot(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> None:
UpperCAmelCase : List[Any] = plt.gca()
axes.set_aspect('''equal''' )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
UpperCAmelCase , UpperCAmelCase : str = zip(*_lowerCAmelCase )
plt.plot(_lowerCAmelCase , _lowerCAmelCase )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase__: List[Any] = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 23 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__: Optional[int] = logging.get_logger(__name__)
def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]:
UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' )
if "large" in checkpoint_url:
UpperCAmelCase : Tuple = 1024
UpperCAmelCase : List[Any] = 4096
UpperCAmelCase : str = 24
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = [5, 11, 17, 23]
UpperCAmelCase : List[Any] = [256, 512, 1024, 1024]
UpperCAmelCase : Tuple = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 768
UpperCAmelCase : Tuple = [1, 1, 1, 0.5]
UpperCAmelCase : int = [256, 512, 768, 768]
UpperCAmelCase : Any = 150
UpperCAmelCase : Tuple = 16
UpperCAmelCase : Any = (1, 384, 384)
UpperCAmelCase : Optional[Any] = False
UpperCAmelCase : Tuple = '''project'''
if "ade" in checkpoint_url:
UpperCAmelCase : Any = True
UpperCAmelCase : str = 768
UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5]
UpperCAmelCase : List[Any] = 150
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = '''huggingface/label-files'''
UpperCAmelCase : Tuple = '''ade20k-id2label.json'''
UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) )
UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : List[Any] = idalabel
UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480]
return config, expected_shape
def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int:
UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias''']
for k in ignore_keys:
state_dict.pop(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' )
if "pretrained.model" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' )
if "patch_embed" in name:
UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' )
if "pos_embed" in name:
UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' )
if "attn.proj" in name:
UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "proj" in name and "project" not in name:
UpperCAmelCase : str = name.replace('''proj''' , '''projection''' )
if "blocks" in name:
UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' )
if "mlp.fc1" in name:
UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' )
if "norm1" in name and "backbone" not in name:
UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name and "backbone" not in name:
UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' )
if "scratch.output_conv" in name:
UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' )
if "scratch" in name:
UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' )
if "layer1_rn" in name:
UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' )
if "layer2_rn" in name:
UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' )
if "layer3_rn" in name:
UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' )
if "layer4_rn" in name:
UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' )
if "refinenet" in name:
UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" )
if "out_conv" in name:
UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' )
if "resConfUnit1" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' )
if "resConfUnit2" in name:
UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' )
if "conv1" in name:
UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' )
if "conv2" in name:
UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' )
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' )
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' )
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' )
if "pretrained.act_postprocess1.4" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' )
if "pretrained.act_postprocess2.3" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' )
if "pretrained.act_postprocess2.4" in name:
UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' )
if "pretrained.act_postprocess3.3" in name:
UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' )
if "pretrained.act_postprocess4.3" in name:
UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' )
if "pretrained.act_postprocess4.4" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' )
if "pretrained" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' )
if "bn" in name:
UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' )
if "head" in name:
UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' )
if "encoder.norm" in name:
UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' )
if "auxlayer" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' )
if "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' )
if ".." in name:
UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' )
if "stem.conv" in name:
UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' )
if "blocks" in name:
UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' )
if "convolution" in name and "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' )
if "layer" in name and "backbone" in name:
UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' )
if "backbone.bit.encoder.bit" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' )
if "embedder.conv" in name:
UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' )
if "backbone.bit.encoder.stem.norm" in name:
UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' )
return name
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" )
UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : int = in_proj_bias[: config.hidden_size]
UpperCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :]
def snake_case_ ( ) -> List[str]:
UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
return im
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any:
UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' )
# remove certain keys
remove_ignore_keys_(_lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase )
UpperCAmelCase : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase )
# load HuggingFace model
UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
# Check outputs on an image
UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384
UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase )
UpperCAmelCase : Dict = prepare_img()
UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' )
# forward pass
UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth
if show_prediction:
UpperCAmelCase : Dict = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCAmelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCAmelCase )
if push_to_hub:
model.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
if __name__ == "__main__":
UpperCamelCase__: Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
type=str,
help="URL of the original DPT checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=False,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
parser.add_argument(
"--model_name",
default="dpt-large",
type=str,
help="Name of the model, in case you're pushing to the hub.",
)
parser.add_argument(
"--show_prediction",
action="store_true",
)
UpperCamelCase__: Tuple = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 23 |
'''simple docstring'''
from manim import *
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def A ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 )
UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )]
UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )]
UpperCAmelCase : Dict = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Any = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Optional[Any] = Text('''CPU''' , font_size=24 )
UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__snake_case )
UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )]
UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : List[str] = Text('''GPU''' , font_size=24 )
UpperCAmelCase : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case )
gpu.move_to([-1, -1, 0] )
self.add(__snake_case )
UpperCAmelCase : int = [mem.copy() for i in range(6 )]
UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : List[str] = Text('''Model''' , font_size=24 )
UpperCAmelCase : Tuple = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case )
model.move_to([3, -1.0, 0] )
self.add(__snake_case )
UpperCAmelCase : Any = []
for i, rect in enumerate(__snake_case ):
rect.set_stroke(__snake_case )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 )
self.add(__snake_case )
cpu_targs.append(__snake_case )
UpperCAmelCase : int = [mem.copy() for i in range(6 )]
UpperCAmelCase : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Any = Text('''Loaded Checkpoint''' , font_size=24 )
UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
UpperCAmelCase : Optional[int] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
UpperCAmelCase : str = MarkupText(
F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__snake_case , __snake_case )
UpperCAmelCase : Tuple = MarkupText(
F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , )
blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() )
UpperCAmelCase : List[Any] = MarkupText(
F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__snake_case ) , Write(__snake_case ) )
self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) )
UpperCAmelCase : Tuple = []
UpperCAmelCase : int = []
for i, rect in enumerate(__snake_case ):
UpperCAmelCase : Any = fill.copy().set_fill(__snake_case , opacity=0.7 )
target.move_to(__snake_case )
first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) )
UpperCAmelCase : List[str] = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) )
self.play(*__snake_case )
self.play(*__snake_case )
self.wait()
| 23 | 1 |
'''simple docstring'''
import sys
from collections import defaultdict
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
def __init__( self : Any ) -> str:
UpperCAmelCase : Union[str, Any] = []
def A ( self : str , __snake_case : Any ) -> Optional[int]:
return self.node_position[vertex]
def A ( self : Dict , __snake_case : Optional[int] , __snake_case : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = pos
def A ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Dict , __snake_case : str ) -> Dict:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
UpperCAmelCase : Union[str, Any] = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
UpperCAmelCase : Tuple = 2 * start + 1
else:
UpperCAmelCase : List[str] = 2 * start + 2
if heap[smallest_child] < heap[start]:
UpperCAmelCase , UpperCAmelCase : str = heap[smallest_child], positions[smallest_child]
UpperCAmelCase , UpperCAmelCase : str = (
heap[start],
positions[start],
)
UpperCAmelCase , UpperCAmelCase : Any = temp, tempa
UpperCAmelCase : Union[str, Any] = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , __snake_case )
self.top_to_bottom(__snake_case , __snake_case , __snake_case , __snake_case )
def A ( self : Tuple , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str ) -> Dict:
UpperCAmelCase : Union[str, Any] = position[index]
while index != 0:
UpperCAmelCase : List[str] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
UpperCAmelCase : List[Any] = heap[parent]
UpperCAmelCase : str = position[parent]
self.set_position(position[parent] , __snake_case )
else:
UpperCAmelCase : Optional[Any] = val
UpperCAmelCase : Dict = temp
self.set_position(__snake_case , __snake_case )
break
UpperCAmelCase : Optional[int] = parent
else:
UpperCAmelCase : Any = val
UpperCAmelCase : Optional[int] = temp
self.set_position(__snake_case , 0 )
def A ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> Any:
UpperCAmelCase : Tuple = len(__snake_case ) // 2 - 1
for i in range(__snake_case , -1 , -1 ):
self.top_to_bottom(__snake_case , __snake_case , len(__snake_case ) , __snake_case )
def A ( self : Dict , __snake_case : Optional[Any] , __snake_case : int ) -> int:
UpperCAmelCase : List[Any] = positions[0]
UpperCAmelCase : Optional[int] = sys.maxsize
self.top_to_bottom(__snake_case , 0 , len(__snake_case ) , __snake_case )
return temp
def snake_case_ ( _lowerCAmelCase : List[str] ) -> str:
UpperCAmelCase : Union[str, Any] = Heap()
UpperCAmelCase : str = [0] * len(_lowerCAmelCase )
UpperCAmelCase : str = [-1] * len(_lowerCAmelCase ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
UpperCAmelCase : Optional[int] = [] # Heap of Distance of vertices from their neighboring vertex
UpperCAmelCase : List[str] = []
for vertex in range(len(_lowerCAmelCase ) ):
distance_tv.append(sys.maxsize )
positions.append(_lowerCAmelCase )
heap.node_position.append(_lowerCAmelCase )
UpperCAmelCase : List[str] = []
UpperCAmelCase : Tuple = 1
UpperCAmelCase : Union[str, Any] = sys.maxsize
for neighbor, distance in adjacency_list[0]:
UpperCAmelCase : List[Any] = 0
UpperCAmelCase : Tuple = distance
heap.heapify(_lowerCAmelCase , _lowerCAmelCase )
for _ in range(1 , len(_lowerCAmelCase ) ):
UpperCAmelCase : str = heap.delete_minimum(_lowerCAmelCase , _lowerCAmelCase )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
UpperCAmelCase : Optional[Any] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(_lowerCAmelCase )]
):
UpperCAmelCase : Tuple = distance
heap.bottom_to_top(
_lowerCAmelCase , heap.get_position(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[Any] = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
UpperCamelCase__: Any = int(input("Enter number of edges: ").strip())
UpperCamelCase__: Any = defaultdict(list)
for _ in range(edges_number):
UpperCamelCase__: Tuple = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 23 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
)
UpperCamelCase__: str = None
UpperCamelCase__: int = {
"7B": 11008,
"13B": 13824,
"30B": 17920,
"65B": 22016,
"70B": 28672,
}
UpperCamelCase__: List[Any] = {
"7B": 1,
"7Bf": 1,
"13B": 2,
"13Bf": 2,
"30B": 4,
"65B": 8,
"70B": 8,
"70Bf": 8,
}
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : List[Any]=256 ) -> Optional[Any]:
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def snake_case_ ( _lowerCAmelCase : List[str] ) -> str:
with open(_lowerCAmelCase , '''r''' ) as f:
return json.load(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ) -> Optional[Any]:
with open(_lowerCAmelCase , '''w''' ) as f:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=True ) -> List[Any]:
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp''' )
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
UpperCAmelCase : List[str] = read_json(os.path.join(_lowerCAmelCase , '''params.json''' ) )
UpperCAmelCase : str = NUM_SHARDS[model_size]
UpperCAmelCase : Any = params['''n_layers''']
UpperCAmelCase : str = params['''n_heads''']
UpperCAmelCase : Any = n_heads // num_shards
UpperCAmelCase : List[str] = params['''dim''']
UpperCAmelCase : Optional[Any] = dim // n_heads
UpperCAmelCase : str = 1_0_0_0_0.0
UpperCAmelCase : Optional[int] = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
UpperCAmelCase : Tuple = params['''n_kv_heads'''] # for GQA / MQA
UpperCAmelCase : Optional[int] = n_heads_per_shard // num_key_value_heads
UpperCAmelCase : Optional[Any] = dim // num_key_value_heads
else: # compatibility with other checkpoints
UpperCAmelCase : List[str] = n_heads
UpperCAmelCase : Optional[int] = n_heads_per_shard
UpperCAmelCase : List[str] = dim
# permute for sliced rotary
def permute(_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=n_heads , _lowerCAmelCase : int=dim , _lowerCAmelCase : Dict=dim ):
return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase ).transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase )
print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
UpperCAmelCase : int = torch.load(os.path.join(_lowerCAmelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' )
else:
# Sharded
UpperCAmelCase : Optional[Any] = [
torch.load(os.path.join(_lowerCAmelCase , f"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' )
for i in range(_lowerCAmelCase )
]
UpperCAmelCase : Any = 0
UpperCAmelCase : str = {'''weight_map''': {}}
for layer_i in range(_lowerCAmelCase ):
UpperCAmelCase : Optional[Any] = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
UpperCAmelCase : Optional[int] = {
f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute(
loaded[f"""layers.{layer_i}.attention.wq.weight"""] ),
f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute(
loaded[f"""layers.{layer_i}.attention.wk.weight"""] ),
f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""],
f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""],
f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""],
f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""],
f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""],
f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""],
f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
UpperCAmelCase : List[str] = {
f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][
f"""layers.{layer_i}.attention_norm.weight"""
].clone(),
f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][
f"""layers.{layer_i}.ffn_norm.weight"""
].clone(),
}
UpperCAmelCase : Union[str, Any] = permute(
torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for i in range(_lowerCAmelCase )
] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) )
UpperCAmelCase : Optional[Any] = permute(
torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for i in range(_lowerCAmelCase )
] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , )
UpperCAmelCase : str = torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for i in range(_lowerCAmelCase )
] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = torch.cat(
[loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_lowerCAmelCase )] , dim=1 )
UpperCAmelCase : Any = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_lowerCAmelCase )] , dim=0 )
UpperCAmelCase : str = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_lowerCAmelCase )] , dim=1 )
UpperCAmelCase : Tuple = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_lowerCAmelCase )] , dim=0 )
UpperCAmelCase : Any = inv_freq
for k, v in state_dict.items():
UpperCAmelCase : List[Any] = filename
param_count += v.numel()
torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) )
UpperCAmelCase : Optional[int] = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
UpperCAmelCase : str = {
'''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''],
'''model.norm.weight''': loaded['''norm.weight'''],
'''lm_head.weight''': loaded['''output.weight'''],
}
else:
UpperCAmelCase : Any = {
'''model.norm.weight''': loaded[0]['''norm.weight'''],
'''model.embed_tokens.weight''': torch.cat(
[loaded[i]['''tok_embeddings.weight'''] for i in range(_lowerCAmelCase )] , dim=1 ),
'''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_lowerCAmelCase )] , dim=0 ),
}
for k, v in state_dict.items():
UpperCAmelCase : Optional[int] = filename
param_count += v.numel()
torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) )
# Write configs
UpperCAmelCase : Union[str, Any] = {'''total_size''': param_count * 2}
write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , '''pytorch_model.bin.index.json''' ) )
UpperCAmelCase : int = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1
UpperCAmelCase : Tuple = params['''multiple_of'''] if '''multiple_of''' in params else 256
UpperCAmelCase : Any = LlamaConfig(
hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_lowerCAmelCase , )
config.save_pretrained(_lowerCAmelCase )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('''Loading the checkpoint in a Llama model.''' )
UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('''Saving in the Transformers format.''' )
model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> List[str]:
# Initialize the tokenizer based on the `spm` model
UpperCAmelCase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" )
UpperCAmelCase : List[Any] = tokenizer_class(_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
def snake_case_ ( ) -> List[Any]:
UpperCAmelCase : int = argparse.ArgumentParser()
parser.add_argument(
'''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , )
parser.add_argument(
'''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , )
parser.add_argument(
'''--output_dir''' , help='''Location to write HF model and tokenizer''' , )
parser.add_argument('''--safe_serialization''' , type=_lowerCAmelCase , help='''Whether or not to save using `safetensors`.''' )
UpperCAmelCase : List[Any] = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
UpperCAmelCase : Optional[int] = os.path.join(args.input_dir , '''tokenizer.model''' )
write_tokenizer(args.output_dir , _lowerCAmelCase )
if __name__ == "__main__":
main()
| 23 | 1 |
'''simple docstring'''
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
UpperCamelCase__: Tuple = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"]
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def __init__( self : List[Any] , __snake_case : Dict , __snake_case : str , __snake_case : Any=None , __snake_case : List[str]=1 ) -> List[str]:
UpperCAmelCase : str = tokenizer
UpperCAmelCase : Tuple = dataset
UpperCAmelCase : int = len(__snake_case ) if n_tasks is None else n_tasks
UpperCAmelCase : str = n_copies
def __iter__( self : Union[str, Any] ) -> Dict:
UpperCAmelCase : Union[str, Any] = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() )
UpperCAmelCase : Any = self.tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def __init__( self : Any , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> List[Any]:
UpperCAmelCase : Dict = start_length
UpperCAmelCase : Tuple = eof_strings
UpperCAmelCase : Union[str, Any] = tokenizer
def __call__( self : List[Any] , __snake_case : List[str] , __snake_case : List[Any] , **__snake_case : Union[str, Any] ) -> Dict:
UpperCAmelCase : Tuple = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
UpperCAmelCase : List[Any] = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(__snake_case )
def snake_case_ ( _lowerCAmelCase : List[str] ) -> Optional[int]:
UpperCAmelCase : int = re.split('''(%s)''' % '''|'''.join(_lowerCAmelCase ) , _lowerCAmelCase )
# last string should be ""
return "".join(string_list[:-2] )
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int=20 , **_lowerCAmelCase : Tuple ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = defaultdict(_lowerCAmelCase ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(_lowerCAmelCase ) ):
with torch.no_grad():
UpperCAmelCase : Union[str, Any] = batch['''ids'''].shape[-1]
UpperCAmelCase : List[str] = accelerator.unwrap_model(_lowerCAmelCase ).generate(
input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=_lowerCAmelCase , **_lowerCAmelCase )
# each task is generated batch_size times
UpperCAmelCase : Tuple = batch['''task_id'''].repeat(_lowerCAmelCase )
UpperCAmelCase : Any = accelerator.pad_across_processes(
_lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id )
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) )
UpperCAmelCase : int = generated_tokens.cpu().numpy()
UpperCAmelCase : Tuple = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(_lowerCAmelCase , _lowerCAmelCase ):
gen_token_dict[task].append(_lowerCAmelCase )
UpperCAmelCase : Dict = [[] for _ in range(_lowerCAmelCase )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
UpperCAmelCase : Optional[int] = tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase )
code_gens[task].append(remove_last_block(_lowerCAmelCase ) )
return code_gens
def snake_case_ ( ) -> List[Any]:
# Setup configuration
UpperCAmelCase : Any = HfArgumentParser(_lowerCAmelCase )
UpperCAmelCase : Tuple = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
UpperCAmelCase : Union[str, Any] = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
UpperCAmelCase : Union[str, Any] = '''false'''
if args.num_workers is None:
UpperCAmelCase : Optional[Any] = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
UpperCAmelCase : int = Accelerator()
set_seed(args.seed , device_specific=_lowerCAmelCase )
# Load model and tokenizer
UpperCAmelCase : Any = AutoTokenizer.from_pretrained(args.model_ckpt )
UpperCAmelCase : Optional[int] = tokenizer.eos_token
UpperCAmelCase : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
UpperCAmelCase : Any = {
'''do_sample''': args.do_sample,
'''temperature''': args.temperature,
'''max_new_tokens''': args.max_new_tokens,
'''top_p''': args.top_p,
'''top_k''': args.top_k,
'''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCAmelCase , _lowerCAmelCase )] ),
}
# Load evaluation dataset and metric
UpperCAmelCase : Optional[int] = load_dataset('''openai_humaneval''' )
UpperCAmelCase : Any = load_metric('''code_eval''' )
UpperCAmelCase : Optional[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] )
UpperCAmelCase : Tuple = args.n_samples // args.batch_size
UpperCAmelCase : int = TokenizedDataset(_lowerCAmelCase , human_eval['''test'''] , n_copies=_lowerCAmelCase , n_tasks=_lowerCAmelCase )
# do not confuse args.batch_size, which is actually the num_return_sequences
UpperCAmelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
UpperCAmelCase : Tuple = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] )
except ValueError as exception:
print(
'''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`'''
''' flag to enable code evaluation.''' )
raise exception
UpperCAmelCase , UpperCAmelCase : str = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = complete_code(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , n_tasks=_lowerCAmelCase , batch_size=args.batch_size , **_lowerCAmelCase , )
if accelerator.is_main_process:
UpperCAmelCase : str = []
for task in tqdm(range(_lowerCAmelCase ) ):
UpperCAmelCase : Union[str, Any] = human_eval['''test'''][task]['''test''']
UpperCAmelCase : Union[str, Any] = f"""check({human_eval["test"][task]["entry_point"]})"""
references.append('''\n''' + test_func + '''\n''' + entry_point )
# Evaluate completions with "code_eval" metric
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = code_eval_metric.compute(
references=_lowerCAmelCase , predictions=_lowerCAmelCase , num_workers=args.num_workers )
print(f"""Results: {pass_at_k}""" )
# Save results to json file
with open(args.output_file , '''w''' ) as fp:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 23 |
'''simple docstring'''
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Optional[int] = tau * frequency / samplerate
UpperCAmelCase : List[Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = cos(_lowerCAmelCase )
UpperCAmelCase : int = _sin / (2 * q_factor)
UpperCAmelCase : Any = (1 - _cos) / 2
UpperCAmelCase : List[Any] = 1 - _cos
UpperCAmelCase : Union[str, Any] = 1 + alpha
UpperCAmelCase : Any = -2 * _cos
UpperCAmelCase : Dict = 1 - alpha
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Any = tau * frequency / samplerate
UpperCAmelCase : Tuple = sin(_lowerCAmelCase )
UpperCAmelCase : Tuple = cos(_lowerCAmelCase )
UpperCAmelCase : Dict = _sin / (2 * q_factor)
UpperCAmelCase : int = (1 + _cos) / 2
UpperCAmelCase : List[Any] = -1 - _cos
UpperCAmelCase : Tuple = 1 + alpha
UpperCAmelCase : List[str] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha
UpperCAmelCase : Tuple = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Optional[int] = tau * frequency / samplerate
UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase )
UpperCAmelCase : Tuple = cos(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = _sin / (2 * q_factor)
UpperCAmelCase : Union[str, Any] = _sin / 2
UpperCAmelCase : Any = 0
UpperCAmelCase : int = -ba
UpperCAmelCase : Optional[Any] = 1 + alpha
UpperCAmelCase : List[Any] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha
UpperCAmelCase : int = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : List[str] = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : str = cos(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor)
UpperCAmelCase : List[str] = 1 - alpha
UpperCAmelCase : Any = -2 * _cos
UpperCAmelCase : Optional[int] = 1 + alpha
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : Optional[Any] = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = cos(_lowerCAmelCase )
UpperCAmelCase : Dict = _sin / (2 * q_factor)
UpperCAmelCase : str = 10 ** (gain_db / 40)
UpperCAmelCase : int = 1 + alpha * big_a
UpperCAmelCase : Union[str, Any] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha * big_a
UpperCAmelCase : Union[str, Any] = 1 + alpha / big_a
UpperCAmelCase : Tuple = -2 * _cos
UpperCAmelCase : Any = 1 - alpha / big_a
UpperCAmelCase : Optional[Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : Any = tau * frequency / samplerate
UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase )
UpperCAmelCase : str = _sin / (2 * q_factor)
UpperCAmelCase : List[str] = 10 ** (gain_db / 40)
UpperCAmelCase : Optional[int] = (big_a + 1) - (big_a - 1) * _cos
UpperCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos
UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos
UpperCAmelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos
UpperCAmelCase : str = 2 * sqrt(_lowerCAmelCase ) * alpha
UpperCAmelCase : Dict = big_a * (pmc + aaa)
UpperCAmelCase : Any = 2 * big_a * mpc
UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa)
UpperCAmelCase : Optional[int] = ppmc + aaa
UpperCAmelCase : Optional[Any] = -2 * pmpc
UpperCAmelCase : Optional[Any] = ppmc - aaa
UpperCAmelCase : int = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : int = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase )
UpperCAmelCase : Any = _sin / (2 * q_factor)
UpperCAmelCase : int = 10 ** (gain_db / 40)
UpperCAmelCase : List[str] = (big_a + 1) - (big_a - 1) * _cos
UpperCAmelCase : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos
UpperCAmelCase : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos
UpperCAmelCase : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos
UpperCAmelCase : List[str] = 2 * sqrt(_lowerCAmelCase ) * alpha
UpperCAmelCase : Any = big_a * (ppmc + aaa)
UpperCAmelCase : str = -2 * big_a * pmpc
UpperCAmelCase : List[Any] = big_a * (ppmc - aaa)
UpperCAmelCase : Optional[Any] = pmc + aaa
UpperCAmelCase : Any = 2 * mpc
UpperCAmelCase : str = pmc - aaa
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
| 23 | 1 |
'''simple docstring'''
from pathlib import Path
import numpy as np
from PIL import Image
def snake_case_ ( _lowerCAmelCase : np.ndarray ) -> np.ndarray:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b
def snake_case_ ( _lowerCAmelCase : np.ndarray ) -> np.ndarray:
return (gray > 127) & (gray <= 255)
def snake_case_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ) -> np.ndarray:
UpperCAmelCase : int = np.zeros_like(_lowerCAmelCase )
UpperCAmelCase : Dict = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
UpperCAmelCase : Dict = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
UpperCAmelCase : List[str] = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
UpperCAmelCase : Any = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
UpperCamelCase__: int = Path(__file__).resolve().parent / "image_data" / "lena.jpg"
UpperCamelCase__: Optional[Any] = np.array(Image.open(lena_path))
# kernel to be applied
UpperCamelCase__: Union[str, Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
UpperCamelCase__: Optional[Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
UpperCamelCase__: Union[str, Any] = Image.fromarray(output).convert("RGB")
pil_img.save("result_dilation.png")
| 23 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool:
UpperCAmelCase : str = get_failure_array(_lowerCAmelCase )
# 2) Step through text searching for pattern
UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern
while i < len(_lowerCAmelCase ):
if pattern[j] == text[i]:
if j == (len(_lowerCAmelCase ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
UpperCAmelCase : Optional[Any] = failure[j - 1]
continue
i += 1
return False
def snake_case_ ( _lowerCAmelCase : str ) -> list[int]:
UpperCAmelCase : Optional[Any] = [0]
UpperCAmelCase : str = 0
UpperCAmelCase : List[str] = 1
while j < len(_lowerCAmelCase ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
UpperCAmelCase : Union[str, Any] = failure[i - 1]
continue
j += 1
failure.append(_lowerCAmelCase )
return failure
if __name__ == "__main__":
# Test 1)
UpperCamelCase__: str = "abc1abc12"
UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc"
UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc"
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
UpperCamelCase__: Tuple = "ABABX"
UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX"
assert kmp(pattern, text)
# Test 3)
UpperCamelCase__: Any = "AAAB"
UpperCamelCase__: str = "ABAAAAAB"
assert kmp(pattern, text)
# Test 4)
UpperCamelCase__: int = "abcdabcy"
UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy"
assert kmp(pattern, text)
# Test 5)
UpperCamelCase__: List[str] = "aabaabaaa"
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 23 | 1 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
UpperCamelCase__: int = logging.get_logger(__name__)
UpperCamelCase__: Tuple = {"vocab_file": "spiece.model"}
UpperCamelCase__: List[Any] = {
"vocab_file": {
"TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model",
}
}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def __init__( self : Dict , __snake_case : Optional[Any] , __snake_case : Optional[Any]=False , __snake_case : str=True , __snake_case : List[Any]=False , __snake_case : Union[str, Any]="<s>" , __snake_case : Tuple="</s>" , __snake_case : str="<unk>" , __snake_case : int="<sep>" , __snake_case : str="<pad>" , __snake_case : Optional[int]="<cls>" , __snake_case : Dict="<mask>" , __snake_case : str=["<eop>", "<eod>"] , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Any , ) -> None:
UpperCAmelCase : Any = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token
UpperCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , )
UpperCAmelCase : Union[str, Any] = 3
UpperCAmelCase : str = do_lower_case
UpperCAmelCase : Optional[Any] = remove_space
UpperCAmelCase : str = keep_accents
UpperCAmelCase : Optional[Any] = vocab_file
UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__snake_case )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
'''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. '''
'''See https://pypi.org/project/jieba/ for installation.''' )
UpperCAmelCase : List[str] = jieba
UpperCAmelCase : Any = str.maketrans(''' \n''' , '''\u2582\u2583''' )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def A ( self : Tuple ) -> Dict:
return len(self.sp_model )
def A ( self : Tuple ) -> int:
UpperCAmelCase : Dict = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[int] ) -> Any:
UpperCAmelCase : int = self.__dict__.copy()
UpperCAmelCase : Optional[Any] = None
return state
def __setstate__( self : Any , __snake_case : Union[str, Any] ) -> Optional[Any]:
UpperCAmelCase : List[str] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase : Dict = {}
UpperCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A ( self : int , __snake_case : int ) -> Tuple:
if self.remove_space:
UpperCAmelCase : Dict = ''' '''.join(inputs.strip().split() )
else:
UpperCAmelCase : Any = inputs
UpperCAmelCase : List[str] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' )
if not self.keep_accents:
UpperCAmelCase : int = unicodedata.normalize('''NFKD''' , __snake_case )
UpperCAmelCase : List[str] = ''''''.join([c for c in outputs if not unicodedata.combining(__snake_case )] )
if self.do_lower_case:
UpperCAmelCase : Union[str, Any] = outputs.lower()
return outputs
def A ( self : Any , __snake_case : str ) -> List[str]:
UpperCAmelCase : Dict = self.preprocess_text(__snake_case )
UpperCAmelCase : Union[str, Any] = self.sp_model.encode(__snake_case , out_type=__snake_case )
UpperCAmelCase : List[Any] = []
for piece in pieces:
if len(__snake_case ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit():
UpperCAmelCase : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__snake_case , '''''' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
UpperCAmelCase : Union[str, Any] = cur_pieces[1:]
else:
UpperCAmelCase : Dict = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__snake_case )
else:
new_pieces.append(__snake_case )
return new_pieces
def A ( self : Dict , __snake_case : Tuple ) -> List[Any]:
return self.sp_model.PieceToId(__snake_case )
def A ( self : Any , __snake_case : str ) -> List[Any]:
return self.sp_model.IdToPiece(__snake_case )
def A ( self : str , __snake_case : Tuple ) -> Dict:
UpperCAmelCase : List[Any] = ''''''.join(__snake_case ).replace(__snake_case , ''' ''' ).strip()
return out_string
def A ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase : Dict = [self.sep_token_id]
UpperCAmelCase : int = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def A ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case )
if token_ids_a is not None:
return ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1, 1]
return ([0] * len(__snake_case )) + [1, 1]
def A ( self : Any , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase : Any = [self.sep_token_id]
UpperCAmelCase : Union[str, Any] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def A ( self : Tuple , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__snake_case ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase : Any = os.path.join(
__snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(__snake_case , '''wb''' ) as fi:
UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(__snake_case )
return (out_vocab_file,)
def A ( self : Optional[Any] , *__snake_case : Any , **__snake_case : Optional[Any] ) -> int:
UpperCAmelCase : Any = super()._decode(*__snake_case , **__snake_case )
UpperCAmelCase : Any = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' )
return text
| 23 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
UpperCamelCase__: int = logging.get_logger(__name__)
UpperCamelCase__: Dict = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
UpperCamelCase__: Optional[Any] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = {}
with open(_lowerCAmelCase , '''r''' ) as file:
for line_number, line in enumerate(_lowerCAmelCase ):
UpperCAmelCase : List[str] = line.strip()
if line:
UpperCAmelCase : str = line.split()
UpperCAmelCase : Union[str, Any] = line_number
UpperCAmelCase : List[Any] = words[0]
UpperCAmelCase : Union[str, Any] = value
return result
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int:
for attribute in key.split('''.''' ):
UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Dict = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_lowerCAmelCase ):
UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]]
UpperCAmelCase : Dict = '''param'''
if weight_type is not None and weight_type != "param":
UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase : List[Any] = hf_pointer
for attribute in hf_param_name.split('''.''' ):
UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : int = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase : Union[str, Any] = value[0]
else:
UpperCAmelCase : List[Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase : int = value
elif weight_type == "weight_g":
UpperCAmelCase : str = value
elif weight_type == "weight_v":
UpperCAmelCase : Dict = value
elif weight_type == "bias":
UpperCAmelCase : str = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = value
else:
UpperCAmelCase : Tuple = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]:
UpperCAmelCase : List[str] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_lowerCAmelCase ):
UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]]
UpperCAmelCase : Any = '''param'''
if weight_type is not None and weight_type != "param":
UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] )
else:
UpperCAmelCase : List[Any] = key
UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0]
UpperCamelCase__: Tuple = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int:
UpperCAmelCase : List[Any] = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
UpperCAmelCase : Optional[Any] = True
if "*" in mapped_key:
UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase )
if "weight_g" in name:
UpperCAmelCase : str = '''weight_g'''
elif "weight_v" in name:
UpperCAmelCase : int = '''weight_v'''
elif "bias" in name:
UpperCAmelCase : int = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase : List[str] = '''weight'''
else:
UpperCAmelCase : Dict = None
if hf_dict is not None:
rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return is_used
return is_used
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any:
UpperCAmelCase : Dict = []
UpperCAmelCase : Dict = fairseq_model.state_dict()
UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase : Dict = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , )
UpperCAmelCase : Any = True
else:
UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f"""Unused weights: {unused_weights}""" )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1]
UpperCAmelCase : Optional[int] = name.split('''.''' )
UpperCAmelCase : Tuple = int(items[0] )
UpperCAmelCase : Tuple = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCAmelCase : Tuple = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCAmelCase : Union[str, Any] = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCAmelCase : Union[str, Any] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCAmelCase : List[str] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict:
if config_path is not None:
UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase )
else:
UpperCAmelCase : List[Any] = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = idalabel
UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase )
UpperCAmelCase : Dict = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , )
feature_extractor.save_pretrained(_lowerCAmelCase )
elif is_finetuned:
if dict_path:
UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase : Any = target_dict.pad_index
UpperCAmelCase : Tuple = target_dict.bos_index
UpperCAmelCase : Optional[int] = target_dict.eos_index
UpperCAmelCase : Union[str, Any] = len(target_dict.symbols )
UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' )
if not os.path.isdir(_lowerCAmelCase ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) )
return
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
UpperCAmelCase : List[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase : List[str] = 0
UpperCAmelCase : List[str] = 1
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer(
_lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , )
UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False
UpperCAmelCase : int = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , )
UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase )
else:
UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase )
if is_finetuned or is_seq_class:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' )
UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase )
UpperCAmelCase : Optional[int] = model[0].eval()
recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned )
hf_wavavec.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase__: Dict = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
UpperCamelCase__: Any = parser.parse_args()
UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 23 | 1 |
'''simple docstring'''
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
UpperCamelCase__: str = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
lowerCamelCase__ = 42
lowerCamelCase__ = None
@staticmethod
def A ( ) -> Optional[Any]:
raise NotImplementedError
def A ( self : Dict , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : str , **__snake_case : str ) -> Optional[int]:
raise NotImplementedError
def A ( self : Union[str, Any] , __snake_case : str ) -> Union[str, Any]:
raise NotImplementedError
def A ( self : List[Any] ) -> List[Any]:
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def A ( cls : List[Any] ) -> List[Any]:
return F"""`pip install {cls.pip_package or cls.name}`"""
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """optuna"""
@staticmethod
def A ( ) -> str:
return is_optuna_available()
def A ( self : Optional[int] , __snake_case : Tuple , __snake_case : int , __snake_case : str , **__snake_case : Tuple ) -> Dict:
return run_hp_search_optuna(__snake_case , __snake_case , __snake_case , **__snake_case )
def A ( self : Union[str, Any] , __snake_case : str ) -> str:
return default_hp_space_optuna(__snake_case )
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """ray"""
lowerCamelCase__ = """'ray[tune]'"""
@staticmethod
def A ( ) -> str:
return is_ray_available()
def A ( self : Union[str, Any] , __snake_case : Any , __snake_case : int , __snake_case : str , **__snake_case : Optional[int] ) -> List[Any]:
return run_hp_search_ray(__snake_case , __snake_case , __snake_case , **__snake_case )
def A ( self : List[str] , __snake_case : List[Any] ) -> List[Any]:
return default_hp_space_ray(__snake_case )
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """sigopt"""
@staticmethod
def A ( ) -> List[str]:
return is_sigopt_available()
def A ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : str , **__snake_case : Union[str, Any] ) -> Tuple:
return run_hp_search_sigopt(__snake_case , __snake_case , __snake_case , **__snake_case )
def A ( self : int , __snake_case : Optional[Any] ) -> Any:
return default_hp_space_sigopt(__snake_case )
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """wandb"""
@staticmethod
def A ( ) -> Tuple:
return is_wandb_available()
