code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" lowerCamelCase__ = JukeboxTokenizer lowerCamelCase__ = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def A ( self : str ) -> Tuple: import torch UpperCAmelCase : Tuple = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) UpperCAmelCase : Optional[Any] = tokenizer(**self.metas )['''input_ids'''] # fmt: off UpperCAmelCase : List[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def A ( self : Optional[Any] ) -> str: import torch UpperCAmelCase : Tuple = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) UpperCAmelCase : str = tokenizer(**self.metas )['''input_ids'''] # fmt: off UpperCAmelCase : Union[str, Any] = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
23
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = cos(_lowerCAmelCase ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : Any = (1 - _cos) / 2 UpperCAmelCase : List[Any] = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Dict = 1 - alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Tuple = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = _sin / 2 UpperCAmelCase : Any = 0 UpperCAmelCase : int = -ba UpperCAmelCase : Optional[Any] = 1 + alpha UpperCAmelCase : List[Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : List[str] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : str = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 1 - alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Optional[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : str = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Union[str, Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha * big_a UpperCAmelCase : Union[str, Any] = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : Any = 1 - alpha / big_a UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : Optional[int] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : str = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Dict = big_a * (pmc + aaa) UpperCAmelCase : Any = 2 * big_a * mpc UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa) UpperCAmelCase : Optional[int] = ppmc + aaa UpperCAmelCase : Optional[Any] = -2 * pmpc UpperCAmelCase : Optional[Any] = ppmc - aaa UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : int = 10 ** (gain_db / 40) UpperCAmelCase : List[str] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Any = big_a * (ppmc + aaa) UpperCAmelCase : str = -2 * big_a * pmpc UpperCAmelCase : List[Any] = big_a * (ppmc - aaa) UpperCAmelCase : Optional[Any] = pmc + aaa UpperCAmelCase : Any = 2 * mpc UpperCAmelCase : str = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
23
1
'''simple docstring''' import math import sys def snake_case_ ( _lowerCAmelCase : str ) -> str: UpperCAmelCase : List[Any] = '''''' try: with open(_lowerCAmelCase , '''rb''' ) as binary_file: UpperCAmelCase : str = binary_file.read() for dat in data: UpperCAmelCase : Optional[int] = f"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def snake_case_ ( _lowerCAmelCase : str ) -> str: UpperCAmelCase : Dict = {'''0''': '''0''', '''1''': '''1'''} UpperCAmelCase , UpperCAmelCase : Optional[Any] = '''''', '''''' UpperCAmelCase : int = len(_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase : List[Any] = lexicon[curr_string] result += last_match_id UpperCAmelCase : List[str] = last_match_id + '''0''' if math.loga(_lowerCAmelCase ).is_integer(): UpperCAmelCase : List[str] = {} for curr_key in list(_lowerCAmelCase ): UpperCAmelCase : Any = lexicon.pop(_lowerCAmelCase ) UpperCAmelCase : Dict = new_lex UpperCAmelCase : Optional[Any] = last_match_id + '''1''' index += 1 UpperCAmelCase : List[Any] = '''''' return result def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> None: UpperCAmelCase : Union[str, Any] = 8 try: with open(_lowerCAmelCase , '''wb''' ) as opened_file: UpperCAmelCase : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 , len(_lowerCAmelCase ) , _lowerCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_lowerCAmelCase , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def snake_case_ ( _lowerCAmelCase : str ) -> str: UpperCAmelCase : List[Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCAmelCase : Tuple = data_bits[counter:] UpperCAmelCase : Optional[Any] = data_bits[counter + 1 :] return data_bits def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> None: UpperCAmelCase : Optional[Any] = read_file_binary(_lowerCAmelCase ) UpperCAmelCase : Dict = remove_prefix(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = decompress_data(_lowerCAmelCase ) write_file_binary(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
23
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: UpperCAmelCase : str = get_failure_array(_lowerCAmelCase ) # 2) Step through text searching for pattern UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern while i < len(_lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(_lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCAmelCase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( _lowerCAmelCase : str ) -> list[int]: UpperCAmelCase : Optional[Any] = [0] UpperCAmelCase : str = 0 UpperCAmelCase : List[str] = 1 while j < len(_lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCAmelCase : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(_lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) UpperCamelCase__: str = "abc1abc12" UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc" UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCamelCase__: Tuple = "ABABX" UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) UpperCamelCase__: Any = "AAAB" UpperCamelCase__: str = "ABAAAAAB" assert kmp(pattern, text) # Test 4) UpperCamelCase__: int = "abcdabcy" UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) UpperCamelCase__: List[str] = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
23
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github UpperCamelCase__: Union[str, Any] = [ "good first issue", "feature request", "wip", ] def snake_case_ ( ) -> int: UpperCAmelCase : Dict = Github(os.environ['''GITHUB_TOKEN'''] ) UpperCAmelCase : Any = g.get_repo('''huggingface/accelerate''' ) UpperCAmelCase : str = repo.get_issues(state='''open''' ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCAmelCase : i.created_at , reverse=_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = comments[0] if len(_lowerCAmelCase ) > 0 else None UpperCAmelCase : Optional[int] = dt.utcnow() UpperCAmelCase : Union[str, Any] = (current_time - issue.updated_at).days UpperCAmelCase : Optional[Any] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
23
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCamelCase__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = {} with open(_lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(_lowerCAmelCase ): UpperCAmelCase : List[str] = line.strip() if line: UpperCAmelCase : str = line.split() UpperCAmelCase : Union[str, Any] = line_number UpperCAmelCase : List[Any] = words[0] UpperCAmelCase : Union[str, Any] = value return result def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Dict = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : int = shape_pointer.shape # let's reduce dimension UpperCAmelCase : Union[str, Any] = value[0] else: UpperCAmelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : int = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = value else: UpperCAmelCase : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]: UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Any = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase : List[Any] = key UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0] UpperCamelCase__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int: UpperCAmelCase : List[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase : str = '''weight_g''' elif "weight_v" in name: UpperCAmelCase : int = '''weight_v''' elif "bias" in name: UpperCAmelCase : int = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : List[str] = '''weight''' else: UpperCAmelCase : Dict = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : Dict = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : Any = True else: UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : Optional[int] = name.split('''.''' ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict: if config_path is not None: UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = idalabel UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase ) UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : Optional[int] = target_dict.eos_index UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , ) UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase ) else: UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCamelCase__: Any = parser.parse_args() UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
23
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets UpperCamelCase__: List[str] = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" UpperCamelCase__: Optional[Any] = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" UpperCamelCase__: Union[str, Any] = r"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE( datasets.Metric ): """simple docstring""" def A ( self : Union[str, Any] ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def A ( self : int , __snake_case : int , __snake_case : List[Any] ) -> Optional[Any]: UpperCAmelCase : str = 0.0 for i, j in zip(__snake_case , __snake_case ): n_correct += 1.0 if math_equivalence.is_equiv(__snake_case , __snake_case ) else 0.0 UpperCAmelCase : Union[str, Any] = n_correct / len(__snake_case ) return { "accuracy": accuracy, }