def A ( self : Any , __snake_case : List[Any] , __snake_case : int , __snake_case : str , **__snake_case : Tuple ) -> Optional[Any]:
return run_hp_search_wandb(__snake_case , __snake_case , __snake_case , **__snake_case )
def A ( self : str , __snake_case : str ) -> int:
return default_hp_space_wandb(__snake_case )
UpperCamelCase__: Optional[int] = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def snake_case_ ( ) -> str:
UpperCAmelCase : int = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(_lowerCAmelCase ) > 0:
UpperCAmelCase : Union[str, Any] = available_backends[0].name
if len(_lowerCAmelCase ) > 1:
logger.info(
f"""{len(_lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default.""" )
return name
raise RuntimeError(
'''No hyperparameter search backend available.\n'''
+ '''\n'''.join(
f""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 23 |
'''simple docstring'''
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : str ) -> int:
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case )
UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )]
UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('''.bin''' ) for f in files )
@slow
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : List[str] ) -> Dict:
UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case )
UpperCAmelCase : List[Any] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
UpperCAmelCase : Optional[Any] = 4
UpperCAmelCase : Optional[Any] = jax.device_count()
UpperCAmelCase : Tuple = num_samples * [prompt]
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[Any] = shard(__snake_case )
UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3
assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1
UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(__snake_case ) == num_samples
def A ( self : List[Any] ) -> List[str]:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case )
UpperCAmelCase : Dict = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase : Any = 50
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : int = num_samples * [prompt]
UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Dict = replicate(__snake_case )
UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Tuple = shard(__snake_case )
UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1
def A ( self : int ) -> Dict:
UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case )
UpperCAmelCase : Dict = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 )
UpperCAmelCase : List[str] = 50
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : List[Any] = num_samples * [prompt]
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[int] = shard(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def A ( self : int ) -> Any:
UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa )
UpperCAmelCase : List[str] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
UpperCAmelCase : Union[str, Any] = 50
UpperCAmelCase : Optional[int] = jax.device_count()
UpperCAmelCase : List[str] = num_samples * [prompt]
UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : str = shard(__snake_case )
UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def A ( self : Tuple ) -> Optional[Any]:
UpperCAmelCase : int = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , )
UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , )
UpperCAmelCase : Tuple = scheduler.create_state()
UpperCAmelCase : Dict = scheduler_state
UpperCAmelCase : str = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : int = jax.random.PRNGKey(0 )
UpperCAmelCase : Union[str, Any] = 50
UpperCAmelCase : Optional[Any] = jax.device_count()
UpperCAmelCase : Any = num_samples * [prompt]
UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : str = replicate(__snake_case )
UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[int] = shard(__snake_case )
UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1
def A ( self : Any ) -> Tuple:
UpperCAmelCase : List[Any] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : List[Any] = num_samples * [prompt]
UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case )
UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , )
UpperCAmelCase : Dict = replicate(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case )
UpperCAmelCase : List[str] = shard(__snake_case )
UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , )
UpperCAmelCase : int = replicate(__snake_case )
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
UpperCAmelCase : List[Any] = shard(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase : int = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1E-2
| 23 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@property
def A ( self : List[Any] ) -> List[str]:
torch.manual_seed(0 )
UpperCAmelCase : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def A ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase : List[Any] = self.dummy_uncond_unet
UpperCAmelCase : Optional[int] = PNDMScheduler()
UpperCAmelCase : Any = PNDMPipeline(unet=__snake_case , scheduler=__snake_case )
pndm.to(__snake_case )
pndm.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 )
UpperCAmelCase : Any = pndm(generator=__snake_case , num_inference_steps=20 , output_type='''numpy''' ).images
UpperCAmelCase : Dict = torch.manual_seed(0 )
UpperCAmelCase : List[Any] = pndm(generator=__snake_case , num_inference_steps=20 , output_type='''numpy''' , return_dict=__snake_case )[0]
UpperCAmelCase : Dict = image[0, -3:, -3:, -1]
UpperCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase : Optional[Any] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : Optional[int] ) -> str:
UpperCAmelCase : str = '''google/ddpm-cifar10-32'''
UpperCAmelCase : Optional[Any] = UNetaDModel.from_pretrained(__snake_case )
UpperCAmelCase : List[str] = PNDMScheduler()
UpperCAmelCase : int = PNDMPipeline(unet=__snake_case , scheduler=__snake_case )
pndm.to(__snake_case )
pndm.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : Tuple = torch.manual_seed(0 )
UpperCAmelCase : Any = pndm(generator=__snake_case , output_type='''numpy''' ).images
UpperCAmelCase : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase : List[Any] = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 23 |
'''simple docstring'''
import random
from .binary_exp_mod import bin_exp_mod
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int:
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
UpperCAmelCase : str = n - 1
UpperCAmelCase : List[Any] = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
UpperCAmelCase : List[str] = 0
while count < prec:
UpperCAmelCase : int = random.randint(2 , n - 1 )
UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if b != 1:
UpperCAmelCase : int = True
for _ in range(_lowerCAmelCase ):
if b == n - 1:
UpperCAmelCase : Dict = False
break
UpperCAmelCase : str = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip()))
print("Here's the list of primes:")
print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 23 | 1 |
'''simple docstring'''
import unittest
from diffusers.models.unet_ad_blocks import * # noqa F403
from diffusers.utils import torch_device
from .test_unet_blocks_common import UNetBlockTesterMixin
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = DownBlockaD # noqa F405
lowerCamelCase__ = """down"""
def A ( self : Dict ) -> Union[str, Any]:
UpperCAmelCase : Any = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = ResnetDownsampleBlockaD # noqa F405
lowerCamelCase__ = """down"""
def A ( self : Optional[Any] ) -> Optional[int]:
UpperCAmelCase : Dict = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = AttnDownBlockaD # noqa F405
lowerCamelCase__ = """down"""
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = CrossAttnDownBlockaD # noqa F405
lowerCamelCase__ = """down"""
def A ( self : int ) -> List[Any]:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase : Dict = 32
return init_dict, inputs_dict
def A ( self : List[Any] ) -> int:
UpperCAmelCase : str = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = SimpleCrossAttnDownBlockaD # noqa F405
lowerCamelCase__ = """down"""
@property
def A ( self : Optional[int] ) -> str:
return super().get_dummy_input(include_encoder_hidden_states=__snake_case )
def A ( self : Optional[Any] ) -> str:
UpperCAmelCase , UpperCAmelCase : Optional[int] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase : int = 32
return init_dict, inputs_dict
@unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' )
def A ( self : List[str] ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = SkipDownBlockaD # noqa F405
lowerCamelCase__ = """down"""
@property
def A ( self : Any ) -> Optional[Any]:
return super().get_dummy_input(include_skip_sample=__snake_case )
def A ( self : Any ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = AttnSkipDownBlockaD # noqa F405
lowerCamelCase__ = """down"""
@property
def A ( self : List[Any] ) -> List[str]:
return super().get_dummy_input(include_skip_sample=__snake_case )
def A ( self : int ) -> Dict:
UpperCAmelCase : Any = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = DownEncoderBlockaD # noqa F405
lowerCamelCase__ = """down"""
@property
def A ( self : Tuple ) -> Union[str, Any]:
return super().get_dummy_input(include_temb=__snake_case )
def A ( self : int ) -> Union[str, Any]:
UpperCAmelCase : Any = {
'''in_channels''': 32,
'''out_channels''': 32,
}
UpperCAmelCase : Any = self.dummy_input
return init_dict, inputs_dict
def A ( self : Optional[int] ) -> Optional[int]:
UpperCAmelCase : Dict = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = AttnDownEncoderBlockaD # noqa F405
lowerCamelCase__ = """down"""
@property
def A ( self : str ) -> Union[str, Any]:
return super().get_dummy_input(include_temb=__snake_case )
def A ( self : Dict ) -> Dict:
UpperCAmelCase : Optional[int] = {
'''in_channels''': 32,
'''out_channels''': 32,
}
UpperCAmelCase : List[Any] = self.dummy_input
return init_dict, inputs_dict
def A ( self : int ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = UNetMidBlockaD # noqa F405
lowerCamelCase__ = """mid"""
def A ( self : int ) -> str:
UpperCAmelCase : List[Any] = {
'''in_channels''': 32,
'''temb_channels''': 128,
}
UpperCAmelCase : Optional[Any] = self.dummy_input
return init_dict, inputs_dict
def A ( self : List[str] ) -> Any:
UpperCAmelCase : Dict = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = UNetMidBlockaDCrossAttn # noqa F405
lowerCamelCase__ = """mid"""
def A ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase , UpperCAmelCase : Optional[int] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase : Any = 32
return init_dict, inputs_dict
def A ( self : Any ) -> List[Any]:
UpperCAmelCase : int = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = UNetMidBlockaDSimpleCrossAttn # noqa F405
lowerCamelCase__ = """mid"""
@property
def A ( self : Optional[int] ) -> List[Any]:
return super().get_dummy_input(include_encoder_hidden_states=__snake_case )
def A ( self : List[Any] ) -> str:
UpperCAmelCase , UpperCAmelCase : Optional[Any] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase : Union[str, Any] = 32
return init_dict, inputs_dict
def A ( self : int ) -> str:
UpperCAmelCase : Optional[int] = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = UpBlockaD # noqa F405
lowerCamelCase__ = """up"""
@property
def A ( self : Optional[Any] ) -> Optional[int]:
return super().get_dummy_input(include_res_hidden_states_tuple=__snake_case )
def A ( self : Dict ) -> List[str]:
UpperCAmelCase : Tuple = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = ResnetUpsampleBlockaD # noqa F405
lowerCamelCase__ = """up"""
@property
def A ( self : Union[str, Any] ) -> Optional[Any]:
return super().get_dummy_input(include_res_hidden_states_tuple=__snake_case )
def A ( self : Union[str, Any] ) -> Tuple:
UpperCAmelCase : Optional[Any] = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = CrossAttnUpBlockaD # noqa F405
lowerCamelCase__ = """up"""
@property
def A ( self : Optional[int] ) -> List[Any]:
return super().get_dummy_input(include_res_hidden_states_tuple=__snake_case )
def A ( self : Union[str, Any] ) -> int:
UpperCAmelCase , UpperCAmelCase : Optional[Any] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase : List[str] = 32
return init_dict, inputs_dict
def A ( self : Any ) -> Optional[Any]:
UpperCAmelCase : List[str] = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = SimpleCrossAttnUpBlockaD # noqa F405
lowerCamelCase__ = """up"""
@property
def A ( self : Dict ) -> int:
return super().get_dummy_input(include_res_hidden_states_tuple=__snake_case , include_encoder_hidden_states=__snake_case )
def A ( self : Tuple ) -> Tuple:
UpperCAmelCase , UpperCAmelCase : List[str] = super().prepare_init_args_and_inputs_for_common()
UpperCAmelCase : List[str] = 32
return init_dict, inputs_dict
def A ( self : int ) -> int:
UpperCAmelCase : Optional[Any] = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = AttnUpBlockaD # noqa F405
lowerCamelCase__ = """up"""
@property
def A ( self : Optional[int] ) -> Tuple:
return super().get_dummy_input(include_res_hidden_states_tuple=__snake_case )
@unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' )
def A ( self : str ) -> Tuple:
UpperCAmelCase : Any = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = SkipUpBlockaD # noqa F405
lowerCamelCase__ = """up"""
@property
def A ( self : Optional[Any] ) -> Optional[int]:
return super().get_dummy_input(include_res_hidden_states_tuple=__snake_case )
def A ( self : Any ) -> Optional[int]:
UpperCAmelCase : Optional[int] = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = AttnSkipUpBlockaD # noqa F405
lowerCamelCase__ = """up"""
@property
def A ( self : Dict ) -> List[Any]:
return super().get_dummy_input(include_res_hidden_states_tuple=__snake_case )
def A ( self : Optional[Any] ) -> Dict:
UpperCAmelCase : Optional[int] = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = UpDecoderBlockaD # noqa F405
lowerCamelCase__ = """up"""
@property
def A ( self : str ) -> Optional[int]:
return super().get_dummy_input(include_temb=__snake_case )
def A ( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase : Tuple = {'''in_channels''': 32, '''out_channels''': 32}
UpperCAmelCase : Union[str, Any] = self.dummy_input
return init_dict, inputs_dict
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase : int = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37]
super().test_output(__snake_case )
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = AttnUpDecoderBlockaD # noqa F405
lowerCamelCase__ = """up"""
@property
def A ( self : str ) -> Tuple:
return super().get_dummy_input(include_temb=__snake_case )
def A ( self : Optional[Any] ) -> Dict:
UpperCAmelCase : Tuple = {'''in_channels''': 32, '''out_channels''': 32}
UpperCAmelCase : Tuple = self.dummy_input
return init_dict, inputs_dict
def A ( self : Union[str, Any] ) -> Any:
UpperCAmelCase : Any = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68]
super().test_output(__snake_case )
| 23 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__: Optional[int] = logging.get_logger(__name__)
def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]:
UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' )
if "large" in checkpoint_url:
UpperCAmelCase : Tuple = 1024
UpperCAmelCase : List[Any] = 4096
UpperCAmelCase : str = 24
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = [5, 11, 17, 23]
UpperCAmelCase : List[Any] = [256, 512, 1024, 1024]
UpperCAmelCase : Tuple = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 768
UpperCAmelCase : Tuple = [1, 1, 1, 0.5]
UpperCAmelCase : int = [256, 512, 768, 768]
UpperCAmelCase : Any = 150
UpperCAmelCase : Tuple = 16
UpperCAmelCase : Any = (1, 384, 384)
UpperCAmelCase : Optional[Any] = False
UpperCAmelCase : Tuple = '''project'''
if "ade" in checkpoint_url:
UpperCAmelCase : Any = True
UpperCAmelCase : str = 768
UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5]
UpperCAmelCase : List[Any] = 150
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = '''huggingface/label-files'''
UpperCAmelCase : Tuple = '''ade20k-id2label.json'''
UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) )
UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : List[Any] = idalabel
UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480]
return config, expected_shape
def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int:
UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias''']
for k in ignore_keys:
state_dict.pop(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' )
if "pretrained.model" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' )
if "patch_embed" in name:
UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' )
if "pos_embed" in name:
UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' )
if "attn.proj" in name:
UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "proj" in name and "project" not in name:
UpperCAmelCase : str = name.replace('''proj''' , '''projection''' )
if "blocks" in name:
UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' )
if "mlp.fc1" in name:
UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' )
if "norm1" in name and "backbone" not in name:
UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name and "backbone" not in name:
UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' )
if "scratch.output_conv" in name:
UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' )
if "scratch" in name:
UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' )
if "layer1_rn" in name:
UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' )
if "layer2_rn" in name:
UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' )
if "layer3_rn" in name:
UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' )
if "layer4_rn" in name:
UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' )
if "refinenet" in name:
UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" )
if "out_conv" in name:
UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' )
if "resConfUnit1" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' )
if "resConfUnit2" in name:
UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' )
if "conv1" in name:
UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' )
if "conv2" in name:
UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' )
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' )
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' )
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' )
if "pretrained.act_postprocess1.4" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' )
if "pretrained.act_postprocess2.3" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' )
if "pretrained.act_postprocess2.4" in name:
UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' )
if "pretrained.act_postprocess3.3" in name:
UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' )
if "pretrained.act_postprocess4.3" in name:
UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' )
if "pretrained.act_postprocess4.4" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' )
if "pretrained" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' )
if "bn" in name:
UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' )
if "head" in name:
UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' )
if "encoder.norm" in name:
UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' )
if "auxlayer" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' )
if "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' )
if ".." in name:
UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' )
if "stem.conv" in name:
UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' )
if "blocks" in name:
UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' )
if "convolution" in name and "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' )
if "layer" in name and "backbone" in name:
UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' )
if "backbone.bit.encoder.bit" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' )
if "embedder.conv" in name:
UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' )
if "backbone.bit.encoder.stem.norm" in name:
UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' )
return name
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" )
UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : int = in_proj_bias[: config.hidden_size]
UpperCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :]
def snake_case_ ( ) -> List[str]:
UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
return im
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any:
UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' )
# remove certain keys
remove_ignore_keys_(_lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase )
UpperCAmelCase : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase )
# load HuggingFace model
UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
# Check outputs on an image
UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384
UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase )
UpperCAmelCase : Dict = prepare_img()
UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' )
# forward pass
UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth
if show_prediction:
UpperCAmelCase : Dict = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCAmelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCAmelCase )
if push_to_hub:
model.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
if __name__ == "__main__":
UpperCamelCase__: Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
type=str,
help="URL of the original DPT checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=False,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
parser.add_argument(
"--model_name",
default="dpt-large",
type=str,
help="Name of the model, in case you're pushing to the hub.",
)
parser.add_argument(
"--show_prediction",
action="store_true",
)
UpperCamelCase__: Tuple = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 23 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
UpperCamelCase__: int = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def __init__( self : int , __snake_case : int , __snake_case : int , __snake_case : float , **__snake_case : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = feature_size
UpperCAmelCase : Dict = sampling_rate
UpperCAmelCase : Any = padding_value
UpperCAmelCase : Union[str, Any] = kwargs.pop('''padding_side''' , '''right''' )
UpperCAmelCase : Dict = kwargs.pop('''return_attention_mask''' , __snake_case )
super().__init__(**__snake_case )
def A ( self : Tuple , __snake_case : Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , __snake_case : Union[bool, str, PaddingStrategy] = True , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[str, TensorType]] = None , ) -> BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
UpperCAmelCase : List[str] = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'''
F""" to this method that includes {self.model_input_names[0]}, but you provided"""
F""" {list(processed_features.keys() )}""" )
UpperCAmelCase : List[str] = processed_features[self.model_input_names[0]]
UpperCAmelCase : Optional[Any] = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(__snake_case ) == 0:
if return_attention_mask:
UpperCAmelCase : Optional[int] = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
UpperCAmelCase : List[Any] = required_input[0]
if isinstance(__snake_case , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
UpperCAmelCase : Optional[int] = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(__snake_case ):
UpperCAmelCase : List[Any] = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(__snake_case ):
UpperCAmelCase : Optional[int] = '''tf'''
elif is_torch_tensor(__snake_case ):
UpperCAmelCase : List[Any] = '''pt'''
elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ):
UpperCAmelCase : Tuple = '''np'''
else:
raise ValueError(
F"""type of {first_element} unknown: {type(__snake_case )}. """
'''Should be one of a python, numpy, pytorch or tensorflow object.''' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
UpperCAmelCase : Union[str, Any] = to_numpy(__snake_case )
else:
UpperCAmelCase : Tuple = [to_numpy(__snake_case ) for v in value]
# Convert padding_strategy in PaddingStrategy
UpperCAmelCase : List[Any] = self._get_padding_strategies(padding=__snake_case , max_length=__snake_case )
UpperCAmelCase : Any = processed_features[self.model_input_names[0]]
UpperCAmelCase : int = len(__snake_case )
if not all(len(__snake_case ) == batch_size for v in processed_features.values() ):
raise ValueError('''Some items in the output dictionary have a different batch size than others.''' )
UpperCAmelCase : int = []
for i in range(__snake_case ):
UpperCAmelCase : int = {k: v[i] for k, v in processed_features.items()}
# truncation
UpperCAmelCase : Optional[Any] = self._truncate(
__snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , )
truncated_inputs.append(__snake_case )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
UpperCAmelCase : Dict = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
UpperCAmelCase : Any = PaddingStrategy.MAX_LENGTH
UpperCAmelCase : Optional[Any] = {}
for i in range(__snake_case ):
# padding
UpperCAmelCase : Union[str, Any] = self._pad(
truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , )
for key, value in outputs.items():
if key not in batch_outputs:
UpperCAmelCase : Union[str, Any] = []
if value.dtype is np.dtype(np.floataa ):
UpperCAmelCase : Optional[Any] = value.astype(np.floataa )
batch_outputs[key].append(__snake_case )
return BatchFeature(__snake_case , tensor_type=__snake_case )
def A ( self : Dict , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ) -> dict:
UpperCAmelCase : Union[str, Any] = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
UpperCAmelCase : int = len(__snake_case )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase : str = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
UpperCAmelCase : List[Any] = np.ones(len(__snake_case ) , dtype=np.intaa )
if needs_to_be_padded:
UpperCAmelCase : Optional[int] = max_length - len(__snake_case )
if self.padding_side == "right":
if return_attention_mask:
UpperCAmelCase : List[Any] = np.pad(
processed_features['''attention_mask'''] , (0, difference) )
UpperCAmelCase : int = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
UpperCAmelCase : Optional[Any] = np.pad(
__snake_case , __snake_case , '''constant''' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
UpperCAmelCase : Dict = np.pad(
processed_features['''attention_mask'''] , (difference, 0) )
UpperCAmelCase : Optional[int] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
UpperCAmelCase : Optional[int] = np.pad(
__snake_case , __snake_case , '''constant''' , constant_values=self.padding_value )
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return processed_features
def A ( self : Tuple , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ) -> Union[str, Any]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' )
UpperCAmelCase : Any = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase : Optional[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase : Union[str, Any] = len(__snake_case ) > max_length
if needs_to_be_truncated:
UpperCAmelCase : List[Any] = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
UpperCAmelCase : Union[str, Any] = processed_features['''attention_mask'''][:max_length]
return processed_features
def A ( self : Union[str, Any] , __snake_case : List[str]=False , __snake_case : Any=None ) -> Union[str, Any]:
# Get padding strategy
if padding is not False:
if padding is True:
UpperCAmelCase : Optional[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(__snake_case , __snake_case ):
UpperCAmelCase : Tuple = PaddingStrategy(__snake_case )
elif isinstance(__snake_case , __snake_case ):
UpperCAmelCase : Union[str, Any] = padding
else:
UpperCAmelCase : List[Any] = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'''
''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' )
return padding_strategy
| 23 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
UpperCamelCase__: Optional[int] = "3"
print("Python version:", sys.version)
print("transformers version:", transformers.__version__)
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
print("NCCL version:", torch.cuda.nccl.version())
except ImportError:
print("Torch version:", None)
try:
import deepspeed
print("DeepSpeed version:", deepspeed.__version__)
except ImportError:
print("DeepSpeed version:", None)
try:
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU")))
print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU")))
except ImportError:
print("TensorFlow version:", None)
| 23 | 1 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class SCREAMING_SNAKE_CASE( A__ , A__ , A__ ):
"""simple docstring"""
@register_to_config
def __init__( self : str , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : float , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : str , __snake_case : bool = False , ) -> int:
super().__init__()
UpperCAmelCase : Any = nn.Embedding(__snake_case , __snake_case )
UpperCAmelCase : Tuple = nn.Embedding(__snake_case , __snake_case )
UpperCAmelCase : List[Any] = False
UpperCAmelCase : Dict = nn.Dropout(p=__snake_case )
UpperCAmelCase : str = TaConfig(
vocab_size=__snake_case , d_model=__snake_case , num_heads=__snake_case , d_kv=__snake_case , d_ff=__snake_case , dropout_rate=__snake_case , feed_forward_proj=__snake_case , is_decoder=__snake_case , is_encoder_decoder=__snake_case , )
UpperCAmelCase : List[str] = nn.ModuleList()
for lyr_num in range(__snake_case ):
UpperCAmelCase : int = TaBlock(__snake_case )
self.encoders.append(__snake_case )
UpperCAmelCase : Dict = TaLayerNorm(__snake_case )
UpperCAmelCase : Dict = nn.Dropout(p=__snake_case )
def A ( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : str ) -> Dict:
UpperCAmelCase : Dict = self.token_embedder(__snake_case )
UpperCAmelCase : Tuple = encoder_input_tokens.shape[1]
UpperCAmelCase : Union[str, Any] = torch.arange(__snake_case , device=encoder_input_tokens.device )
x += self.position_encoding(__snake_case )
UpperCAmelCase : int = self.dropout_pre(__snake_case )
# inverted the attention mask
UpperCAmelCase : List[str] = encoder_input_tokens.size()
UpperCAmelCase : str = self.get_extended_attention_mask(__snake_case , __snake_case )
for lyr in self.encoders:
UpperCAmelCase : Dict = lyr(__snake_case , __snake_case )[0]
UpperCAmelCase : Optional[int] = self.layer_norm(__snake_case )
return self.dropout_post(__snake_case ), encoder_inputs_mask
| 23 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float:
if len(_lowerCAmelCase ) == 0:
raise ValueError('''find_max() arg is an empty sequence''' )
if (
left >= len(_lowerCAmelCase )
or left < -len(_lowerCAmelCase )
or right >= len(_lowerCAmelCase )
or right < -len(_lowerCAmelCase )
):
raise IndexError('''list index out of range''' )
if left == right:
return nums[left]
UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle
UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid]
UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 23 | 1 |
'''simple docstring'''
from jiwer import compute_measures
import datasets
UpperCamelCase__: List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n"
UpperCamelCase__: Dict = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n"
UpperCamelCase__: List[str] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE( datasets.Metric ):
"""simple docstring"""
def A ( self : Optional[int] ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
] , )
def A ( self : str , __snake_case : List[Any]=None , __snake_case : List[str]=None , __snake_case : Union[str, Any]=False ) -> Dict:
if concatenate_texts:
return compute_measures(__snake_case , __snake_case )["wer"]
else:
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : List[str] = 0
for prediction, reference in zip(__snake_case , __snake_case ):
UpperCAmelCase : int = compute_measures(__snake_case , __snake_case )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 23 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = 42
lowerCamelCase__ = 42
def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int:
super().__init__()
self.register_modules(unet=__snake_case , scheduler=__snake_case )
@torch.no_grad()
def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]:
UpperCAmelCase : str = self.unet.config.sample_size
UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size)
UpperCAmelCase : int = self.unet
UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma
UpperCAmelCase : List[Any] = sample.to(self.device )
self.scheduler.set_timesteps(__snake_case )
self.scheduler.set_sigmas(__snake_case )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample
UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample
# prediction step
UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample
UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean
UpperCAmelCase : int = sample_mean.clamp(0 , 1 )
UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=__snake_case )
| 23 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase__: Optional[int] = logging.get_logger(__name__)
UpperCamelCase__: int = {
"google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json",
# See all ViT models at https://huggingface.co/models?filter=vit
}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """vit"""
def __init__( self : Dict , __snake_case : int=768 , __snake_case : Optional[int]=12 , __snake_case : Any=12 , __snake_case : Optional[Any]=3072 , __snake_case : Any="gelu" , __snake_case : str=0.0 , __snake_case : str=0.0 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=1E-12 , __snake_case : List[str]=224 , __snake_case : Tuple=16 , __snake_case : Dict=3 , __snake_case : List[str]=True , __snake_case : Optional[int]=16 , **__snake_case : Dict , ) -> Optional[Any]:
super().__init__(**__snake_case )
UpperCAmelCase : str = hidden_size
UpperCAmelCase : int = num_hidden_layers
UpperCAmelCase : List[Any] = num_attention_heads
UpperCAmelCase : str = intermediate_size
UpperCAmelCase : Union[str, Any] = hidden_act
UpperCAmelCase : List[str] = hidden_dropout_prob
UpperCAmelCase : Any = attention_probs_dropout_prob
UpperCAmelCase : Optional[Any] = initializer_range
UpperCAmelCase : Optional[int] = layer_norm_eps
UpperCAmelCase : Union[str, Any] = image_size
UpperCAmelCase : Any = patch_size
UpperCAmelCase : Union[str, Any] = num_channels
UpperCAmelCase : Any = qkv_bias
UpperCAmelCase : Union[str, Any] = encoder_stride
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = version.parse("""1.11""" )
@property
def A ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def A ( self : Union[str, Any] ) -> float:
return 1E-4
| 23 |
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """MCTCTFeatureExtractor"""
lowerCamelCase__ = """AutoTokenizer"""
def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str:
super().__init__(__snake_case , __snake_case )
UpperCAmelCase : List[Any] = self.feature_extractor
UpperCAmelCase : Union[str, Any] = False
def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__snake_case , **__snake_case )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
UpperCAmelCase : int = kwargs.pop('''raw_speech''' )
else:
UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case )
UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case )
UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case )
if len(__snake_case ) > 0:
UpperCAmelCase : Any = args[0]
UpperCAmelCase : Optional[int] = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case )
if text is not None:
UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case )
if text is None:
return inputs
elif audio is None:
return encodings
else:
UpperCAmelCase : str = encodings['''input_ids''']
return inputs
def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str:
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*__snake_case , **__snake_case )
UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case )
UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case )
if len(__snake_case ) > 0:
UpperCAmelCase : List[str] = args[0]
UpperCAmelCase : List[Any] = args[1:]
if input_features is not None:
UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case )
if labels is not None:
UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
UpperCAmelCase : List[str] = labels['''input_ids''']
return input_features
def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]:
return self.tokenizer.decode(*__snake_case , **__snake_case )
@contextmanager
def A ( self : Any ) -> Optional[int]:
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
UpperCAmelCase : Dict = True
UpperCAmelCase : List[Any] = self.tokenizer
yield
UpperCAmelCase : Tuple = self.feature_extractor
UpperCAmelCase : List[Any] = False
| 23 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[str] , __snake_case : Tuple , __snake_case : Dict=13 , __snake_case : Optional[int]=7 , __snake_case : Optional[int]=True , __snake_case : Dict=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : List[Any]=99 , __snake_case : List[Any]=32 , __snake_case : Union[str, Any]=5 , __snake_case : Optional[int]=4 , __snake_case : Optional[int]=37 , __snake_case : Union[str, Any]="gelu" , __snake_case : int=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Optional[int]=512 , __snake_case : int=16 , __snake_case : List[str]=2 , __snake_case : Dict=0.02 , __snake_case : Tuple=4 , ) -> Union[str, Any]:
UpperCAmelCase : int = parent
UpperCAmelCase : Optional[Any] = batch_size
UpperCAmelCase : List[str] = seq_length
UpperCAmelCase : List[Any] = is_training
UpperCAmelCase : Tuple = use_attention_mask
UpperCAmelCase : Optional[int] = use_token_type_ids
UpperCAmelCase : Dict = use_labels
UpperCAmelCase : List[Any] = vocab_size
UpperCAmelCase : Tuple = hidden_size
UpperCAmelCase : Any = num_hidden_layers
UpperCAmelCase : Optional[int] = num_attention_heads
UpperCAmelCase : List[str] = intermediate_size
UpperCAmelCase : List[Any] = hidden_act
UpperCAmelCase : str = hidden_dropout_prob
UpperCAmelCase : str = attention_probs_dropout_prob
UpperCAmelCase : List[Any] = max_position_embeddings
UpperCAmelCase : Any = type_vocab_size
UpperCAmelCase : List[Any] = type_sequence_label_size
UpperCAmelCase : List[str] = initializer_range
UpperCAmelCase : int = num_choices
def A ( self : List[str] ) -> List[str]:
UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[int] = None
if self.use_attention_mask:
UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Optional[Any] = None
if self.use_token_type_ids:
UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : str = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def A ( self : Optional[Any] ) -> Optional[int]:
UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs
UpperCAmelCase : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def A ( self : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs
UpperCAmelCase : Optional[Any] = True
UpperCAmelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = True
lowerCamelCase__ = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase : str = FlaxRobertaModelTester(self )
@slow
def A ( self : Optional[Any] ) -> int:
for model_class_name in self.all_model_classes:
UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained('''roberta-base''' , from_pt=__snake_case )
UpperCAmelCase : Tuple = model(np.ones((1, 1) ) )
self.assertIsNotNone(__snake_case )
| 23 |
'''simple docstring'''
from math import isclose, sqrt
def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]:
UpperCAmelCase : Optional[int] = point_y / 4 / point_x
UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4
UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100
UpperCAmelCase : List[str] = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
UpperCAmelCase : Optional[int] = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus
UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int:
UpperCAmelCase : int = 0
UpperCAmelCase : float = first_x_coord
UpperCAmelCase : float = first_y_coord
UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x)
while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0):
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F"{solution() = }")
| 23 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase__: str = {
"configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"],
"tokenization_lxmert": ["LxmertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: int = ["LxmertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: Union[str, Any] = [
"LxmertEncoder",
"LxmertForPreTraining",
"LxmertForQuestionAnswering",
"LxmertModel",
"LxmertPreTrainedModel",
"LxmertVisualFeatureEncoder",
"LxmertXLayer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: int = [
"TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFLxmertForPreTraining",
"TFLxmertMainLayer",
"TFLxmertModel",
"TFLxmertPreTrainedModel",
"TFLxmertVisualFeatureEncoder",
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 23 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase__: str = {
"configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"],
"tokenization_lxmert": ["LxmertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: int = ["LxmertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: Union[str, Any] = [
"LxmertEncoder",
"LxmertForPreTraining",
"LxmertForQuestionAnswering",
"LxmertModel",
"LxmertPreTrainedModel",
"LxmertVisualFeatureEncoder",
"LxmertXLayer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: int = [
"TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFLxmertForPreTraining",
"TFLxmertMainLayer",
"TFLxmertModel",
"TFLxmertPreTrainedModel",
"TFLxmertVisualFeatureEncoder",
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 23 | 1 |
'''simple docstring'''
import json
import os
from pathlib import Path
import pytest
from datasets.download.download_config import DownloadConfig
from datasets.download.download_manager import DownloadManager
from datasets.utils.file_utils import hash_url_to_filename
UpperCamelCase__: Union[str, Any] = "http://www.mocksite.com/file1.txt"
UpperCamelCase__: Tuple = "\"text\": [\"foo\", \"foo\"]"
UpperCamelCase__: Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8"
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
lowerCamelCase__ = 200
lowerCamelCase__ = {"""Content-Length""": """100"""}
lowerCamelCase__ = {}
def A ( self : Tuple , **__snake_case : Dict ) -> List[Any]:
return [bytes(__snake_case , '''utf-8''' )]
def snake_case_ ( *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : str ) -> List[str]:
return MockResponse()
@pytest.mark.parametrize('''urls_type''' , [str, list, dict] )
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Dict ) -> str:
import requests
monkeypatch.setattr(_lowerCAmelCase , '''request''' , _lowerCAmelCase )
UpperCAmelCase : Optional[Any] = URL
if issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : List[Any] = url
elif issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : int = [url]
elif issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : str = {'''train''': url}
UpperCAmelCase : Dict = '''dummy'''
UpperCAmelCase : Optional[int] = '''downloads'''
UpperCAmelCase : List[str] = tmp_path
UpperCAmelCase : Optional[Any] = DownloadConfig(
cache_dir=os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , use_etag=_lowerCAmelCase , )
UpperCAmelCase : Tuple = DownloadManager(dataset_name=_lowerCAmelCase , download_config=_lowerCAmelCase )
UpperCAmelCase : Any = dl_manager.download(_lowerCAmelCase )
UpperCAmelCase : Any = urls
for downloaded_paths in [downloaded_paths]:
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : Optional[Any] = [downloaded_paths]
UpperCAmelCase : Any = [urls]
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
assert "train" in downloaded_paths.keys()
UpperCAmelCase : Any = downloaded_paths.values()
UpperCAmelCase : Tuple = urls.values()
assert downloaded_paths
for downloaded_path, input_url in zip(_lowerCAmelCase , _lowerCAmelCase ):
assert downloaded_path == dl_manager.downloaded_paths[input_url]
UpperCAmelCase : List[str] = Path(_lowerCAmelCase )
UpperCAmelCase : List[Any] = downloaded_path.parts
assert parts[-1] == HASH
assert parts[-2] == cache_subdir
assert downloaded_path.exists()
UpperCAmelCase : List[Any] = downloaded_path.read_text()
assert content == CONTENT
UpperCAmelCase : Union[str, Any] = downloaded_path.with_suffix('''.json''' )
assert metadata_downloaded_path.exists()
UpperCAmelCase : Any = json.loads(metadata_downloaded_path.read_text() )
assert metadata_content == {"url": URL, "etag": None}
@pytest.mark.parametrize('''paths_type''' , [str, list, dict] )
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> int:
UpperCAmelCase : Optional[int] = str(_lowerCAmelCase )
if issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : Union[str, Any] = filename
elif issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : int = [filename]
elif issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : Union[str, Any] = {'''train''': filename}
UpperCAmelCase : Optional[int] = '''dummy'''
UpperCAmelCase : Union[str, Any] = xz_file.parent
UpperCAmelCase : Tuple = '''extracted'''
UpperCAmelCase : List[Any] = DownloadConfig(
cache_dir=_lowerCAmelCase , use_etag=_lowerCAmelCase , )
UpperCAmelCase : Optional[Any] = DownloadManager(dataset_name=_lowerCAmelCase , download_config=_lowerCAmelCase )
UpperCAmelCase : List[Any] = dl_manager.extract(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = paths
for extracted_paths in [extracted_paths]:
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : int = [extracted_paths]
UpperCAmelCase : int = [paths]
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
assert "train" in extracted_paths.keys()
UpperCAmelCase : Any = extracted_paths.values()