23
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case ) UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )] UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case ) UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Tuple = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def A ( self : List[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : int = num_samples * [prompt] UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Tuple = shard(__snake_case ) UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : List[str] = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[int] = jax.device_count() UpperCAmelCase : List[str] = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : str = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) UpperCAmelCase : Tuple = scheduler.create_state() UpperCAmelCase : Dict = scheduler_state UpperCAmelCase : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : int = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Any = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : str = replicate(__snake_case ) UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def A ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , ) UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[str] = shard(__snake_case ) UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) UpperCAmelCase : int = replicate(__snake_case ) UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[Any] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : int = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor UpperCamelCase__: str = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> List[str]: if isinstance(_lowerCAmelCase , torch.Tensor ): return image elif isinstance(_lowerCAmelCase , PIL.Image.Image ): UpperCAmelCase : List[Any] = [image] UpperCAmelCase : str = [trans(img.convert('''RGB''' ) ) for img in image] UpperCAmelCase : List[Any] = torch.stack(_lowerCAmelCase ) return image class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : List[Any] ) -> List[Any]: super().__init__() # make sure scheduler can always be converted to DDIM UpperCAmelCase : Union[str, Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__snake_case , scheduler=__snake_case ) def A ( self : Tuple , __snake_case : Union[str, Any] ) -> str: if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def A ( self : List[str] , __snake_case : List[str] , __snake_case : Any , __snake_case : List[Any] ) -> Optional[Any]: # get the original timestep using init_timestep UpperCAmelCase : Optional[int] = min(int(num_inference_steps * strength ) , __snake_case ) UpperCAmelCase : Tuple = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def A ( self : Union[str, Any] , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : str=None ) -> List[Any]: if not isinstance(__snake_case , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__snake_case )}""" ) UpperCAmelCase : Optional[Any] = image.to(device=__snake_case , dtype=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase : Optional[int] = init_latents.shape UpperCAmelCase : Tuple = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents print('''add noise to latents at timestep''' , __snake_case ) UpperCAmelCase : List[Any] = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) UpperCAmelCase : Any = init_latents return latents @torch.no_grad() def __call__( self : Union[str, Any] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] = None , __snake_case : float = 0.8 , __snake_case : int = 1 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : float = 0.0 , __snake_case : int = 50 , __snake_case : Optional[bool] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(__snake_case ) # 2. Preprocess image UpperCAmelCase : int = preprocess(__snake_case ) # 3. set timesteps self.scheduler.set_timesteps(__snake_case , device=self.device ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.get_timesteps(__snake_case , __snake_case , self.device ) UpperCAmelCase : List[Any] = timesteps[:1].repeat(__snake_case ) # 4. Prepare latent variables UpperCAmelCase : Union[str, Any] = self.prepare_latents(__snake_case , __snake_case , __snake_case , self.unet.dtype , self.device , __snake_case ) UpperCAmelCase : Dict = latents # 5. Denoising loop for t in self.progress_bar(__snake_case ): # 1. predict noise model_output UpperCAmelCase : List[Any] = self.unet(__snake_case , __snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase : Any = self.scheduler.step( __snake_case , __snake_case , __snake_case , eta=__snake_case , use_clipped_model_output=__snake_case , generator=__snake_case , ).prev_sample UpperCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Dict = self.numpy_to_pil(__snake_case ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__snake_case )
23
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase : str = n - 1 UpperCAmelCase : List[Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase : List[str] = 0 while count < prec: UpperCAmelCase : int = random.randint(2 , n - 1 ) UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if b != 1: UpperCAmelCase : int = True for _ in range(_lowerCAmelCase ): if b == n - 1: UpperCAmelCase : Dict = False break UpperCAmelCase : str = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
23
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: List[Any] = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """donut-swin""" lowerCamelCase__ = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Union[str, Any] , __snake_case : List[str]=224 , __snake_case : Optional[int]=4 , __snake_case : int=3 , __snake_case : Tuple=96 , __snake_case : Union[str, Any]=[2, 2, 6, 2] , __snake_case : str=[3, 6, 12, 24] , __snake_case : List[str]=7 , __snake_case : str=4.0 , __snake_case : Tuple=True , __snake_case : Union[str, Any]=0.0 , __snake_case : str=0.0 , __snake_case : Optional[Any]=0.1 , __snake_case : Union[str, Any]="gelu" , __snake_case : str=False , __snake_case : Optional[int]=0.02 , __snake_case : List[Any]=1E-5 , **__snake_case : int , ) -> Optional[Any]: super().__init__(**__snake_case ) UpperCAmelCase : Any = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : Union[str, Any] = embed_dim UpperCAmelCase : Union[str, Any] = depths UpperCAmelCase : Any = len(__snake_case ) UpperCAmelCase : Union[str, Any] = num_heads UpperCAmelCase : Any = window_size UpperCAmelCase : Tuple = mlp_ratio UpperCAmelCase : Optional[Any] = qkv_bias UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Dict = drop_path_rate UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : Union[str, Any] = use_absolute_embeddings UpperCAmelCase : Tuple = layer_norm_eps UpperCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase : str = int(embed_dim * 2 ** (len(__snake_case ) - 1) )
23
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: Optional[int] = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: UpperCAmelCase : Tuple = 1024 UpperCAmelCase : List[Any] = 4096 UpperCAmelCase : str = 24 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = [5, 11, 17, 23] UpperCAmelCase : List[Any] = [256, 512, 1024, 1024] UpperCAmelCase : Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase : Optional[Any] = 768 UpperCAmelCase : Tuple = [1, 1, 1, 0.5] UpperCAmelCase : int = [256, 512, 768, 768] UpperCAmelCase : Any = 150 UpperCAmelCase : Tuple = 16 UpperCAmelCase : Any = (1, 384, 384) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = '''project''' if "ade" in checkpoint_url: UpperCAmelCase : Any = True UpperCAmelCase : str = 768 UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5] UpperCAmelCase : List[Any] = 150 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = '''huggingface/label-files''' UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : List[Any] = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase : str = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : int = in_proj_bias[: config.hidden_size] UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def snake_case_ ( ) -> List[str]: UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any: UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase ) UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384 UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase ) UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' ) # forward pass UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth if show_prediction: UpperCAmelCase : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) UpperCamelCase__: Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
23
1