UpperCAmelCase : Tuple = paths.values()
assert extracted_paths
for extracted_path, input_path in zip(_lowerCAmelCase , _lowerCAmelCase ):
assert extracted_path == dl_manager.extracted_paths[input_path]
UpperCAmelCase : Union[str, Any] = Path(_lowerCAmelCase )
UpperCAmelCase : List[Any] = extracted_path.parts
assert parts[-1] == hash_url_to_filename(_lowerCAmelCase , etag=_lowerCAmelCase )
assert parts[-2] == extracted_subdir
assert extracted_path.exists()
UpperCAmelCase : Union[str, Any] = extracted_path.read_text()
UpperCAmelCase : List[str] = text_file.read_text()
assert extracted_file_content == expected_file_content
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> str:
assert path.endswith('''.jsonl''' )
for num_items, line in enumerate(_lowerCAmelCase , start=1 ):
UpperCAmelCase : str = json.loads(line.decode('''utf-8''' ) )
assert item.keys() == {"col_1", "col_2", "col_3"}
assert num_items == 4
@pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] )
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = request.getfixturevalue(_lowerCAmelCase )
UpperCAmelCase : Any = DownloadManager()
for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ):
_test_jsonl(_lowerCAmelCase , _lowerCAmelCase )
assert num_jsonl == 2
@pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] )
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ) -> Tuple:
UpperCAmelCase : int = request.getfixturevalue(_lowerCAmelCase )
UpperCAmelCase : str = DownloadManager()
for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ):
for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ):
_test_jsonl(_lowerCAmelCase , _lowerCAmelCase )
assert num_tar == 1
assert num_jsonl == 2
def snake_case_ ( _lowerCAmelCase : List[Any] ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = DownloadManager()
for num_file, file in enumerate(dl_manager.iter_files(_lowerCAmelCase ) , start=1 ):
assert os.path.basename(_lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt")
assert num_file == 2
| 23 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = AltDiffusionPipeline
lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS
lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS
lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
def A ( self : Dict ) -> int:
torch.manual_seed(0 )
UpperCAmelCase : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
UpperCAmelCase : Dict = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , )
torch.manual_seed(0 )
UpperCAmelCase : Union[str, Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
UpperCAmelCase : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , )
UpperCAmelCase : List[Any] = CLIPTextModel(__snake_case )
UpperCAmelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
UpperCAmelCase : Optional[int] = 77
UpperCAmelCase : Optional[int] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def A ( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str]=0 ) -> Union[str, Any]:
if str(__snake_case ).startswith('''mps''' ):
UpperCAmelCase : str = torch.manual_seed(__snake_case )
else:
UpperCAmelCase : Tuple = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
UpperCAmelCase : Dict = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : Union[str, Any] ) -> List[str]:
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def A ( self : Tuple ) -> List[str]:
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def A ( self : Tuple ) -> Optional[int]:
UpperCAmelCase : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase : Any = self.get_dummy_components()
torch.manual_seed(0 )
UpperCAmelCase : Optional[int] = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
UpperCAmelCase : List[str] = RobertaSeriesModelWithTransformation(__snake_case )
UpperCAmelCase : str = text_encoder
UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case )
UpperCAmelCase : str = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__snake_case )
UpperCAmelCase : Optional[int] = '''A photo of an astronaut'''
UpperCAmelCase : List[Any] = alt_pipe(**__snake_case )
UpperCAmelCase : Optional[Any] = output.images
UpperCAmelCase : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase : List[str] = np.array(
[0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A ( self : int ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase : int = self.get_dummy_components()
UpperCAmelCase : int = PNDMScheduler(skip_prk_steps=__snake_case )
torch.manual_seed(0 )
UpperCAmelCase : int = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
UpperCAmelCase : Union[str, Any] = RobertaSeriesModelWithTransformation(__snake_case )
UpperCAmelCase : Union[str, Any] = text_encoder
UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case )
UpperCAmelCase : Dict = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : int = self.get_dummy_inputs(__snake_case )
UpperCAmelCase : Optional[int] = alt_pipe(**__snake_case )
UpperCAmelCase : Optional[int] = output.images
UpperCAmelCase : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase : Optional[int] = np.array(
[0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : str ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A ( self : List[Any] ) -> Any:
# make sure here that pndm scheduler skips prk
UpperCAmelCase : List[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=__snake_case )
UpperCAmelCase : Tuple = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger'''
UpperCAmelCase : Any = torch.manual_seed(0 )
UpperCAmelCase : Optional[int] = alt_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' )
UpperCAmelCase : Dict = output.images
UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase : List[str] = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A ( self : Tuple ) -> int:
UpperCAmelCase : int = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' )
UpperCAmelCase : Tuple = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=__snake_case , safety_checker=__snake_case )
UpperCAmelCase : Dict = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : Tuple = '''A painting of a squirrel eating a burger'''
UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase : List[Any] = alt_pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='''numpy''' )
UpperCAmelCase : Dict = output.images
UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase : Union[str, Any] = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 23 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCamelCase__: Optional[int] = logging.get_logger(__name__)
UpperCamelCase__: List[str] = {"vocab_file": "sentencepiece.model"}
UpperCamelCase__: Tuple = {
"vocab_file": {
"google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model",
},
}
UpperCamelCase__: Optional[int] = {
"google/rembert": 256,
}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[int]=False , __snake_case : Tuple=True , __snake_case : int=True , __snake_case : str="[CLS]" , __snake_case : Tuple="[SEP]" , __snake_case : str="[UNK]" , __snake_case : Optional[Any]="[SEP]" , __snake_case : Union[str, Any]="[PAD]" , __snake_case : Dict="[CLS]" , __snake_case : Optional[Any]="[MASK]" , **__snake_case : List[Any] , ) -> int:
super().__init__(
do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , )
UpperCAmelCase : Tuple = do_lower_case
UpperCAmelCase : Dict = remove_space
UpperCAmelCase : Any = keep_accents
UpperCAmelCase : Union[str, Any] = vocab_file
UpperCAmelCase : int = spm.SentencePieceProcessor()
self.sp_model.Load(__snake_case )
@property
def A ( self : Union[str, Any] ) -> Optional[int]:
return len(self.sp_model )
def A ( self : Tuple ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : List[str] ) -> Optional[Any]:
UpperCAmelCase : List[Any] = self.__dict__.copy()
UpperCAmelCase : Dict = None
return state
def __setstate__( self : Any , __snake_case : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase : List[str] = d
UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def A ( self : Tuple , __snake_case : Any , __snake_case : Union[str, Any]=False ) -> Union[str, Any]:
UpperCAmelCase : int = self.sp_model.EncodeAsPieces(__snake_case )
return pieces
def A ( self : str , __snake_case : Union[str, Any] ) -> int:
return self.sp_model.PieceToId(__snake_case )
def A ( self : str , __snake_case : str ) -> List[Any]:
return self.sp_model.IdToPiece(__snake_case )
def A ( self : int , __snake_case : Any ) -> List[Any]:
UpperCAmelCase : Optional[int] = self.sp_model.decode_pieces(__snake_case )
return out_string
def A ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase : List[Any] = [self.sep_token_id]
UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def A ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1]
return [1] + ([0] * len(__snake_case )) + [1]
def A ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase : str = [self.sep_token_id]
UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A ( self : int , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__snake_case ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(__snake_case ) )
return
UpperCAmelCase : str = os.path.join(
__snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ):
copyfile(self.vocab_file , __snake_case )
return (out_vocab_file,)
| 23 |
'''simple docstring'''
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Optional[int]:
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ) -> Dict:
UpperCAmelCase : Dict = tmp_path / '''cache'''
UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase : str = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> Optional[int]:
UpperCAmelCase : Any = tmp_path / '''cache'''
UpperCAmelCase : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Any = features.copy() if features else default_expected_features
UpperCAmelCase : List[Any] = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Dict = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''},
] , )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ) -> Tuple:
UpperCAmelCase : Optional[Any] = tmp_path / '''cache'''
UpperCAmelCase : Optional[int] = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}
UpperCAmelCase : int = features.copy() if features else default_expected_features
UpperCAmelCase : Any = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Tuple = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> Union[str, Any]:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
UpperCAmelCase : Tuple = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''}
UpperCAmelCase : List[str] = features.copy()
UpperCAmelCase : Union[str, Any] = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Tuple = tmp_path / '''cache'''
UpperCAmelCase : List[str] = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> Optional[Any]:
UpperCAmelCase : Any = tmp_path / '''cache'''
UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : List[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Dict:
if issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : str = jsonl_path
elif issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : Dict = [jsonl_path]
UpperCAmelCase : int = tmp_path / '''cache'''
UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Optional[int] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=("train",) ) -> Union[str, Any]:
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
for split in splits:
UpperCAmelCase : List[str] = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ) -> Any:
UpperCAmelCase : Optional[Any] = tmp_path / '''cache'''
UpperCAmelCase : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase : Optional[int] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read()
_check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> int:
UpperCAmelCase : Dict = tmp_path / '''cache'''
UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features
UpperCAmelCase : Union[str, Any] = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Tuple = JsonDatasetReader({'''train''': jsonl_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> Union[str, Any]:
if split:
UpperCAmelCase : Optional[int] = {split: jsonl_path}
else:
UpperCAmelCase : Any = '''train'''
UpperCAmelCase : Any = {'''train''': jsonl_path, '''test''': jsonl_path}
UpperCAmelCase : Tuple = tmp_path / '''cache'''
UpperCAmelCase : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Optional[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def snake_case_ ( _lowerCAmelCase : List[str] ) -> str:
return json.load(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Dict ) -> str:
return [json.loads(_lowerCAmelCase ) for line in buffer]
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> Dict:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write()
buffer.seek(0 )
UpperCAmelCase : Union[str, Any] = load_json_function(__snake_case )
assert isinstance(__snake_case , __snake_case )
assert isinstance(exported_content[0] , __snake_case )
assert len(__snake_case ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def A ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[Any] ) -> List[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write()
buffer.seek(0 )
UpperCAmelCase : Union[str, Any] = load_json(__snake_case )
assert isinstance(__snake_case , __snake_case )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(__snake_case ) == 10
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def A ( self : str , __snake_case : str , __snake_case : str , __snake_case : int ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write()
buffer.seek(0 )
UpperCAmelCase : Any = load_json_function(__snake_case )
assert isinstance(__snake_case , __snake_case )
assert isinstance(exported_content[0] , __snake_case )
assert len(__snake_case ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def A ( self : Any , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write()
buffer.seek(0 )
UpperCAmelCase : List[str] = load_json(__snake_case )
assert isinstance(__snake_case , __snake_case )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(__snake_case ) == 10
def A ( self : List[Any] , __snake_case : str ) -> Dict:
with pytest.raises(__snake_case ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 )
@pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] )
def A ( self : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Union[str, Any]:
UpperCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / F"""test.json.{extension}"""
UpperCAmelCase : List[Any] = str(shared_datadir / F"""test_file.json.{extension}""" )
JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write()
with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f:
UpperCAmelCase : str = f.read()
with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f:
UpperCAmelCase : Optional[int] = f.read()
assert exported_content == original_content
| 23 | 1 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool:
UpperCAmelCase : str = get_failure_array(_lowerCAmelCase )
# 2) Step through text searching for pattern
UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern
while i < len(_lowerCAmelCase ):
if pattern[j] == text[i]:
if j == (len(_lowerCAmelCase ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
UpperCAmelCase : Optional[Any] = failure[j - 1]
continue
i += 1
return False
def snake_case_ ( _lowerCAmelCase : str ) -> list[int]:
UpperCAmelCase : Optional[Any] = [0]
UpperCAmelCase : str = 0
UpperCAmelCase : List[str] = 1
while j < len(_lowerCAmelCase ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
UpperCAmelCase : Union[str, Any] = failure[i - 1]
continue
j += 1
failure.append(_lowerCAmelCase )
return failure
if __name__ == "__main__":
# Test 1)
UpperCamelCase__: str = "abc1abc12"
UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc"
UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc"
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
UpperCamelCase__: Tuple = "ABABX"
UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX"
assert kmp(pattern, text)
# Test 3)
UpperCamelCase__: Any = "AAAB"
UpperCamelCase__: str = "ABAAAAAB"
assert kmp(pattern, text)
# Test 4)
UpperCamelCase__: int = "abcdabcy"
UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy"
assert kmp(pattern, text)
# Test 5)
UpperCamelCase__: List[str] = "aabaabaaa"
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 23 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase__: Tuple = logging.get_logger(__name__)
UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model"}
UpperCamelCase__: Optional[int] = {
"vocab_file": {
"moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model",
"moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model",
"moussaKam/barthez-orangesum-title": (
"https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"
),
},
}
UpperCamelCase__: Dict = {
"moussaKam/mbarthez": 1024,
"moussaKam/barthez": 1024,
"moussaKam/barthez-orangesum-title": 1024,
}
UpperCamelCase__: Tuple = "▁"
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["""input_ids""", """attention_mask"""]
def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="</s>" , __snake_case : Any="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Dict , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token
UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , )
UpperCAmelCase : Optional[int] = vocab_file
UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__snake_case ) )
UpperCAmelCase : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
UpperCAmelCase : Optional[Any] = len(self.sp_model ) - 1
UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase : Optional[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case )
if token_ids_a is None:
return [1] + ([0] * len(__snake_case )) + [1]
return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1]
def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase : Tuple = [self.sep_token_id]
UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def A ( self : Dict ) -> Optional[int]:
return len(self.sp_model )
def A ( self : List[str] ) -> Dict:
UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def A ( self : Optional[Any] , __snake_case : str ) -> List[str]:
return self.sp_model.encode(__snake_case , out_type=__snake_case )
def A ( self : int , __snake_case : int ) -> int:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(__snake_case )
return spm_id if spm_id else self.unk_token_id
def A ( self : int , __snake_case : Any ) -> List[Any]:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(__snake_case )
def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]:
UpperCAmelCase : Optional[Any] = []
UpperCAmelCase : int = ''''''
UpperCAmelCase : Union[str, Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__snake_case ) + token
UpperCAmelCase : str = True
UpperCAmelCase : List[str] = []
else:
current_sub_tokens.append(__snake_case )
UpperCAmelCase : Optional[int] = False
out_string += self.sp_model.decode(__snake_case )
return out_string.strip()
def __getstate__( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = self.__dict__.copy()
UpperCAmelCase : Any = None
return state
def __setstate__( self : Optional[int] , __snake_case : Union[str, Any] ) -> List[Any]:
UpperCAmelCase : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase : Optional[Any] = {}
UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__snake_case ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase : Union[str, Any] = os.path.join(
__snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(__snake_case , '''wb''' ) as fi:
UpperCAmelCase : Any = self.sp_model.serialized_model_proto()
fi.write(__snake_case )
return (out_vocab_file,)
| 23 | 1 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import List
from unittest.mock import Mock
import torch
from torch.utils.data import DataLoader, IterableDataset, TensorDataset
from accelerate.accelerator import Accelerator
from accelerate.utils.dataclasses import DistributedType
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __snake_case : Optional[int] ) -> List[str]:
UpperCAmelCase : str = data
def __iter__( self : Union[str, Any] ) -> str:
for element in self.data:
yield element
def snake_case_ ( _lowerCAmelCase : str=True ) -> List[str]:
UpperCAmelCase : Optional[int] = Accelerator(even_batches=_lowerCAmelCase )
assert accelerator.num_processes == 2, "this script expects that two GPUs are available"
return accelerator
def snake_case_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : bool = False ) -> List[Any]:
if iterable:
UpperCAmelCase : Any = DummyIterableDataset(torch.as_tensor(range(_lowerCAmelCase ) ) )
else:
UpperCAmelCase : Union[str, Any] = TensorDataset(torch.as_tensor(range(_lowerCAmelCase ) ) )
UpperCAmelCase : Tuple = DataLoader(_lowerCAmelCase , batch_size=_lowerCAmelCase )
UpperCAmelCase : List[str] = accelerator.prepare(_lowerCAmelCase )
return dl
def snake_case_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : List[int] , _lowerCAmelCase : List[int] , ) -> Optional[int]:
UpperCAmelCase : Optional[Any] = create_dataloader(accelerator=_lowerCAmelCase , dataset_size=_lowerCAmelCase , batch_size=_lowerCAmelCase )
UpperCAmelCase : int = [len(batch[0] ) for batch in dl]
if accelerator.process_index == 0:
assert batch_sizes == process_0_expected_batch_sizes
elif accelerator.process_index == 1:
assert batch_sizes == process_1_expected_batch_sizes
def snake_case_ ( ) -> Union[str, Any]:
UpperCAmelCase : Dict = create_accelerator()
# without padding, we would expect a different number of batches
verify_dataloader_batch_sizes(
_lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , )
# without padding, we would expect the same number of batches, but different sizes
verify_dataloader_batch_sizes(
_lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , )
def snake_case_ ( ) -> Dict:
UpperCAmelCase : Tuple = create_accelerator(even_batches=_lowerCAmelCase )
verify_dataloader_batch_sizes(
_lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , )
verify_dataloader_batch_sizes(
_lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , )
def snake_case_ ( ) -> Tuple:
UpperCAmelCase : Union[str, Any] = create_accelerator(even_batches=_lowerCAmelCase )
UpperCAmelCase : int = torch.nn.Linear(1 , 1 )
UpperCAmelCase : Any = accelerator.prepare(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 )
UpperCAmelCase : Union[str, Any] = []
with accelerator.join_uneven_inputs([ddp_model] ):
for batch_idx, batch in enumerate(_lowerCAmelCase ):
UpperCAmelCase : str = ddp_model(batch[0].float() )
UpperCAmelCase : List[Any] = output.sum()
loss.backward()
batch_idxs.append(_lowerCAmelCase )
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
assert batch_idxs == [0, 1]
elif accelerator.process_index == 1:
assert batch_idxs == [0]
def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> List[str]:
with warnings.catch_warnings(record=_lowerCAmelCase ) as w:
with accelerator.join_uneven_inputs([Mock()] ):
pass
assert issubclass(w[-1].category , _lowerCAmelCase )
assert "only supported for multi-GPU" in str(w[-1].message )
def snake_case_ ( ) -> Dict:
UpperCAmelCase : Dict = True
UpperCAmelCase : Optional[int] = False
UpperCAmelCase : Tuple = create_accelerator(even_batches=_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = torch.nn.Linear(1 , 1 )
UpperCAmelCase : List[str] = accelerator.prepare(_lowerCAmelCase )
UpperCAmelCase : str = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 )
UpperCAmelCase : Any = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 )
with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCAmelCase ):
UpperCAmelCase : Tuple = train_dl.batch_sampler.even_batches
UpperCAmelCase : List[Any] = valid_dl.batch_sampler.even_batches
assert train_dl_overridden_value == overridden_even_batches
assert valid_dl_overridden_value == overridden_even_batches
assert train_dl.batch_sampler.even_batches == default_even_batches
assert valid_dl.batch_sampler.even_batches == default_even_batches
def snake_case_ ( ) -> Dict:
UpperCAmelCase : List[Any] = True
UpperCAmelCase : List[Any] = False
UpperCAmelCase : Tuple = create_accelerator(even_batches=_lowerCAmelCase )
UpperCAmelCase : List[str] = torch.nn.Linear(1 , 1 )
UpperCAmelCase : List[Any] = accelerator.prepare(_lowerCAmelCase )
create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCAmelCase )
UpperCAmelCase : int = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 )
with warnings.catch_warnings():
warnings.filterwarnings('''ignore''' )
try:
with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCAmelCase ):
UpperCAmelCase : Any = batch_dl.batch_sampler.even_batches
except AttributeError:
# ensure attribute error is not raised when processing iterable dl
raise AssertionError
assert batch_dl_overridden_value == overridden_even_batches
assert batch_dl.batch_sampler.even_batches == default_even_batches
def snake_case_ ( ) -> Dict:
UpperCAmelCase : Tuple = create_accelerator()
UpperCAmelCase : Any = torch.nn.Linear(1 , 1 )
UpperCAmelCase : Dict = accelerator.prepare(_lowerCAmelCase )
create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCAmelCase )
with warnings.catch_warnings(record=_lowerCAmelCase ) as w:
with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCAmelCase ):
pass
assert issubclass(w[-1].category , _lowerCAmelCase )
assert "only supported for map-style datasets" in str(w[-1].message )
def snake_case_ ( ) -> Optional[int]:
UpperCAmelCase : str = create_accelerator()
accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' )
test_default_ensures_even_batch_sizes()
accelerator.print('''Run tests with even_batches disabled''' )
test_can_disable_even_batches()
accelerator.print('''Test joining uneven inputs''' )
test_can_join_uneven_inputs()
accelerator.print('''Test overriding even_batches when joining uneven inputs''' )
test_join_can_override_even_batches()
accelerator.print('''Test overriding even_batches for mixed dataloader types''' )
test_join_can_override_for_mixed_type_dataloaders()
accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' )
test_join_raises_warning_for_iterable_when_overriding_even_batches()
accelerator.print('''Test join with non DDP distributed raises warning''' )
UpperCAmelCase : str = accelerator.state.distributed_type
UpperCAmelCase : str = DistributedType.FSDP
test_join_raises_warning_for_non_ddp_distributed(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = original_state
if __name__ == "__main__":
main()
| 23 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@classmethod
def A ( cls : Union[str, Any] ) -> int:
UpperCAmelCase : Optional[Any] = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def A ( cls : List[str] ) -> Tuple:
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def A ( self : int ) -> Tuple:
UpperCAmelCase : List[Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase : Dict = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
__snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]:
UpperCAmelCase : str = True
UpperCAmelCase : int = flatten_dict(modela.params )
UpperCAmelCase : Dict = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
UpperCAmelCase : Dict = False
return models_are_equal
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
UpperCAmelCase : int = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__snake_case , __snake_case ) )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertTrue(check_models_equal(__snake_case , __snake_case ) )
def A ( self : List[str] ) -> Dict:
UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
UpperCAmelCase : Optional[int] = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertTrue(check_models_equal(__snake_case , __snake_case ) )
def A ( self : Optional[int] ) -> str:
UpperCAmelCase : Dict = '''bert'''
UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(__snake_case ):
UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertIsNotNone(__snake_case )
def A ( self : Dict ) -> List[Any]:
UpperCAmelCase : Optional[int] = '''bert'''
UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(__snake_case ):
UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertIsNotNone(__snake_case )
| 23 | 1 |
'''simple docstring'''
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class SCREAMING_SNAKE_CASE( A__ , A__ ):
"""simple docstring"""
@register_to_config
def __init__( self : int , __snake_case : int = 128 , __snake_case : int = 256 , __snake_case : float = 20_00.0 , __snake_case : int = 768 , __snake_case : int = 12 , __snake_case : int = 12 , __snake_case : int = 64 , __snake_case : int = 2048 , __snake_case : float = 0.1 , ) -> Any:
super().__init__()
UpperCAmelCase : List[Any] = nn.Sequential(
nn.Linear(__snake_case , d_model * 4 , bias=__snake_case ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__snake_case ) , nn.SiLU() , )
UpperCAmelCase : Union[str, Any] = nn.Embedding(__snake_case , __snake_case )
UpperCAmelCase : Any = False
UpperCAmelCase : Union[str, Any] = nn.Linear(__snake_case , __snake_case , bias=__snake_case )
UpperCAmelCase : Tuple = nn.Dropout(p=__snake_case )
UpperCAmelCase : int = nn.ModuleList()
for lyr_num in range(__snake_case ):
# FiLM conditional T5 decoder
UpperCAmelCase : List[Any] = DecoderLayer(d_model=__snake_case , d_kv=__snake_case , num_heads=__snake_case , d_ff=__snake_case , dropout_rate=__snake_case )
self.decoders.append(__snake_case )
UpperCAmelCase : Optional[int] = TaLayerNorm(__snake_case )
UpperCAmelCase : Union[str, Any] = nn.Dropout(p=__snake_case )
UpperCAmelCase : Tuple = nn.Linear(__snake_case , __snake_case , bias=__snake_case )
def A ( self : Any , __snake_case : List[Any] , __snake_case : Optional[int] ) -> Dict:
UpperCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def A ( self : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> Any:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
UpperCAmelCase : Union[str, Any] = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
UpperCAmelCase : Optional[Any] = self.conditioning_emb(__snake_case ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
UpperCAmelCase : Optional[Any] = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
UpperCAmelCase : int = torch.broadcast_to(
torch.arange(__snake_case , device=decoder_input_tokens.device ) , (batch, seq_length) , )
UpperCAmelCase : Optional[Any] = self.position_encoding(__snake_case )
UpperCAmelCase : Tuple = self.continuous_inputs_projection(__snake_case )
inputs += position_encodings
UpperCAmelCase : Optional[Any] = self.dropout(__snake_case )
# decoder: No padding present.
UpperCAmelCase : List[str] = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
UpperCAmelCase : Tuple = [(x, self.encoder_decoder_mask(__snake_case , __snake_case )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
UpperCAmelCase : Optional[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
UpperCAmelCase : Optional[int] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
UpperCAmelCase : Any = lyr(
__snake_case , conditioning_emb=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , )[0]
UpperCAmelCase : List[Any] = self.decoder_norm(__snake_case )
UpperCAmelCase : Union[str, Any] = self.post_dropout(__snake_case )
UpperCAmelCase : Optional[int] = self.spec_out(__snake_case )
return spec_out
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Union[str, Any]=1E-6 ) -> Optional[Any]:
super().__init__()
UpperCAmelCase : Union[str, Any] = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=__snake_case , d_kv=__snake_case , num_heads=__snake_case , dropout_rate=__snake_case ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=__snake_case , d_kv=__snake_case , num_heads=__snake_case , dropout_rate=__snake_case , layer_norm_epsilon=__snake_case , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=__snake_case , d_ff=__snake_case , dropout_rate=__snake_case , layer_norm_epsilon=__snake_case ) )
def A ( self : Optional[int] , __snake_case : List[Any] , __snake_case : int=None , __snake_case : List[str]=None , __snake_case : Optional[int]=None , __snake_case : Optional[Any]=None , __snake_case : Any=None , ) -> List[str]:
UpperCAmelCase : Optional[int] = self.layer[0](
__snake_case , conditioning_emb=__snake_case , attention_mask=__snake_case , )
if encoder_hidden_states is not None:
UpperCAmelCase : Any = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to(
encoder_hidden_states.dtype )
UpperCAmelCase : str = self.layer[1](
__snake_case , key_value_states=__snake_case , attention_mask=__snake_case , )
# Apply Film Conditional Feed Forward layer
UpperCAmelCase : Tuple = self.layer[-1](__snake_case , __snake_case )
return (hidden_states,)
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Union[str, Any] ) -> Optional[int]:
super().__init__()
UpperCAmelCase : Optional[int] = TaLayerNorm(__snake_case )
UpperCAmelCase : Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=__snake_case )
UpperCAmelCase : Union[str, Any] = Attention(query_dim=__snake_case , heads=__snake_case , dim_head=__snake_case , out_bias=__snake_case , scale_qk=__snake_case )
UpperCAmelCase : Union[str, Any] = nn.Dropout(__snake_case )
def A ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , ) -> Optional[Any]:
# pre_self_attention_layer_norm
UpperCAmelCase : Union[str, Any] = self.layer_norm(__snake_case )
if conditioning_emb is not None:
UpperCAmelCase : Optional[int] = self.FiLMLayer(__snake_case , __snake_case )
# Self-attention block
UpperCAmelCase : Tuple = self.attention(__snake_case )
UpperCAmelCase : Optional[int] = hidden_states + self.dropout(__snake_case )
return hidden_states
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : int , __snake_case : List[Any] , __snake_case : Any ) -> Union[str, Any]:
super().__init__()
UpperCAmelCase : Optional[int] = Attention(query_dim=__snake_case , heads=__snake_case , dim_head=__snake_case , out_bias=__snake_case , scale_qk=__snake_case )
UpperCAmelCase : List[str] = TaLayerNorm(__snake_case , eps=__snake_case )
UpperCAmelCase : Optional[Any] = nn.Dropout(__snake_case )
def A ( self : Any , __snake_case : int , __snake_case : int=None , __snake_case : int=None , ) -> List[Any]:
UpperCAmelCase : Tuple = self.layer_norm(__snake_case )
UpperCAmelCase : Any = self.attention(
__snake_case , encoder_hidden_states=__snake_case , attention_mask=attention_mask.squeeze(1 ) , )
UpperCAmelCase : Optional[Any] = hidden_states + self.dropout(__snake_case )
return layer_output
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : int , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int ) -> int:
super().__init__()
UpperCAmelCase : List[str] = TaDenseGatedActDense(d_model=__snake_case , d_ff=__snake_case , dropout_rate=__snake_case )
UpperCAmelCase : int = TaFiLMLayer(in_features=d_model * 4 , out_features=__snake_case )
UpperCAmelCase : Any = TaLayerNorm(__snake_case , eps=__snake_case )
UpperCAmelCase : Dict = nn.Dropout(__snake_case )
def A ( self : List[Any] , __snake_case : List[Any] , __snake_case : Dict=None ) -> str:
UpperCAmelCase : List[Any] = self.layer_norm(__snake_case )
if conditioning_emb is not None:
UpperCAmelCase : Tuple = self.film(__snake_case , __snake_case )
UpperCAmelCase : Union[str, Any] = self.DenseReluDense(__snake_case )
UpperCAmelCase : Tuple = hidden_states + self.dropout(__snake_case )
return hidden_states
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Any , __snake_case : Union[str, Any] ) -> str:
super().__init__()
UpperCAmelCase : Tuple = nn.Linear(__snake_case , __snake_case , bias=__snake_case )
UpperCAmelCase : Optional[int] = nn.Linear(__snake_case , __snake_case , bias=__snake_case )
UpperCAmelCase : Tuple = nn.Linear(__snake_case , __snake_case , bias=__snake_case )
UpperCAmelCase : int = nn.Dropout(__snake_case )
UpperCAmelCase : Dict = NewGELUActivation()
def A ( self : Optional[int] , __snake_case : List[Any] ) -> Tuple:
UpperCAmelCase : List[str] = self.act(self.wi_a(__snake_case ) )
UpperCAmelCase : str = self.wi_a(__snake_case )
UpperCAmelCase : Any = hidden_gelu * hidden_linear
UpperCAmelCase : Any = self.dropout(__snake_case )
UpperCAmelCase : Union[str, Any] = self.wo(__snake_case )
return hidden_states
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , __snake_case : str , __snake_case : List[str]=1E-6 ) -> str:
super().__init__()
UpperCAmelCase : int = nn.Parameter(torch.ones(__snake_case ) )
UpperCAmelCase : Union[str, Any] = eps
def A ( self : List[Any] , __snake_case : Dict ) -> List[str]:
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
UpperCAmelCase : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__snake_case )
UpperCAmelCase : Optional[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
UpperCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def A ( self : Tuple , __snake_case : torch.Tensor ) -> torch.Tensor:
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(__snake_case , 3.0 )) ))
class SCREAMING_SNAKE_CASE( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] ) -> List[str]:
super().__init__()
UpperCAmelCase : List[str] = nn.Linear(__snake_case , out_features * 2 , bias=__snake_case )
def A ( self : Dict , __snake_case : List[str] , __snake_case : str ) -> int:
UpperCAmelCase : Dict = self.scale_bias(__snake_case )
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = torch.chunk(__snake_case , 2 , -1 )
UpperCAmelCase : Optional[int] = x * (1 + scale) + shift
return x
| 23 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : str , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=8 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : int=True , __snake_case : List[Any]=99 , __snake_case : str=16 , __snake_case : Tuple=5 , __snake_case : Tuple=2 , __snake_case : str=36 , __snake_case : Dict="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=512 , __snake_case : Optional[Any]=16 , __snake_case : int=2 , __snake_case : int=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : str=None , ) -> Optional[int]:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : Tuple = batch_size
UpperCAmelCase : List[str] = seq_length
UpperCAmelCase : List[Any] = is_training
UpperCAmelCase : int = use_input_mask
UpperCAmelCase : Any = use_token_type_ids
UpperCAmelCase : str = use_labels
UpperCAmelCase : Union[str, Any] = vocab_size
UpperCAmelCase : List[str] = hidden_size
UpperCAmelCase : Optional[Any] = num_hidden_layers
UpperCAmelCase : Union[str, Any] = num_attention_heads
UpperCAmelCase : Optional[Any] = intermediate_size
UpperCAmelCase : Union[str, Any] = hidden_act
UpperCAmelCase : int = hidden_dropout_prob
UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase : Union[str, Any] = max_position_embeddings
UpperCAmelCase : str = type_vocab_size
UpperCAmelCase : List[str] = type_sequence_label_size
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Optional[Any] = num_labels
UpperCAmelCase : Optional[int] = num_choices
UpperCAmelCase : Any = scope
def A ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[int] = None
if self.use_input_mask:
UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Dict = None
if self.use_token_type_ids:
UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : str = None
UpperCAmelCase : Tuple = None
UpperCAmelCase : int = None
if self.use_labels:
UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : List[str] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self : int ) -> Tuple:
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , )
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase : Optional[Any] = self.get_config()
UpperCAmelCase : int = 300
return config
def A ( self : Optional[Any] ) -> Any:
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : Tuple = self.prepare_config_and_inputs()
UpperCAmelCase : Dict = True
UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def A ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[Any] ) -> List[str]:
UpperCAmelCase : int = MraModel(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case )
UpperCAmelCase : Optional[int] = model(__snake_case , token_type_ids=__snake_case )
UpperCAmelCase : Dict = model(__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[Any] , ) -> Tuple:
UpperCAmelCase : str = True
UpperCAmelCase : Tuple = MraModel(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Optional[int] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , )
UpperCAmelCase : Optional[Any] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , )
UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int ) -> Any:
UpperCAmelCase : Dict = MraForMaskedLM(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Dict , __snake_case : Any , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Tuple ) -> Optional[int]:
UpperCAmelCase : List[str] = MraForQuestionAnswering(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : List[Any] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int:
UpperCAmelCase : int = self.num_labels
UpperCAmelCase : Union[str, Any] = MraForSequenceClassification(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> int:
UpperCAmelCase : Tuple = self.num_labels
UpperCAmelCase : List[str] = MraForTokenClassification(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A ( self : str , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] ) -> Optional[Any]:
UpperCAmelCase : Tuple = self.num_choices
UpperCAmelCase : int = MraForMultipleChoice(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : List[str] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A ( self : str ) -> Dict:
UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : List[str] = config_and_inputs
UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = ()
def A ( self : int ) -> Union[str, Any]:
UpperCAmelCase : List[str] = MraModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 )
def A ( self : Optional[Any] ) -> str:
self.config_tester.run_common_tests()
def A ( self : Tuple ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
def A ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__snake_case )
def A ( self : Tuple ) -> Dict:
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__snake_case )
def A ( self : Tuple ) -> List[str]:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__snake_case )
def A ( self : int ) -> Dict:
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__snake_case )
def A ( self : Dict ) -> Optional[int]:
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__snake_case )
def A ( self : Any ) -> Optional[int]:
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__snake_case )
@slow
def A ( self : Dict ) -> Any:
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : str = MraModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
@unittest.skip(reason='''MRA does not output attentions''' )
def A ( self : str ) -> Optional[Any]:
return
@require_torch
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@slow
def A ( self : Tuple ) -> List[Any]:
UpperCAmelCase : int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' )
UpperCAmelCase : Optional[Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : List[Any] = model(__snake_case )[0]
UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __snake_case )
UpperCAmelCase : Any = torch.tensor(
[[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
@slow
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase : Optional[int] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' )
UpperCAmelCase : Dict = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : List[Any] = model(__snake_case )[0]
UpperCAmelCase : int = 50265
UpperCAmelCase : int = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __snake_case )
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
@slow
def A ( self : str ) -> List[Any]:
UpperCAmelCase : List[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' )
UpperCAmelCase : List[Any] = torch.arange(4096 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : Tuple = model(__snake_case )[0]
UpperCAmelCase : Optional[int] = 50265
UpperCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) )
self.assertEqual(output.shape , __snake_case )
UpperCAmelCase : Optional[int] = torch.tensor(
[[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
| 23 | 1 |
'''simple docstring'''
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
UpperCamelCase__: Tuple = logging.getLogger(__name__)
UpperCamelCase__: str = 50 # max width of layer names
UpperCamelCase__: List[str] = 70 # max width of quantizer names
def snake_case_ ( _lowerCAmelCase : List[Any] ) -> Any:
UpperCAmelCase : List[str] = parser.add_argument_group('''quant_trainer arguments''' )
group.add_argument('''--wprec''' , type=_lowerCAmelCase , default=8 , help='''weight precision''' )
group.add_argument('''--aprec''' , type=_lowerCAmelCase , default=8 , help='''activation precision''' )
group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' )
group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' )
group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' )
group.add_argument('''--quant-disable-keyword''' , type=_lowerCAmelCase , nargs='''+''' , help='''disable quantizers by keyword''' )
group.add_argument('''--quant-disable-layer-module''' , type=_lowerCAmelCase , help='''disable quantizers by keyword under layer.''' )
group.add_argument('''--quant-enable-layer-module''' , type=_lowerCAmelCase , help='''enable quantizers by keyword under layer''' )
group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' )
group.add_argument('''--percentile''' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='''percentile for PercentileCalibrator''' )
group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' )
group.add_argument('''--clip-gelu''' , metavar='''N''' , type=_lowerCAmelCase , help='''clip gelu output maximum value to N''' )
group.add_argument(
'''--recalibrate-weights''' , action='''store_true''' , help=(
'''recalibrate weight amaxes by taking the max of the weights.'''
''' amaxes will be computed with the current quantization granularity (axis).'''
) , )
def snake_case_ ( _lowerCAmelCase : Optional[Any] ) -> List[Any]:
if args.calibrator == "max":
UpperCAmelCase : str = '''max'''
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('''Specify --percentile when using percentile calibrator''' )
UpperCAmelCase : Optional[int] = '''histogram'''
elif args.calibrator == "mse":
UpperCAmelCase : List[str] = '''histogram'''
else:
raise ValueError(f"""Invalid calibrator {args.calibrator}""" )
UpperCAmelCase : Optional[int] = QuantDescriptor(num_bits=args.aprec , calib_method=_lowerCAmelCase )
UpperCAmelCase : List[str] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(_lowerCAmelCase )
quant_nn.QuantLinear.set_default_quant_desc_weight(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : int=False ) -> List[str]:
logger.info('''Configuring Model for Quantization''' )
logger.info(f"""using quantization package {pytorch_quantization.__file__}""" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_lowerCAmelCase , ['''embeddings'''] , which='''weight''' , _disabled=_lowerCAmelCase )
if args.quant_disable:
set_quantizer_by_name(_lowerCAmelCase , [''''''] , _disabled=_lowerCAmelCase )
if args.quant_disable_keyword:
set_quantizer_by_name(_lowerCAmelCase , args.quant_disable_keyword , _disabled=_lowerCAmelCase )
if args.quant_disable_layer_module:
set_quantizer_by_name(_lowerCAmelCase , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=_lowerCAmelCase )
if args.quant_enable_layer_module:
set_quantizer_by_name(_lowerCAmelCase , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=_lowerCAmelCase )
if args.recalibrate_weights:
recalibrate_weights(_lowerCAmelCase )
if args.fuse_qkv:
fuse_qkv(_lowerCAmelCase , _lowerCAmelCase )
if args.clip_gelu:
clip_gelu(_lowerCAmelCase , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : str ) -> List[Any]:
logger.info('''Enabling Calibration''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f"""{name:80}: {module}""" )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> str:
logger.info('''Loading calibrated amax''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('''percentile''' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ) -> Any:
def fusea(_lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ):
for mod in [qq, qk, qv]:
if not hasattr(_lowerCAmelCase , '''_amax''' ):
print(''' WARNING: NO AMAX BUFFER''' )
return
UpperCAmelCase : Union[str, Any] = qq._amax.detach().item()
UpperCAmelCase : Tuple = qk._amax.detach().item()
UpperCAmelCase : Optional[int] = qv._amax.detach().item()
UpperCAmelCase : str = max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
qq._amax.fill_(_lowerCAmelCase )
qk._amax.fill_(_lowerCAmelCase )
qv._amax.fill_(_lowerCAmelCase )
logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" )
for name, mod in model.named_modules():
if name.endswith('''.attention.self''' ):
logger.info(f"""FUSE_QKV: {name:{name_width}}""" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] ) -> Optional[Any]:
for name, mod in model.named_modules():
if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ):
UpperCAmelCase : Union[str, Any] = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_lowerCAmelCase )
UpperCAmelCase : Dict = mod._input_quantizer._amax.data.detach().item()
logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" )
def snake_case_ ( _lowerCAmelCase : Dict ) -> Any:
for name, mod in model.named_modules():
if hasattr(_lowerCAmelCase , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None:
UpperCAmelCase : Any = mod.weight.shape[0]
UpperCAmelCase : Dict = mod._weight_quantizer._amax.detach()
UpperCAmelCase : Any = torch.ones(_lowerCAmelCase , dtype=amax.dtype , device=amax.device ) * amax
print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" )
def snake_case_ ( _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]:
for name, mod in model.named_modules():
if hasattr(_lowerCAmelCase , '''_weight_quantizer''' ):
if not hasattr(mod.weight_quantizer , '''_amax''' ):
print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
UpperCAmelCase : str = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
UpperCAmelCase : Any = set(range(len(mod.weight.size() ) ) ) - axis_set
UpperCAmelCase : List[str] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowerCAmelCase , keepdims=_lowerCAmelCase ).detach()
logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" )
UpperCAmelCase : Optional[Any] = amax
def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any]=25 , _lowerCAmelCase : Dict=180 , _lowerCAmelCase : str=None ) -> str:
if ignore is None:
UpperCAmelCase : Optional[Any] = []
elif not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : Any = [ignore]
UpperCAmelCase : Tuple = 0
for name, mod in model.named_modules():
if not hasattr(_lowerCAmelCase , '''weight''' ):
continue
UpperCAmelCase : Union[str, Any] = max(_lowerCAmelCase , len(_lowerCAmelCase ) )
for name, mod in model.named_modules():
UpperCAmelCase : Union[str, Any] = getattr(_lowerCAmelCase , '''_input_quantizer''' , _lowerCAmelCase )
UpperCAmelCase : Tuple = getattr(_lowerCAmelCase , '''_weight_quantizer''' , _lowerCAmelCase )
if not hasattr(_lowerCAmelCase , '''weight''' ):
continue
if type(_lowerCAmelCase ) in ignore:
continue
if [True for s in ignore if type(_lowerCAmelCase ) is str and s in name]:
continue
UpperCAmelCase : str = f"""Act:{input_q.extra_repr()}"""
UpperCAmelCase : int = f"""Wgt:{weight_q.extra_repr()}"""
UpperCAmelCase : Tuple = f"""{name:{name_width}} {act_str} {wgt_str}"""
if len(_lowerCAmelCase ) <= line_width:
logger.info(_lowerCAmelCase )
else:
logger.info(f"""{name:{name_width}} {act_str}""" )
logger.info(f"""{" ":{name_width}} {wgt_str}""" )
def snake_case_ ( _lowerCAmelCase : Dict ) -> List[Any]:
UpperCAmelCase : List[Any] = 0
for name, mod in model.named_modules():
if isinstance(_lowerCAmelCase , pytorch_quantization.nn.TensorQuantizer ):
print(f"""{name:80} {mod}""" )
count += 1
print(f"""{count} TensorQuantizers found in model""" )
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ) -> Tuple:
UpperCAmelCase : Any = getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if quantizer_mod is not None:
assert hasattr(_lowerCAmelCase , _lowerCAmelCase )
setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
logger.warning(f"""{name} has no {quantizer}""" )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any]="both" , **_lowerCAmelCase : Optional[Any] ) -> List[str]:
UpperCAmelCase : List[Any] = f"""Warning: changing {which} quantizers of {name:{qname_width}}"""
for k, v in kwargs.items():
s += f""" {k}={v}"""
if which in ["input", "both"]:
set_quantizer(_lowerCAmelCase , _lowerCAmelCase , '''_input_quantizer''' , _lowerCAmelCase , _lowerCAmelCase )
if which in ["weight", "both"]:
set_quantizer(_lowerCAmelCase , _lowerCAmelCase , '''_weight_quantizer''' , _lowerCAmelCase , _lowerCAmelCase )
logger.info(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Any ) -> str:
for name, mod in model.named_modules():
if hasattr(_lowerCAmelCase , '''_input_quantizer''' ) or hasattr(_lowerCAmelCase , '''_weight_quantizer''' ):
for n in names:
if re.search(_lowerCAmelCase , _lowerCAmelCase ):
set_quantizers(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase )
elif name.endswith('''_quantizer''' ):
for n in names:
if re.search(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : List[str] = f"""Warning: changing {name:{name_width}}"""
for k, v in kwargs.items():
s += f""" {k}={v}"""
setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
logger.info(_lowerCAmelCase )
| 23 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
expand_dims,
flatten_dict,
is_flax_available,
is_tf_available,
is_torch_available,
reshape,
squeeze,
transpose,
)
if is_flax_available():
import jax.numpy as jnp
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : Any ) -> str:
UpperCAmelCase : Any = {
'''task_specific_params''': {
'''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4},
'''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4},
'''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6},
}
}
UpperCAmelCase : int = {
'''task_specific_params.summarization.length_penalty''': 1.0,
'''task_specific_params.summarization.max_length''': 128,
'''task_specific_params.summarization.min_length''': 12,
'''task_specific_params.summarization.num_beams''': 4,
'''task_specific_params.summarization_cnn.length_penalty''': 2.0,
'''task_specific_params.summarization_cnn.max_length''': 142,
'''task_specific_params.summarization_cnn.min_length''': 56,
'''task_specific_params.summarization_cnn.num_beams''': 4,
'''task_specific_params.summarization_xsum.length_penalty''': 1.0,
'''task_specific_params.summarization_xsum.max_length''': 62,
'''task_specific_params.summarization_xsum.min_length''': 11,
'''task_specific_params.summarization_xsum.num_beams''': 6,
}
self.assertEqual(flatten_dict(__snake_case ) , __snake_case )
def A ( self : int ) -> str:
UpperCAmelCase : Any = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(transpose(__snake_case ) , x.transpose() ) )
UpperCAmelCase : str = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) )
@require_torch
def A ( self : str ) -> Union[str, Any]:
UpperCAmelCase : Any = np.random.randn(3 , 4 )
UpperCAmelCase : List[Any] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) )
UpperCAmelCase : Tuple = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : Any = torch.tensor(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) )
@require_tf
def A ( self : List[str] ) -> Optional[Any]:
UpperCAmelCase : int = np.random.randn(3 , 4 )
UpperCAmelCase : Optional[int] = tf.constant(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) )
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : str = tf.constant(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) )
@require_flax
def A ( self : Tuple ) -> Any:
UpperCAmelCase : List[Any] = np.random.randn(3 , 4 )
UpperCAmelCase : List[str] = jnp.array(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case ) , np.asarray(transpose(__snake_case ) ) ) )
UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : int = jnp.array(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(__snake_case , axes=(1, 2, 0) ) ) ) )
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.reshape(__snake_case , (4, 3) ) ) )
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.reshape(__snake_case , (12, 5) ) ) )
@require_torch
def A ( self : Union[str, Any] ) -> int:
UpperCAmelCase : Dict = np.random.randn(3 , 4 )
UpperCAmelCase : Optional[Any] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) )
UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : List[Any] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) )
@require_tf
def A ( self : int ) -> List[str]:
UpperCAmelCase : List[Any] = np.random.randn(3 , 4 )
UpperCAmelCase : List[str] = tf.constant(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) )
UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : Optional[Any] = tf.constant(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) )
@require_flax
def A ( self : Any ) -> Dict:
UpperCAmelCase : Tuple = np.random.randn(3 , 4 )
UpperCAmelCase : Union[str, Any] = jnp.array(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.asarray(reshape(__snake_case , (4, 3) ) ) ) )
UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : Optional[Any] = jnp.array(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.asarray(reshape(__snake_case , (12, 5) ) ) ) )
def A ( self : List[Any] ) -> List[Any]:
UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 )
self.assertTrue(np.allclose(squeeze(__snake_case ) , np.squeeze(__snake_case ) ) )
UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.squeeze(__snake_case , axis=2 ) ) )
@require_torch
def A ( self : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 )
UpperCAmelCase : List[str] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) )
UpperCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase : str = torch.tensor(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) )
@require_tf
def A ( self : Optional[Any] ) -> Dict:
UpperCAmelCase : int = np.random.randn(1 , 3 , 4 )
UpperCAmelCase : Optional[int] = tf.constant(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) )
UpperCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase : Optional[int] = tf.constant(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) )
@require_flax
def A ( self : List[Any] ) -> Dict:
UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 )
UpperCAmelCase : int = jnp.array(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case ) , np.asarray(squeeze(__snake_case ) ) ) )
UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase : int = jnp.array(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.asarray(squeeze(__snake_case , axis=2 ) ) ) )
def A ( self : Optional[Any] ) -> int:
UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.expand_dims(__snake_case , axis=1 ) ) )
@require_torch
def A ( self : List[str] ) -> Tuple:
UpperCAmelCase : Tuple = np.random.randn(3 , 4 )
UpperCAmelCase : Tuple = torch.tensor(__snake_case )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) )
@require_tf
def A ( self : List[str] ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 )
UpperCAmelCase : Any = tf.constant(__snake_case )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) )
@require_flax
def A ( self : Any ) -> List[Any]:
UpperCAmelCase : List[str] = np.random.randn(3 , 4 )
UpperCAmelCase : str = jnp.array(__snake_case )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.asarray(expand_dims(__snake_case , axis=1 ) ) ) )
| 23 | 1 |
'''simple docstring'''
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Any ) -> List[Any]:
# Return True if there is node that has not iterated.
UpperCAmelCase : Tuple = [False] * len(_lowerCAmelCase )
UpperCAmelCase : Tuple = []
queue.append(_lowerCAmelCase )
UpperCAmelCase : List[Any] = True
while queue:
UpperCAmelCase : List[Any] = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(_lowerCAmelCase )
UpperCAmelCase : str = True
UpperCAmelCase : Dict = u
return visited[t]
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ) -> Any:
# This array is filled by BFS and to store path
UpperCAmelCase : Optional[Any] = [-1] * (len(_lowerCAmelCase ))
UpperCAmelCase : Tuple = 0
while bfs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : Tuple = float('''Inf''' )
UpperCAmelCase : Union[str, Any] = sink
while s != source:
# Find the minimum value in select path
UpperCAmelCase : Optional[int] = min(_lowerCAmelCase , graph[parent[s]][s] )
UpperCAmelCase : str = parent[s]
max_flow += path_flow
UpperCAmelCase : Union[str, Any] = sink
while v != source:
UpperCAmelCase : Dict = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
UpperCAmelCase : Any = parent[v]
return max_flow
UpperCamelCase__: List[str] = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
UpperCamelCase__ , UpperCamelCase__: List[str] = 0, 5
print(ford_fulkerson(graph, source, sink))
| 23 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
UpperCamelCase__: Union[str, Any] = "examples/"
UpperCamelCase__: Optional[Any] = {
"examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"),
"init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"),
"setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","),
"doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"),
}
UpperCamelCase__: Optional[int] = {
"init": "src/diffusers/__init__.py",
"setup": "setup.py",
}
UpperCamelCase__: List[Any] = "README.md"
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> Optional[int]:
with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
UpperCAmelCase : Optional[int] = f.read()
UpperCAmelCase , UpperCAmelCase : List[Any] = REPLACE_PATTERNS[pattern]
UpperCAmelCase : List[Any] = replace.replace('''VERSION''' , _lowerCAmelCase )
UpperCAmelCase : Optional[Any] = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase )
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[int]:
for folder, directories, fnames in os.walk(_lowerCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='''examples''' )
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=False ) -> List[str]:
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if not patch:
update_version_in_examples(_lowerCAmelCase )
def snake_case_ ( ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = '''🤗 Transformers currently provides the following architectures'''
UpperCAmelCase : Optional[int] = '''1. Want to contribute a new model?'''
with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
UpperCAmelCase : Optional[Any] = f.readlines()
# Find the start of the list.
UpperCAmelCase : List[Any] = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
UpperCAmelCase : Optional[Any] = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
UpperCAmelCase : Optional[int] = lines[index].replace(
'''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , )
index += 1
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(_lowerCAmelCase )
def snake_case_ ( ) -> Optional[Any]:
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
UpperCAmelCase : Union[str, Any] = f.read()
UpperCAmelCase : int = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0]
return packaging.version.parse(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : List[str]=False ) -> Any:
UpperCAmelCase : Optional[Any] = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
UpperCAmelCase : Optional[int] = default_version.base_version
elif patch:
UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
UpperCAmelCase : Dict = input(f"""Which version are you releasing? [{default_version}]""" )
if len(_lowerCAmelCase ) == 0:
UpperCAmelCase : Tuple = default_version
print(f"""Updating version to {version}.""" )
global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase )
def snake_case_ ( ) -> Any:
UpperCAmelCase : List[Any] = get_version()
UpperCAmelCase : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
UpperCAmelCase : List[Any] = current_version.base_version
# Check with the user we got that right.
UpperCAmelCase : Optional[int] = input(f"""Which version are we developing now? [{dev_version}]""" )
if len(_lowerCAmelCase ) == 0:
UpperCAmelCase : Dict = dev_version
print(f"""Updating version to {version}.""" )
global_version_update(_lowerCAmelCase )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
UpperCamelCase__: Optional[Any] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 23 | 1 |
'''simple docstring'''
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
UpperCamelCase__: str = {
"E": 12.70,
"T": 9.06,
"A": 8.17,
"O": 7.51,
"I": 6.97,
"N": 6.75,
"S": 6.33,
"H": 6.09,
"R": 5.99,
"D": 4.25,
"L": 4.03,
"C": 2.78,
"U": 2.76,
"M": 2.41,
"W": 2.36,
"F": 2.23,
"G": 2.02,
"Y": 1.97,
"P": 1.93,
"B": 1.29,
"V": 0.98,
"K": 0.77,
"J": 0.15,
"X": 0.15,
"Q": 0.10,
"Z": 0.07,
}
UpperCamelCase__: Tuple = "ETAOINSHRDLCUMWFGYPBVKJXQZ"
UpperCamelCase__: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
def snake_case_ ( _lowerCAmelCase : str ) -> dict[str, int]:
UpperCAmelCase : List[Any] = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def snake_case_ ( _lowerCAmelCase : tuple ) -> str:
return x[0]
def snake_case_ ( _lowerCAmelCase : str ) -> str:
UpperCAmelCase : Tuple = get_letter_count(_lowerCAmelCase )
UpperCAmelCase : dict[int, list[str]] = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(_lowerCAmelCase )
UpperCAmelCase : dict[int, str] = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_lowerCAmelCase )
UpperCAmelCase : Tuple = ''''''.join(freq_to_letter[freq] )
UpperCAmelCase : Tuple = list(freq_to_letter_str.items() )
freq_pairs.sort(key=_lowerCAmelCase , reverse=_lowerCAmelCase )
UpperCAmelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : str ) -> int:
UpperCAmelCase : Dict = get_frequency_order(_lowerCAmelCase )
UpperCAmelCase : Any = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
'''simple docstring'''
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
UpperCamelCase__: Tuple = numpy.array([0, 0])
UpperCamelCase__: Union[str, Any] = numpy.array([0.5, 0.8660254])
UpperCamelCase__: Dict = numpy.array([1, 0])
UpperCamelCase__: int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] , _lowerCAmelCase : int ) -> list[numpy.ndarray]:
UpperCAmelCase : Union[str, Any] = initial_vectors
for _ in range(_lowerCAmelCase ):
UpperCAmelCase : Union[str, Any] = iteration_step(_lowerCAmelCase )
return vectors
def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> list[numpy.ndarray]:
UpperCAmelCase : Tuple = []
for i, start_vector in enumerate(vectors[:-1] ):
UpperCAmelCase : List[str] = vectors[i + 1]
new_vectors.append(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def snake_case_ ( _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : float ) -> numpy.ndarray:
UpperCAmelCase : List[str] = numpy.radians(_lowerCAmelCase )
UpperCAmelCase , UpperCAmelCase : Tuple = numpy.cos(_lowerCAmelCase ), numpy.sin(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = numpy.array(((c, -s), (s, c)) )
return numpy.dot(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> None:
UpperCAmelCase : List[Any] = plt.gca()
axes.set_aspect('''equal''' )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
UpperCAmelCase , UpperCAmelCase : str = zip(*_lowerCAmelCase )
plt.plot(_lowerCAmelCase , _lowerCAmelCase )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase__: List[Any] = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 23 | 1 |
'''simple docstring'''
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , )
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6},
},
{
"""framework""": """pytorch""",
"""script""": """run_ddp.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6},
},
{
"""framework""": """tensorflow""",
"""script""": """run_tf_dist.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7},
},
] )
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : int ) -> List[str]:
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=__snake_case , )
assert hasattr(self , '''env''' )
def A ( self : int , __snake_case : List[Any] ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = F"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}"""
# distributed data settings
UpperCAmelCase : Optional[Any] = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='''py36''' , )
def A ( self : Dict , __snake_case : Optional[Any] ) -> List[str]:
TrainingJobAnalytics(__snake_case ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(2,)] )
def A ( self : Tuple , __snake_case : int ) -> Any:
# create estimator
UpperCAmelCase : Dict = self.create_estimator(__snake_case )
# run training
estimator.fit()
# result dataframe
UpperCAmelCase : List[str] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
UpperCAmelCase : str = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
UpperCAmelCase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
UpperCAmelCase : List[str] = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __snake_case )
| 23 |
'''simple docstring'''
from manim import *
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def A ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 )
UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )]
UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )]
UpperCAmelCase : Dict = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Any = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Optional[Any] = Text('''CPU''' , font_size=24 )
UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__snake_case )
UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )]
UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : List[str] = Text('''GPU''' , font_size=24 )
UpperCAmelCase : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case )
gpu.move_to([-1, -1, 0] )
self.add(__snake_case )
UpperCAmelCase : int = [mem.copy() for i in range(6 )]
UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : List[str] = Text('''Model''' , font_size=24 )
UpperCAmelCase : Tuple = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case )
model.move_to([3, -1.0, 0] )
self.add(__snake_case )
UpperCAmelCase : Any = []
for i, rect in enumerate(__snake_case ):
rect.set_stroke(__snake_case )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 )
self.add(__snake_case )
cpu_targs.append(__snake_case )
UpperCAmelCase : int = [mem.copy() for i in range(6 )]
UpperCAmelCase : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Any = Text('''Loaded Checkpoint''' , font_size=24 )
UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
UpperCAmelCase : Optional[int] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
UpperCAmelCase : str = MarkupText(
F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__snake_case , __snake_case )
UpperCAmelCase : Tuple = MarkupText(
F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , )
blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() )
UpperCAmelCase : List[Any] = MarkupText(
F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__snake_case ) , Write(__snake_case ) )
self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) )
UpperCAmelCase : Tuple = []
UpperCAmelCase : int = []
for i, rect in enumerate(__snake_case ):
UpperCAmelCase : Any = fill.copy().set_fill(__snake_case , opacity=0.7 )
target.move_to(__snake_case )
first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) )
UpperCAmelCase : List[str] = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) )
self.play(*__snake_case )
self.play(*__snake_case )
self.wait()
| 23 | 1 |
'''simple docstring'''
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def A ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase : Dict = tempfile.mkdtemp()
UpperCAmelCase : List[Any] = 8
# DPR tok
UpperCAmelCase : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , '''dpr_tokenizer''' )
os.makedirs(__snake_case , exist_ok=__snake_case )
UpperCAmelCase : List[Any] = os.path.join(__snake_case , DPR_VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
# BART tok
UpperCAmelCase : Optional[Any] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
UpperCAmelCase : Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) )
UpperCAmelCase : List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
UpperCAmelCase : str = {'''unk_token''': '''<unk>'''}
UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' )
os.makedirs(__snake_case , exist_ok=__snake_case )
UpperCAmelCase : Tuple = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase : Optional[Any] = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__snake_case ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__snake_case ) )
def A ( self : str ) -> DPRQuestionEncoderTokenizer:
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def A ( self : List[Any] ) -> DPRContextEncoderTokenizer:
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def A ( self : Dict ) -> BartTokenizer:
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) )
def A ( self : List[str] ) -> Dict:
shutil.rmtree(self.tmpdirname )
def A ( self : List[str] ) -> List[str]:
UpperCAmelCase : Union[str, Any] = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''text''': ['''foo''', '''bar'''],
'''title''': ['''Foo''', '''Bar'''],
'''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def A ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase : str = self.get_dummy_dataset()
UpperCAmelCase : Optional[int] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset:
UpperCAmelCase : List[str] = dataset
UpperCAmelCase : str = RagRetriever(
__snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def A ( self : List[Any] , __snake_case : bool ) -> List[str]:
UpperCAmelCase : Optional[int] = self.get_dummy_dataset()
UpperCAmelCase : Dict = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , )
if from_disk:
UpperCAmelCase : int = os.path.join(self.tmpdirname , '''dataset''' )
UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , '''index.faiss''' )
dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) )
dataset.drop_index('''embeddings''' )
dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) )
del dataset
UpperCAmelCase : str = RagRetriever(
__snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
UpperCAmelCase : Union[str, Any] = RagRetriever(
__snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __snake_case ) , )
return retriever
def A ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = Dataset.from_dict(
{
'''id''': ['''0''', '''1'''],
'''text''': ['''foo''', '''bar'''],
'''title''': ['''Foo''', '''Bar'''],
'''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT )
UpperCAmelCase : Dict = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' )
dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' )
pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) )
UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' )
UpperCAmelCase : int = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset}
pickle.dump(__snake_case , open(__snake_case , '''wb''' ) )
UpperCAmelCase : List[str] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , )
UpperCAmelCase : Dict = RagRetriever(
__snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def A ( self : Dict ) -> Optional[Any]:
UpperCAmelCase : List[Any] = 1
UpperCAmelCase : Optional[int] = self.get_dummy_canonical_hf_index_retriever()
UpperCAmelCase : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = retriever.retrieve(__snake_case , n_docs=__snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , __snake_case )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def A ( self : Any ) -> List[str]:
UpperCAmelCase : List[Any] = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset:
UpperCAmelCase : List[Any] = self.get_dummy_dataset()
retriever.save_pretrained(__snake_case )
UpperCAmelCase : Tuple = RagRetriever.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
UpperCAmelCase : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Optional[int] = retriever.retrieve(__snake_case , n_docs=1 )
self.assertTrue(out is not None )
def A ( self : Union[str, Any] ) -> Any:
UpperCAmelCase : Any = 1
UpperCAmelCase : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case )
UpperCAmelCase : str = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = retriever.retrieve(__snake_case , n_docs=__snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , __snake_case )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def A ( self : Tuple ) -> Any:
UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__snake_case )
UpperCAmelCase : Dict = RagRetriever.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
UpperCAmelCase : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : List[Any] = retriever.retrieve(__snake_case , n_docs=1 )
self.assertTrue(out is not None )
def A ( self : Any ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = 1
UpperCAmelCase : int = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case )
UpperCAmelCase : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = retriever.retrieve(__snake_case , n_docs=__snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''id'''] ) , __snake_case )
self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def A ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__snake_case )
UpperCAmelCase : Optional[Any] = RagRetriever.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
UpperCAmelCase : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : List[Any] = retriever.retrieve(__snake_case , n_docs=1 )
self.assertTrue(out is not None )
def A ( self : Optional[Any] ) -> List[Any]:
UpperCAmelCase : List[str] = 1
UpperCAmelCase : Union[str, Any] = self.get_dummy_legacy_index_retriever()
UpperCAmelCase : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = retriever.retrieve(__snake_case , n_docs=__snake_case )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(__snake_case ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] )
self.assertEqual(len(doc_dicts[0]['''text'''] ) , __snake_case )
self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def A ( self : List[str] ) -> List[str]:
UpperCAmelCase : int = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(__snake_case )
UpperCAmelCase : int = RagRetriever.from_pretrained(__snake_case )
self.assertIsInstance(__snake_case , __snake_case )
UpperCAmelCase : int = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : int = retriever.retrieve(__snake_case , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def A ( self : int ) -> Tuple:
import torch
UpperCAmelCase : List[str] = 1
UpperCAmelCase : List[str] = self.get_dummy_canonical_hf_index_retriever()
UpperCAmelCase : str = [[5, 7], [10, 11]]
UpperCAmelCase : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Optional[int] = retriever(__snake_case , __snake_case , prefix=retriever.config.generator.prefix , n_docs=__snake_case )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = (
out['''context_input_ids'''],
out['''context_attention_mask'''],
out['''retrieved_doc_embeds'''],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(__snake_case , __snake_case )
self.assertIsInstance(__snake_case , __snake_case )
self.assertIsInstance(__snake_case , np.ndarray )
UpperCAmelCase : Tuple = retriever(
__snake_case , __snake_case , prefix=retriever.config.generator.prefix , n_docs=__snake_case , return_tensors='''pt''' , )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = ( # noqa: F841
out['''context_input_ids'''],
out['''context_attention_mask'''],
out['''retrieved_doc_embeds'''],
out['''doc_ids'''],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(__snake_case , torch.Tensor )
self.assertIsInstance(__snake_case , torch.Tensor )
self.assertIsInstance(__snake_case , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def A ( self : Optional[int] ) -> Optional[Any]:
UpperCAmelCase : Optional[Any] = self.get_dpr_ctx_encoder_tokenizer()
UpperCAmelCase : List[Any] = 1
UpperCAmelCase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case )
retriever.set_ctx_encoder_tokenizer(__snake_case )
UpperCAmelCase : Union[str, Any] = [[5, 7], [10, 11]]
UpperCAmelCase : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
UpperCAmelCase : Optional[int] = retriever(__snake_case , __snake_case , prefix=retriever.config.generator.prefix , n_docs=__snake_case )
self.assertEqual(
len(__snake_case ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __snake_case ) # check for doc token related keys in dictionary.
| 23 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
)
UpperCamelCase__: str = None
UpperCamelCase__: int = {
"7B": 11008,
"13B": 13824,
"30B": 17920,
"65B": 22016,
"70B": 28672,
}
UpperCamelCase__: List[Any] = {
"7B": 1,
"7Bf": 1,
"13B": 2,
"13Bf": 2,
"30B": 4,
"65B": 8,
"70B": 8,
"70Bf": 8,
}
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : List[Any]=256 ) -> Optional[Any]:
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def snake_case_ ( _lowerCAmelCase : List[str] ) -> str:
with open(_lowerCAmelCase , '''r''' ) as f:
return json.load(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ) -> Optional[Any]:
with open(_lowerCAmelCase , '''w''' ) as f:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=True ) -> List[Any]:
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp''' )
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
UpperCAmelCase : List[str] = read_json(os.path.join(_lowerCAmelCase , '''params.json''' ) )
UpperCAmelCase : str = NUM_SHARDS[model_size]
UpperCAmelCase : Any = params['''n_layers''']
UpperCAmelCase : str = params['''n_heads''']
UpperCAmelCase : Any = n_heads // num_shards
UpperCAmelCase : List[str] = params['''dim''']
UpperCAmelCase : Optional[Any] = dim // n_heads
UpperCAmelCase : str = 1_0_0_0_0.0
UpperCAmelCase : Optional[int] = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
UpperCAmelCase : Tuple = params['''n_kv_heads'''] # for GQA / MQA
UpperCAmelCase : Optional[int] = n_heads_per_shard // num_key_value_heads
UpperCAmelCase : Optional[Any] = dim // num_key_value_heads
else: # compatibility with other checkpoints
UpperCAmelCase : List[str] = n_heads
UpperCAmelCase : Optional[int] = n_heads_per_shard
UpperCAmelCase : List[str] = dim
# permute for sliced rotary
def permute(_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=n_heads , _lowerCAmelCase : int=dim , _lowerCAmelCase : Dict=dim ):
return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase ).transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase )
print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
UpperCAmelCase : int = torch.load(os.path.join(_lowerCAmelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' )
else:
# Sharded
UpperCAmelCase : Optional[Any] = [
torch.load(os.path.join(_lowerCAmelCase , f"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' )
for i in range(_lowerCAmelCase )
]
UpperCAmelCase : Any = 0
UpperCAmelCase : str = {'''weight_map''': {}}
for layer_i in range(_lowerCAmelCase ):
UpperCAmelCase : Optional[Any] = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
UpperCAmelCase : Optional[int] = {
f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute(
loaded[f"""layers.{layer_i}.attention.wq.weight"""] ),
f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute(
loaded[f"""layers.{layer_i}.attention.wk.weight"""] ),
f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""],
f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""],
f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""],
f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""],
f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""],
f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""],
f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
UpperCAmelCase : List[str] = {
f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][
f"""layers.{layer_i}.attention_norm.weight"""
].clone(),
f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][
f"""layers.{layer_i}.ffn_norm.weight"""
].clone(),
}
UpperCAmelCase : Union[str, Any] = permute(
torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for i in range(_lowerCAmelCase )
] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) )
UpperCAmelCase : Optional[Any] = permute(
torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for i in range(_lowerCAmelCase )
] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , )
UpperCAmelCase : str = torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for i in range(_lowerCAmelCase )
] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = torch.cat(
[loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_lowerCAmelCase )] , dim=1 )
UpperCAmelCase : Any = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_lowerCAmelCase )] , dim=0 )
UpperCAmelCase : str = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_lowerCAmelCase )] , dim=1 )
UpperCAmelCase : Tuple = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_lowerCAmelCase )] , dim=0 )
UpperCAmelCase : Any = inv_freq
for k, v in state_dict.items():
UpperCAmelCase : List[Any] = filename
param_count += v.numel()
torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) )
UpperCAmelCase : Optional[int] = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
UpperCAmelCase : str = {
'''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''],
'''model.norm.weight''': loaded['''norm.weight'''],
'''lm_head.weight''': loaded['''output.weight'''],
}
else:
UpperCAmelCase : Any = {
'''model.norm.weight''': loaded[0]['''norm.weight'''],
'''model.embed_tokens.weight''': torch.cat(
[loaded[i]['''tok_embeddings.weight'''] for i in range(_lowerCAmelCase )] , dim=1 ),
'''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_lowerCAmelCase )] , dim=0 ),
}
for k, v in state_dict.items():
UpperCAmelCase : Optional[int] = filename
param_count += v.numel()
torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) )
# Write configs
UpperCAmelCase : Union[str, Any] = {'''total_size''': param_count * 2}
write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , '''pytorch_model.bin.index.json''' ) )
UpperCAmelCase : int = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1
UpperCAmelCase : Tuple = params['''multiple_of'''] if '''multiple_of''' in params else 256
UpperCAmelCase : Any = LlamaConfig(
hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_lowerCAmelCase , )
config.save_pretrained(_lowerCAmelCase )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('''Loading the checkpoint in a Llama model.''' )
UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('''Saving in the Transformers format.''' )
model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> List[str]:
# Initialize the tokenizer based on the `spm` model
UpperCAmelCase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" )
UpperCAmelCase : List[Any] = tokenizer_class(_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
def snake_case_ ( ) -> List[Any]:
UpperCAmelCase : int = argparse.ArgumentParser()
parser.add_argument(
'''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , )
parser.add_argument(
'''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , )
parser.add_argument(
'''--output_dir''' , help='''Location to write HF model and tokenizer''' , )
parser.add_argument('''--safe_serialization''' , type=_lowerCAmelCase , help='''Whether or not to save using `safetensors`.''' )
UpperCAmelCase : List[Any] = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
UpperCAmelCase : Optional[int] = os.path.join(args.input_dir , '''tokenizer.model''' )
write_tokenizer(args.output_dir , _lowerCAmelCase )
if __name__ == "__main__":
main()
| 23 | 1 |
'''simple docstring'''
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
UpperCamelCase__: Tuple = logging.get_logger(__name__)
def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str]=False ) -> List[str]:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
if not is_sharded:
UpperCAmelCase : Optional[Any] = os.path.abspath(_lowerCAmelCase )
logger.info(f"""Loading PyTorch weights from {pt_path}""" )
UpperCAmelCase : List[str] = torch.load(_lowerCAmelCase , map_location='''cpu''' )
logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" )
UpperCAmelCase : Any = convert_pytorch_state_dict_to_flax(_lowerCAmelCase , _lowerCAmelCase )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
UpperCAmelCase : List[Any] = convert_pytorch_sharded_state_dict_to_flax(_lowerCAmelCase , _lowerCAmelCase )
return flax_state_dict
def snake_case_ ( _lowerCAmelCase : Tuple[str] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, jnp.ndarray] , _lowerCAmelCase : str , ) -> (Tuple[str], np.ndarray):
def is_key_or_prefix_key_in_dict(_lowerCAmelCase : Tuple[str] ) -> bool:
return len(set(_lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0
# layer norm
UpperCAmelCase : Dict = pt_tuple_key[:-1] + ('''scale''',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_lowerCAmelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
UpperCAmelCase : List[Any] = pt_tuple_key[:-1] + ('''mean''',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
UpperCAmelCase : str = pt_tuple_key[:-1] + ('''var''',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ):
return renamed_pt_tuple_key, pt_tensor
# embedding
UpperCAmelCase : Dict = pt_tuple_key[:-1] + ('''embedding''',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_lowerCAmelCase ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ):
UpperCAmelCase : Any = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
UpperCAmelCase : Dict = pt_tuple_key[:-1] + ('''kernel''',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ):
UpperCAmelCase : Dict = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ('''weight''',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
UpperCAmelCase : List[Any] = pt_tuple_key[:-1] + ('''bias''',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
UpperCAmelCase : str = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
UpperCAmelCase : Optional[int] = pt_tuple_key[-2] + '''_g'''
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
UpperCAmelCase : Union[str, Any] = pt_tuple_key[-2] + '''_v'''
if name is not None:
UpperCAmelCase : List[Any] = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ) -> Optional[Any]:
# convert pytorch tensor to numpy
UpperCAmelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()}
UpperCAmelCase : Any = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
UpperCAmelCase : Optional[Any] = flax_model.params['''params''']
else:
UpperCAmelCase : Any = flax_model.params
UpperCAmelCase : str = flatten_dict(_lowerCAmelCase )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
UpperCAmelCase : List[str] = flatten_dict(flax_model.params['''batch_stats'''] )
random_flax_state_dict.update(_lowerCAmelCase )
UpperCAmelCase : str = {}
UpperCAmelCase : Union[str, Any] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
UpperCAmelCase : Optional[Any] = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
UpperCAmelCase : Optional[Any] = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
UpperCAmelCase : Dict = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
UpperCAmelCase : Dict = pt_tuple_key[1:]
# Correctly rename weight parameters
UpperCAmelCase , UpperCAmelCase : List[Any] = rename_key_and_reshape_tensor(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# add model prefix if necessary
UpperCAmelCase : Optional[int] = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
UpperCAmelCase : Any = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
UpperCAmelCase : Dict = jnp.asarray(_lowerCAmelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(_lowerCAmelCase , _lowerCAmelCase )
continue
# also add unexpected weight so that warning is thrown
UpperCAmelCase : List[str] = jnp.asarray(_lowerCAmelCase )
else:
# also add unexpected weight so that warning is thrown
UpperCAmelCase : str = jnp.asarray(_lowerCAmelCase )
return unflatten_dict(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any ) -> str:
import torch
# Load the index
UpperCAmelCase : int = {}
for shard_file in shard_filenames:
# load using msgpack utils
UpperCAmelCase : str = torch.load(_lowerCAmelCase )
UpperCAmelCase : int = {k: v.numpy() for k, v in pt_state_dict.items()}
UpperCAmelCase : Optional[int] = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
UpperCAmelCase : str = flax_model.params['''params''']
UpperCAmelCase : int = flatten_dict(_lowerCAmelCase )
random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) )
else:
UpperCAmelCase : Any = flax_model.params
UpperCAmelCase : List[Any] = flatten_dict(_lowerCAmelCase )
UpperCAmelCase : str = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
UpperCAmelCase : Optional[Any] = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
UpperCAmelCase : Any = tuple(pt_key.split('''.''' ) )
# remove base model prefix if necessary
UpperCAmelCase : str = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
UpperCAmelCase : str = pt_tuple_key[1:]
# Correctly rename weight parameters
UpperCAmelCase , UpperCAmelCase : str = rename_key_and_reshape_tensor(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# add model prefix if necessary
UpperCAmelCase : int = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
UpperCAmelCase : int = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """
f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
UpperCAmelCase : Tuple = jnp.asarray(_lowerCAmelCase )
continue
if "var" in flax_key[-1]:
UpperCAmelCase : Tuple = jnp.asarray(_lowerCAmelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(_lowerCAmelCase , _lowerCAmelCase )
continue
# also add unexpected weight so that warning is thrown
UpperCAmelCase : int = jnp.asarray(_lowerCAmelCase )
else:
# also add unexpected weight so that warning is thrown
UpperCAmelCase : Any = jnp.asarray(_lowerCAmelCase )
return unflatten_dict(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> Tuple:
UpperCAmelCase : Any = os.path.abspath(_lowerCAmelCase )
logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" )
# import correct flax class
UpperCAmelCase : Dict = getattr(_lowerCAmelCase , '''Flax''' + model.__class__.__name__ )
# load flax weight dict
with open(_lowerCAmelCase , '''rb''' ) as state_f:
try:
UpperCAmelCase : Tuple = from_bytes(_lowerCAmelCase , state_f.read() )
except UnpicklingError:
raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ )
return load_flax_weights_in_pytorch_model(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str ) -> Any:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'''
''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'''
''' instructions.''' )
raise
# check if we have bf16 weights
UpperCAmelCase : Tuple = flatten_dict(jax.tree_util.tree_map(lambda _lowerCAmelCase : x.dtype == jnp.bfloataa , _lowerCAmelCase ) ).values()
if any(_lowerCAmelCase ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '''
'''before loading those in PyTorch model.''' )
UpperCAmelCase : Any = jax.tree_util.tree_map(
lambda _lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = flatten_dict(_lowerCAmelCase )
UpperCAmelCase : str = pt_model.state_dict()
UpperCAmelCase : List[str] = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
UpperCAmelCase : Any = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
UpperCAmelCase : Dict = []
UpperCAmelCase : Union[str, Any] = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
UpperCAmelCase : Any = flax_key_tuple[0] == pt_model.base_model_prefix
UpperCAmelCase : Optional[Any] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
UpperCAmelCase : Tuple = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
UpperCAmelCase : str = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_lowerCAmelCase ) not in pt_model_dict:
# conv layer
UpperCAmelCase : str = flax_key_tuple[:-1] + ('''weight''',)
UpperCAmelCase : List[str] = jnp.transpose(_lowerCAmelCase , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ) not in pt_model_dict:
# linear layer
UpperCAmelCase : Any = flax_key_tuple[:-1] + ('''weight''',)
UpperCAmelCase : List[Any] = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
UpperCAmelCase : Optional[int] = flax_key_tuple[:-1] + ('''weight''',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
UpperCAmelCase : Dict = flax_key_tuple[:-1] + ('''running_mean''',)
elif "var" in flax_key_tuple[-1]:
UpperCAmelCase : str = flax_key_tuple[:-1] + ('''running_var''',)
if "batch_stats" in flax_state:
UpperCAmelCase : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
UpperCAmelCase : Any = '''.'''.join(_lowerCAmelCase )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
UpperCAmelCase : Union[str, Any] = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