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCamelCase__: List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case_ ( _lowerCAmelCase : Union[List, PIL.Image.Image, torch.Tensor] ) -> List[str]: warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _lowerCAmelCase , ) if isinstance(_lowerCAmelCase , torch.Tensor ): return image elif isinstance(_lowerCAmelCase , PIL.Image.Image ): UpperCAmelCase : Optional[int] = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase , UpperCAmelCase : int = image[0].size UpperCAmelCase , UpperCAmelCase : Any = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCAmelCase : Optional[int] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCAmelCase : Union[str, Any] = np.concatenate(_lowerCAmelCase , axis=0 ) UpperCAmelCase : str = np.array(_lowerCAmelCase ).astype(np.floataa ) / 2_5_5.0 UpperCAmelCase : Dict = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase : Union[str, Any] = 2.0 * image - 1.0 UpperCAmelCase : Any = torch.from_numpy(_lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase : List[Any] = torch.cat(_lowerCAmelCase , dim=0 ) return image def snake_case_ ( _lowerCAmelCase : Union[List, PIL.Image.Image, torch.Tensor] ) -> Tuple: if isinstance(_lowerCAmelCase , torch.Tensor ): return mask elif isinstance(_lowerCAmelCase , PIL.Image.Image ): UpperCAmelCase : Optional[Any] = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = mask[0].size UpperCAmelCase , UpperCAmelCase : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase : Any = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] UpperCAmelCase : Union[str, Any] = np.concatenate(_lowerCAmelCase , axis=0 ) UpperCAmelCase : List[Any] = mask.astype(np.floataa ) / 2_5_5.0 UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Any = 1 UpperCAmelCase : List[Any] = torch.from_numpy(_lowerCAmelCase ) elif isinstance(mask[0] , torch.Tensor ): UpperCAmelCase : Dict = torch.cat(_lowerCAmelCase , dim=0 ) return mask class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : Tuple , __snake_case : Optional[Any] , __snake_case : str ) -> Union[str, Any]: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Union[str, Any] , __snake_case : Union[torch.Tensor, PIL.Image.Image] , __snake_case : Union[torch.Tensor, PIL.Image.Image] , __snake_case : int = 250 , __snake_case : float = 0.0 , __snake_case : int = 10 , __snake_case : int = 10 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : int = image UpperCAmelCase : int = _preprocess_image(__snake_case ) UpperCAmelCase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase : Tuple = _preprocess_mask(__snake_case ) UpperCAmelCase : List[Any] = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase : Dict = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase : Union[str, Any] = original_image.shape UpperCAmelCase : Optional[Any] = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__snake_case , __snake_case , __snake_case , self.device ) UpperCAmelCase : Any = eta UpperCAmelCase : Optional[int] = self.scheduler.timesteps[0] + 1 UpperCAmelCase : Any = generator[0] if isinstance(__snake_case , __snake_case ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCAmelCase : Optional[int] = self.unet(__snake_case , __snake_case ).sample # compute previous image: x_t -> x_t-1 UpperCAmelCase : Union[str, Any] = self.scheduler.step(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCAmelCase : Tuple = self.scheduler.undo_step(__snake_case , __snake_case , __snake_case ) UpperCAmelCase : int = t UpperCAmelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Union[str, Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
23
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase__: Optional[int] = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
23
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__: List[Any] = logging.get_logger(__name__) UpperCamelCase__: List[Any] = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """lxmert""" lowerCamelCase__ = {} def __init__( self : Tuple , __snake_case : int=30522 , __snake_case : Union[str, Any]=768 , __snake_case : List[str]=12 , __snake_case : Any=9500 , __snake_case : int=1600 , __snake_case : Any=400 , __snake_case : Dict=3072 , __snake_case : int="gelu" , __snake_case : List[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Optional[Any]=512 , __snake_case : str=2 , __snake_case : Optional[Any]=0.02 , __snake_case : Optional[Any]=1E-12 , __snake_case : Dict=9 , __snake_case : Any=5 , __snake_case : int=5 , __snake_case : Tuple=2048 , __snake_case : Union[str, Any]=4 , __snake_case : Optional[Any]=6.67 , __snake_case : Optional[int]=True , __snake_case : str=True , __snake_case : List[Any]=True , __snake_case : List[Any]=True , __snake_case : int=True , __snake_case : Dict=True , __snake_case : int=True , **__snake_case : int , ) -> Optional[int]: UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : Dict = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : Dict = initializer_range UpperCAmelCase : List[Any] = layer_norm_eps UpperCAmelCase : List[Any] = num_qa_labels UpperCAmelCase : Optional[Any] = num_object_labels UpperCAmelCase : Optional[int] = num_attr_labels UpperCAmelCase : List[Any] = l_layers UpperCAmelCase : Optional[Any] = x_layers UpperCAmelCase : Optional[Any] = r_layers UpperCAmelCase : Union[str, Any] = visual_feat_dim UpperCAmelCase : Dict = visual_pos_dim UpperCAmelCase : Optional[int] = visual_loss_normalizer UpperCAmelCase : Any = task_matched UpperCAmelCase : List[Any] = task_mask_lm UpperCAmelCase : List[str] = task_obj_predict UpperCAmelCase : List[Any] = task_qa UpperCAmelCase : Any = visual_obj_loss UpperCAmelCase : Any = visual_attr_loss UpperCAmelCase : Dict = visual_feat_loss UpperCAmelCase : Union[str, Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__snake_case )
23
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if len(_lowerCAmelCase ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(_lowerCAmelCase ) or left < -len(_lowerCAmelCase ) or right >= len(_lowerCAmelCase ) or right < -len(_lowerCAmelCase ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid] UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
23
1
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCamelCase__: Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : List[str] , __snake_case : Optional[int] , __snake_case : Tuple ) -> str: UpperCAmelCase : Any = question_encoder UpperCAmelCase : Dict = generator UpperCAmelCase : int = self.question_encoder def A ( self : Optional[int] , __snake_case : Optional[int] ) -> Optional[int]: if os.path.isfile(__snake_case ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__snake_case , exist_ok=__snake_case ) UpperCAmelCase : str = os.path.join(__snake_case , '''question_encoder_tokenizer''' ) UpperCAmelCase : int = os.path.join(__snake_case , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(__snake_case ) self.generator.save_pretrained(__snake_case ) @classmethod def A ( cls : List[str] , __snake_case : str , **__snake_case : str ) -> Dict: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase : str = kwargs.pop('''config''' , __snake_case ) if config is None: UpperCAmelCase : List[Any] = RagConfig.from_pretrained(__snake_case ) UpperCAmelCase : int = AutoTokenizer.from_pretrained( __snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( __snake_case , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=__snake_case , generator=__snake_case ) def __call__( self : int , *__snake_case : List[str] , **__snake_case : Union[str, Any] ) -> List[str]: return self.current_tokenizer(*__snake_case , **__snake_case ) def A ( self : Tuple , *__snake_case : str , **__snake_case : int ) -> int: return self.generator.batch_decode(*__snake_case , **__snake_case ) def A ( self : Union[str, Any] , *__snake_case : Union[str, Any] , **__snake_case : Optional[int] ) -> List[Any]: return self.generator.decode(*__snake_case , **__snake_case ) def A ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : Tuple = self.question_encoder def A ( self : Optional[int] ) -> Tuple: UpperCAmelCase : int = self.generator def A ( self : Any , __snake_case : List[str] , __snake_case : Optional[List[str]] = None , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "longest" , __snake_case : str = None , __snake_case : bool = True , **__snake_case : List[str] , ) -> BatchEncoding: warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , __snake_case , ) if max_length is None: UpperCAmelCase : Union[str, Any] = self.current_tokenizer.model_max_length UpperCAmelCase : int = self( __snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , max_length=__snake_case , padding=__snake_case , truncation=__snake_case , **__snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase : Any = self.current_tokenizer.model_max_length UpperCAmelCase : List[Any] = self( text_target=__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case , **__snake_case , ) UpperCAmelCase : Tuple = labels['''input_ids'''] return model_inputs
23
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : str = self.unet.config.sample_size UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size) UpperCAmelCase : int = self.unet UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma UpperCAmelCase : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(__snake_case ) self.scheduler.set_sigmas(__snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample # prediction step UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean UpperCAmelCase : int = sample_mean.clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__snake_case )
23
1