UpperCAmelCase : str = key.split('''.''' )
UpperCAmelCase : Dict = None
if key_components[-3::2] == ["parametrizations", "original0"]:
UpperCAmelCase : Dict = key_components[-2] + '''_g'''
elif key_components[-3::2] == ["parametrizations", "original1"]:
UpperCAmelCase : str = key_components[-2] + '''_v'''
if name is not None:
UpperCAmelCase : Any = key_components[:-3] + [name]
UpperCAmelCase : Union[str, Any] = '''.'''.join(_lowerCAmelCase )
UpperCAmelCase : Dict = key
if flax_key in special_pt_names:
UpperCAmelCase : Optional[Any] = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """
f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" )
else:
# add weight to pytorch dict
UpperCAmelCase : Optional[int] = np.asarray(_lowerCAmelCase ) if not isinstance(_lowerCAmelCase , np.ndarray ) else flax_tensor
UpperCAmelCase : Optional[int] = torch.from_numpy(_lowerCAmelCase )
# remove from missing keys
missing_keys.remove(_lowerCAmelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(_lowerCAmelCase )
pt_model.load_state_dict(_lowerCAmelCase )
# re-transform missing_keys to list
UpperCAmelCase : Any = list(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
logger.warning(
'''Some weights of the Flax model were not used when initializing the PyTorch model'''
f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"""
f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"""
''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'''
f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"""
''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'''
''' FlaxBertForSequenceClassification model).''' )
else:
logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" )
if len(_lowerCAmelCase ) > 0:
logger.warning(
f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"""
f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"""
''' use it for predictions and inference.''' )
else:
logger.warning(
f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n"""
'''If your task is similar to the task the model of the checkpoint was trained on, '''
f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" )
return pt_model
| 23 |
'''simple docstring'''
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Optional[int] = tau * frequency / samplerate
UpperCAmelCase : List[Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = cos(_lowerCAmelCase )
UpperCAmelCase : int = _sin / (2 * q_factor)
UpperCAmelCase : Any = (1 - _cos) / 2
UpperCAmelCase : List[Any] = 1 - _cos
UpperCAmelCase : Union[str, Any] = 1 + alpha
UpperCAmelCase : Any = -2 * _cos
UpperCAmelCase : Dict = 1 - alpha
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Any = tau * frequency / samplerate
UpperCAmelCase : Tuple = sin(_lowerCAmelCase )
UpperCAmelCase : Tuple = cos(_lowerCAmelCase )
UpperCAmelCase : Dict = _sin / (2 * q_factor)
UpperCAmelCase : int = (1 + _cos) / 2
UpperCAmelCase : List[Any] = -1 - _cos
UpperCAmelCase : Tuple = 1 + alpha
UpperCAmelCase : List[str] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha
UpperCAmelCase : Tuple = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Optional[int] = tau * frequency / samplerate
UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase )
UpperCAmelCase : Tuple = cos(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = _sin / (2 * q_factor)
UpperCAmelCase : Union[str, Any] = _sin / 2
UpperCAmelCase : Any = 0
UpperCAmelCase : int = -ba
UpperCAmelCase : Optional[Any] = 1 + alpha
UpperCAmelCase : List[Any] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha
UpperCAmelCase : int = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : List[str] = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : str = cos(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor)
UpperCAmelCase : List[str] = 1 - alpha
UpperCAmelCase : Any = -2 * _cos
UpperCAmelCase : Optional[int] = 1 + alpha
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : Optional[Any] = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = cos(_lowerCAmelCase )
UpperCAmelCase : Dict = _sin / (2 * q_factor)
UpperCAmelCase : str = 10 ** (gain_db / 40)
UpperCAmelCase : int = 1 + alpha * big_a
UpperCAmelCase : Union[str, Any] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha * big_a
UpperCAmelCase : Union[str, Any] = 1 + alpha / big_a
UpperCAmelCase : Tuple = -2 * _cos
UpperCAmelCase : Any = 1 - alpha / big_a
UpperCAmelCase : Optional[Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : Any = tau * frequency / samplerate
UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase )
UpperCAmelCase : str = _sin / (2 * q_factor)
UpperCAmelCase : List[str] = 10 ** (gain_db / 40)
UpperCAmelCase : Optional[int] = (big_a + 1) - (big_a - 1) * _cos
UpperCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos
UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos
UpperCAmelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos
UpperCAmelCase : str = 2 * sqrt(_lowerCAmelCase ) * alpha
UpperCAmelCase : Dict = big_a * (pmc + aaa)
UpperCAmelCase : Any = 2 * big_a * mpc
UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa)
UpperCAmelCase : Optional[int] = ppmc + aaa
UpperCAmelCase : Optional[Any] = -2 * pmpc
UpperCAmelCase : Optional[Any] = ppmc - aaa
UpperCAmelCase : int = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : int = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase )
UpperCAmelCase : Any = _sin / (2 * q_factor)
UpperCAmelCase : int = 10 ** (gain_db / 40)
UpperCAmelCase : List[str] = (big_a + 1) - (big_a - 1) * _cos
UpperCAmelCase : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos
UpperCAmelCase : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos
UpperCAmelCase : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos
UpperCAmelCase : List[str] = 2 * sqrt(_lowerCAmelCase ) * alpha
UpperCAmelCase : Any = big_a * (ppmc + aaa)
UpperCAmelCase : str = -2 * big_a * pmpc
UpperCAmelCase : List[Any] = big_a * (ppmc - aaa)
UpperCAmelCase : Optional[Any] = pmc + aaa
UpperCAmelCase : Any = 2 * mpc
UpperCAmelCase : str = pmc - aaa
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
| 23 | 1 |
'''simple docstring'''
def snake_case_ ( _lowerCAmelCase : str ) -> list:
UpperCAmelCase : Union[str, Any] = [0] * len(_lowerCAmelCase )
for i in range(1 , len(_lowerCAmelCase ) ):
# use last results for better performance - dynamic programming
UpperCAmelCase : Union[str, Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
UpperCAmelCase : int = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
UpperCAmelCase : Any = j
return prefix_result
def snake_case_ ( _lowerCAmelCase : str ) -> int:
return max(prefix_function(_lowerCAmelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool:
UpperCAmelCase : str = get_failure_array(_lowerCAmelCase )
# 2) Step through text searching for pattern
UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern
while i < len(_lowerCAmelCase ):
if pattern[j] == text[i]:
if j == (len(_lowerCAmelCase ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
UpperCAmelCase : Optional[Any] = failure[j - 1]
continue
i += 1
return False
def snake_case_ ( _lowerCAmelCase : str ) -> list[int]:
UpperCAmelCase : Optional[Any] = [0]
UpperCAmelCase : str = 0
UpperCAmelCase : List[str] = 1
while j < len(_lowerCAmelCase ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
UpperCAmelCase : Union[str, Any] = failure[i - 1]
continue
j += 1
failure.append(_lowerCAmelCase )
return failure
if __name__ == "__main__":
# Test 1)
UpperCamelCase__: str = "abc1abc12"
UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc"
UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc"
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
UpperCamelCase__: Tuple = "ABABX"
UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX"
assert kmp(pattern, text)
# Test 3)
UpperCamelCase__: Any = "AAAB"
UpperCamelCase__: str = "ABAAAAAB"
assert kmp(pattern, text)
# Test 4)
UpperCamelCase__: int = "abcdabcy"
UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy"
assert kmp(pattern, text)
# Test 5)
UpperCamelCase__: List[str] = "aabaabaaa"
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 23 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
UpperCamelCase__: int = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def __init__( self : Optional[Any] , *__snake_case : Optional[int] , **__snake_case : Optional[Any] ) -> None:
warnings.warn(
'''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use SegformerImageProcessor instead.''' , __snake_case , )
super().__init__(*__snake_case , **__snake_case )
| 23 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
UpperCamelCase__: int = logging.get_logger(__name__)
UpperCamelCase__: Dict = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
UpperCamelCase__: Optional[Any] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = {}
with open(_lowerCAmelCase , '''r''' ) as file:
for line_number, line in enumerate(_lowerCAmelCase ):
UpperCAmelCase : List[str] = line.strip()
if line:
UpperCAmelCase : str = line.split()
UpperCAmelCase : Union[str, Any] = line_number
UpperCAmelCase : List[Any] = words[0]
UpperCAmelCase : Union[str, Any] = value
return result
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int:
for attribute in key.split('''.''' ):
UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Dict = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_lowerCAmelCase ):
UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]]
UpperCAmelCase : Dict = '''param'''
if weight_type is not None and weight_type != "param":
UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase : List[Any] = hf_pointer
for attribute in hf_param_name.split('''.''' ):
UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : int = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase : Union[str, Any] = value[0]
else:
UpperCAmelCase : List[Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase : int = value
elif weight_type == "weight_g":
UpperCAmelCase : str = value
elif weight_type == "weight_v":
UpperCAmelCase : Dict = value
elif weight_type == "bias":
UpperCAmelCase : str = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = value
else:
UpperCAmelCase : Tuple = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]:
UpperCAmelCase : List[str] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_lowerCAmelCase ):
UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]]
UpperCAmelCase : Any = '''param'''
if weight_type is not None and weight_type != "param":
UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] )
else:
UpperCAmelCase : List[Any] = key
UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0]
UpperCamelCase__: Tuple = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int:
UpperCAmelCase : List[Any] = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
UpperCAmelCase : Optional[Any] = True
if "*" in mapped_key:
UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase )
if "weight_g" in name:
UpperCAmelCase : str = '''weight_g'''
elif "weight_v" in name:
UpperCAmelCase : int = '''weight_v'''
elif "bias" in name:
UpperCAmelCase : int = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase : List[str] = '''weight'''
else:
UpperCAmelCase : Dict = None
if hf_dict is not None:
rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return is_used
return is_used
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any:
UpperCAmelCase : Dict = []
UpperCAmelCase : Dict = fairseq_model.state_dict()
UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase : Dict = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , )
UpperCAmelCase : Any = True
else:
UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f"""Unused weights: {unused_weights}""" )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1]
UpperCAmelCase : Optional[int] = name.split('''.''' )
UpperCAmelCase : Tuple = int(items[0] )
UpperCAmelCase : Tuple = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCAmelCase : Tuple = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCAmelCase : Union[str, Any] = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCAmelCase : Union[str, Any] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCAmelCase : List[str] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict:
if config_path is not None:
UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase )
else:
UpperCAmelCase : List[Any] = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = idalabel
UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase )
UpperCAmelCase : Dict = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , )
feature_extractor.save_pretrained(_lowerCAmelCase )
elif is_finetuned:
if dict_path:
UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase : Any = target_dict.pad_index
UpperCAmelCase : Tuple = target_dict.bos_index
UpperCAmelCase : Optional[int] = target_dict.eos_index
UpperCAmelCase : Union[str, Any] = len(target_dict.symbols )
UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' )
if not os.path.isdir(_lowerCAmelCase ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) )
return
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
UpperCAmelCase : List[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase : List[str] = 0
UpperCAmelCase : List[str] = 1
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer(
_lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , )
UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False
UpperCAmelCase : int = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , )
UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase )
else:
UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase )
if is_finetuned or is_seq_class:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' )
UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase )
UpperCAmelCase : Optional[int] = model[0].eval()
recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned )
hf_wavavec.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase__: Dict = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
UpperCamelCase__: Any = parser.parse_args()
UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 23 | 1 |
'''simple docstring'''
import unittest
from transformers import AutoTokenizer, FalconConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
)
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
def __init__( self : Optional[Any] , __snake_case : str , __snake_case : Tuple=3 , __snake_case : Dict=7 , __snake_case : List[str]=True , __snake_case : List[Any]=True , __snake_case : Any=False , __snake_case : Dict=True , __snake_case : Optional[Any]=99 , __snake_case : List[Any]=32 , __snake_case : List[Any]=5 , __snake_case : int=4 , __snake_case : Optional[Any]=37 , __snake_case : int="gelu" , __snake_case : Dict=0.1 , __snake_case : Dict=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Optional[int]=16 , __snake_case : List[Any]=2 , __snake_case : int=0.02 , __snake_case : int=3 , __snake_case : Tuple=4 , __snake_case : Tuple=None , ) -> Optional[int]:
UpperCAmelCase : str = parent
UpperCAmelCase : List[str] = batch_size
UpperCAmelCase : str = seq_length
UpperCAmelCase : Dict = is_training
UpperCAmelCase : Tuple = use_input_mask
UpperCAmelCase : Optional[int] = use_token_type_ids
UpperCAmelCase : List[Any] = use_labels
UpperCAmelCase : Any = vocab_size
UpperCAmelCase : Union[str, Any] = hidden_size
UpperCAmelCase : Any = num_hidden_layers
UpperCAmelCase : int = num_attention_heads
UpperCAmelCase : Tuple = intermediate_size
UpperCAmelCase : Union[str, Any] = hidden_act
UpperCAmelCase : List[str] = hidden_dropout_prob
UpperCAmelCase : List[Any] = attention_probs_dropout_prob
UpperCAmelCase : List[Any] = max_position_embeddings
UpperCAmelCase : Any = type_vocab_size
UpperCAmelCase : str = type_sequence_label_size
UpperCAmelCase : Any = initializer_range
UpperCAmelCase : Any = num_labels
UpperCAmelCase : Optional[Any] = num_choices
UpperCAmelCase : Any = scope
def A ( self : List[Any] ) -> int:
UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[Any] = None
if self.use_input_mask:
UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Optional[int] = None
UpperCAmelCase : List[str] = None
UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : str = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self : Optional[Any] ) -> List[str]:
return FalconConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__snake_case , )
def A ( self : str , __snake_case : List[Any] , __snake_case : int , __snake_case : Tuple , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> Any:
UpperCAmelCase : List[Any] = FalconModel(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case )
UpperCAmelCase : int = model(__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Any , __snake_case : int , __snake_case : Dict , __snake_case : Any , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Optional[int] , ) -> List[str]:
UpperCAmelCase : str = True
UpperCAmelCase : Union[str, Any] = FalconModel(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : List[str] = model(
__snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , )
UpperCAmelCase : int = model(
__snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , )
UpperCAmelCase : Any = model(__snake_case , attention_mask=__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Optional[Any] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : int , __snake_case : str , __snake_case : str , __snake_case : Optional[int] , ) -> Optional[int]:
UpperCAmelCase : List[Any] = FalconForCausalLM(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : int = model(__snake_case , attention_mask=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : str , __snake_case : str , ) -> int:
UpperCAmelCase : List[Any] = True
UpperCAmelCase : Union[str, Any] = True
UpperCAmelCase : Tuple = FalconForCausalLM(config=__snake_case )
model.to(__snake_case )
model.eval()
# first forward pass
UpperCAmelCase : List[str] = model(
__snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , use_cache=__snake_case , )
UpperCAmelCase : str = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : int = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
UpperCAmelCase : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase : str = torch.cat([input_mask, next_mask] , dim=-1 )
UpperCAmelCase : Dict = model(
__snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0]
UpperCAmelCase : Tuple = model(
__snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0]
# select random slice
UpperCAmelCase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase : List[Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) )
def A ( self : int ) -> Tuple:
UpperCAmelCase : Tuple = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : Optional[Any] = config_and_inputs
UpperCAmelCase : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = (
(
FalconModel,
FalconForCausalLM,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCamelCase__ = (FalconForCausalLM,) if is_torch_available() else ()
lowerCamelCase__ = (
{
"""feature-extraction""": FalconModel,
"""text-classification""": FalconForSequenceClassification,
"""text-generation""": FalconForCausalLM,
"""question-answering""": FalconForQuestionAnswering,
"""token-classification""": FalconForTokenClassification,
"""zero-shot""": FalconForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
def A ( self : str ) -> Optional[Any]:
UpperCAmelCase : Dict = FalconModelTester(self )
UpperCAmelCase : Any = ConfigTester(self , config_class=__snake_case , hidden_size=37 )
def A ( self : int ) -> Any:
self.config_tester.run_common_tests()
def A ( self : List[str] ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
def A ( self : List[str] ) -> List[str]:
UpperCAmelCase , *UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
for alibi in [True, False]:
UpperCAmelCase : Optional[Any] = alibi
self.model_tester.create_and_check_model(__snake_case , *__snake_case )
def A ( self : int ) -> Dict:
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Tuple = 3
UpperCAmelCase : Union[str, Any] = input_dict['''input_ids''']
UpperCAmelCase : Any = input_ids.ne(1 ).to(__snake_case )
UpperCAmelCase : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Tuple = FalconForSequenceClassification(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Optional[Any] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def A ( self : Union[str, Any] ) -> List[Any]:
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Union[str, Any] = 3
UpperCAmelCase : Tuple = '''single_label_classification'''
UpperCAmelCase : Union[str, Any] = input_dict['''input_ids''']
UpperCAmelCase : Dict = input_ids.ne(1 ).to(__snake_case )
UpperCAmelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase : Tuple = FalconForSequenceClassification(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def A ( self : Optional[Any] ) -> Dict:
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : List[Any] = input_dict['''input_ids''']
UpperCAmelCase : Tuple = FalconForCausalLM(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Dict = model(__snake_case , use_cache=__snake_case )
UpperCAmelCase : Tuple = input_ids.shape[0]
UpperCAmelCase : Any = model._convert_to_rw_cache(result.past_key_values )
UpperCAmelCase : Any = model._convert_cache_to_standard_format(__snake_case , __snake_case )
for layer in range(len(__snake_case ) ):
for tensor_idx in range(2 ):
self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 )
self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 )
self.assertTrue(
torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) )
def A ( self : Optional[Any] ) -> Optional[int]:
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Union[str, Any] = 3
UpperCAmelCase : List[Any] = '''multi_label_classification'''
UpperCAmelCase : Tuple = input_dict['''input_ids''']
UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__snake_case )
UpperCAmelCase : Optional[Any] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase : str = FalconForSequenceClassification(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Dict = model(__snake_case , attention_mask=__snake_case , labels=__snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def A ( self : List[str] ) -> Tuple:
# Falcon can have different numbers of KV-heads than the number of query heads, so we need
# to override this test to use the right head counts.
for model_class in self.all_generative_model_classes:
UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
# If it doesn't support cache, pass the test
if not hasattr(__snake_case , '''use_cache''' ):
return
UpperCAmelCase : List[str] = model_class(__snake_case ).to(__snake_case )
if "use_cache" not in inputs:
UpperCAmelCase : Optional[Any] = True
UpperCAmelCase : Optional[int] = model(**__snake_case )
# If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
if "past_key_values" not in outputs:
return
UpperCAmelCase : List[Any] = (
getattr(__snake_case , '''decoder_layers''' , __snake_case )
or getattr(__snake_case , '''num_decoder_layers''' , __snake_case )
or config.num_hidden_layers
)
UpperCAmelCase : Any = getattr(__snake_case , '''num_kv_heads''' , config.num_attention_heads )
UpperCAmelCase : Optional[Any] = getattr(__snake_case , '''d_model''' , config.hidden_size )
UpperCAmelCase : Union[str, Any] = embed_dim // num_attention_heads
UpperCAmelCase : List[str] = outputs['''past_key_values''']
self.assertEqual(len(__snake_case ) , __snake_case )
UpperCAmelCase , UpperCAmelCase : List[Any] = inputs['''input_ids'''].shape
for i in range(__snake_case ):
if config.new_decoder_architecture:
UpperCAmelCase : Tuple = config.num_attention_heads
elif config.multi_query:
UpperCAmelCase : List[Any] = 1
self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2
self.assertEqual(
past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
self.assertEqual(
past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
@require_torch
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@slow
def A ( self : Any ) -> Tuple:
UpperCAmelCase : Dict = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' )
UpperCAmelCase : List[str] = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' )
model.eval()
model.to(__snake_case )
UpperCAmelCase : int = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__snake_case )
UpperCAmelCase : List[Any] = (
'''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.'''
)
UpperCAmelCase : List[str] = model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=19 )
UpperCAmelCase : str = tokenizer.batch_decode(__snake_case )[0]
self.assertEqual(__snake_case , __snake_case )
@slow
def A ( self : Tuple ) -> List[Any]:
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]:
UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(__snake_case )
UpperCAmelCase : List[Any] = FalconForCausalLM.from_pretrained(__snake_case )
model.eval()
model.to(__snake_case )
UpperCAmelCase : List[str] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__snake_case )
# We just test that these run without errors - the models are randomly initialized
# and so the actual text outputs will be garbage
model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=4 )
model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=4 )
model.generate(**__snake_case , num_beams=2 , max_new_tokens=4 )
@slow
def A ( self : str ) -> Optional[int]:
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
with torch.no_grad():
for repo in [
"Rocketknight1/falcon-rw-1b",
"Rocketknight1/tiny-random-falcon-7b",
"Rocketknight1/tiny-random-falcon-40b",
]:
UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FalconForCausalLM.from_pretrained(__snake_case )
model.eval()
model.to(device=__snake_case )
UpperCAmelCase : int = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__snake_case )
# Test results are the same with and without cache
UpperCAmelCase : Dict = model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=20 , use_cache=__snake_case )
UpperCAmelCase : Tuple = model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=20 , use_cache=__snake_case )
self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
| 23 |
'''simple docstring'''
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : str ) -> int:
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case )
UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )]
UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('''.bin''' ) for f in files )
@slow
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : List[str] ) -> Dict:
UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case )
UpperCAmelCase : List[Any] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
UpperCAmelCase : Optional[Any] = 4
UpperCAmelCase : Optional[Any] = jax.device_count()
UpperCAmelCase : Tuple = num_samples * [prompt]
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[Any] = shard(__snake_case )
UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3
assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1
UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(__snake_case ) == num_samples
def A ( self : List[Any] ) -> List[str]:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case )
UpperCAmelCase : Dict = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase : Any = 50
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : int = num_samples * [prompt]
UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Dict = replicate(__snake_case )
UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Tuple = shard(__snake_case )
UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1
def A ( self : int ) -> Dict:
UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case )
UpperCAmelCase : Dict = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 )
UpperCAmelCase : List[str] = 50
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : List[Any] = num_samples * [prompt]
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[int] = shard(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def A ( self : int ) -> Any:
UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa )
UpperCAmelCase : List[str] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
UpperCAmelCase : Union[str, Any] = 50
UpperCAmelCase : Optional[int] = jax.device_count()
UpperCAmelCase : List[str] = num_samples * [prompt]
UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : str = shard(__snake_case )
UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def A ( self : Tuple ) -> Optional[Any]:
UpperCAmelCase : int = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , )
UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , )
UpperCAmelCase : Tuple = scheduler.create_state()
UpperCAmelCase : Dict = scheduler_state
UpperCAmelCase : str = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : int = jax.random.PRNGKey(0 )
UpperCAmelCase : Union[str, Any] = 50
UpperCAmelCase : Optional[Any] = jax.device_count()
UpperCAmelCase : Any = num_samples * [prompt]
UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : str = replicate(__snake_case )
UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[int] = shard(__snake_case )
UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1
def A ( self : Any ) -> Tuple:
UpperCAmelCase : List[Any] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : List[Any] = num_samples * [prompt]
UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case )
UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , )
UpperCAmelCase : Dict = replicate(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case )
UpperCAmelCase : List[str] = shard(__snake_case )
UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , )
UpperCAmelCase : int = replicate(__snake_case )
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
UpperCAmelCase : List[Any] = shard(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase : int = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1E-2
| 23 | 1 |
'''simple docstring'''
import cmath
import math
def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> complex:
UpperCAmelCase : Tuple = math.radians(_lowerCAmelCase )
UpperCAmelCase : str = math.radians(_lowerCAmelCase )
# Convert voltage and current to rectangular form
UpperCAmelCase : Union[str, Any] = cmath.rect(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : str = cmath.rect(_lowerCAmelCase , _lowerCAmelCase )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
'''simple docstring'''
import random
from .binary_exp_mod import bin_exp_mod
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int:
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
UpperCAmelCase : str = n - 1
UpperCAmelCase : List[Any] = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
UpperCAmelCase : List[str] = 0
while count < prec:
UpperCAmelCase : int = random.randint(2 , n - 1 )
UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if b != 1:
UpperCAmelCase : int = True
for _ in range(_lowerCAmelCase ):
if b == n - 1:
UpperCAmelCase : Dict = False
break
UpperCAmelCase : str = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip()))
print("Here's the list of primes:")
print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 23 | 1 |
'''simple docstring'''
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : bool = False ) -> str:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : List[str] = f"""Expected string as input, found {type(_lowerCAmelCase )}"""
raise ValueError(_lowerCAmelCase )
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : List[Any] = f"""Expected boolean as use_pascal parameter, found {type(_lowerCAmelCase )}"""
raise ValueError(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = input_str.split('''_''' )
UpperCAmelCase : Optional[int] = 0 if use_pascal else 1
UpperCAmelCase : int = words[start_index:]
UpperCAmelCase : int = [word[0].upper() + word[1:] for word in words_to_capitalize]
UpperCAmelCase : Dict = '''''' if use_pascal else words[0]
return "".join([initial_word, *capitalized_words] )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 23 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__: Optional[int] = logging.get_logger(__name__)
def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]:
UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' )
if "large" in checkpoint_url:
UpperCAmelCase : Tuple = 1024
UpperCAmelCase : List[Any] = 4096
UpperCAmelCase : str = 24
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = [5, 11, 17, 23]
UpperCAmelCase : List[Any] = [256, 512, 1024, 1024]
UpperCAmelCase : Tuple = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 768
UpperCAmelCase : Tuple = [1, 1, 1, 0.5]
UpperCAmelCase : int = [256, 512, 768, 768]
UpperCAmelCase : Any = 150
UpperCAmelCase : Tuple = 16
UpperCAmelCase : Any = (1, 384, 384)
UpperCAmelCase : Optional[Any] = False
UpperCAmelCase : Tuple = '''project'''
if "ade" in checkpoint_url:
UpperCAmelCase : Any = True
UpperCAmelCase : str = 768
UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5]
UpperCAmelCase : List[Any] = 150
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = '''huggingface/label-files'''
UpperCAmelCase : Tuple = '''ade20k-id2label.json'''
UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) )
UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : List[Any] = idalabel
UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480]
return config, expected_shape
def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int:
UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias''']
for k in ignore_keys:
state_dict.pop(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' )
if "pretrained.model" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' )
if "patch_embed" in name:
UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' )
if "pos_embed" in name:
UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' )
if "attn.proj" in name:
UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "proj" in name and "project" not in name:
UpperCAmelCase : str = name.replace('''proj''' , '''projection''' )
if "blocks" in name:
UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' )
if "mlp.fc1" in name:
UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' )
if "norm1" in name and "backbone" not in name:
UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name and "backbone" not in name:
UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' )
if "scratch.output_conv" in name:
UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' )
if "scratch" in name:
UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' )
if "layer1_rn" in name:
UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' )
if "layer2_rn" in name:
UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' )
if "layer3_rn" in name:
UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' )
if "layer4_rn" in name:
UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' )
if "refinenet" in name:
UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" )
if "out_conv" in name:
UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' )
if "resConfUnit1" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' )
if "resConfUnit2" in name:
UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' )
if "conv1" in name:
UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' )
if "conv2" in name:
UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' )
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' )
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' )
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' )
if "pretrained.act_postprocess1.4" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' )
if "pretrained.act_postprocess2.3" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' )
if "pretrained.act_postprocess2.4" in name:
UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' )
if "pretrained.act_postprocess3.3" in name:
UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' )
if "pretrained.act_postprocess4.3" in name:
UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' )
if "pretrained.act_postprocess4.4" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' )
if "pretrained" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' )
if "bn" in name:
UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' )
if "head" in name:
UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' )
if "encoder.norm" in name:
UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' )
if "auxlayer" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' )
if "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' )
if ".." in name:
UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' )
if "stem.conv" in name:
UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' )
if "blocks" in name:
UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' )
if "convolution" in name and "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' )
if "layer" in name and "backbone" in name:
UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' )
if "backbone.bit.encoder.bit" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' )
if "embedder.conv" in name:
UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' )
if "backbone.bit.encoder.stem.norm" in name:
UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' )
return name
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" )
UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : int = in_proj_bias[: config.hidden_size]
UpperCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :]
def snake_case_ ( ) -> List[str]:
UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
return im
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any:
UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' )
# remove certain keys
remove_ignore_keys_(_lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase )
UpperCAmelCase : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase )
# load HuggingFace model
UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
# Check outputs on an image
UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384
UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase )
UpperCAmelCase : Dict = prepare_img()
UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' )
# forward pass
UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth
if show_prediction:
UpperCAmelCase : Dict = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCAmelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCAmelCase )
if push_to_hub:
model.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
if __name__ == "__main__":
UpperCamelCase__: Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
type=str,
help="URL of the original DPT checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=False,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
parser.add_argument(
"--model_name",
default="dpt-large",
type=str,
help="Name of the model, in case you're pushing to the hub.",
)
parser.add_argument(
"--show_prediction",
action="store_true",
)
UpperCamelCase__: Tuple = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 23 | 1 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : bool = True , _lowerCAmelCase : float = math.inf , _lowerCAmelCase : float = -math.inf , _lowerCAmelCase : float = math.inf , _lowerCAmelCase : float = -math.inf , _lowerCAmelCase : bool = False , _lowerCAmelCase : float = 100 , _lowerCAmelCase : float = 0.0_1 , _lowerCAmelCase : float = 1 , ) -> Any:
UpperCAmelCase : Dict = False
UpperCAmelCase : List[Any] = search_prob
UpperCAmelCase : Any = start_temperate
UpperCAmelCase : Any = []
UpperCAmelCase : int = 0
UpperCAmelCase : Optional[int] = None
while not search_end:
UpperCAmelCase : Any = current_state.score()
if best_state is None or current_score > best_state.score():
UpperCAmelCase : List[str] = current_state
scores.append(_lowerCAmelCase )
iterations += 1
UpperCAmelCase : Union[str, Any] = None
UpperCAmelCase : Dict = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
UpperCAmelCase : Optional[Any] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) # picking a random neighbor
UpperCAmelCase : List[Any] = neighbors.pop(_lowerCAmelCase )
UpperCAmelCase : List[str] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
UpperCAmelCase : int = picked_neighbor
else:
UpperCAmelCase : Optional[int] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
UpperCAmelCase : Optional[Any] = picked_neighbor
UpperCAmelCase : Any = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
UpperCAmelCase : Union[str, Any] = True
else:
UpperCAmelCase : int = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(_lowerCAmelCase ) , _lowerCAmelCase )
plt.xlabel('''Iterations''' )
plt.ylabel('''Function values''' )
plt.show()
return best_state
if __name__ == "__main__":
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> List[str]:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
UpperCamelCase__: Dict = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
UpperCamelCase__: List[str] = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
F"and 50 > y > - 5 found via hill climbing: {local_min.score()}"
)
# starting the problem with initial coordinates (12, 47)
UpperCamelCase__: List[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
UpperCamelCase__: Dict = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
F"and 50 > y > - 5 found via hill climbing: {local_min.score()}"
)
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int ) -> List[str]:
return (3 * x**2) - (6 * y)
UpperCamelCase__: Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
UpperCamelCase__: Optional[int] = simulated_annealing(prob, find_max=False, visualization=True)
print(
"The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
F"{local_min.score()}"
)
UpperCamelCase__: str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
UpperCamelCase__: Union[str, Any] = simulated_annealing(prob, find_max=True, visualization=True)
print(
"The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
F"{local_min.score()}"
)
| 23 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
UpperCamelCase__: Optional[int] = "3"
print("Python version:", sys.version)
print("transformers version:", transformers.__version__)
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
print("NCCL version:", torch.cuda.nccl.version())
except ImportError:
print("Torch version:", None)
try:
import deepspeed
print("DeepSpeed version:", deepspeed.__version__)
except ImportError:
print("DeepSpeed version:", None)
try:
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU")))
print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU")))
except ImportError:
print("TensorFlow version:", None)
| 23 | 1 |
'''simple docstring'''
import html
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...utils import is_bsa_available, logging, requires_backends
if is_bsa_available():
import bsa
from bsa import BeautifulSoup
UpperCamelCase__: str = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def __init__( self : Dict , **__snake_case : List[str] ) -> Optional[Any]:
requires_backends(self , ['''bs4'''] )
super().__init__(**__snake_case )
def A ( self : str , __snake_case : int ) -> Optional[Any]:
UpperCAmelCase : str = []
UpperCAmelCase : int = []
UpperCAmelCase : List[str] = element if element.name else element.parent
for parent in child.parents: # type: bs4.element.Tag
UpperCAmelCase : Dict = parent.find_all(child.name , recursive=__snake_case )
xpath_tags.append(child.name )
xpath_subscripts.append(
0 if 1 == len(__snake_case ) else next(i for i, s in enumerate(__snake_case , 1 ) if s is child ) )
UpperCAmelCase : int = parent
xpath_tags.reverse()
xpath_subscripts.reverse()
return xpath_tags, xpath_subscripts
def A ( self : Any , __snake_case : int ) -> List[Any]:
UpperCAmelCase : List[str] = BeautifulSoup(__snake_case , '''html.parser''' )
UpperCAmelCase : str = []
UpperCAmelCase : Optional[Any] = []
UpperCAmelCase : int = []
for element in html_code.descendants:
if type(__snake_case ) == bsa.element.NavigableString:
if type(element.parent ) != bsa.element.Tag:
continue
UpperCAmelCase : List[str] = html.unescape(__snake_case ).strip()
if not text_in_this_tag:
continue
all_doc_strings.append(__snake_case )
UpperCAmelCase , UpperCAmelCase : str = self.xpath_soup(__snake_case )
stringaxtag_seq.append(__snake_case )
stringaxsubs_seq.append(__snake_case )
if len(__snake_case ) != len(__snake_case ):
raise ValueError('''Number of doc strings and xtags does not correspond''' )
if len(__snake_case ) != len(__snake_case ):
raise ValueError('''Number of doc strings and xsubs does not correspond''' )
return all_doc_strings, stringaxtag_seq, stringaxsubs_seq
def A ( self : Tuple , __snake_case : List[str] , __snake_case : Tuple ) -> Dict:
UpperCAmelCase : int = ''''''
for tagname, subs in zip(__snake_case , __snake_case ):
xpath += F"""/{tagname}"""
if subs != 0:
xpath += F"""[{subs}]"""
return xpath
def __call__( self : Any , __snake_case : Optional[int] ) -> BatchFeature:
UpperCAmelCase : List[Any] = False
# Check that strings has a valid type
if isinstance(__snake_case , __snake_case ):
UpperCAmelCase : Dict = True
elif isinstance(__snake_case , (list, tuple) ):
if len(__snake_case ) == 0 or isinstance(html_strings[0] , __snake_case ):
UpperCAmelCase : int = True
if not valid_strings:
raise ValueError(
'''HTML strings must of type `str`, `List[str]` (batch of examples), '''
F"""but is of type {type(__snake_case )}.""" )
UpperCAmelCase : List[str] = bool(isinstance(__snake_case , (list, tuple) ) and (isinstance(html_strings[0] , __snake_case )) )
if not is_batched:
UpperCAmelCase : Any = [html_strings]
# Get nodes + xpaths
UpperCAmelCase : Tuple = []
UpperCAmelCase : List[str] = []
for html_string in html_strings:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = self.get_three_from_single(__snake_case )
nodes.append(__snake_case )
UpperCAmelCase : Any = []
for node, tag_list, sub_list in zip(__snake_case , __snake_case , __snake_case ):
UpperCAmelCase : str = self.construct_xpath(__snake_case , __snake_case )
xpath_strings.append(__snake_case )
xpaths.append(__snake_case )
# return as Dict
UpperCAmelCase : int = {'''nodes''': nodes, '''xpaths''': xpaths}
UpperCAmelCase : int = BatchFeature(data=__snake_case , tensor_type=__snake_case )
return encoded_inputs
| 23 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float:
if len(_lowerCAmelCase ) == 0:
raise ValueError('''find_max() arg is an empty sequence''' )
if (
left >= len(_lowerCAmelCase )
or left < -len(_lowerCAmelCase )
or right >= len(_lowerCAmelCase )
or right < -len(_lowerCAmelCase )
):
raise IndexError('''list index out of range''' )
if left == right:
return nums[left]
UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle
UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid]
UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 23 | 1 |
'''simple docstring'''
def snake_case_ ( _lowerCAmelCase : int ) -> int:
assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), f"""The input value of [n={number}] is not an integer"""
if number == 1:
return 2
elif number < 1:
UpperCAmelCase : str = f"""The input value of [n={number}] has to be > 0"""
raise ValueError(_lowerCAmelCase )
else:
UpperCAmelCase : List[str] = sylvester(number - 1 )
UpperCAmelCase : Tuple = num - 1
UpperCAmelCase : Any = num
return lower * upper + 1
if __name__ == "__main__":
print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
| 23 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = 42
lowerCamelCase__ = 42
def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int:
super().__init__()
self.register_modules(unet=__snake_case , scheduler=__snake_case )
@torch.no_grad()
def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]:
UpperCAmelCase : str = self.unet.config.sample_size
UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size)
UpperCAmelCase : int = self.unet
UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma
UpperCAmelCase : List[Any] = sample.to(self.device )
self.scheduler.set_timesteps(__snake_case )
self.scheduler.set_sigmas(__snake_case )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample
UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample
# prediction step
UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample
UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean
UpperCAmelCase : int = sample_mean.clamp(0 , 1 )
UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=__snake_case )
| 23 | 1 |
'''simple docstring'''
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ) -> List[str]:
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
UpperCAmelCase : List[str] = TapasConfig.from_json_file(_lowerCAmelCase )
# set absolute/relative position embeddings parameter
UpperCAmelCase : Optional[Any] = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
UpperCAmelCase : Any = TapasForQuestionAnswering(config=_lowerCAmelCase )
elif task == "WTQ":
# run_task_main.py hparams
UpperCAmelCase : int = 4
UpperCAmelCase : int = True
# hparam_utils.py hparams
UpperCAmelCase : Union[str, Any] = 0.6_6_4_6_9_4
UpperCAmelCase : Tuple = 0.2_0_7_9_5_1
UpperCAmelCase : Dict = 0.1_2_1_1_9_4
UpperCAmelCase : Optional[int] = True
UpperCAmelCase : str = True
UpperCAmelCase : List[Any] = False
UpperCAmelCase : Tuple = 0.0_3_5_2_5_1_3
UpperCAmelCase : Optional[Any] = TapasForQuestionAnswering(config=_lowerCAmelCase )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
UpperCAmelCase : Optional[Any] = 4
UpperCAmelCase : Tuple = False
# hparam_utils.py hparams
UpperCAmelCase : Union[str, Any] = 3_6.4_5_1_9
UpperCAmelCase : Optional[Any] = 0.9_0_3_4_2_1
UpperCAmelCase : Dict = 2_2_2.0_8_8
UpperCAmelCase : int = True
UpperCAmelCase : Tuple = True
UpperCAmelCase : Tuple = True
UpperCAmelCase : Any = 0.7_6_3_1_4_1
UpperCAmelCase : Tuple = TapasForQuestionAnswering(config=_lowerCAmelCase )
elif task == "TABFACT":
UpperCAmelCase : List[str] = TapasForSequenceClassification(config=_lowerCAmelCase )
elif task == "MLM":
UpperCAmelCase : List[str] = TapasForMaskedLM(config=_lowerCAmelCase )
elif task == "INTERMEDIATE_PRETRAINING":
UpperCAmelCase : List[Any] = TapasModel(config=_lowerCAmelCase )
else:
raise ValueError(f"""Task {task} not supported.""" )
print(f"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Save pytorch-model (weights and configuration)
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(_lowerCAmelCase )
# Save tokenizer files
print(f"""Save tokenizer files to {pytorch_dump_path}""" )
UpperCAmelCase : Dict = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 )
tokenizer.save_pretrained(_lowerCAmelCase )
print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
UpperCamelCase__: Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA."