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig UpperCamelCase__: Union[str, Any] = logging.get_logger(__name__) # General docstring UpperCamelCase__: int = "RegNetConfig" # Base docstring UpperCamelCase__: Optional[int] = "facebook/regnet-y-040" UpperCamelCase__: List[str] = [1, 1088, 7, 7] # Image classification docstring UpperCamelCase__: Dict = "facebook/regnet-y-040" UpperCamelCase__: Union[str, Any] = "tabby, tabby cat" UpperCamelCase__: List[str] = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : Tuple , __snake_case : int , __snake_case : int , __snake_case : int = 3 , __snake_case : int = 1 , __snake_case : int = 1 , __snake_case : Optional[str] = "relu" , ) -> List[Any]: super().__init__() UpperCAmelCase : Tuple = nn.Convad( __snake_case , __snake_case , kernel_size=__snake_case , stride=__snake_case , padding=kernel_size // 2 , groups=__snake_case , bias=__snake_case , ) UpperCAmelCase : int = nn.BatchNormad(__snake_case ) UpperCAmelCase : List[str] = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : int , __snake_case : Any ) -> Tuple: UpperCAmelCase : str = self.convolution(__snake_case ) UpperCAmelCase : Optional[int] = self.normalization(__snake_case ) UpperCAmelCase : List[Any] = self.activation(__snake_case ) return hidden_state class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : Dict , __snake_case : RegNetConfig ) -> str: super().__init__() UpperCAmelCase : Optional[Any] = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) UpperCAmelCase : Optional[Any] = config.num_channels def A ( self : Union[str, Any] , __snake_case : Tuple ) -> Tuple: UpperCAmelCase : List[Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) UpperCAmelCase : List[str] = self.embedder(__snake_case ) return hidden_state class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : Any , __snake_case : int , __snake_case : int , __snake_case : int = 2 ) -> Optional[Any]: super().__init__() UpperCAmelCase : str = nn.Convad(__snake_case , __snake_case , kernel_size=1 , stride=__snake_case , bias=__snake_case ) UpperCAmelCase : List[Any] = nn.BatchNormad(__snake_case ) def A ( self : Any , __snake_case : Tensor ) -> Tensor: UpperCAmelCase : int = self.convolution(__snake_case ) UpperCAmelCase : Union[str, Any] = self.normalization(__snake_case ) return hidden_state class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : List[Any] , __snake_case : int , __snake_case : int ) -> Tuple: super().__init__() UpperCAmelCase : Dict = nn.AdaptiveAvgPoolad((1, 1) ) UpperCAmelCase : Any = nn.Sequential( nn.Convad(__snake_case , __snake_case , kernel_size=1 ) , nn.ReLU() , nn.Convad(__snake_case , __snake_case , kernel_size=1 ) , nn.Sigmoid() , ) def A ( self : str , __snake_case : Optional[int] ) -> Optional[int]: # b c h w -> b c 1 1 UpperCAmelCase : str = self.pooler(__snake_case ) UpperCAmelCase : Optional[int] = self.attention(__snake_case ) UpperCAmelCase : int = hidden_state * attention return hidden_state class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : str , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 1 ) -> Any: super().__init__() UpperCAmelCase : int = in_channels != out_channels or stride != 1 UpperCAmelCase : Union[str, Any] = max(1 , out_channels // config.groups_width ) UpperCAmelCase : str = ( RegNetShortCut(__snake_case , __snake_case , stride=__snake_case ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase : Union[str, Any] = nn.Sequential( RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__snake_case , __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act ) , RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=__snake_case ) , ) UpperCAmelCase : Optional[int] = ACTaFN[config.hidden_act] def A ( self : List[Any] , __snake_case : Any ) -> Union[str, Any]: UpperCAmelCase : Dict = hidden_state UpperCAmelCase : int = self.layer(__snake_case ) UpperCAmelCase : Union[str, Any] = self.shortcut(__snake_case ) hidden_state += residual UpperCAmelCase : str = self.activation(__snake_case ) return hidden_state class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 1 ) -> List[str]: super().__init__() UpperCAmelCase : Any = in_channels != out_channels or stride != 1 UpperCAmelCase : List[str] = max(1 , out_channels // config.groups_width ) UpperCAmelCase : List[str] = ( RegNetShortCut(__snake_case , __snake_case , stride=__snake_case ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase : int = nn.Sequential( RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__snake_case , __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act ) , RegNetSELayer(__snake_case , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=__snake_case ) , ) UpperCAmelCase : List[Any] = ACTaFN[config.hidden_act] def A ( self : Dict , __snake_case : Any ) -> int: UpperCAmelCase : List[str] = hidden_state UpperCAmelCase : Optional[int] = self.layer(__snake_case ) UpperCAmelCase : Tuple = self.shortcut(__snake_case ) hidden_state += residual UpperCAmelCase : Any = self.activation(__snake_case ) return hidden_state class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 2 , __snake_case : int = 2 , ) -> int: super().__init__() UpperCAmelCase : Any = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer UpperCAmelCase : str = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __snake_case , __snake_case , __snake_case , stride=__snake_case , ) , *[layer(__snake_case , __snake_case , __snake_case ) for _ in range(depth - 1 )] , ) def A ( self : List[str] , __snake_case : str ) -> Any: UpperCAmelCase : int = self.layers(__snake_case ) return hidden_state class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : List[Any] , __snake_case : RegNetConfig ) -> Dict: super().__init__() UpperCAmelCase : Optional[Any] = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCAmelCase : str = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__snake_case , config.depths[1:] ): self.stages.append(RegNetStage(__snake_case , __snake_case , __snake_case , depth=__snake_case ) ) def A ( self : Dict , __snake_case : Tensor , __snake_case : bool = False , __snake_case : bool = True ) -> BaseModelOutputWithNoAttention: UpperCAmelCase : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase : str = hidden_states + (hidden_state,) UpperCAmelCase : Any = stage_module(__snake_case ) if output_hidden_states: UpperCAmelCase : str = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__snake_case , hidden_states=__snake_case ) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = RegNetConfig lowerCamelCase__ = """regnet""" lowerCamelCase__ = """pixel_values""" lowerCamelCase__ = True def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> Dict: if isinstance(__snake_case , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : int , __snake_case : Dict , __snake_case : List[str]=False ) -> str: if isinstance(__snake_case , __snake_case ): UpperCAmelCase : Dict = value UpperCamelCase__: List[str] = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCamelCase__: Any = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , A__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : Dict ) -> int: super().__init__(__snake_case ) UpperCAmelCase : Dict = config UpperCAmelCase : List[Any] = RegNetEmbeddings(__snake_case ) UpperCAmelCase : int = RegNetEncoder(__snake_case ) UpperCAmelCase : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Optional[Any] , __snake_case : Tensor , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: UpperCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase : Optional[Any] = self.embedder(__snake_case ) UpperCAmelCase : Dict = self.encoder( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case ) UpperCAmelCase : List[Any] = encoder_outputs[0] UpperCAmelCase : Optional[int] = self.pooler(__snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__snake_case , pooler_output=__snake_case , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , A__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : List[str] , __snake_case : List[str] ) -> Optional[int]: super().__init__(__snake_case ) UpperCAmelCase : Any = config.num_labels UpperCAmelCase : List[str] = RegNetModel(__snake_case ) # classification head UpperCAmelCase : str = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[torch.LongTensor] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: UpperCAmelCase : Dict = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase : str = self.regnet(__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case ) UpperCAmelCase : Dict = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase : Union[str, Any] = self.classifier(__snake_case ) UpperCAmelCase : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase : Optional[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase : Any = '''single_label_classification''' else: UpperCAmelCase : Any = '''multi_label_classification''' if self.config.problem_type == "regression": UpperCAmelCase : Optional[int] = MSELoss() if self.num_labels == 1: UpperCAmelCase : List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase : str = loss_fct(__snake_case , __snake_case ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase : Union[str, Any] = CrossEntropyLoss() UpperCAmelCase : List[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase : Optional[int] = BCEWithLogitsLoss() UpperCAmelCase : Optional[Any] = loss_fct(__snake_case , __snake_case ) if not return_dict: UpperCAmelCase : Optional[int] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states )
23
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """MCTCTFeatureExtractor""" lowerCamelCase__ = """AutoTokenizer""" def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str: super().__init__(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = self.feature_extractor UpperCAmelCase : Union[str, Any] = False def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) UpperCAmelCase : int = kwargs.pop('''raw_speech''' ) else: UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case ) UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : Any = args[0] UpperCAmelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase : str = encodings['''input_ids'''] return inputs def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : List[str] = args[0] UpperCAmelCase : List[Any] = args[1:] if input_features is not None: UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case ) if labels is not None: UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase : List[str] = labels['''input_ids'''] return input_features def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def A ( self : Any ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) UpperCAmelCase : Dict = True UpperCAmelCase : List[Any] = self.tokenizer yield UpperCAmelCase : Tuple = self.feature_extractor UpperCAmelCase : List[Any] = False
23
1
'''simple docstring''' import os import numpy import onnx def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> int: UpperCAmelCase : Tuple = a.name UpperCAmelCase : Optional[Any] = b.name UpperCAmelCase : List[str] = '''''' UpperCAmelCase : int = '''''' UpperCAmelCase : Optional[Any] = a == b UpperCAmelCase : Any = name_a UpperCAmelCase : List[str] = name_b return res def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ) -> Any: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCAmelCase , _lowerCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCAmelCase , _lowerCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCAmelCase , _lowerCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ) -> Any: for n in graph_proto.node: _node_replace_input_with(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] ) -> int: UpperCAmelCase : Any = list(model.graph.initializer ) UpperCAmelCase : Union[str, Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i UpperCAmelCase : Union[str, Any] = inits[i].name UpperCAmelCase : Tuple = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : int ) -> Tuple: UpperCAmelCase : List[str] = os.path.dirname(_lowerCAmelCase ) UpperCAmelCase : List[str] = os.path.basename(_lowerCAmelCase ) UpperCAmelCase : int = onnx.load(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : List[str] = list(model.graph.initializer ) UpperCAmelCase : Dict = set() UpperCAmelCase : Tuple = {} UpperCAmelCase : Tuple = [] UpperCAmelCase : Dict = 0 for i in range(len(_lowerCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCAmelCase ) dup_set.add(_lowerCAmelCase ) UpperCAmelCase : int = inits[j].data_type UpperCAmelCase : Union[str, Any] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , _lowerCAmelCase ) total_reduced_size += mem_size UpperCAmelCase : List[str] = inits[i].name UpperCAmelCase : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) UpperCAmelCase : Union[str, Any] = sorted(_lowerCAmelCase ) _remove_dup_initializers_from_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : List[Any] = '''optimized_''' + model_file_name UpperCAmelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) onnx.save(_lowerCAmelCase , _lowerCAmelCase ) return new_model
23
'''simple docstring''' from math import isclose, sqrt def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]: UpperCAmelCase : Optional[int] = point_y / 4 / point_x UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4 UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase : List[str] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : float = first_x_coord UpperCAmelCase : float = first_y_coord UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
23
1
'''simple docstring''' from itertools import product def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ) -> list[int]: UpperCAmelCase : Union[str, Any] = sides_number UpperCAmelCase : Optional[Any] = max_face_number * dice_number UpperCAmelCase : Tuple = [0] * (max_total + 1) UpperCAmelCase : Optional[int] = 1 UpperCAmelCase : Union[str, Any] = range(_lowerCAmelCase , max_face_number + 1 ) for dice_numbers in product(_lowerCAmelCase , repeat=_lowerCAmelCase ): UpperCAmelCase : Optional[Any] = sum(_lowerCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def snake_case_ ( ) -> float: UpperCAmelCase : str = total_frequency_distribution( sides_number=4 , dice_number=9 ) UpperCAmelCase : int = total_frequency_distribution( sides_number=6 , dice_number=6 ) UpperCAmelCase : str = 0 UpperCAmelCase : List[Any] = 9 UpperCAmelCase : Optional[Any] = 4 * 9 UpperCAmelCase : Tuple = 6 for peter_total in range(_lowerCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) UpperCAmelCase : Optional[int] = (4**9) * (6**6) UpperCAmelCase : Union[str, Any] = peter_wins_count / total_games_number UpperCAmelCase : Dict = round(_lowerCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"{solution() = }")
23
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__: str = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Union[str, Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig UpperCamelCase__: Tuple = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """tapas""" def __init__( self : Dict , __snake_case : Tuple=30522 , __snake_case : Dict=768 , __snake_case : Any=12 , __snake_case : List[str]=12 , __snake_case : Optional[Any]=3072 , __snake_case : Any="gelu" , __snake_case : List[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : Union[str, Any]=1024 , __snake_case : List[str]=[3, 256, 256, 2, 256, 256, 10] , __snake_case : Any=0.02 , __snake_case : Optional[Any]=1E-12 , __snake_case : Optional[int]=0 , __snake_case : Tuple=10.0 , __snake_case : Any=0 , __snake_case : Optional[int]=1.0 , __snake_case : Tuple=None , __snake_case : Optional[Any]=1.0 , __snake_case : Any=False , __snake_case : Tuple=None , __snake_case : int=1.0 , __snake_case : Union[str, Any]=1.0 , __snake_case : Dict=False , __snake_case : List[Any]=False , __snake_case : Any="ratio" , __snake_case : Union[str, Any]=None , __snake_case : Union[str, Any]=None , __snake_case : int=64 , __snake_case : List[str]=32 , __snake_case : Optional[int]=False , __snake_case : Optional[int]=True , __snake_case : str=False , __snake_case : List[Any]=False , __snake_case : Any=True , __snake_case : int=False , __snake_case : Dict=None , __snake_case : Union[str, Any]=None , **__snake_case : Optional[int] , ) -> List[Any]: super().__init__(pad_token_id=__snake_case , **__snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : int = hidden_act UpperCAmelCase : int = intermediate_size UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Any = type_vocab_sizes UpperCAmelCase : Union[str, Any] = initializer_range UpperCAmelCase : str = layer_norm_eps # Fine-tuning task hyperparameters UpperCAmelCase : List[Any] = positive_label_weight UpperCAmelCase : Optional[Any] = num_aggregation_labels UpperCAmelCase : Optional[Any] = aggregation_loss_weight UpperCAmelCase : int = use_answer_as_supervision UpperCAmelCase : int = answer_loss_importance UpperCAmelCase : List[Any] = use_normalized_answer_loss UpperCAmelCase : List[str] = huber_loss_delta UpperCAmelCase : List[Any] = temperature UpperCAmelCase : Optional[int] = aggregation_temperature UpperCAmelCase : List[Any] = use_gumbel_for_cells UpperCAmelCase : Optional[int] = use_gumbel_for_aggregation UpperCAmelCase : Tuple = average_approximation_function UpperCAmelCase : Union[str, Any] = cell_selection_preference UpperCAmelCase : Union[str, Any] = answer_loss_cutoff UpperCAmelCase : Tuple = max_num_rows UpperCAmelCase : str = max_num_columns UpperCAmelCase : Dict = average_logits_per_cell UpperCAmelCase : int = select_one_column UpperCAmelCase : List[Any] = allow_empty_column_selection UpperCAmelCase : List[str] = init_cell_selection_weights_to_zero UpperCAmelCase : int = reset_position_index_per_cell UpperCAmelCase : int = disable_per_token_loss # Aggregation hyperparameters UpperCAmelCase : Union[str, Any] = aggregation_labels UpperCAmelCase : Union[str, Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , __snake_case ): UpperCAmelCase : List[str] = {int(__snake_case ): v for k, v in aggregation_labels.items()}
23
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AltDiffusionPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def A ( self : Dict ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase : Dict = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCAmelCase : List[Any] = CLIPTextModel(__snake_case ) UpperCAmelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) UpperCAmelCase : Optional[int] = 77 UpperCAmelCase : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str]=0 ) -> Union[str, Any]: if str(__snake_case ).startswith('''mps''' ): UpperCAmelCase : str = torch.manual_seed(__snake_case ) else: UpperCAmelCase : Tuple = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Union[str, Any] ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def A ( self : Tuple ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Any = self.get_dummy_components() torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase : List[str] = RobertaSeriesModelWithTransformation(__snake_case ) UpperCAmelCase : str = text_encoder UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case ) UpperCAmelCase : str = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : Optional[int] = '''A photo of an astronaut''' UpperCAmelCase : List[Any] = alt_pipe(**__snake_case ) UpperCAmelCase : Optional[Any] = output.images UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : int = PNDMScheduler(skip_prk_steps=__snake_case ) torch.manual_seed(0 ) UpperCAmelCase : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase : Union[str, Any] = RobertaSeriesModelWithTransformation(__snake_case ) UpperCAmelCase : Union[str, Any] = text_encoder UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case ) UpperCAmelCase : Dict = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : int = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : Optional[int] = alt_pipe(**__snake_case ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[int] = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ) -> Any: # make sure here that pndm scheduler skips prk UpperCAmelCase : List[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=__snake_case ) UpperCAmelCase : Tuple = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Any = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = alt_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : Tuple ) -> int: UpperCAmelCase : int = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) UpperCAmelCase : Tuple = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=__snake_case , safety_checker=__snake_case ) UpperCAmelCase : Dict = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Tuple = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : List[Any] = alt_pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='''numpy''' ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