)
parser.add_argument(
"--reset_position_index_per_cell",
default=False,
action="store_true",
help="Whether to use relative position embeddings or not. Defaults to True.",
)
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--tapas_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained TAPAS model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCamelCase__: Optional[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 23 |
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """MCTCTFeatureExtractor"""
lowerCamelCase__ = """AutoTokenizer"""
def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str:
super().__init__(__snake_case , __snake_case )
UpperCAmelCase : List[Any] = self.feature_extractor
UpperCAmelCase : Union[str, Any] = False
def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__snake_case , **__snake_case )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
UpperCAmelCase : int = kwargs.pop('''raw_speech''' )
else:
UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case )
UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case )
UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case )
if len(__snake_case ) > 0:
UpperCAmelCase : Any = args[0]
UpperCAmelCase : Optional[int] = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case )
if text is not None:
UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case )
if text is None:
return inputs
elif audio is None:
return encodings
else:
UpperCAmelCase : str = encodings['''input_ids''']
return inputs
def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str:
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*__snake_case , **__snake_case )
UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case )
UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case )
if len(__snake_case ) > 0:
UpperCAmelCase : List[str] = args[0]
UpperCAmelCase : List[Any] = args[1:]
if input_features is not None:
UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case )
if labels is not None:
UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
UpperCAmelCase : List[str] = labels['''input_ids''']
return input_features
def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]:
return self.tokenizer.decode(*__snake_case , **__snake_case )
@contextmanager
def A ( self : Any ) -> Optional[int]:
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
UpperCAmelCase : Dict = True
UpperCAmelCase : List[Any] = self.tokenizer
yield
UpperCAmelCase : Tuple = self.feature_extractor
UpperCAmelCase : List[Any] = False
| 23 | 1 |
'''simple docstring'''
def snake_case_ ( _lowerCAmelCase : int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('''The given input must be positive''' )
# get the generated string sequence
UpperCAmelCase : List[str] = gray_code_sequence_string(_lowerCAmelCase )
#
# convert them to integers
for i in range(len(_lowerCAmelCase ) ):
UpperCAmelCase : Optional[int] = int(sequence[i] , 2 )
return sequence
def snake_case_ ( _lowerCAmelCase : int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
UpperCAmelCase : Optional[int] = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
UpperCAmelCase : Optional[Any] = gray_code_sequence_string(bit_count - 1 )
UpperCAmelCase : Tuple = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
UpperCAmelCase : Tuple = '''0''' + smaller_sequence[i]
sequence.append(_lowerCAmelCase )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
UpperCAmelCase : Optional[Any] = '''1''' + smaller_sequence[i]
sequence.append(_lowerCAmelCase )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
'''simple docstring'''
from math import isclose, sqrt
def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]:
UpperCAmelCase : Optional[int] = point_y / 4 / point_x
UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4
UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100
UpperCAmelCase : List[str] = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
UpperCAmelCase : Optional[int] = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus
UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int:
UpperCAmelCase : int = 0
UpperCAmelCase : float = first_x_coord
UpperCAmelCase : float = first_y_coord
UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x)
while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0):
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F"{solution() = }")
| 23 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase__: Union[str, Any] = {
"configuration_squeezebert": [
"SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SqueezeBertConfig",
"SqueezeBertOnnxConfig",
],
"tokenization_squeezebert": ["SqueezeBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: List[str] = ["SqueezeBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: Dict = [
"SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"SqueezeBertForMaskedLM",
"SqueezeBertForMultipleChoice",
"SqueezeBertForQuestionAnswering",
"SqueezeBertForSequenceClassification",
"SqueezeBertForTokenClassification",
"SqueezeBertModel",
"SqueezeBertModule",
"SqueezeBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
UpperCamelCase__: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 23 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase__: str = {
"configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"],
"tokenization_lxmert": ["LxmertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: int = ["LxmertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: Union[str, Any] = [
"LxmertEncoder",
"LxmertForPreTraining",
"LxmertForQuestionAnswering",
"LxmertModel",
"LxmertPreTrainedModel",
"LxmertVisualFeatureEncoder",
"LxmertXLayer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: int = [
"TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFLxmertForPreTraining",
"TFLxmertMainLayer",
"TFLxmertModel",
"TFLxmertPreTrainedModel",
"TFLxmertVisualFeatureEncoder",
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 23 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def __init__( self : str ) -> Optional[int]:
UpperCAmelCase : Any = []
def A ( self : Union[str, Any] , __snake_case : str , __snake_case : Any , __snake_case : Dict , **__snake_case : List[Any] ) -> int:
self.events.append('''on_init_end''' )
def A ( self : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : List[Any] , **__snake_case : List[Any] ) -> Dict:
self.events.append('''on_train_begin''' )
def A ( self : Any , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Any , **__snake_case : List[Any] ) -> int:
self.events.append('''on_train_end''' )
def A ( self : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[int] , **__snake_case : List[Any] ) -> int:
self.events.append('''on_epoch_begin''' )
def A ( self : str , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[Any] , **__snake_case : str ) -> Optional[int]:
self.events.append('''on_epoch_end''' )
def A ( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Any , **__snake_case : Any ) -> Optional[int]:
self.events.append('''on_step_begin''' )
def A ( self : Any , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] , **__snake_case : Tuple ) -> Optional[Any]:
self.events.append('''on_step_end''' )
def A ( self : Optional[Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : List[str] , **__snake_case : Any ) -> Dict:
self.events.append('''on_evaluate''' )
def A ( self : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : int , **__snake_case : str ) -> Optional[Any]:
self.events.append('''on_predict''' )
def A ( self : Dict , __snake_case : Any , __snake_case : int , __snake_case : Dict , **__snake_case : List[Any] ) -> Union[str, Any]:
self.events.append('''on_save''' )
def A ( self : str , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Any , **__snake_case : Tuple ) -> List[Any]:
self.events.append('''on_log''' )
def A ( self : List[str] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Tuple , **__snake_case : Optional[int] ) -> int:
self.events.append('''on_prediction_step''' )
@require_torch
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : List[Any] ) -> Optional[int]:
UpperCAmelCase : Dict = tempfile.mkdtemp()
def A ( self : Tuple ) -> Any:
shutil.rmtree(self.output_dir )
def A ( self : Tuple , __snake_case : Optional[int]=0 , __snake_case : Any=0 , __snake_case : List[Any]=64 , __snake_case : int=64 , __snake_case : Union[str, Any]=None , __snake_case : Dict=False , **__snake_case : str ) -> List[Any]:
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
UpperCAmelCase : Dict = RegressionDataset(length=__snake_case )
UpperCAmelCase : List[Any] = RegressionDataset(length=__snake_case )
UpperCAmelCase : Dict = RegressionModelConfig(a=__snake_case , b=__snake_case )
UpperCAmelCase : Tuple = RegressionPreTrainedModel(__snake_case )
UpperCAmelCase : Tuple = TrainingArguments(self.output_dir , disable_tqdm=__snake_case , report_to=[] , **__snake_case )
return Trainer(
__snake_case , __snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , callbacks=__snake_case , )
def A ( self : Any , __snake_case : List[Any] , __snake_case : List[Any] ) -> Union[str, Any]:
self.assertEqual(len(__snake_case ) , len(__snake_case ) )
# Order doesn't matter
UpperCAmelCase : Dict = sorted(__snake_case , key=lambda __snake_case : cb.__name__ if isinstance(__snake_case , __snake_case ) else cb.__class__.__name__ )
UpperCAmelCase : str = sorted(__snake_case , key=lambda __snake_case : cb.__name__ if isinstance(__snake_case , __snake_case ) else cb.__class__.__name__ )
for cba, cba in zip(__snake_case , __snake_case ):
if isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ):
self.assertEqual(__snake_case , __snake_case )
elif isinstance(__snake_case , __snake_case ) and not isinstance(__snake_case , __snake_case ):
self.assertEqual(__snake_case , cba.__class__ )
elif not isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ):
self.assertEqual(cba.__class__ , __snake_case )
else:
self.assertEqual(__snake_case , __snake_case )
def A ( self : Dict , __snake_case : List[str] ) -> int:
UpperCAmelCase : Any = ['''on_init_end''', '''on_train_begin''']
UpperCAmelCase : Optional[Any] = 0
UpperCAmelCase : Optional[int] = len(trainer.get_eval_dataloader() )
UpperCAmelCase : str = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate''']
for _ in range(trainer.state.num_train_epochs ):
expected_events.append('''on_epoch_begin''' )
for _ in range(__snake_case ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append('''on_log''' )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append('''on_save''' )
expected_events.append('''on_epoch_end''' )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def A ( self : Any ) -> List[Any]:
UpperCAmelCase : Dict = self.get_trainer()
UpperCAmelCase : Optional[Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case )
# Callbacks passed at init are added to the default callbacks
UpperCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(__snake_case )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
UpperCAmelCase : List[str] = self.get_trainer(disable_tqdm=__snake_case )
UpperCAmelCase : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case )
def A ( self : int ) -> Dict:
UpperCAmelCase : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
UpperCAmelCase : Optional[Any] = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(__snake_case )
expected_callbacks.remove(__snake_case )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case )
UpperCAmelCase : Dict = self.get_trainer()
UpperCAmelCase : Optional[Any] = trainer.pop_callback(__snake_case )
self.assertEqual(cb.__class__ , __snake_case )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case )
trainer.add_callback(__snake_case )
expected_callbacks.insert(0 , __snake_case )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case )
# We can also add, pop, or remove by instance
UpperCAmelCase : Any = self.get_trainer()
UpperCAmelCase : Union[str, Any] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(__snake_case )
expected_callbacks.remove(__snake_case )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case )
UpperCAmelCase : Optional[Any] = self.get_trainer()
UpperCAmelCase : Dict = trainer.callback_handler.callbacks[0]
UpperCAmelCase : str = trainer.pop_callback(__snake_case )
self.assertEqual(__snake_case , __snake_case )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case )
trainer.add_callback(__snake_case )
expected_callbacks.insert(0 , __snake_case )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case )
def A ( self : int ) -> Union[str, Any]:
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action='''ignore''' , category=__snake_case )
UpperCAmelCase : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
UpperCAmelCase : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) )
# Independent log/save/eval
UpperCAmelCase : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 )
trainer.train()
UpperCAmelCase : List[Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) )
UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 )
trainer.train()
UpperCAmelCase : Union[str, Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) )
UpperCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='''steps''' )
trainer.train()
UpperCAmelCase : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) )
UpperCAmelCase : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='''epoch''' )
trainer.train()
UpperCAmelCase : List[str] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) )
# A bit of everything
UpperCAmelCase : List[Any] = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='''steps''' , )
trainer.train()
UpperCAmelCase : Optional[Any] = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) )
# warning should be emitted for duplicated callbacks
with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock:
UpperCAmelCase : Optional[Any] = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(__snake_case ) in warn_mock.call_args[0][0]
| 23 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = AltDiffusionPipeline
lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS
lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS
lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
def A ( self : Dict ) -> int:
torch.manual_seed(0 )
UpperCAmelCase : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
UpperCAmelCase : Dict = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , )
torch.manual_seed(0 )
UpperCAmelCase : Union[str, Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
UpperCAmelCase : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , )
UpperCAmelCase : List[Any] = CLIPTextModel(__snake_case )
UpperCAmelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
UpperCAmelCase : Optional[int] = 77
UpperCAmelCase : Optional[int] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def A ( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str]=0 ) -> Union[str, Any]:
if str(__snake_case ).startswith('''mps''' ):
UpperCAmelCase : str = torch.manual_seed(__snake_case )
else:
UpperCAmelCase : Tuple = torch.Generator(device=__snake_case ).manual_seed(__snake_case )
UpperCAmelCase : Dict = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def A ( self : Union[str, Any] ) -> List[str]:
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def A ( self : Tuple ) -> List[str]:
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def A ( self : Tuple ) -> Optional[int]:
UpperCAmelCase : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase : Any = self.get_dummy_components()
torch.manual_seed(0 )
UpperCAmelCase : Optional[int] = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
UpperCAmelCase : List[str] = RobertaSeriesModelWithTransformation(__snake_case )
UpperCAmelCase : str = text_encoder
UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case )
UpperCAmelCase : str = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__snake_case )
UpperCAmelCase : Optional[int] = '''A photo of an astronaut'''
UpperCAmelCase : List[Any] = alt_pipe(**__snake_case )
UpperCAmelCase : Optional[Any] = output.images
UpperCAmelCase : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase : List[str] = np.array(
[0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A ( self : int ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase : int = self.get_dummy_components()
UpperCAmelCase : int = PNDMScheduler(skip_prk_steps=__snake_case )
torch.manual_seed(0 )
UpperCAmelCase : int = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
UpperCAmelCase : Union[str, Any] = RobertaSeriesModelWithTransformation(__snake_case )
UpperCAmelCase : Union[str, Any] = text_encoder
UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case )
UpperCAmelCase : Dict = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : int = self.get_dummy_inputs(__snake_case )
UpperCAmelCase : Optional[int] = alt_pipe(**__snake_case )
UpperCAmelCase : Optional[int] = output.images
UpperCAmelCase : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase : Optional[int] = np.array(
[0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : str ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A ( self : List[Any] ) -> Any:
# make sure here that pndm scheduler skips prk
UpperCAmelCase : List[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=__snake_case )
UpperCAmelCase : Tuple = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger'''
UpperCAmelCase : Any = torch.manual_seed(0 )
UpperCAmelCase : Optional[int] = alt_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' )
UpperCAmelCase : Dict = output.images
UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase : List[str] = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A ( self : Tuple ) -> int:
UpperCAmelCase : int = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' )
UpperCAmelCase : Tuple = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=__snake_case , safety_checker=__snake_case )
UpperCAmelCase : Dict = alt_pipe.to(__snake_case )
alt_pipe.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : Tuple = '''A painting of a squirrel eating a burger'''
UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase : List[Any] = alt_pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='''numpy''' )
UpperCAmelCase : Dict = output.images
UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
UpperCAmelCase : Union[str, Any] = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 23 | 1 |
'''simple docstring'''
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
UpperCamelCase__: Dict = logging.getLogger()
def snake_case_ ( ) -> Dict:
UpperCAmelCase : str = argparse.ArgumentParser()
parser.add_argument('''-f''' )
UpperCAmelCase : List[Any] = parser.parse_args()
return args.f
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def A ( self : Optional[int] ) -> None:
UpperCAmelCase : Any = logging.StreamHandler(sys.stdout )
logger.addHandler(__snake_case )
def A ( self : str , __snake_case : Optional[int] ) -> int:
UpperCAmelCase : Any = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , '''run_glue_deebert.py''' )
with patch.object(__snake_case , '''argv''' , __snake_case ):
UpperCAmelCase : int = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(__snake_case , 0.6_66 )
@slow
@require_torch_non_multi_gpu
def A ( self : Tuple ) -> int:
UpperCAmelCase : List[Any] = '''
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
'''.split()
self.run_and_check(__snake_case )
UpperCAmelCase : Union[str, Any] = '''
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
'''.split()
self.run_and_check(__snake_case )
UpperCAmelCase : Optional[int] = '''
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
'''.split()
self.run_and_check(__snake_case )
| 23 |
'''simple docstring'''
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Optional[int]:
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ) -> Dict:
UpperCAmelCase : Dict = tmp_path / '''cache'''
UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase : str = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> Optional[int]:
UpperCAmelCase : Any = tmp_path / '''cache'''
UpperCAmelCase : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Any = features.copy() if features else default_expected_features
UpperCAmelCase : List[Any] = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Dict = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''},
] , )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ) -> Tuple:
UpperCAmelCase : Optional[Any] = tmp_path / '''cache'''
UpperCAmelCase : Optional[int] = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}
UpperCAmelCase : int = features.copy() if features else default_expected_features
UpperCAmelCase : Any = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Tuple = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> Union[str, Any]:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
UpperCAmelCase : Tuple = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''}
UpperCAmelCase : List[str] = features.copy()
UpperCAmelCase : Union[str, Any] = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Tuple = tmp_path / '''cache'''
UpperCAmelCase : List[str] = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> Optional[Any]:
UpperCAmelCase : Any = tmp_path / '''cache'''
UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : List[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Dict:
if issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : str = jsonl_path
elif issubclass(_lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase : Dict = [jsonl_path]
UpperCAmelCase : int = tmp_path / '''cache'''
UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Optional[int] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_dataset(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=("train",) ) -> Union[str, Any]:
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
for split in splits:
UpperCAmelCase : List[str] = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ) -> Any:
UpperCAmelCase : Optional[Any] = tmp_path / '''cache'''
UpperCAmelCase : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase : Optional[int] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read()
_check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> int:
UpperCAmelCase : Dict = tmp_path / '''cache'''
UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features
UpperCAmelCase : Union[str, Any] = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase : Tuple = JsonDatasetReader({'''train''': jsonl_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> Union[str, Any]:
if split:
UpperCAmelCase : Optional[int] = {split: jsonl_path}
else:
UpperCAmelCase : Any = '''train'''
UpperCAmelCase : Any = {'''train''': jsonl_path, '''test''': jsonl_path}
UpperCAmelCase : Tuple = tmp_path / '''cache'''
UpperCAmelCase : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
UpperCAmelCase : Optional[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read()
_check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def snake_case_ ( _lowerCAmelCase : List[str] ) -> str:
return json.load(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Dict ) -> str:
return [json.loads(_lowerCAmelCase ) for line in buffer]
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> Dict:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write()
buffer.seek(0 )
UpperCAmelCase : Union[str, Any] = load_json_function(__snake_case )
assert isinstance(__snake_case , __snake_case )
assert isinstance(exported_content[0] , __snake_case )
assert len(__snake_case ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def A ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[Any] ) -> List[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write()
buffer.seek(0 )
UpperCAmelCase : Union[str, Any] = load_json(__snake_case )
assert isinstance(__snake_case , __snake_case )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(__snake_case ) == 10
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def A ( self : str , __snake_case : str , __snake_case : str , __snake_case : int ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write()
buffer.seek(0 )
UpperCAmelCase : Any = load_json_function(__snake_case )
assert isinstance(__snake_case , __snake_case )
assert isinstance(exported_content[0] , __snake_case )
assert len(__snake_case ) == 10
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def A ( self : Any , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write()
buffer.seek(0 )
UpperCAmelCase : List[str] = load_json(__snake_case )
assert isinstance(__snake_case , __snake_case )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(__snake_case ) == 10
def A ( self : List[Any] , __snake_case : str ) -> Dict:
with pytest.raises(__snake_case ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 )
@pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] )
def A ( self : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Union[str, Any]:
UpperCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / F"""test.json.{extension}"""
UpperCAmelCase : List[Any] = str(shared_datadir / F"""test_file.json.{extension}""" )
JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write()
with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f:
UpperCAmelCase : str = f.read()
with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f:
UpperCAmelCase : Optional[int] = f.read()
assert exported_content == original_content
| 23 | 1 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = MODEL_FOR_MASKED_LM_MAPPING
lowerCamelCase__ = TF_MODEL_FOR_MASKED_LM_MAPPING
def A ( self : List[str] ) -> List[Any]:
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def A ( self : List[str] ) -> List[Any]:
UpperCAmelCase : Tuple = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' )
UpperCAmelCase : str = unmasker('''My name is <mask>''' )
self.assertEqual(
nested_simplify(__snake_case , decimals=6 ) , [
{'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 38015, '''token_str''': ''' grouped'''},
{'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 25506, '''token_str''': ''' accuser'''},
] , )
UpperCAmelCase : Optional[Any] = unmasker('''The largest city in France is <mask>''' )
self.assertEqual(
nested_simplify(__snake_case , decimals=6 ) , [
{
'''sequence''': '''The largest city in France is grouped''',
'''score''': 2.1E-05,
'''token''': 38015,
'''token_str''': ''' grouped''',
},
{
'''sequence''': '''The largest city in France is accuser''',
'''score''': 2.1E-05,
'''token''': 25506,
'''token_str''': ''' accuser''',
},
] , )
UpperCAmelCase : Any = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 )
self.assertEqual(
nested_simplify(__snake_case , decimals=6 ) , [
{'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 13606, '''token_str''': ''' Clara'''},
{'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 3499, '''token_str''': ''' Patrick'''},
{'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 2941, '''token_str''': ''' Te'''},
] , )
@require_torch
def A ( self : Optional[Any] ) -> List[Any]:
UpperCAmelCase : Union[str, Any] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' )
UpperCAmelCase : List[Any] = unmasker('''My name is <mask>''' )
self.assertEqual(
nested_simplify(__snake_case , decimals=6 ) , [
{'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 35676, '''token_str''': ''' Maul'''},
{'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS'''},
] , )
UpperCAmelCase : int = unmasker('''The largest city in France is <mask>''' )
self.assertEqual(
nested_simplify(__snake_case , decimals=6 ) , [
{
'''sequence''': '''The largest city in France is Maul''',
'''score''': 2.2E-05,
'''token''': 35676,
'''token_str''': ''' Maul''',
},
{'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS'''},
] , )
UpperCAmelCase : Tuple = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 )
self.assertEqual(
nested_simplify(__snake_case , decimals=6 ) , [
{'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 3499, '''token_str''': ''' Patrick'''},
{'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 2941, '''token_str''': ''' Te'''},
{'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 13606, '''token_str''': ''' Clara'''},
] , )
UpperCAmelCase : int = unmasker('''My name is <mask> <mask>''' , top_k=2 )
self.assertEqual(
nested_simplify(__snake_case , decimals=6 ) , [
[
{
'''score''': 2.2E-05,
'''token''': 35676,
'''token_str''': ''' Maul''',
'''sequence''': '''<s>My name is Maul<mask></s>''',
},
{'''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''},
],
[
{
'''score''': 2.2E-05,
'''token''': 35676,
'''token_str''': ''' Maul''',
'''sequence''': '''<s>My name is<mask> Maul</s>''',
},
{'''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''},
],
] , )
@require_torch_gpu
def A ( self : Optional[Any] ) -> Optional[Any]:
UpperCAmelCase : List[Any] = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' )
# convert model to fp16
pipe.model.half()
UpperCAmelCase : List[Any] = pipe('''Paris is the [MASK] of France.''' )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__snake_case , __snake_case )
@slow
@require_torch
def A ( self : Optional[Any] ) -> int:
UpperCAmelCase : Tuple = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' )
self.run_large_test(__snake_case )
@slow
@require_tf
def A ( self : Dict ) -> Optional[int]:
UpperCAmelCase : Tuple = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' )
self.run_large_test(__snake_case )
def A ( self : Dict , __snake_case : Any ) -> str:
UpperCAmelCase : List[str] = unmasker('''My name is <mask>''' )
self.assertEqual(
nested_simplify(__snake_case ) , [
{'''sequence''': '''My name is John''', '''score''': 0.0_08, '''token''': 610, '''token_str''': ''' John'''},
{'''sequence''': '''My name is Chris''', '''score''': 0.0_07, '''token''': 1573, '''token_str''': ''' Chris'''},
] , )
UpperCAmelCase : Optional[int] = unmasker('''The largest city in France is <mask>''' )
self.assertEqual(
nested_simplify(__snake_case ) , [
{
'''sequence''': '''The largest city in France is Paris''',
'''score''': 0.2_51,
'''token''': 2201,
'''token_str''': ''' Paris''',
},
{
'''sequence''': '''The largest city in France is Lyon''',
'''score''': 0.2_14,
'''token''': 12790,
'''token_str''': ''' Lyon''',
},
] , )
UpperCAmelCase : Tuple = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 )
self.assertEqual(
nested_simplify(__snake_case ) , [
{'''sequence''': '''My name is Patrick''', '''score''': 0.0_05, '''token''': 3499, '''token_str''': ''' Patrick'''},
{'''sequence''': '''My name is Clara''', '''score''': 0.0_00, '''token''': 13606, '''token_str''': ''' Clara'''},
{'''sequence''': '''My name is Te''', '''score''': 0.0_00, '''token''': 2941, '''token_str''': ''' Te'''},
] , )
@require_torch
def A ( self : Union[str, Any] ) -> Dict:
UpperCAmelCase : List[str] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' )
UpperCAmelCase : Optional[Any] = None
UpperCAmelCase : Union[str, Any] = None
self.run_pipeline_test(__snake_case , [] )
@require_tf
def A ( self : Dict ) -> List[Any]:
UpperCAmelCase : List[str] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' )
UpperCAmelCase : Dict = None
UpperCAmelCase : Union[str, Any] = None
self.run_pipeline_test(__snake_case , [] )
def A ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : int , __snake_case : Optional[int] ) -> Union[str, Any]:
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' )
UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case )
UpperCAmelCase : Optional[Any] = [
F"""This is another {tokenizer.mask_token} test""",
]
return fill_masker, examples
def A ( self : List[str] , __snake_case : Any , __snake_case : str ) -> str:
UpperCAmelCase : int = fill_masker.tokenizer
UpperCAmelCase : Tuple = fill_masker.model
UpperCAmelCase : Optional[Any] = fill_masker(
F"""This is a {tokenizer.mask_token}""" , )
self.assertEqual(
__snake_case , [
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
] , )
UpperCAmelCase : int = fill_masker([F"""This is a {tokenizer.mask_token}"""] )
self.assertEqual(
__snake_case , [
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
] , )
UpperCAmelCase : Union[str, Any] = fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""] )
self.assertEqual(
__snake_case , [
[
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
],
[
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
],
] , )
with self.assertRaises(__snake_case ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__snake_case ):
fill_masker('''This is''' )
self.run_test_top_k(__snake_case , __snake_case )
self.run_test_targets(__snake_case , __snake_case )
self.run_test_top_k_targets(__snake_case , __snake_case )
self.fill_mask_with_duplicate_targets_and_top_k(__snake_case , __snake_case )
self.fill_mask_with_multiple_masks(__snake_case , __snake_case )
def A ( self : Any , __snake_case : Any , __snake_case : List[Any] ) -> List[Any]:
UpperCAmelCase : Tuple = tokenizer.get_vocab()
UpperCAmelCase : List[str] = sorted(vocab.keys() )[:2]
# Pipeline argument
UpperCAmelCase : Any = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , targets=__snake_case )
UpperCAmelCase : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
__snake_case , [
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
] , )
UpperCAmelCase : Any = {vocab[el] for el in targets}
self.assertEqual({el['''token'''] for el in outputs} , __snake_case )
UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['''token_str'''] for el in outputs} , set(__snake_case ) )
# Call argument
UpperCAmelCase : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case )
UpperCAmelCase : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case )
self.assertEqual(
__snake_case , [
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
] , )
UpperCAmelCase : Tuple = {vocab[el] for el in targets}
self.assertEqual({el['''token'''] for el in outputs} , __snake_case )
UpperCAmelCase : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['''token_str'''] for el in outputs} , set(__snake_case ) )
# Score equivalence
UpperCAmelCase : int = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case )
UpperCAmelCase : int = [top_mask['''token_str'''] for top_mask in outputs]
UpperCAmelCase : Optional[int] = [top_mask['''score'''] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__snake_case ) == set(__snake_case ):
UpperCAmelCase : List[str] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case )
UpperCAmelCase : str = [top_mask['''score'''] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) )
# Raises with invalid
with self.assertRaises(__snake_case ):
UpperCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__snake_case ):
UpperCAmelCase : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[''''''] )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets='''''' )
def A ( self : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] ) -> Optional[Any]:
UpperCAmelCase : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , top_k=2 )
UpperCAmelCase : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
__snake_case , [
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
] , )
UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case )
UpperCAmelCase : Tuple = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
__snake_case , [
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
] , )
self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) )
def A ( self : Dict , __snake_case : List[Any] , __snake_case : Tuple ) -> int:
UpperCAmelCase : List[str] = tokenizer.get_vocab()
UpperCAmelCase : Optional[int] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case )
# top_k=2, ntargets=3
UpperCAmelCase : Union[str, Any] = sorted(vocab.keys() )[:3]
UpperCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=__snake_case )
# If we use the most probably targets, and filter differently, we should still
# have the same results
UpperCAmelCase : Union[str, Any] = [el['''token_str'''] for el in sorted(__snake_case , key=lambda __snake_case : x["score"] , reverse=__snake_case )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__snake_case ).issubset(__snake_case ):
UpperCAmelCase : Tuple = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=__snake_case )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) )
def A ( self : Tuple , __snake_case : Dict , __snake_case : Dict ) -> Union[str, Any]:
UpperCAmelCase : List[str] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case )
UpperCAmelCase : str = tokenizer.get_vocab()
# String duplicates + id duplicates
UpperCAmelCase : Optional[int] = sorted(vocab.keys() )[:3]
UpperCAmelCase : Union[str, Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]]
UpperCAmelCase : List[Any] = fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=__snake_case , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__snake_case ) , 3 )
def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Optional[int]:
UpperCAmelCase : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case )
UpperCAmelCase : Optional[Any] = fill_masker(
F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
__snake_case , [
[
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
],
[
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
],
[
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
{'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )},
],
] , )
| 23 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase__: Tuple = logging.get_logger(__name__)
UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model"}
UpperCamelCase__: Optional[int] = {
"vocab_file": {
"moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model",
"moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model",
"moussaKam/barthez-orangesum-title": (
"https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"
),
},
}
UpperCamelCase__: Dict = {
"moussaKam/mbarthez": 1024,
"moussaKam/barthez": 1024,
"moussaKam/barthez-orangesum-title": 1024,
}
UpperCamelCase__: Tuple = "▁"
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["""input_ids""", """attention_mask"""]
def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="</s>" , __snake_case : Any="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Dict , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token
UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , )
UpperCAmelCase : Optional[int] = vocab_file
UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__snake_case ) )
UpperCAmelCase : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
UpperCAmelCase : Optional[Any] = len(self.sp_model ) - 1
UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase : Optional[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case )
if token_ids_a is None:
return [1] + ([0] * len(__snake_case )) + [1]
return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1]
def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase : Tuple = [self.sep_token_id]
UpperCAmelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def A ( self : Dict ) -> Optional[int]:
return len(self.sp_model )
def A ( self : List[str] ) -> Dict:
UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def A ( self : Optional[Any] , __snake_case : str ) -> List[str]:
return self.sp_model.encode(__snake_case , out_type=__snake_case )
def A ( self : int , __snake_case : int ) -> int:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(__snake_case )
return spm_id if spm_id else self.unk_token_id
def A ( self : int , __snake_case : Any ) -> List[Any]:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(__snake_case )
def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]:
UpperCAmelCase : Optional[Any] = []
UpperCAmelCase : int = ''''''
UpperCAmelCase : Union[str, Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__snake_case ) + token
UpperCAmelCase : str = True
UpperCAmelCase : List[str] = []
else:
current_sub_tokens.append(__snake_case )
UpperCAmelCase : Optional[int] = False
out_string += self.sp_model.decode(__snake_case )
return out_string.strip()
def __getstate__( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase : Optional[Any] = self.__dict__.copy()
UpperCAmelCase : Any = None
return state
def __setstate__( self : Optional[int] , __snake_case : Union[str, Any] ) -> List[Any]:
UpperCAmelCase : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase : Optional[Any] = {}
UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__snake_case ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase : Union[str, Any] = os.path.join(
__snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(__snake_case , '''wb''' ) as fi:
UpperCAmelCase : Any = self.sp_model.serialized_model_proto()
fi.write(__snake_case )
return (out_vocab_file,)
| 23 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@property
def A ( self : Dict ) -> List[Any]:
torch.manual_seed(0 )
UpperCAmelCase : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def A ( self : Optional[int] ) -> Optional[int]:
UpperCAmelCase : Any = self.dummy_uncond_unet
UpperCAmelCase : Optional[Any] = ScoreSdeVeScheduler()
UpperCAmelCase : Tuple = ScoreSdeVePipeline(unet=__snake_case , scheduler=__snake_case )
sde_ve.to(__snake_case )
sde_ve.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase : str = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__snake_case ).images
UpperCAmelCase : Tuple = torch.manual_seed(0 )
UpperCAmelCase : Dict = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__snake_case , return_dict=__snake_case )[
0
]
UpperCAmelCase : List[str] = image[0, -3:, -3:, -1]
UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase : Union[str, Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase : List[Any] = '''google/ncsnpp-church-256'''
UpperCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained(__snake_case )
UpperCAmelCase : List[str] = ScoreSdeVeScheduler.from_pretrained(__snake_case )
UpperCAmelCase : Tuple = ScoreSdeVePipeline(unet=__snake_case , scheduler=__snake_case )
sde_ve.to(__snake_case )
sde_ve.set_progress_bar_config(disable=__snake_case )
UpperCAmelCase : Tuple = torch.manual_seed(0 )
UpperCAmelCase : str = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=__snake_case ).images
UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
UpperCAmelCase : Optional[int] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 23 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@classmethod
def A ( cls : Union[str, Any] ) -> int:
UpperCAmelCase : Optional[Any] = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def A ( cls : List[str] ) -> Tuple:
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def A ( self : int ) -> Tuple:
UpperCAmelCase : List[Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase : Dict = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
__snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]:
UpperCAmelCase : str = True
UpperCAmelCase : int = flatten_dict(modela.params )
UpperCAmelCase : Dict = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
UpperCAmelCase : Dict = False
return models_are_equal
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
UpperCAmelCase : int = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__snake_case , __snake_case ) )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertTrue(check_models_equal(__snake_case , __snake_case ) )
def A ( self : List[str] ) -> Dict:
UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
UpperCAmelCase : Optional[int] = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertTrue(check_models_equal(__snake_case , __snake_case ) )
def A ( self : Optional[int] ) -> str:
UpperCAmelCase : Dict = '''bert'''
UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(__snake_case ):
UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertIsNotNone(__snake_case )
def A ( self : Dict ) -> List[Any]:
UpperCAmelCase : Optional[int] = '''bert'''
UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(__snake_case ):
UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertIsNotNone(__snake_case )
| 23 | 1 |
'''simple docstring'''
def snake_case_ ( _lowerCAmelCase : int ) -> bool:
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print("Program to check whether a number is a Perfect number or not...")