23
1
'''simple docstring''' UpperCamelCase__: Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)] def snake_case_ ( _lowerCAmelCase : int ) -> int: UpperCAmelCase : Dict = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCamelCase__: list[bool | None] = [None] * 10000000 UpperCamelCase__: Optional[int] = True UpperCamelCase__: Any = False def snake_case_ ( _lowerCAmelCase : int ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : Optional[int] = chain(next_number(_lowerCAmelCase ) ) UpperCAmelCase : List[str] = number_chain while number < 10000000: UpperCAmelCase : Optional[Any] = number_chain number *= 10 return number_chain def snake_case_ ( _lowerCAmelCase : int = 10000000 ) -> int: for i in range(1 , _lowerCAmelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution() = }")
23
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Optional[int]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ) -> Dict: UpperCAmelCase : Dict = tmp_path / '''cache''' UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : str = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> Optional[int]: UpperCAmelCase : Any = tmp_path / '''cache''' UpperCAmelCase : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Any = features.copy() if features else default_expected_features UpperCAmelCase : List[Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Dict = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ) -> Tuple: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : Optional[int] = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} UpperCAmelCase : int = features.copy() if features else default_expected_features UpperCAmelCase : Any = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> Union[str, Any]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCAmelCase : Tuple = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} UpperCAmelCase : List[str] = features.copy() UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = tmp_path / '''cache''' UpperCAmelCase : List[str] = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> Optional[Any]: UpperCAmelCase : Any = tmp_path / '''cache''' UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : List[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Dict: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : str = jsonl_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Dict = [jsonl_path] UpperCAmelCase : int = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[int] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=("train",) ) -> Union[str, Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: UpperCAmelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ) -> Any: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Optional[int] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : Dict = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = JsonDatasetReader({'''train''': jsonl_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> Union[str, Any]: if split: UpperCAmelCase : Optional[int] = {split: jsonl_path} else: UpperCAmelCase : Any = '''train''' UpperCAmelCase : Any = {'''train''': jsonl_path, '''test''': jsonl_path} UpperCAmelCase : Tuple = tmp_path / '''cache''' UpperCAmelCase : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict ) -> str: return [json.loads(_lowerCAmelCase ) for line in buffer] class SCREAMING_SNAKE_CASE: """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[Any] ) -> List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def A ( self : str , __snake_case : str , __snake_case : str , __snake_case : int ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : Any = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A ( self : Any , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : List[str] = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 def A ( self : List[Any] , __snake_case : str ) -> Dict: with pytest.raises(__snake_case ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def A ( self : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Union[str, Any]: UpperCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / F"""test.json.{extension}""" UpperCAmelCase : List[Any] = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: UpperCAmelCase : str = f.read() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: UpperCAmelCase : Optional[int] = f.read() assert exported_content == original_content
23
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : str ) -> Union[str, Any]: for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=True ) -> Any: model.train() UpperCAmelCase : List[Any] = model(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = F.mse_loss(_lowerCAmelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str]=False ) -> str: set_seed(42 ) UpperCAmelCase : Union[str, Any] = RegressionModel() UpperCAmelCase : Dict = deepcopy(_lowerCAmelCase ) UpperCAmelCase : Any = RegressionDataset(length=80 ) UpperCAmelCase : Tuple = DataLoader(_lowerCAmelCase , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase : Optional[int] = AdamW(params=model.parameters() , lr=1e-3 ) UpperCAmelCase : str = AdamW(params=ddp_model.parameters() , lr=1e-3 ) UpperCAmelCase : Union[str, Any] = LambdaLR(_lowerCAmelCase , lr_lambda=lambda _lowerCAmelCase : epoch**0.6_5 ) UpperCAmelCase : int = LambdaLR(_lowerCAmelCase , lr_lambda=lambda _lowerCAmelCase : epoch**0.6_5 ) # Make a copy of `model` if sched: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: UpperCAmelCase , UpperCAmelCase : int = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[Any]: # Test when on a single CPU or GPU that the context manager does nothing UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = get_training_setup(_lowerCAmelCase ) # Use a single batch UpperCAmelCase , UpperCAmelCase : Optional[Any] = next(iter(_lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : Union[str, Any] = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : Optional[int] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCAmelCase ): step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: # Sync grads step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase : str = ddp_input[torch.randperm(len(_lowerCAmelCase ) )] def snake_case_ ( _lowerCAmelCase : Tuple ) -> int: # Test on distributed setup that context manager behaves properly UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = get_training_setup(_lowerCAmelCase ) # Use a single batch UpperCAmelCase , UpperCAmelCase : List[Any] = next(iter(_lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : List[Any] = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCAmelCase ): step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: # Sync grads step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase : Optional[Any] = ddp_input[torch.randperm(len(_lowerCAmelCase ) )] def snake_case_ ( _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Optional[int]=False ) -> Dict: UpperCAmelCase : Union[str, Any] = Accelerator( split_batches=_lowerCAmelCase , dispatch_batches=_lowerCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = get_training_setup(_lowerCAmelCase ) for iteration, batch in enumerate(_lowerCAmelCase ): UpperCAmelCase , UpperCAmelCase : Tuple = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : Optional[Any] = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : List[str] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCAmelCase ): step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCAmelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase : List[Any] = ddp_input[torch.randperm(len(_lowerCAmelCase ) )] GradientState._reset_state() def snake_case_ ( _lowerCAmelCase : List[str]=False , _lowerCAmelCase : str=False ) -> Optional[int]: UpperCAmelCase : Dict = Accelerator( split_batches=_lowerCAmelCase , dispatch_batches=_lowerCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = get_training_setup(_lowerCAmelCase , _lowerCAmelCase ) for iteration, batch in enumerate(_lowerCAmelCase ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase , UpperCAmelCase : str = accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCAmelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCAmelCase ): step_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" UpperCAmelCase : str = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCAmelCase )) if accelerator.num_processes > 1: check_model_parameters(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def snake_case_ ( ) -> Tuple: UpperCAmelCase : Optional[Any] = Accelerator() UpperCAmelCase : List[str] = RegressionDataset(length=80 ) UpperCAmelCase : str = DataLoader(_lowerCAmelCase , batch_size=16 ) UpperCAmelCase : List[Any] = RegressionDataset(length=96 ) UpperCAmelCase : List[Any] = DataLoader(_lowerCAmelCase , batch_size=16 ) UpperCAmelCase , UpperCAmelCase : Dict = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCAmelCase ) if iteration < len(_lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCAmelCase ) if batch_num < len(_lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ) -> Optional[int]: UpperCAmelCase : int = Accelerator() UpperCAmelCase : Any = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(_lowerCAmelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(_lowerCAmelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_lowerCAmelCase , _lowerCAmelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
23
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Tuple = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} UpperCamelCase__: Optional[int] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } UpperCamelCase__: Dict = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } UpperCamelCase__: Tuple = "▁" class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="</s>" , __snake_case : Any="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Dict , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase : Optional[int] = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) UpperCAmelCase : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCAmelCase : Optional[Any] = len(self.sp_model ) - 1 UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] UpperCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Tuple = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : Dict ) -> Optional[int]: return len(self.sp_model ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Optional[Any] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def A ( self : int , __snake_case : int ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(__snake_case ) return spm_id if spm_id else self.unk_token_id def A ( self : int , __snake_case : Any ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__snake_case ) def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : int = '''''' UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token UpperCAmelCase : str = True UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(__snake_case ) UpperCAmelCase : Optional[int] = False out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.__dict__.copy() UpperCAmelCase : Any = None return state def __setstate__( self : Optional[int] , __snake_case : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
23
1
'''simple docstring''' from math import factorial UpperCamelCase__: dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def snake_case_ ( _lowerCAmelCase : int ) -> int: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowerCAmelCase ) ) def snake_case_ ( _lowerCAmelCase : int = 60 , _lowerCAmelCase : int = 1000000 ) -> int: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length UpperCAmelCase : List[str] = 0 # the cached sizes of the previous chains UpperCAmelCase : dict[int, int] = {} for start_chain_element in range(1 , _lowerCAmelCase ): # The temporary set will contain the elements of the chain UpperCAmelCase : List[Any] = set() UpperCAmelCase : List[Any] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCAmelCase : Any = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_lowerCAmelCase ) chain_set_length += 1 UpperCAmelCase : int = digit_factorial_sum(_lowerCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCAmelCase : int = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution()}")
23
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @classmethod def A ( cls : Union[str, Any] ) -> int: UpperCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(__snake_case ) @classmethod def A ( cls : List[str] ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : int ) -> Tuple: UpperCAmelCase : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]: UpperCAmelCase : str = True UpperCAmelCase : int = flatten_dict(modela.params ) UpperCAmelCase : Dict = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase : Dict = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : int = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) ) with self.assertRaises(__snake_case ): UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : Optional[int] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(__snake_case ): UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : Optional[int] ) -> str: UpperCAmelCase : Dict = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case ) def A ( self : Dict ) -> List[Any]: UpperCAmelCase : Optional[int] = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case )
23
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase__: Union[str, Any] = 0 UpperCamelCase__: List[str] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase__: List[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase__: Union[str, Any] = tuple[int, int] class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : str , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : Node | None , ) -> None: UpperCAmelCase : int = pos_x UpperCAmelCase : Optional[int] = pos_y UpperCAmelCase : List[Any] = (pos_y, pos_x) UpperCAmelCase : List[str] = goal_x UpperCAmelCase : Dict = goal_y UpperCAmelCase : str = g_cost UpperCAmelCase : Dict = parent UpperCAmelCase : Any = self.calculate_heuristic() UpperCAmelCase : Dict = self.g_cost + self.h_cost def A ( self : str ) -> float: UpperCAmelCase : Dict = self.pos_x - self.goal_x UpperCAmelCase : List[Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(__snake_case ) + abs(__snake_case ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[str] , __snake_case : Node ) -> bool: return self.f_cost < other.f_cost class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : int , __snake_case : TPosition , __snake_case : TPosition ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __snake_case ) UpperCAmelCase : Union[str, Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __snake_case ) UpperCAmelCase : Union[str, Any] = [self.start] UpperCAmelCase : list[Node] = [] UpperCAmelCase : Any = False def A ( self : Optional[int] ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase : str = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(__snake_case ) self.closed_nodes.append(__snake_case ) UpperCAmelCase : Dict = self.get_successors(__snake_case ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__snake_case ) else: # retrieve the best current path UpperCAmelCase : Tuple = self.open_nodes.pop(self.open_nodes.index(__snake_case ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__snake_case ) else: self.open_nodes.append(__snake_case ) return [self.start.pos] def A ( self : Dict , __snake_case : Node ) -> list[Node]: UpperCAmelCase : int = [] for action in delta: UpperCAmelCase : str = parent.pos_x + action[1] UpperCAmelCase : List[str] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __snake_case , __snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __snake_case , ) ) return successors def A ( self : Tuple , __snake_case : Node | None ) -> list[TPosition]: UpperCAmelCase : List[str] = node UpperCAmelCase : Optional[int] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase : Dict = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : List[str] , __snake_case : TPosition , __snake_case : TPosition ) -> None: UpperCAmelCase : Optional[Any] = AStar(__snake_case , __snake_case ) UpperCAmelCase : Union[str, Any] = AStar(__snake_case , __snake_case ) UpperCAmelCase : Tuple = False def A ( self : Optional[Any] ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase : Optional[int] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase : Union[str, Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( __snake_case , __snake_case ) self.fwd_astar.closed_nodes.append(__snake_case ) self.bwd_astar.closed_nodes.append(__snake_case ) UpperCAmelCase : Any = current_bwd_node UpperCAmelCase : Any = current_fwd_node UpperCAmelCase : Optional[Any] = { self.fwd_astar: self.fwd_astar.get_successors(__snake_case ), self.bwd_astar: self.bwd_astar.get_successors(__snake_case ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(__snake_case ) else: # retrieve the best current path UpperCAmelCase : List[str] = astar.open_nodes.pop( astar.open_nodes.index(__snake_case ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(__snake_case ) else: astar.open_nodes.append(__snake_case ) return [self.fwd_astar.start.pos] def A ( self : Union[str, Any] , __snake_case : Node , __snake_case : Node ) -> list[TPosition]: UpperCAmelCase : Dict = self.fwd_astar.retrace_path(__snake_case ) UpperCAmelCase : List[str] = self.bwd_astar.retrace_path(__snake_case ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase__: List[str] = (0, 0) UpperCamelCase__: List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase__: str = time.time() UpperCamelCase__: Union[str, Any] = AStar(init, goal) UpperCamelCase__: List[str] = a_star.search() UpperCamelCase__: int = time.time() - start_time print(F"AStar execution time = {end_time:f} seconds") UpperCamelCase__: int = time.time() UpperCamelCase__: str = BidirectionalAStar(init, goal) UpperCamelCase__: str = time.time() - bd_start_time print(F"BidirectionalAStar execution time = {bd_end_time:f} seconds")
23