UpperCamelCase__: int = int(input("Enter number: ").strip())
print(F"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
| 23 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
def __init__( self : Optional[int] , __snake_case : str , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=8 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : int=True , __snake_case : List[Any]=99 , __snake_case : str=16 , __snake_case : Tuple=5 , __snake_case : Tuple=2 , __snake_case : str=36 , __snake_case : Dict="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=512 , __snake_case : Optional[Any]=16 , __snake_case : int=2 , __snake_case : int=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : str=None , ) -> Optional[int]:
UpperCAmelCase : Optional[int] = parent
UpperCAmelCase : Tuple = batch_size
UpperCAmelCase : List[str] = seq_length
UpperCAmelCase : List[Any] = is_training
UpperCAmelCase : int = use_input_mask
UpperCAmelCase : Any = use_token_type_ids
UpperCAmelCase : str = use_labels
UpperCAmelCase : Union[str, Any] = vocab_size
UpperCAmelCase : List[str] = hidden_size
UpperCAmelCase : Optional[Any] = num_hidden_layers
UpperCAmelCase : Union[str, Any] = num_attention_heads
UpperCAmelCase : Optional[Any] = intermediate_size
UpperCAmelCase : Union[str, Any] = hidden_act
UpperCAmelCase : int = hidden_dropout_prob
UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
UpperCAmelCase : Union[str, Any] = max_position_embeddings
UpperCAmelCase : str = type_vocab_size
UpperCAmelCase : List[str] = type_sequence_label_size
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Optional[Any] = num_labels
UpperCAmelCase : Optional[int] = num_choices
UpperCAmelCase : Any = scope
def A ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[int] = None
if self.use_input_mask:
UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Dict = None
if self.use_token_type_ids:
UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase : str = None
UpperCAmelCase : Tuple = None
UpperCAmelCase : int = None
if self.use_labels:
UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase : List[str] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A ( self : int ) -> Tuple:
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , )
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase : Optional[Any] = self.get_config()
UpperCAmelCase : int = 300
return config
def A ( self : Optional[Any] ) -> Any:
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : Tuple = self.prepare_config_and_inputs()
UpperCAmelCase : Dict = True
UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def A ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[Any] ) -> List[str]:
UpperCAmelCase : int = MraModel(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case )
UpperCAmelCase : Optional[int] = model(__snake_case , token_type_ids=__snake_case )
UpperCAmelCase : Dict = model(__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[Any] , ) -> Tuple:
UpperCAmelCase : str = True
UpperCAmelCase : Tuple = MraModel(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Optional[int] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , )
UpperCAmelCase : Optional[Any] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , )
UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int ) -> Any:
UpperCAmelCase : Dict = MraForMaskedLM(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A ( self : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Dict , __snake_case : Any , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Tuple ) -> Optional[int]:
UpperCAmelCase : List[str] = MraForQuestionAnswering(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : List[Any] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int:
UpperCAmelCase : int = self.num_labels
UpperCAmelCase : Union[str, Any] = MraForSequenceClassification(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> int:
UpperCAmelCase : Tuple = self.num_labels
UpperCAmelCase : List[str] = MraForTokenClassification(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A ( self : str , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] ) -> Optional[Any]:
UpperCAmelCase : Tuple = self.num_choices
UpperCAmelCase : int = MraForMultipleChoice(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase : List[str] = model(
__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A ( self : str ) -> Dict:
UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) : List[str] = config_and_inputs
UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = ()
def A ( self : int ) -> Union[str, Any]:
UpperCAmelCase : List[str] = MraModelTester(self )
UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 )
def A ( self : Optional[Any] ) -> str:
self.config_tester.run_common_tests()
def A ( self : Tuple ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
def A ( self : List[Any] ) -> Optional[Any]:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase : List[Any] = type
self.model_tester.create_and_check_model(*__snake_case )
def A ( self : Tuple ) -> Dict:
UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__snake_case )
def A ( self : Tuple ) -> List[str]:
UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__snake_case )
def A ( self : int ) -> Dict:
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__snake_case )
def A ( self : Dict ) -> Optional[int]:
UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__snake_case )
def A ( self : Any ) -> Optional[int]:
UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__snake_case )
@slow
def A ( self : Dict ) -> Any:
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : str = MraModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
@unittest.skip(reason='''MRA does not output attentions''' )
def A ( self : str ) -> Optional[Any]:
return
@require_torch
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@slow
def A ( self : Tuple ) -> List[Any]:
UpperCAmelCase : int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' )
UpperCAmelCase : Optional[Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : List[Any] = model(__snake_case )[0]
UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , __snake_case )
UpperCAmelCase : Any = torch.tensor(
[[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
@slow
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase : Optional[int] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' )
UpperCAmelCase : Dict = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : List[Any] = model(__snake_case )[0]
UpperCAmelCase : int = 50265
UpperCAmelCase : int = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , __snake_case )
UpperCAmelCase : Union[str, Any] = torch.tensor(
[[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
@slow
def A ( self : str ) -> List[Any]:
UpperCAmelCase : List[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' )
UpperCAmelCase : List[Any] = torch.arange(4096 ).unsqueeze(0 )
with torch.no_grad():
UpperCAmelCase : Tuple = model(__snake_case )[0]
UpperCAmelCase : Optional[int] = 50265
UpperCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) )
self.assertEqual(output.shape , __snake_case )
UpperCAmelCase : Optional[int] = torch.tensor(
[[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
| 23 | 1 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float:
if len(_lowerCAmelCase ) == 0:
raise ValueError('''find_max() arg is an empty sequence''' )
if (
left >= len(_lowerCAmelCase )
or left < -len(_lowerCAmelCase )
or right >= len(_lowerCAmelCase )
or right < -len(_lowerCAmelCase )
):
raise IndexError('''list index out of range''' )
if left == right:
return nums[left]
UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle
UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid]
UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 23 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
expand_dims,
flatten_dict,
is_flax_available,
is_tf_available,
is_torch_available,
reshape,
squeeze,
transpose,
)
if is_flax_available():
import jax.numpy as jnp
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : Any ) -> str:
UpperCAmelCase : Any = {
'''task_specific_params''': {
'''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4},
'''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4},
'''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6},
}
}
UpperCAmelCase : int = {
'''task_specific_params.summarization.length_penalty''': 1.0,
'''task_specific_params.summarization.max_length''': 128,
'''task_specific_params.summarization.min_length''': 12,
'''task_specific_params.summarization.num_beams''': 4,
'''task_specific_params.summarization_cnn.length_penalty''': 2.0,
'''task_specific_params.summarization_cnn.max_length''': 142,
'''task_specific_params.summarization_cnn.min_length''': 56,
'''task_specific_params.summarization_cnn.num_beams''': 4,
'''task_specific_params.summarization_xsum.length_penalty''': 1.0,
'''task_specific_params.summarization_xsum.max_length''': 62,
'''task_specific_params.summarization_xsum.min_length''': 11,
'''task_specific_params.summarization_xsum.num_beams''': 6,
}
self.assertEqual(flatten_dict(__snake_case ) , __snake_case )
def A ( self : int ) -> str:
UpperCAmelCase : Any = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(transpose(__snake_case ) , x.transpose() ) )
UpperCAmelCase : str = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) )
@require_torch
def A ( self : str ) -> Union[str, Any]:
UpperCAmelCase : Any = np.random.randn(3 , 4 )
UpperCAmelCase : List[Any] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) )
UpperCAmelCase : Tuple = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : Any = torch.tensor(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) )
@require_tf
def A ( self : List[str] ) -> Optional[Any]:
UpperCAmelCase : int = np.random.randn(3 , 4 )
UpperCAmelCase : Optional[int] = tf.constant(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) )
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : str = tf.constant(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) )
@require_flax
def A ( self : Tuple ) -> Any:
UpperCAmelCase : List[Any] = np.random.randn(3 , 4 )
UpperCAmelCase : List[str] = jnp.array(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case ) , np.asarray(transpose(__snake_case ) ) ) )
UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : int = jnp.array(__snake_case )
self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(__snake_case , axes=(1, 2, 0) ) ) ) )
def A ( self : Optional[Any] ) -> Any:
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.reshape(__snake_case , (4, 3) ) ) )
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.reshape(__snake_case , (12, 5) ) ) )
@require_torch
def A ( self : Union[str, Any] ) -> int:
UpperCAmelCase : Dict = np.random.randn(3 , 4 )
UpperCAmelCase : Optional[Any] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) )
UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : List[Any] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) )
@require_tf
def A ( self : int ) -> List[str]:
UpperCAmelCase : List[Any] = np.random.randn(3 , 4 )
UpperCAmelCase : List[str] = tf.constant(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) )
UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : Optional[Any] = tf.constant(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) )
@require_flax
def A ( self : Any ) -> Dict:
UpperCAmelCase : Tuple = np.random.randn(3 , 4 )
UpperCAmelCase : Union[str, Any] = jnp.array(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.asarray(reshape(__snake_case , (4, 3) ) ) ) )
UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 )
UpperCAmelCase : Optional[Any] = jnp.array(__snake_case )
self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.asarray(reshape(__snake_case , (12, 5) ) ) ) )
def A ( self : List[Any] ) -> List[Any]:
UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 )
self.assertTrue(np.allclose(squeeze(__snake_case ) , np.squeeze(__snake_case ) ) )
UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.squeeze(__snake_case , axis=2 ) ) )
@require_torch
def A ( self : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 )
UpperCAmelCase : List[str] = torch.tensor(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) )
UpperCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase : str = torch.tensor(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) )
@require_tf
def A ( self : Optional[Any] ) -> Dict:
UpperCAmelCase : int = np.random.randn(1 , 3 , 4 )
UpperCAmelCase : Optional[int] = tf.constant(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) )
UpperCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase : Optional[int] = tf.constant(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) )
@require_flax
def A ( self : List[Any] ) -> Dict:
UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 )
UpperCAmelCase : int = jnp.array(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case ) , np.asarray(squeeze(__snake_case ) ) ) )
UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 )
UpperCAmelCase : int = jnp.array(__snake_case )
self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.asarray(squeeze(__snake_case , axis=2 ) ) ) )
def A ( self : Optional[Any] ) -> int:
UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.expand_dims(__snake_case , axis=1 ) ) )
@require_torch
def A ( self : List[str] ) -> Tuple:
UpperCAmelCase : Tuple = np.random.randn(3 , 4 )
UpperCAmelCase : Tuple = torch.tensor(__snake_case )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) )
@require_tf
def A ( self : List[str] ) -> Union[str, Any]:
UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 )
UpperCAmelCase : Any = tf.constant(__snake_case )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) )
@require_flax
def A ( self : Any ) -> List[Any]:
UpperCAmelCase : List[str] = np.random.randn(3 , 4 )
UpperCAmelCase : str = jnp.array(__snake_case )
self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.asarray(expand_dims(__snake_case , axis=1 ) ) ) )
| 23 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
UpperCamelCase__: Union[str, Any] = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def __init__( self : str , *__snake_case : str , **__snake_case : int ) -> None:
warnings.warn(
'''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PoolFormerImageProcessor instead.''' , __snake_case , )
super().__init__(*__snake_case , **__snake_case )
| 23 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
UpperCamelCase__: Union[str, Any] = "examples/"
UpperCamelCase__: Optional[Any] = {
"examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"),
"init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"),
"setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","),
"doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"),
}
UpperCamelCase__: Optional[int] = {
"init": "src/diffusers/__init__.py",
"setup": "setup.py",
}
UpperCamelCase__: List[Any] = "README.md"
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> Optional[int]:
with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
UpperCAmelCase : Optional[int] = f.read()
UpperCAmelCase , UpperCAmelCase : List[Any] = REPLACE_PATTERNS[pattern]
UpperCAmelCase : List[Any] = replace.replace('''VERSION''' , _lowerCAmelCase )
UpperCAmelCase : Optional[Any] = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase )
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[int]:
for folder, directories, fnames in os.walk(_lowerCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='''examples''' )
def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=False ) -> List[str]:
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if not patch:
update_version_in_examples(_lowerCAmelCase )
def snake_case_ ( ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = '''🤗 Transformers currently provides the following architectures'''
UpperCAmelCase : Optional[int] = '''1. Want to contribute a new model?'''
with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
UpperCAmelCase : Optional[Any] = f.readlines()
# Find the start of the list.
UpperCAmelCase : List[Any] = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
UpperCAmelCase : Optional[Any] = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
UpperCAmelCase : Optional[int] = lines[index].replace(
'''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , )
index += 1
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(_lowerCAmelCase )
def snake_case_ ( ) -> Optional[Any]:
with open(REPLACE_FILES['''init'''] , '''r''' ) as f:
UpperCAmelCase : Union[str, Any] = f.read()
UpperCAmelCase : int = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0]
return packaging.version.parse(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : List[str]=False ) -> Any:
UpperCAmelCase : Optional[Any] = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
UpperCAmelCase : Optional[int] = default_version.base_version
elif patch:
UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
UpperCAmelCase : Dict = input(f"""Which version are you releasing? [{default_version}]""" )
if len(_lowerCAmelCase ) == 0:
UpperCAmelCase : Tuple = default_version
print(f"""Updating version to {version}.""" )
global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase )
def snake_case_ ( ) -> Any:
UpperCAmelCase : List[Any] = get_version()
UpperCAmelCase : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
UpperCAmelCase : List[Any] = current_version.base_version
# Check with the user we got that right.
UpperCAmelCase : Optional[int] = input(f"""Which version are we developing now? [{dev_version}]""" )
if len(_lowerCAmelCase ) == 0:
UpperCAmelCase : Dict = dev_version
print(f"""Updating version to {version}.""" )
global_version_update(_lowerCAmelCase )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
UpperCamelCase__: Optional[Any] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 23 | 1 |
'''simple docstring'''
def snake_case_ ( _lowerCAmelCase : list[int] ) -> float:
if not nums: # Makes sure that the list is not empty
raise ValueError('''List is empty''' )
UpperCAmelCase : Tuple = sum(_lowerCAmelCase ) / len(_lowerCAmelCase ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(_lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
'''simple docstring'''
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
UpperCamelCase__: Tuple = numpy.array([0, 0])
UpperCamelCase__: Union[str, Any] = numpy.array([0.5, 0.8660254])
UpperCamelCase__: Dict = numpy.array([1, 0])
UpperCamelCase__: int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] , _lowerCAmelCase : int ) -> list[numpy.ndarray]:
UpperCAmelCase : Union[str, Any] = initial_vectors
for _ in range(_lowerCAmelCase ):
UpperCAmelCase : Union[str, Any] = iteration_step(_lowerCAmelCase )
return vectors
def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> list[numpy.ndarray]:
UpperCAmelCase : Tuple = []
for i, start_vector in enumerate(vectors[:-1] ):
UpperCAmelCase : List[str] = vectors[i + 1]
new_vectors.append(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def snake_case_ ( _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : float ) -> numpy.ndarray:
UpperCAmelCase : List[str] = numpy.radians(_lowerCAmelCase )
UpperCAmelCase , UpperCAmelCase : Tuple = numpy.cos(_lowerCAmelCase ), numpy.sin(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = numpy.array(((c, -s), (s, c)) )
return numpy.dot(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> None:
UpperCAmelCase : List[Any] = plt.gca()
axes.set_aspect('''equal''' )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
UpperCAmelCase , UpperCAmelCase : str = zip(*_lowerCAmelCase )
plt.plot(_lowerCAmelCase , _lowerCAmelCase )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase__: List[Any] = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 23 | 1 |
'''simple docstring'''
from pathlib import Path
import fire
from tqdm import tqdm
def snake_case_ ( _lowerCAmelCase : int="ro" , _lowerCAmelCase : Dict="en" , _lowerCAmelCase : Union[str, Any]="wmt16" , _lowerCAmelCase : Optional[int]=None ) -> None:
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError('''run pip install datasets''' )
UpperCAmelCase : Tuple = f"""{src_lang}-{tgt_lang}"""
print(f"""Converting {dataset}-{pair}""" )
UpperCAmelCase : int = datasets.load_dataset(_lowerCAmelCase , _lowerCAmelCase )
if save_dir is None:
UpperCAmelCase : Optional[int] = f"""{dataset}-{pair}"""
UpperCAmelCase : str = Path(_lowerCAmelCase )
save_dir.mkdir(exist_ok=_lowerCAmelCase )
for split in ds.keys():
print(f"""Splitting {split} with {ds[split].num_rows} records""" )
# to save to val.source, val.target like summary datasets
UpperCAmelCase : Optional[int] = '''val''' if split == '''validation''' else split
UpperCAmelCase : List[str] = save_dir.joinpath(f"""{fn}.source""" )
UpperCAmelCase : Optional[int] = save_dir.joinpath(f"""{fn}.target""" )
UpperCAmelCase : Optional[int] = src_path.open('''w+''' )
UpperCAmelCase : Union[str, Any] = tgt_path.open('''w+''' )
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split] ):
UpperCAmelCase : Union[str, Any] = x['''translation''']
src_fp.write(ex[src_lang] + '''\n''' )
tgt_fp.write(ex[tgt_lang] + '''\n''' )
print(f"""Saved {dataset} dataset to {save_dir}""" )
if __name__ == "__main__":
fire.Fire(download_wmt_dataset)
| 23 |
'''simple docstring'''
from manim import *
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
def A ( self : Union[str, Any] ) -> List[str]:
UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 )
UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )]
UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )]
UpperCAmelCase : Dict = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Any = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Optional[Any] = Text('''CPU''' , font_size=24 )
UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__snake_case )
UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )]
UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : List[str] = Text('''GPU''' , font_size=24 )
UpperCAmelCase : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case )
gpu.move_to([-1, -1, 0] )
self.add(__snake_case )
UpperCAmelCase : int = [mem.copy() for i in range(6 )]
UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : List[str] = Text('''Model''' , font_size=24 )
UpperCAmelCase : Tuple = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case )
model.move_to([3, -1.0, 0] )
self.add(__snake_case )
UpperCAmelCase : Any = []
for i, rect in enumerate(__snake_case ):
rect.set_stroke(__snake_case )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 )
self.add(__snake_case )
cpu_targs.append(__snake_case )
UpperCAmelCase : int = [mem.copy() for i in range(6 )]
UpperCAmelCase : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 )
UpperCAmelCase : Any = Text('''Loaded Checkpoint''' , font_size=24 )
UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
UpperCAmelCase : Optional[int] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
UpperCAmelCase : str = MarkupText(
F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__snake_case , __snake_case )
UpperCAmelCase : Tuple = MarkupText(
F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , )
blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() )
UpperCAmelCase : List[Any] = MarkupText(
F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__snake_case ) , Write(__snake_case ) )
self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) )
UpperCAmelCase : Tuple = []
UpperCAmelCase : int = []
for i, rect in enumerate(__snake_case ):
UpperCAmelCase : Any = fill.copy().set_fill(__snake_case , opacity=0.7 )
target.move_to(__snake_case )
first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) )
UpperCAmelCase : List[str] = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) )
self.play(*__snake_case )
self.play(*__snake_case )
self.wait()
| 23 | 1 |
'''simple docstring'''
from __future__ import annotations
from PIL import Image
# Define glider example
UpperCamelCase__: str = [
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
UpperCamelCase__: Optional[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def snake_case_ ( _lowerCAmelCase : list[list[int]] ) -> list[list[int]]:
UpperCAmelCase : Tuple = []
for i in range(len(_lowerCAmelCase ) ):
UpperCAmelCase : Any = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
UpperCAmelCase : Optional[Any] = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(_lowerCAmelCase ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(_lowerCAmelCase ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(_lowerCAmelCase ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
UpperCAmelCase : Any = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(_lowerCAmelCase )
return next_generation
def snake_case_ ( _lowerCAmelCase : list[list[int]] , _lowerCAmelCase : int ) -> list[Image.Image]:
UpperCAmelCase : Any = []
for _ in range(_lowerCAmelCase ):
# Create output image
UpperCAmelCase : Dict = Image.new('''RGB''' , (len(cells[0] ), len(_lowerCAmelCase )) )
UpperCAmelCase : Optional[Any] = img.load()
# Save cells to image
for x in range(len(_lowerCAmelCase ) ):
for y in range(len(cells[0] ) ):
UpperCAmelCase : int = 255 - cells[y][x] * 255
UpperCAmelCase : List[str] = (colour, colour, colour)
# Save image
images.append(_lowerCAmelCase )
UpperCAmelCase : str = new_generation(_lowerCAmelCase )
return images
if __name__ == "__main__":
UpperCamelCase__: Optional[int] = generate_images(GLIDER, 16)
images[0].save("out.gif", save_all=True, append_images=images[1:])
| 23 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
)
UpperCamelCase__: str = None
UpperCamelCase__: int = {
"7B": 11008,
"13B": 13824,
"30B": 17920,
"65B": 22016,
"70B": 28672,
}
UpperCamelCase__: List[Any] = {
"7B": 1,
"7Bf": 1,
"13B": 2,
"13Bf": 2,
"30B": 4,
"65B": 8,
"70B": 8,
"70Bf": 8,
}
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : List[Any]=256 ) -> Optional[Any]:
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def snake_case_ ( _lowerCAmelCase : List[str] ) -> str:
with open(_lowerCAmelCase , '''r''' ) as f:
return json.load(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ) -> Optional[Any]:
with open(_lowerCAmelCase , '''w''' ) as f:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=True ) -> List[Any]:
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp''' )
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
UpperCAmelCase : List[str] = read_json(os.path.join(_lowerCAmelCase , '''params.json''' ) )
UpperCAmelCase : str = NUM_SHARDS[model_size]
UpperCAmelCase : Any = params['''n_layers''']
UpperCAmelCase : str = params['''n_heads''']
UpperCAmelCase : Any = n_heads // num_shards
UpperCAmelCase : List[str] = params['''dim''']
UpperCAmelCase : Optional[Any] = dim // n_heads
UpperCAmelCase : str = 1_0_0_0_0.0
UpperCAmelCase : Optional[int] = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
UpperCAmelCase : Tuple = params['''n_kv_heads'''] # for GQA / MQA
UpperCAmelCase : Optional[int] = n_heads_per_shard // num_key_value_heads
UpperCAmelCase : Optional[Any] = dim // num_key_value_heads
else: # compatibility with other checkpoints
UpperCAmelCase : List[str] = n_heads
UpperCAmelCase : Optional[int] = n_heads_per_shard
UpperCAmelCase : List[str] = dim
# permute for sliced rotary
def permute(_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=n_heads , _lowerCAmelCase : int=dim , _lowerCAmelCase : Dict=dim ):
return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase ).transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase )
print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
UpperCAmelCase : int = torch.load(os.path.join(_lowerCAmelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' )
else:
# Sharded
UpperCAmelCase : Optional[Any] = [
torch.load(os.path.join(_lowerCAmelCase , f"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' )
for i in range(_lowerCAmelCase )
]
UpperCAmelCase : Any = 0
UpperCAmelCase : str = {'''weight_map''': {}}
for layer_i in range(_lowerCAmelCase ):
UpperCAmelCase : Optional[Any] = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
UpperCAmelCase : Optional[int] = {
f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute(
loaded[f"""layers.{layer_i}.attention.wq.weight"""] ),
f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute(
loaded[f"""layers.{layer_i}.attention.wk.weight"""] ),
f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""],
f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""],
f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""],
f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""],
f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""],
f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""],
f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
UpperCAmelCase : List[str] = {
f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][
f"""layers.{layer_i}.attention_norm.weight"""
].clone(),
f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][
f"""layers.{layer_i}.ffn_norm.weight"""
].clone(),
}
UpperCAmelCase : Union[str, Any] = permute(
torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for i in range(_lowerCAmelCase )
] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) )
UpperCAmelCase : Optional[Any] = permute(
torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for i in range(_lowerCAmelCase )
] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , )
UpperCAmelCase : str = torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
for i in range(_lowerCAmelCase )
] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = torch.cat(
[loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_lowerCAmelCase )] , dim=1 )
UpperCAmelCase : Any = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_lowerCAmelCase )] , dim=0 )
UpperCAmelCase : str = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_lowerCAmelCase )] , dim=1 )
UpperCAmelCase : Tuple = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_lowerCAmelCase )] , dim=0 )
UpperCAmelCase : Any = inv_freq
for k, v in state_dict.items():
UpperCAmelCase : List[Any] = filename
param_count += v.numel()
torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) )
UpperCAmelCase : Optional[int] = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
UpperCAmelCase : str = {
'''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''],
'''model.norm.weight''': loaded['''norm.weight'''],
'''lm_head.weight''': loaded['''output.weight'''],
}
else:
UpperCAmelCase : Any = {
'''model.norm.weight''': loaded[0]['''norm.weight'''],
'''model.embed_tokens.weight''': torch.cat(
[loaded[i]['''tok_embeddings.weight'''] for i in range(_lowerCAmelCase )] , dim=1 ),
'''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_lowerCAmelCase )] , dim=0 ),
}
for k, v in state_dict.items():
UpperCAmelCase : Optional[int] = filename
param_count += v.numel()
torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) )
# Write configs
UpperCAmelCase : Union[str, Any] = {'''total_size''': param_count * 2}
write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , '''pytorch_model.bin.index.json''' ) )
UpperCAmelCase : int = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1
UpperCAmelCase : Tuple = params['''multiple_of'''] if '''multiple_of''' in params else 256
UpperCAmelCase : Any = LlamaConfig(
hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_lowerCAmelCase , )
config.save_pretrained(_lowerCAmelCase )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('''Loading the checkpoint in a Llama model.''' )
UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('''Saving in the Transformers format.''' )
model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> List[str]:
# Initialize the tokenizer based on the `spm` model
UpperCAmelCase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" )
UpperCAmelCase : List[Any] = tokenizer_class(_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
def snake_case_ ( ) -> List[Any]:
UpperCAmelCase : int = argparse.ArgumentParser()
parser.add_argument(
'''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , )
parser.add_argument(
'''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , )
parser.add_argument(
'''--output_dir''' , help='''Location to write HF model and tokenizer''' , )
parser.add_argument('''--safe_serialization''' , type=_lowerCAmelCase , help='''Whether or not to save using `safetensors`.''' )
UpperCAmelCase : List[Any] = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
UpperCAmelCase : Optional[int] = os.path.join(args.input_dir , '''tokenizer.model''' )
write_tokenizer(args.output_dir , _lowerCAmelCase )
if __name__ == "__main__":
main()
| 23 | 1 |
'''simple docstring'''
import argparse
import re
from pathlib import Path
import requests
import torch
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import (
EfficientFormerConfig,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerImageProcessor,
)
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int ) -> Optional[Any]:
UpperCAmelCase : Dict = old_name
if "patch_embed" in old_name:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = old_name.split('''.''' )
if layer == "0":
UpperCAmelCase : Dict = old_name.replace('''0''' , '''convolution1''' )
elif layer == "1":
UpperCAmelCase : List[Any] = old_name.replace('''1''' , '''batchnorm_before''' )
elif layer == "3":
UpperCAmelCase : Any = old_name.replace('''3''' , '''convolution2''' )
else:
UpperCAmelCase : Tuple = old_name.replace('''4''' , '''batchnorm_after''' )
if "network" in old_name and re.search(R'''\d\.\d''' , _lowerCAmelCase ):
UpperCAmelCase : int = R'''\b\d{2}\b'''
if bool(re.search(_lowerCAmelCase , _lowerCAmelCase ) ):
UpperCAmelCase : Optional[int] = re.search(R'''\d\.\d\d.''' , _lowerCAmelCase ).group()
else:
UpperCAmelCase : str = re.search(R'''\d\.\d.''' , _lowerCAmelCase ).group()
if int(match[0] ) < 6:
UpperCAmelCase : int = old_name.replace(_lowerCAmelCase , '''''' )
UpperCAmelCase : int = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] )
UpperCAmelCase : int = '''intermediate_stages.''' + trimmed_name
else:
UpperCAmelCase : str = old_name.replace(_lowerCAmelCase , '''''' )
if int(match[2] ) < num_meta4D_last_stage:
UpperCAmelCase : Optional[int] = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] )
else:
UpperCAmelCase : Any = str(int(match[2] ) - num_meta4D_last_stage )
UpperCAmelCase : str = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index )
if "norm1" in old_name:
UpperCAmelCase : str = trimmed_name.replace('''norm1''' , '''layernorm1''' )
elif "norm2" in old_name:
UpperCAmelCase : Union[str, Any] = trimmed_name.replace('''norm2''' , '''layernorm2''' )
elif "fc1" in old_name:
UpperCAmelCase : Any = trimmed_name.replace('''fc1''' , '''linear_in''' )
elif "fc2" in old_name:
UpperCAmelCase : List[str] = trimmed_name.replace('''fc2''' , '''linear_out''' )
UpperCAmelCase : Tuple = '''last_stage.''' + trimmed_name
elif "network" in old_name and re.search(R'''.\d.''' , _lowerCAmelCase ):
UpperCAmelCase : Any = old_name.replace('''network''' , '''intermediate_stages''' )
if "fc" in new_name:
UpperCAmelCase : Dict = new_name.replace('''fc''' , '''convolution''' )
elif ("norm1" in new_name) and ("layernorm1" not in new_name):
UpperCAmelCase : Union[str, Any] = new_name.replace('''norm1''' , '''batchnorm_before''' )
elif ("norm2" in new_name) and ("layernorm2" not in new_name):
UpperCAmelCase : Dict = new_name.replace('''norm2''' , '''batchnorm_after''' )
if "proj" in new_name:
UpperCAmelCase : Optional[Any] = new_name.replace('''proj''' , '''projection''' )
if "dist_head" in new_name:
UpperCAmelCase : List[str] = new_name.replace('''dist_head''' , '''distillation_classifier''' )
elif "head" in new_name:
UpperCAmelCase : List[str] = new_name.replace('''head''' , '''classifier''' )
elif "patch_embed" in new_name:
UpperCAmelCase : Tuple = '''efficientformer.''' + new_name
elif new_name == "norm.weight" or new_name == "norm.bias":
UpperCAmelCase : List[str] = new_name.replace('''norm''' , '''layernorm''' )
UpperCAmelCase : Optional[Any] = '''efficientformer.''' + new_name
else:
UpperCAmelCase : Dict = '''efficientformer.encoder.''' + new_name
return new_name
def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> List[Any]:
for key in checkpoint.copy().keys():
UpperCAmelCase : str = checkpoint.pop(_lowerCAmelCase )
UpperCAmelCase : Tuple = val
return checkpoint
def snake_case_ ( ) -> Dict:
UpperCAmelCase : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
return image
def snake_case_ ( _lowerCAmelCase : Path , _lowerCAmelCase : Path , _lowerCAmelCase : Path , _lowerCAmelCase : bool ) -> Any:
UpperCAmelCase : Tuple = torch.load(_lowerCAmelCase , map_location='''cpu''' )['''model''']
UpperCAmelCase : Optional[Any] = EfficientFormerConfig.from_json_file(_lowerCAmelCase )
UpperCAmelCase : List[Any] = EfficientFormerForImageClassificationWithTeacher(_lowerCAmelCase )
UpperCAmelCase : List[Any] = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] )
UpperCAmelCase : int = config.depths[-1] - config.num_metaad_blocks + 1
UpperCAmelCase : int = convert_torch_checkpoint(_lowerCAmelCase , _lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
UpperCAmelCase : Any = {
'''bilinear''': PILImageResampling.BILINEAR,
'''bicubic''': PILImageResampling.BICUBIC,
'''nearest''': PILImageResampling.NEAREST,
}
# prepare image
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : int = 256
UpperCAmelCase : Optional[Any] = 224
UpperCAmelCase : List[str] = EfficientFormerImageProcessor(
size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , )
UpperCAmelCase : Optional[Any] = processor(images=_lowerCAmelCase , return_tensors='''pt''' ).pixel_values
# original processing pipeline
UpperCAmelCase : Optional[Any] = Compose(
[
Resize(_lowerCAmelCase , interpolation=pillow_resamplings['''bicubic'''] ),
CenterCrop(_lowerCAmelCase ),
ToTensor(),
Normalize(_lowerCAmelCase , _lowerCAmelCase ),
] )
UpperCAmelCase : Dict = image_transforms(_lowerCAmelCase ).unsqueeze(0 )
assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = model(_lowerCAmelCase )
UpperCAmelCase : List[str] = outputs.logits
UpperCAmelCase : str = (1, 1000)
if "l1" in model_name:
UpperCAmelCase : Union[str, Any] = torch.Tensor(
[-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] )
assert torch.allclose(logits[0, :10] , _lowerCAmelCase , atol=1e-3 )
assert logits.shape == expected_shape
elif "l3" in model_name:
UpperCAmelCase : int = torch.Tensor(
[-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] )
assert torch.allclose(logits[0, :10] , _lowerCAmelCase , atol=1e-3 )
assert logits.shape == expected_shape
elif "l7" in model_name:
UpperCAmelCase : Tuple = torch.Tensor(
[-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] )
assert logits.shape == expected_shape
else:
raise ValueError(
f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" )
# Save Checkpoints
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" )
processor.save_pretrained(_lowerCAmelCase )
print(f"""Processor successfuly saved at {pytorch_dump_path}""" )
if push_to_hub:
print('''Pushing model to the hub...''' )
model.push_to_hub(
repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add model''' , use_temp_dir=_lowerCAmelCase , )
processor.push_to_hub(
repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add image processor''' , use_temp_dir=_lowerCAmelCase , )
if __name__ == "__main__":
UpperCamelCase__: str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--pytorch_model_path",
default=None,
type=str,
required=True,
help="Path to EfficientFormer pytorch checkpoint.",
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The json file for EfficientFormer model config.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
parser.add_argument(
"--no-push_to_hub",
dest="push_to_hub",
action="store_false",
help="Do not push model and image processor to the hub",
)
parser.set_defaults(push_to_hub=True)
UpperCamelCase__: Tuple = parser.parse_args()
convert_efficientformer_checkpoint(
checkpoint_path=args.pytorch_model_path,
efficientformer_config_file=args.config_file,
pytorch_dump_path=args.pytorch_dump_path,
push_to_hub=args.push_to_hub,
)
| 23 |
'''simple docstring'''
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Optional[int] = tau * frequency / samplerate
UpperCAmelCase : List[Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = cos(_lowerCAmelCase )
UpperCAmelCase : int = _sin / (2 * q_factor)
UpperCAmelCase : Any = (1 - _cos) / 2
UpperCAmelCase : List[Any] = 1 - _cos
UpperCAmelCase : Union[str, Any] = 1 + alpha
UpperCAmelCase : Any = -2 * _cos
UpperCAmelCase : Dict = 1 - alpha
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Any = tau * frequency / samplerate
UpperCAmelCase : Tuple = sin(_lowerCAmelCase )
UpperCAmelCase : Tuple = cos(_lowerCAmelCase )
UpperCAmelCase : Dict = _sin / (2 * q_factor)
UpperCAmelCase : int = (1 + _cos) / 2
UpperCAmelCase : List[Any] = -1 - _cos
UpperCAmelCase : Tuple = 1 + alpha
UpperCAmelCase : List[str] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha
UpperCAmelCase : Tuple = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : Optional[int] = tau * frequency / samplerate
UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase )
UpperCAmelCase : Tuple = cos(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = _sin / (2 * q_factor)
UpperCAmelCase : Union[str, Any] = _sin / 2
UpperCAmelCase : Any = 0
UpperCAmelCase : int = -ba
UpperCAmelCase : Optional[Any] = 1 + alpha
UpperCAmelCase : List[Any] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha
UpperCAmelCase : int = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter:
UpperCAmelCase : List[str] = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : str = cos(_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor)
UpperCAmelCase : List[str] = 1 - alpha
UpperCAmelCase : Any = -2 * _cos
UpperCAmelCase : Optional[int] = 1 + alpha
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : Optional[Any] = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = cos(_lowerCAmelCase )
UpperCAmelCase : Dict = _sin / (2 * q_factor)
UpperCAmelCase : str = 10 ** (gain_db / 40)
UpperCAmelCase : int = 1 + alpha * big_a
UpperCAmelCase : Union[str, Any] = -2 * _cos
UpperCAmelCase : Optional[Any] = 1 - alpha * big_a
UpperCAmelCase : Union[str, Any] = 1 + alpha / big_a
UpperCAmelCase : Tuple = -2 * _cos
UpperCAmelCase : Any = 1 - alpha / big_a
UpperCAmelCase : Optional[Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : Any = tau * frequency / samplerate
UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase )
UpperCAmelCase : str = _sin / (2 * q_factor)
UpperCAmelCase : List[str] = 10 ** (gain_db / 40)
UpperCAmelCase : Optional[int] = (big_a + 1) - (big_a - 1) * _cos
UpperCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos
UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos
UpperCAmelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos
UpperCAmelCase : str = 2 * sqrt(_lowerCAmelCase ) * alpha
UpperCAmelCase : Dict = big_a * (pmc + aaa)
UpperCAmelCase : Any = 2 * big_a * mpc
UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa)
UpperCAmelCase : Optional[int] = ppmc + aaa
UpperCAmelCase : Optional[Any] = -2 * pmpc
UpperCAmelCase : Optional[Any] = ppmc - aaa
UpperCAmelCase : int = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter:
UpperCAmelCase : int = tau * frequency / samplerate
UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase )
UpperCAmelCase : Any = _sin / (2 * q_factor)
UpperCAmelCase : int = 10 ** (gain_db / 40)
UpperCAmelCase : List[str] = (big_a + 1) - (big_a - 1) * _cos
UpperCAmelCase : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos
UpperCAmelCase : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos
UpperCAmelCase : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos
UpperCAmelCase : List[str] = 2 * sqrt(_lowerCAmelCase ) * alpha
UpperCAmelCase : Any = big_a * (ppmc + aaa)
UpperCAmelCase : str = -2 * big_a * pmpc
UpperCAmelCase : List[Any] = big_a * (ppmc - aaa)
UpperCAmelCase : Optional[Any] = pmc + aaa
UpperCAmelCase : Any = 2 * mpc
UpperCAmelCase : str = pmc - aaa
UpperCAmelCase : Union[str, Any] = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] )
return filt
| 23 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ..utils import _LazyModule
UpperCamelCase__: Optional[Any] = {
"config": [
"EXTERNAL_DATA_FORMAT_SIZE_LIMIT",
"OnnxConfig",
"OnnxConfigWithPast",
"OnnxSeq2SeqConfigWithPast",
"PatchingSpec",
],
"convert": ["export", "validate_model_outputs"],
"features": ["FeaturesManager"],
"utils": ["ParameterFormat", "compute_serialized_parameters_size"],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
UpperCamelCase__: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 23 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool:
UpperCAmelCase : str = get_failure_array(_lowerCAmelCase )
# 2) Step through text searching for pattern
UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern
while i < len(_lowerCAmelCase ):
if pattern[j] == text[i]:
if j == (len(_lowerCAmelCase ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
UpperCAmelCase : Optional[Any] = failure[j - 1]
continue
i += 1
return False
def snake_case_ ( _lowerCAmelCase : str ) -> list[int]:
UpperCAmelCase : Optional[Any] = [0]
UpperCAmelCase : str = 0
UpperCAmelCase : List[str] = 1
while j < len(_lowerCAmelCase ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
UpperCAmelCase : Union[str, Any] = failure[i - 1]
continue
j += 1
failure.append(_lowerCAmelCase )
return failure
if __name__ == "__main__":
# Test 1)
UpperCamelCase__: str = "abc1abc12"
UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc"
UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc"
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
UpperCamelCase__: Tuple = "ABABX"
UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX"
assert kmp(pattern, text)
# Test 3)
UpperCamelCase__: Any = "AAAB"
UpperCamelCase__: str = "ABAAAAAB"
assert kmp(pattern, text)
# Test 4)
UpperCamelCase__: int = "abcdabcy"
UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy"
assert kmp(pattern, text)
# Test 5)
UpperCamelCase__: List[str] = "aabaabaaa"
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 23 | 1 |
'''simple docstring'''
from __future__ import annotations
from numpy import array, cos, cross, floataa, radians, sin
from numpy.typing import NDArray
def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : bool = False ) -> list[float]:
if radian_mode:
return [magnitude * cos(_lowerCAmelCase ), magnitude * sin(_lowerCAmelCase )]
return [magnitude * cos(radians(_lowerCAmelCase ) ), magnitude * sin(radians(_lowerCAmelCase ) )]
def snake_case_ ( _lowerCAmelCase : NDArray[floataa] , _lowerCAmelCase : NDArray[floataa] , _lowerCAmelCase : float = 10**-1 ) -> bool:
UpperCAmelCase : NDArray[floataa] = cross(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : float = sum(_lowerCAmelCase )
return abs(_lowerCAmelCase ) < eps
if __name__ == "__main__":
# Test to check if it works
UpperCamelCase__: List[Any] = array(
[
polar_force(718.4, 180 - 30),
polar_force(879.54, 45),
polar_force(100, -90),
]
)
UpperCamelCase__: NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
UpperCamelCase__: Optional[Any] = array(
[
polar_force(30 * 9.81, 15),
polar_force(215, 180 - 45),
polar_force(264, 90 - 30),
]
)
UpperCamelCase__: int = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
UpperCamelCase__: List[Any] = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]])
UpperCamelCase__: List[str] = array([[0, 0], [6, 0], [10, 0], [12, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| 23 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
UpperCamelCase__: int = logging.get_logger(__name__)
UpperCamelCase__: Dict = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
UpperCamelCase__: Optional[Any] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = {}
with open(_lowerCAmelCase , '''r''' ) as file:
for line_number, line in enumerate(_lowerCAmelCase ):
UpperCAmelCase : List[str] = line.strip()
if line:
UpperCAmelCase : str = line.split()
UpperCAmelCase : Union[str, Any] = line_number
UpperCAmelCase : List[Any] = words[0]
UpperCAmelCase : Union[str, Any] = value
return result
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int:
for attribute in key.split('''.''' ):
UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Dict = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_lowerCAmelCase ):
UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]]
UpperCAmelCase : Dict = '''param'''
if weight_type is not None and weight_type != "param":
UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase : List[Any] = hf_pointer
for attribute in hf_param_name.split('''.''' ):
UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : int = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase : Union[str, Any] = value[0]
else:
UpperCAmelCase : List[Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase : int = value
elif weight_type == "weight_g":
UpperCAmelCase : str = value
elif weight_type == "weight_v":
UpperCAmelCase : Dict = value
elif weight_type == "bias":
UpperCAmelCase : str = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = value
else:
UpperCAmelCase : Tuple = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]:
UpperCAmelCase : List[str] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_lowerCAmelCase ):
UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]]
UpperCAmelCase : Any = '''param'''
if weight_type is not None and weight_type != "param":
UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] )
else:
UpperCAmelCase : List[Any] = key
UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0]
UpperCamelCase__: Tuple = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int:
UpperCAmelCase : List[Any] = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
UpperCAmelCase : Optional[Any] = True
if "*" in mapped_key:
UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase )
if "weight_g" in name:
UpperCAmelCase : str = '''weight_g'''
elif "weight_v" in name:
UpperCAmelCase : int = '''weight_v'''
elif "bias" in name:
UpperCAmelCase : int = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase : List[str] = '''weight'''
else:
UpperCAmelCase : Dict = None
if hf_dict is not None:
rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return is_used
return is_used
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any:
UpperCAmelCase : Dict = []
UpperCAmelCase : Dict = fairseq_model.state_dict()
UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase : Dict = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , )
UpperCAmelCase : Any = True
else:
UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f"""Unused weights: {unused_weights}""" )
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]:
UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1]
UpperCAmelCase : Optional[int] = name.split('''.''' )
UpperCAmelCase : Tuple = int(items[0] )
UpperCAmelCase : Tuple = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
UpperCAmelCase : Tuple = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
UpperCAmelCase : Union[str, Any] = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
UpperCAmelCase : Union[str, Any] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
UpperCAmelCase : List[str] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict:
if config_path is not None:
UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase )
else:
UpperCAmelCase : List[Any] = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = idalabel
UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase )
UpperCAmelCase : Dict = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , )
feature_extractor.save_pretrained(_lowerCAmelCase )
elif is_finetuned:
if dict_path:
UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase : Any = target_dict.pad_index
UpperCAmelCase : Tuple = target_dict.bos_index
UpperCAmelCase : Optional[int] = target_dict.eos_index
UpperCAmelCase : Union[str, Any] = len(target_dict.symbols )
UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' )
if not os.path.isdir(_lowerCAmelCase ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) )
return
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
UpperCAmelCase : List[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase : List[str] = 0
UpperCAmelCase : List[str] = 1
with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer(
_lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , )
UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False
UpperCAmelCase : int = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , )
UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase )
else:
UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase )
if is_finetuned or is_seq_class:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' )
UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase )
UpperCAmelCase : Optional[int] = model[0].eval()
recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned )
hf_wavavec.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase__: Dict = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
UpperCamelCase__: Any = parser.parse_args()
UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 23 | 1 |
'''simple docstring'''
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
UpperCamelCase__: List[str] = logging.get_logger(__name__)
UpperCamelCase__: Tuple = {"vocab_file": "vocab.txt"}
UpperCamelCase__: Any = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
UpperCamelCase__: Dict = {
"facebook/esm2_t6_8M_UR50D": 1024,
"facebook/esm2_t12_35M_UR50D": 1024,
}
def snake_case_ ( _lowerCAmelCase : int ) -> Dict:
with open(_lowerCAmelCase , '''r''' ) as f:
UpperCAmelCase : List[Any] = f.read().splitlines()
return [l.strip() for l in lines]
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["""input_ids""", """attention_mask"""]
def __init__( self : Any , __snake_case : str , __snake_case : int="<unk>" , __snake_case : List[Any]="<cls>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : List[str]="<mask>" , __snake_case : Tuple="<eos>" , **__snake_case : Optional[int] , ) -> Optional[int]:
super().__init__(**__snake_case )
UpperCAmelCase : Tuple = load_vocab_file(__snake_case )
UpperCAmelCase : int = dict(enumerate(self.all_tokens ) )
UpperCAmelCase : List[str] = {tok: ind for ind, tok in enumerate(self.all_tokens )}
UpperCAmelCase : int = unk_token
UpperCAmelCase : Optional[int] = cls_token
UpperCAmelCase : Dict = pad_token
UpperCAmelCase : Optional[int] = mask_token
UpperCAmelCase : Any = eos_token
UpperCAmelCase : Optional[Any] = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def A ( self : Optional[Any] , __snake_case : int ) -> str:
return self._id_to_token.get(__snake_case , self.unk_token )
def A ( self : str , __snake_case : str ) -> int:
return self._token_to_id.get(__snake_case , self._token_to_id.get(self.unk_token ) )
def A ( self : int , __snake_case : Optional[int] , **__snake_case : Tuple ) -> str:
return text.split()
def A ( self : int , __snake_case : Any=False ) -> Optional[int]:
return len(self._id_to_token )
def A ( self : Any ) -> str:
return {token: i for i, token in enumerate(self.all_tokens )}
def A ( self : Tuple , __snake_case : str ) -> int:
return self._token_to_id.get(__snake_case , self._token_to_id.get(self.unk_token ) )
def A ( self : str , __snake_case : int ) -> str:
return self._id_to_token.get(__snake_case , self.unk_token )
def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def A ( self : Any , __snake_case : List , __snake_case : Optional[List] = None , __snake_case : bool = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
UpperCAmelCase : List[Any] = [1] + ([0] * len(__snake_case )) + [1]
if token_ids_a is not None:
mask += [0] * len(__snake_case ) + [1]
return mask
def A ( self : Any , __snake_case : List[str] , __snake_case : Dict ) -> Any:
UpperCAmelCase : int = os.path.join(__snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(__snake_case , '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def A ( self : int ) -> int:
return self.get_vocab_size(with_added_tokens=__snake_case )
def A ( self : int , __snake_case : Union[List[str], List[AddedToken]] , __snake_case : bool = False ) -> int:
return super()._add_tokens(__snake_case , special_tokens=__snake_case )
| 23 |
'''simple docstring'''
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : str ) -> int:
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case )
UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )]
UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('''.bin''' ) for f in files )
@slow
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : List[str] ) -> Dict:
UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case )
UpperCAmelCase : List[Any] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
UpperCAmelCase : Optional[Any] = 4
UpperCAmelCase : Optional[Any] = jax.device_count()
UpperCAmelCase : Tuple = num_samples * [prompt]
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[Any] = shard(__snake_case )
UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3
assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1
UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(__snake_case ) == num_samples
def A ( self : List[Any] ) -> List[str]:
UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case )
UpperCAmelCase : Dict = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 )
UpperCAmelCase : Any = 50
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : int = num_samples * [prompt]
UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Dict = replicate(__snake_case )
UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Tuple = shard(__snake_case )
UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1
def A ( self : int ) -> Dict:
UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case )
UpperCAmelCase : Dict = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 )
UpperCAmelCase : List[str] = 50
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : List[Any] = num_samples * [prompt]
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[int] = shard(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def A ( self : int ) -> Any:
UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa )
UpperCAmelCase : List[str] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
UpperCAmelCase : Union[str, Any] = 50
UpperCAmelCase : Optional[int] = jax.device_count()
UpperCAmelCase : List[str] = num_samples * [prompt]
UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : Tuple = replicate(__snake_case )
UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : str = shard(__snake_case )
UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def A ( self : Tuple ) -> Optional[Any]:
UpperCAmelCase : int = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , )
UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , )
UpperCAmelCase : Tuple = scheduler.create_state()
UpperCAmelCase : Dict = scheduler_state
UpperCAmelCase : str = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : int = jax.random.PRNGKey(0 )
UpperCAmelCase : Union[str, Any] = 50
UpperCAmelCase : Optional[Any] = jax.device_count()
UpperCAmelCase : Any = num_samples * [prompt]
UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case )
# shard inputs and rng
UpperCAmelCase : str = replicate(__snake_case )
UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case )
UpperCAmelCase : Optional[int] = shard(__snake_case )
UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3
assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1
def A ( self : Any ) -> Tuple:
UpperCAmelCase : List[Any] = (
'''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'''
''' field, close up, split lighting, cinematic'''
)
UpperCAmelCase : Union[str, Any] = jax.device_count()
UpperCAmelCase : List[Any] = num_samples * [prompt]
UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case )
UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , )
UpperCAmelCase : Dict = replicate(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case )
UpperCAmelCase : List[str] = shard(__snake_case )
UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , )
UpperCAmelCase : int = replicate(__snake_case )
UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case )
UpperCAmelCase : List[Any] = shard(__snake_case )
UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
UpperCAmelCase : int = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1E-2
| 23 | 1 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@classmethod
def A ( cls : Union[str, Any] ) -> int:
UpperCAmelCase : Optional[Any] = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def A ( cls : List[str] ) -> Tuple:
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def A ( self : int ) -> Tuple:
UpperCAmelCase : List[Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase : Dict = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
__snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]:
UpperCAmelCase : str = True
UpperCAmelCase : int = flatten_dict(modela.params )
UpperCAmelCase : Dict = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
UpperCAmelCase : Dict = False
return models_are_equal
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
UpperCAmelCase : int = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__snake_case , __snake_case ) )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertTrue(check_models_equal(__snake_case , __snake_case ) )
def A ( self : List[str] ) -> Dict:
UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
UpperCAmelCase : Optional[int] = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertTrue(check_models_equal(__snake_case , __snake_case ) )
def A ( self : Optional[int] ) -> str:
UpperCAmelCase : Dict = '''bert'''
UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(__snake_case ):
UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertIsNotNone(__snake_case )
def A ( self : Dict ) -> List[Any]:
UpperCAmelCase : Optional[int] = '''bert'''
UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(__snake_case ):
UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertIsNotNone(__snake_case )
| 23 |
'''simple docstring'''
import random
from .binary_exp_mod import bin_exp_mod
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int:
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
UpperCAmelCase : str = n - 1
UpperCAmelCase : List[Any] = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
UpperCAmelCase : List[str] = 0
while count < prec:
UpperCAmelCase : int = random.randint(2 , n - 1 )
UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if b != 1:
UpperCAmelCase : int = True
for _ in range(_lowerCAmelCase ):
if b == n - 1:
UpperCAmelCase : Dict = False
break
UpperCAmelCase : str = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip()))
print("Here's the list of primes:")
print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 23 | 1 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ ( _lowerCAmelCase : int ) -> bool:
UpperCAmelCase : Tuple = str(_lowerCAmelCase )
return len(_lowerCAmelCase ) == 9 and set(_lowerCAmelCase ) == set('''123456789''' )
def snake_case_ ( ) -> int | None:
for base_num in range(9999 , 4999 , -1 ):
UpperCAmelCase : Tuple = 100002 * base_num
if is_9_pandigital(_lowerCAmelCase ):
return candidate
for base_num in range(333 , 99 , -1 ):
UpperCAmelCase : Tuple = 1002003 * base_num
if is_9_pandigital(_lowerCAmelCase ):
return candidate
return None
if __name__ == "__main__":
print(F"{solution() = }")
| 23 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__: Optional[int] = logging.get_logger(__name__)
def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]:
UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' )
if "large" in checkpoint_url:
UpperCAmelCase : Tuple = 1024
UpperCAmelCase : List[Any] = 4096
UpperCAmelCase : str = 24
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = [5, 11, 17, 23]
UpperCAmelCase : List[Any] = [256, 512, 1024, 1024]
UpperCAmelCase : Tuple = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
UpperCAmelCase : Optional[Any] = 768
UpperCAmelCase : Tuple = [1, 1, 1, 0.5]
UpperCAmelCase : int = [256, 512, 768, 768]
UpperCAmelCase : Any = 150
UpperCAmelCase : Tuple = 16
UpperCAmelCase : Any = (1, 384, 384)
UpperCAmelCase : Optional[Any] = False
UpperCAmelCase : Tuple = '''project'''
if "ade" in checkpoint_url:
UpperCAmelCase : Any = True
UpperCAmelCase : str = 768
UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5]
UpperCAmelCase : List[Any] = 150
UpperCAmelCase : List[Any] = 16
UpperCAmelCase : str = '''huggingface/label-files'''
UpperCAmelCase : Tuple = '''ade20k-id2label.json'''
UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) )
UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
UpperCAmelCase : List[Any] = idalabel
UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480]
return config, expected_shape
def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int:
UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias''']
for k in ignore_keys:
state_dict.pop(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' )
if "pretrained.model" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' )
if "patch_embed" in name:
UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' )
if "pos_embed" in name:
UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' )
if "attn.proj" in name:
UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "proj" in name and "project" not in name:
UpperCAmelCase : str = name.replace('''proj''' , '''projection''' )
if "blocks" in name:
UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' )
if "mlp.fc1" in name:
UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' )
if "norm1" in name and "backbone" not in name:
UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name and "backbone" not in name:
UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' )
if "scratch.output_conv" in name:
UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' )
if "scratch" in name:
UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' )
if "layer1_rn" in name:
UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' )
if "layer2_rn" in name:
UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' )
if "layer3_rn" in name:
UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' )
if "layer4_rn" in name:
UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' )
if "refinenet" in name:
UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" )
if "out_conv" in name:
UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' )
if "resConfUnit1" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' )
if "resConfUnit2" in name:
UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' )
if "conv1" in name:
UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' )
if "conv2" in name:
UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' )
if "pretrained.act_postprocess2.0.project.0" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' )
if "pretrained.act_postprocess3.0.project.0" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' )
if "pretrained.act_postprocess4.0.project.0" in name:
UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' )
if "pretrained.act_postprocess1.4" in name:
UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' )
if "pretrained.act_postprocess2.3" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' )
if "pretrained.act_postprocess2.4" in name:
UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' )
if "pretrained.act_postprocess3.3" in name:
UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' )
if "pretrained.act_postprocess4.3" in name:
UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' )
if "pretrained.act_postprocess4.4" in name:
UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' )
if "pretrained" in name:
UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' )
if "bn" in name:
UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' )
if "head" in name:
UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' )
if "encoder.norm" in name:
UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' )
if "auxlayer" in name:
UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' )
if "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' )
if ".." in name:
UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' )
if "stem.conv" in name:
UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' )
if "blocks" in name:
UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' )
if "convolution" in name and "backbone" in name:
UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' )
if "layer" in name and "backbone" in name:
UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' )
if "backbone.bit.encoder.bit" in name:
UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' )
if "embedder.conv" in name:
UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' )
if "backbone.bit.encoder.stem.norm" in name:
UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' )
return name
def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" )
UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :]
UpperCAmelCase : int = in_proj_bias[: config.hidden_size]
UpperCAmelCase : List[str] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase : str = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :]
def snake_case_ ( ) -> List[str]:
UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
return im
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any:
UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' )
# remove certain keys
remove_ignore_keys_(_lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase )
UpperCAmelCase : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase )
# load HuggingFace model
UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
# Check outputs on an image
UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384
UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase )
UpperCAmelCase : Dict = prepare_img()
UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' )
# forward pass
UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth
if show_prediction:
UpperCAmelCase : Dict = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_lowerCAmelCase )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_lowerCAmelCase )
if push_to_hub:
model.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
if __name__ == "__main__":
UpperCamelCase__: Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
type=str,
help="URL of the original DPT checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=False,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
parser.add_argument(
"--model_name",
default="dpt-large",
type=str,
help="Name of the model, in case you're pushing to the hub.",
)
parser.add_argument(
"--show_prediction",
action="store_true",
)
UpperCamelCase__: Tuple = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 23 | 1 |
'''simple docstring'''
from ..utils import is_flax_available, is_torch_available
if is_torch_available():
from .autoencoder_kl import AutoencoderKL
from .controlnet import ControlNetModel
from .dual_transformer_ad import DualTransformeraDModel
from .modeling_utils import ModelMixin
from .prior_transformer import PriorTransformer
from .ta_film_transformer import TaFilmDecoder
from .transformer_ad import TransformeraDModel
from .unet_ad import UNetaDModel
from .unet_ad import UNetaDModel
from .unet_ad_condition import UNetaDConditionModel
from .unet_ad_condition import UNetaDConditionModel
from .vq_model import VQModel
if is_flax_available():
from .controlnet_flax import FlaxControlNetModel
from .unet_ad_condition_flax import FlaxUNetaDConditionModel
from .vae_flax import FlaxAutoencoderKL
| 23 |
'''simple docstring'''
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
UpperCamelCase__: Optional[int] = "3"
print("Python version:", sys.version)
print("transformers version:", transformers.__version__)
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
print("NCCL version:", torch.cuda.nccl.version())
except ImportError:
print("Torch version:", None)
try:
import deepspeed
print("DeepSpeed version:", deepspeed.__version__)
except ImportError:
print("DeepSpeed version:", None)
try:
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU")))
print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU")))
except ImportError:
print("TensorFlow version:", None)
| 23 | 1 |
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
UpperCamelCase__: List[str] = TypeVar("T")
UpperCamelCase__: Any = Union[List[T], Tuple[T, ...]]
UpperCamelCase__: Dict = Union[T, List[T], Dict[str, T]]
UpperCamelCase__: Optional[Any] = Union[str, bytes, os.PathLike]
| 23 |
'''simple docstring'''
from __future__ import annotations
def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float:
if len(_lowerCAmelCase ) == 0:
raise ValueError('''find_max() arg is an empty sequence''' )
if (
left >= len(_lowerCAmelCase )
or left < -len(_lowerCAmelCase )
or right >= len(_lowerCAmelCase )
or right < -len(_lowerCAmelCase )
):
raise IndexError('''list index out of range''' )
if left == right:
return nums[left]
UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle
UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid]
UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 23 | 1 |
'''simple docstring'''
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
UpperCamelCase__: Dict = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("", "|", "|"),
datarow=DataRow("", "|", "|"),
padding=1,
with_header_hide=None,
)
UpperCamelCase__: List[str] = []
UpperCamelCase__: int = []
UpperCamelCase__: Optional[int] = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}}
UpperCamelCase__: List[str] = [
{
"type": "header",
"text": {
"type": "plain_text",
"text": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results",
"emoji": True,
},
}
]
UpperCamelCase__: List[str] = 0
for log in Path().glob("*.log"):
UpperCamelCase__: Tuple = 0
with open(log, "r") as f:
for line in f:
UpperCamelCase__: Optional[int] = json.loads(line)
if line.get("nodeid", "") != "":
UpperCamelCase__: Tuple = line["nodeid"]
if line.get("duration", None) is not None:
UpperCamelCase__: Union[str, Any] = F"{line['duration']:.4f}"
if line.get("outcome", "") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("_")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
UpperCamelCase__: Dict = []
log.unlink()
UpperCamelCase__: Dict = ""
UpperCamelCase__: Union[str, Any] = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
UpperCamelCase__: str = []
UpperCamelCase__: Any = {}
for test in failed_tests:
UpperCamelCase__: Optional[int] = test[0].split("::")
UpperCamelCase__: Any = data[0].split("/")[-1]
if data[0] not in filesafailed:
UpperCamelCase__: List[Any] = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
UpperCamelCase__: Tuple = [test[0] for test in failed_table]
UpperCamelCase__: Optional[int] = list(set(files))
# Count number of instances in failed_tests
UpperCamelCase__: Optional[Any] = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
UpperCamelCase__: Optional[int] = tabulate(
table,
headers=["Test Location", "Num Failed"],
tablefmt=hf_table_format,
stralign="right",
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3000:
UpperCamelCase__: Optional[Any] = "Too many failed tests, please see the full report in the Action results."
UpperCamelCase__: List[Any] = len(err) + 10
UpperCamelCase__: Any = message[: 3000 - offset] + F"\n...\n```\n{err}"
print(F"### {message}")
else:
UpperCamelCase__: int = "No failed tests! 🤗"
print(F"## {message}")
payload.append(no_error_payload)
if os.environ.get("TEST_TYPE", "") != "":
from slack_sdk import WebClient
UpperCamelCase__: str = WebClient(token=os.environ["SLACK_API_TOKEN"])
if message != "No failed tests! 🤗":
UpperCamelCase__: int = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": message,
},
}
payload.append(md_report)
UpperCamelCase__: int = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": "*For more details:*",
},
"accessory": {
"type": "button",
"text": {
"type": "plain_text",
"text": "Check Action results",
"emoji": True,
},
"url": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}",
},
}
payload.append(action_button)
UpperCamelCase__: Optional[Any] = {
"type": "context",
"elements": [
{
"type": "plain_text",
"text": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}",
}
],
}
payload.append(date_report)
UpperCamelCase__: Dict = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload)
UpperCamelCase__: int = response.data["ts"]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
UpperCamelCase__: Dict = ""
for i, row in enumerate(test_failures):
if row[0] != test_class:
UpperCamelCase__: List[Any] = row[0]
else:
UpperCamelCase__: Tuple = ""
UpperCamelCase__: Dict = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```",
},
}
client.chat_postMessage(
channel="#accelerate-ci-daily",
thread_ts=ts,
blocks=[payload],
)
| 23 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = 42
lowerCamelCase__ = 42
def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int:
super().__init__()
self.register_modules(unet=__snake_case , scheduler=__snake_case )
@torch.no_grad()
def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]:
UpperCAmelCase : str = self.unet.config.sample_size
UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size)
UpperCAmelCase : int = self.unet
UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma
UpperCAmelCase : List[Any] = sample.to(self.device )
self.scheduler.set_timesteps(__snake_case )
self.scheduler.set_sigmas(__snake_case )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample
UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample
# prediction step
UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample
UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean
UpperCAmelCase : int = sample_mean.clamp(0 , 1 )
UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=__snake_case )
| 23 | 1 |
'''simple docstring'''
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def snake_case_ ( _lowerCAmelCase : List[Any] ) -> Union[str, Any]:
UpperCAmelCase : int = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(_lowerCAmelCase , _lowerCAmelCase )
def snake_case_ ( _lowerCAmelCase : Tuple ) -> Tuple:
UpperCAmelCase , UpperCAmelCase : Tuple = emb.weight.shape
UpperCAmelCase : Union[str, Any] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase )
UpperCAmelCase : Optional[Any] = emb.weight.data
return lin_layer
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=None ) -> Tuple:
UpperCAmelCase : List[str] = {}
for old_key in state_dict.keys():
UpperCAmelCase : Optional[int] = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
UpperCAmelCase : str = key.replace('''moe_layer.experts.0''' , f"""ffn.experts.expert_{expert_idx}""" )
else:
UpperCAmelCase : List[str] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' )
if "gate" in key:
UpperCAmelCase : int = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' )
if "fc2" and "experts" not in key:
UpperCAmelCase : Optional[int] = key.replace('''.fc2.''' , '''.ffn.fc2.''' )
if "fc1" and "experts" not in key:
UpperCAmelCase : List[Any] = key.replace('''.fc1.''' , '''.ffn.fc1.''' )
if ".encoder_attn." in key:
UpperCAmelCase : Dict = key.replace('''.encoder_attn.''' , '''.cross_attention.''' )
if "encoder_attn_layer_norm" in key:
UpperCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' )
if "final_layer_norm" in key:
UpperCAmelCase : Optional[Any] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' )
UpperCAmelCase : int = state_dict[old_key]
return new_dict
def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str = WEIGHTS_NAME ) -> Optional[int]:
UpperCAmelCase : Optional[int] = []
UpperCAmelCase : Any = 0
os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase )
for expert in range(_lowerCAmelCase ):
UpperCAmelCase : str = switch_checkpoint_path + f"""-rank-{expert}.pt"""
if os.path.isfile(_lowerCAmelCase ):
UpperCAmelCase : Optional[Any] = torch.load(_lowerCAmelCase )['''model''']
remove_ignore_keys_(_lowerCAmelCase )
UpperCAmelCase : List[Any] = rename_fairseq_keys(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[int] = os.path.join(
_lowerCAmelCase , weights_name.replace('''.bin''' , f"""-{len(_lowerCAmelCase )+1:05d}-of-???.bin""" ) )
torch.save(_lowerCAmelCase , _lowerCAmelCase )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(_lowerCAmelCase )[0]].dtype )
# Add the last block
UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , weights_name.replace('''.bin''' , f"""-{len(_lowerCAmelCase )+1:05d}-of-???.bin""" ) )
UpperCAmelCase : Any = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model''']
remove_ignore_keys_(_lowerCAmelCase )
UpperCAmelCase : int = rename_fairseq_keys(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Optional[Any] = shared_weights['''decoder.embed_tokens.weight''']
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(_lowerCAmelCase ) == 1:
UpperCAmelCase : List[str] = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
torch.save(_lowerCAmelCase , _lowerCAmelCase )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(_lowerCAmelCase , _lowerCAmelCase )
# Otherwise, let's build the index
UpperCAmelCase : str = {}
for idx, shard in enumerate(_lowerCAmelCase ):
UpperCAmelCase : Optional[int] = weights_name.replace('''.bin''' , f"""-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin""" )
UpperCAmelCase : int = os.path.join(_lowerCAmelCase , weights_name.replace('''.bin''' , f"""-{idx+1:05d}-of-???.bin""" ) )
os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) )
for key in shard:
UpperCAmelCase : Any = shard_file
# Add the metadata
UpperCAmelCase : List[str] = {'''total_size''': total_size}
UpperCAmelCase : List[str] = {'''metadata''': metadata, '''weight_map''': weight_map}
with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , '''w''' , encoding='''utf-8''' ) as f:
UpperCAmelCase : List[Any] = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + '''\n'''
f.write(_lowerCAmelCase )
return metadata, index
if __name__ == "__main__":
UpperCamelCase__: Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--nllb_moe_checkpoint_path",
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b",
type=str,
required=False,
help="Path to the output pytorch model.",
)
UpperCamelCase__: List[Any] = parser.parse_args()
UpperCamelCase__ , UpperCamelCase__: Optional[Any] = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
UpperCamelCase__: Optional[Any] = NllbMoeConfig.from_pretrained(
"facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
UpperCamelCase__: str = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("Done")
model.save_pretrained(args.pytorch_dump_folder_path)
| 23 |
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """MCTCTFeatureExtractor"""
lowerCamelCase__ = """AutoTokenizer"""
def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str:
super().__init__(__snake_case , __snake_case )
UpperCAmelCase : List[Any] = self.feature_extractor
UpperCAmelCase : Union[str, Any] = False
def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__snake_case , **__snake_case )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
UpperCAmelCase : int = kwargs.pop('''raw_speech''' )
else:
UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case )
UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case )
UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case )
if len(__snake_case ) > 0:
UpperCAmelCase : Any = args[0]
UpperCAmelCase : Optional[int] = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case )
if text is not None:
UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case )
if text is None:
return inputs
elif audio is None:
return encodings
else:
UpperCAmelCase : str = encodings['''input_ids''']
return inputs
def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str:
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*__snake_case , **__snake_case )
UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case )
UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case )
if len(__snake_case ) > 0:
UpperCAmelCase : List[str] = args[0]
UpperCAmelCase : List[Any] = args[1:]
if input_features is not None:
UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case )
if labels is not None:
UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
UpperCAmelCase : List[str] = labels['''input_ids''']
return input_features
def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]:
return self.tokenizer.decode(*__snake_case , **__snake_case )
@contextmanager
def A ( self : Any ) -> Optional[int]:
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
UpperCAmelCase : Dict = True
UpperCAmelCase : List[Any] = self.tokenizer
yield
UpperCAmelCase : Tuple = self.feature_extractor
UpperCAmelCase : List[Any] = False
| 23 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
def __init__( self : str , __snake_case : List[Any] , __snake_case : Optional[int]=13 , __snake_case : List[Any]=32 , __snake_case : List[str]=3 , __snake_case : Union[str, Any]=4 , __snake_case : int=[10, 20, 30, 40] , __snake_case : Any=[2, 2, 3, 2] , __snake_case : Any=True , __snake_case : Optional[Any]=True , __snake_case : int=37 , __snake_case : List[Any]="gelu" , __snake_case : Dict=10 , __snake_case : Optional[Any]=0.02 , __snake_case : int=["stage2", "stage3", "stage4"] , __snake_case : Union[str, Any]=[2, 3, 4] , __snake_case : Optional[int]=None , ) -> Any:
UpperCAmelCase : Tuple = parent
UpperCAmelCase : List[Any] = batch_size
UpperCAmelCase : Dict = image_size
UpperCAmelCase : Optional[int] = num_channels
UpperCAmelCase : Union[str, Any] = num_stages
UpperCAmelCase : Optional[int] = hidden_sizes
UpperCAmelCase : Tuple = depths
UpperCAmelCase : Union[str, Any] = is_training
UpperCAmelCase : Optional[Any] = use_labels
UpperCAmelCase : Tuple = intermediate_size
UpperCAmelCase : Any = hidden_act
UpperCAmelCase : Optional[int] = num_labels
UpperCAmelCase : int = initializer_range
UpperCAmelCase : Dict = out_features
UpperCAmelCase : str = out_indices
UpperCAmelCase : Any = scope
def A ( self : List[Any] ) -> Dict:
UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Any = None
if self.use_labels:
UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def A ( self : Dict ) -> Optional[int]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__snake_case , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def A ( self : str , __snake_case : Tuple , __snake_case : Any , __snake_case : str ) -> Union[str, Any]:
UpperCAmelCase : Optional[int] = ConvNextVaModel(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Dict = model(__snake_case )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def A ( self : Any , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]:
UpperCAmelCase : List[Any] = ConvNextVaForImageClassification(__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : int = model(__snake_case , labels=__snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : int , __snake_case : Any , __snake_case : List[Any] , __snake_case : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase : Any = ConvNextVaBackbone(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : List[str] = model(__snake_case )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCAmelCase : List[Any] = None
UpperCAmelCase : Dict = ConvNextVaBackbone(config=__snake_case )
model.to(__snake_case )
model.eval()
UpperCAmelCase : Dict = model(__snake_case )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def A ( self : List[str] ) -> List[str]:
UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs
UpperCAmelCase : str = {'''pixel_values''': pixel_values}
return config, inputs_dict
def A ( self : Tuple ) -> Tuple:
UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs
UpperCAmelCase : List[str] = {'''pixel_values''': pixel_values, '''labels''': labels}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE( A__ , A__ , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase__ = (
{"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def A ( self : Dict ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = ConvNextVaModelTester(self )
UpperCAmelCase : Any = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 )
def A ( self : Dict ) -> List[Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A ( self : Any ) -> int:
return
@unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' )
def A ( self : Union[str, Any] ) -> Optional[int]:
pass
@unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' )
def A ( self : Optional[int] ) -> Tuple:
pass
@unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' )
def A ( self : Tuple ) -> int:
pass
def A ( self : Union[str, Any] ) -> Optional[int]:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase : str = True
if model_class.__name__ in [
*get_values(__snake_case ),
*get_values(__snake_case ),
]:
continue
UpperCAmelCase : Union[str, Any] = model_class(__snake_case )
model.to(__snake_case )
model.train()
UpperCAmelCase : str = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case )
UpperCAmelCase : Optional[Any] = model(**__snake_case ).loss
loss.backward()
def A ( self : Optional[int] ) -> str:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase : Optional[int] = False
UpperCAmelCase : Optional[Any] = True
if (
model_class.__name__
in [*get_values(__snake_case ), *get_values(__snake_case )]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase : str = model_class(__snake_case )
model.to(__snake_case )
model.gradient_checkpointing_enable()
model.train()
UpperCAmelCase : str = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case )
UpperCAmelCase : List[Any] = model(**__snake_case ).loss
loss.backward()
def A ( self : int ) -> Any:
UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : List[str] = model_class(__snake_case )
UpperCAmelCase : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()]
UpperCAmelCase : int = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __snake_case )
def A ( self : Any ) -> Dict:
UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
def A ( self : Optional[Any] ) -> Tuple:
def check_hidden_states_output(__snake_case : Any , __snake_case : Dict , __snake_case : int ):
UpperCAmelCase : Optional[int] = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
UpperCAmelCase : str = model(**self._prepare_for_class(__snake_case , __snake_case ) )
UpperCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(__snake_case ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : int = True
check_hidden_states_output(__snake_case , __snake_case , __snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase : List[str] = True
check_hidden_states_output(__snake_case , __snake_case , __snake_case )
def A ( self : Any ) -> Optional[Any]:
UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__snake_case )
@slow
def A ( self : Dict ) -> Optional[Any]:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Union[str, Any] = ConvNextVaModel.from_pretrained(__snake_case )
self.assertIsNotNone(__snake_case )
def snake_case_ ( ) -> Union[str, Any]:
UpperCAmelCase : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@cached_property
def A ( self : Any ) -> Union[str, Any]:
return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None
@slow
def A ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase : Tuple = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(__snake_case )
UpperCAmelCase : List[Any] = self.default_image_processor
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : Optional[int] = preprocessor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case )
# forward pass
with torch.no_grad():
UpperCAmelCase : Any = model(**__snake_case )
# verify the logits
UpperCAmelCase : List[str] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __snake_case )
UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__snake_case )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
| 23 |
'''simple docstring'''
from math import isclose, sqrt
def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]:
UpperCAmelCase : Optional[int] = point_y / 4 / point_x
UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4
UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100
UpperCAmelCase : List[str] = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
UpperCAmelCase : Optional[int] = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus
UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int:
UpperCAmelCase : int = 0
UpperCAmelCase : float = first_x_coord
UpperCAmelCase : float = first_y_coord
UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x)
while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0):
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F"{solution() = }")
| 23 | 1 |
'''simple docstring'''
import os
import sys
import unittest
UpperCamelCase__: int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
UpperCamelCase__: Optional[Any] = os.path.join(git_repo_path, "src", "transformers")
UpperCamelCase__: List[Any] = "\n{0} = None\n"
UpperCamelCase__: Optional[Any] = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n"
UpperCamelCase__: List[str] = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : List[str] ) -> Optional[int]:
UpperCAmelCase : int = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' )
self.assertIsNone(__snake_case )
UpperCAmelCase : List[Any] = find_backend(''' if not is_tokenizers_available():''' )
self.assertEqual(__snake_case , '''tokenizers''' )
UpperCAmelCase : Any = find_backend(''' if not is_tensorflow_text_available():''' )
self.assertEqual(__snake_case , '''tensorflow_text''' )
UpperCAmelCase : Union[str, Any] = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' )
self.assertEqual(__snake_case , '''sentencepiece_and_tokenizers''' )
UpperCAmelCase : Dict = find_backend(
''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' )
self.assertEqual(__snake_case , '''sentencepiece_and_tensorflow_text''' )
UpperCAmelCase : int = find_backend(
''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' )
self.assertEqual(__snake_case , '''sentencepiece_and_tokenizers_and_vision''' )
def A ( self : List[Any] ) -> Optional[int]:
UpperCAmelCase : Optional[int] = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('''torch''' , __snake_case )
self.assertIn('''tensorflow_text''' , __snake_case )
self.assertIn('''sentencepiece_and_tokenizers''' , __snake_case )
# Likewise, we can't assert on the exact content of a key
self.assertIn('''BertModel''' , objects['''torch'''] )
self.assertIn('''TFBertModel''' , objects['''tf'''] )
self.assertIn('''FlaxBertModel''' , objects['''flax'''] )
self.assertIn('''BertModel''' , objects['''torch'''] )
self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] )
self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] )
def A ( self : Union[str, Any] ) -> str:
UpperCAmelCase : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' )
self.assertEqual(__snake_case , '''\nCONSTANT = None\n''' )
UpperCAmelCase : Any = create_dummy_object('''function''' , '''\'torch\'''' )
self.assertEqual(
__snake_case , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' )
UpperCAmelCase : List[Any] = '''
class FakeClass(metaclass=DummyObject):
_backends = \'torch\'
def __init__(self, *args, **kwargs):
requires_backends(self, \'torch\')
'''
UpperCAmelCase : Dict = create_dummy_object('''FakeClass''' , '''\'torch\'''' )
self.assertEqual(__snake_case , __snake_case )
def A ( self : List[Any] ) -> Tuple:
UpperCAmelCase : List[str] = '''# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, ["torch"])
class FakeClass(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
'''
UpperCAmelCase : List[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} )
self.assertEqual(dummy_files['''torch'''] , __snake_case )
| 23 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase__: str = {
"configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"],
"tokenization_lxmert": ["LxmertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: int = ["LxmertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: Union[str, Any] = [
"LxmertEncoder",
"LxmertForPreTraining",
"LxmertForQuestionAnswering",
"LxmertModel",
"LxmertPreTrainedModel",
"LxmertVisualFeatureEncoder",
"LxmertXLayer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__: int = [
"TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFLxmertForPreTraining",
"TFLxmertMainLayer",
"TFLxmertModel",
"TFLxmertPreTrainedModel",
"TFLxmertVisualFeatureEncoder",
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 23 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.