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Optional[int] , __snake_case : str , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=8 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : int=True , __snake_case : List[Any]=99 , __snake_case : str=16 , __snake_case : Tuple=5 , __snake_case : Tuple=2 , __snake_case : str=36 , __snake_case : Dict="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=512 , __snake_case : Optional[Any]=16 , __snake_case : int=2 , __snake_case : int=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : str=None , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : int = use_input_mask UpperCAmelCase : Any = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : Optional[int] = num_choices UpperCAmelCase : Any = scope def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : str = None UpperCAmelCase : Tuple = None UpperCAmelCase : int = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : int ) -> Tuple: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[Any] = self.get_config() UpperCAmelCase : int = 300 return config def A ( self : Optional[Any] ) -> Any: ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = self.prepare_config_and_inputs() UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[Any] ) -> List[str]: UpperCAmelCase : int = MraModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Optional[int] = model(__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Dict = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[Any] , ) -> Tuple: UpperCAmelCase : str = True UpperCAmelCase : Tuple = MraModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) UpperCAmelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , ) UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int ) -> Any: UpperCAmelCase : Dict = MraForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Dict , __snake_case : Any , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = MraForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int: UpperCAmelCase : int = self.num_labels UpperCAmelCase : Union[str, Any] = MraForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> int: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : List[str] = MraForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : str , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.num_choices UpperCAmelCase : int = MraForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str ) -> Dict: UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = () def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = MraModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A ( self : Optional[Any] ) -> str: self.config_tester.run_common_tests() def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__snake_case ) def A ( self : Tuple ) -> Dict: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def A ( self : Tuple ) -> List[str]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def A ( self : Dict ) -> Optional[int]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def A ( self : Any ) -> Optional[int]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def A ( self : Dict ) -> Any: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = MraModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''MRA does not output attentions''' ) def A ( self : str ) -> Optional[Any]: return @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @slow def A ( self : Tuple ) -> List[Any]: UpperCAmelCase : int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Optional[Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Any = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[int] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : int = 50265 UpperCAmelCase : int = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : str ) -> List[Any]: UpperCAmelCase : List[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) UpperCAmelCase : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : Tuple = model(__snake_case )[0] UpperCAmelCase : Optional[int] = 50265 UpperCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Optional[int] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
23
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = StableUnCLIPImgaImgPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCamelCase__ = frozenset([] ) def A ( self : int ) -> Dict: UpperCAmelCase : List[Any] = 32 UpperCAmelCase : Union[str, Any] = embedder_hidden_size # image encoding components UpperCAmelCase : Tuple = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) UpperCAmelCase : Any = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__snake_case , projection_dim=__snake_case , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase : Tuple = StableUnCLIPImageNormalizer(embedding_dim=__snake_case ) UpperCAmelCase : Union[str, Any] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__snake_case , layers_per_block=1 , upcast_attention=__snake_case , use_linear_projection=__snake_case , ) torch.manual_seed(0 ) UpperCAmelCase : Any = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='''v_prediction''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase : Tuple = AutoencoderKL() UpperCAmelCase : str = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def A ( self : Dict , __snake_case : int , __snake_case : Union[str, Any]=0 , __snake_case : Union[str, Any]=True ) -> str: if str(__snake_case ).startswith('''mps''' ): UpperCAmelCase : Tuple = torch.manual_seed(__snake_case ) else: UpperCAmelCase : List[str] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) if pil_image: UpperCAmelCase : List[Any] = input_image * 0.5 + 0.5 UpperCAmelCase : int = input_image.clamp(0 , 1 ) UpperCAmelCase : Optional[int] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase : List[Any] = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A ( self : List[str] ) -> Optional[Any]: UpperCAmelCase : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : List[str] = self.get_dummy_components() UpperCAmelCase : int = StableUnCLIPImgaImgPipeline(**__snake_case ) UpperCAmelCase : Union[str, Any] = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : int = self.get_dummy_inputs(__snake_case ) inputs.update({'''image_embeds''': None} ) UpperCAmelCase : int = sd_pipe(**__snake_case ).images UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : List[Any] = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A ( self : Optional[int] ) -> Dict: UpperCAmelCase : List[str] = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=__snake_case ) def A ( self : Any ) -> Optional[Any]: UpperCAmelCase : List[str] = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__snake_case ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A ( self : Optional[Any] ) -> Any: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__snake_case ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : int ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[str] ) -> List[Any]: UpperCAmelCase : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) UpperCAmelCase : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) UpperCAmelCase : Any = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase : Optional[Any] = pipe(__snake_case , '''anime turle''' , generator=__snake_case , output_type='''np''' ) UpperCAmelCase : Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def A ( self : Optional[int] ) -> Dict: UpperCAmelCase : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) UpperCAmelCase : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) UpperCAmelCase : Dict = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase : Union[str, Any] = pipe(__snake_case , '''anime turle''' , generator=__snake_case , output_type='''np''' ) UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def A ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) UpperCAmelCase : Dict = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase : List[Any] = pipe( __snake_case , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
23
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Any ) -> str: UpperCAmelCase : Any = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } UpperCAmelCase : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(__snake_case ) , __snake_case ) def A ( self : int ) -> str: UpperCAmelCase : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__snake_case ) , x.transpose() ) ) UpperCAmelCase : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A ( self : str ) -> Union[str, Any]: UpperCAmelCase : Any = np.random.randn(3 , 4 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Tuple = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Any = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Optional[Any]: UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : str = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A ( self : Tuple ) -> Any: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , np.asarray(transpose(__snake_case ) ) ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(__snake_case , axes=(1, 2, 0) ) ) ) ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.reshape(__snake_case , (4, 3) ) ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.reshape(__snake_case , (12, 5) ) ) ) @require_torch def A ( self : Union[str, Any] ) -> int: UpperCAmelCase : Dict = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_tf def A ( self : int ) -> List[str]: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_flax def A ( self : Any ) -> Dict: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.asarray(reshape(__snake_case , (4, 3) ) ) ) ) UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.asarray(reshape(__snake_case , (12, 5) ) ) ) ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.squeeze(__snake_case ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.squeeze(__snake_case , axis=2 ) ) ) @require_torch def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : List[str] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : str = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_tf def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_flax def A ( self : List[Any] ) -> Dict: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.asarray(squeeze(__snake_case ) ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.asarray(squeeze(__snake_case , axis=2 ) ) ) ) def A ( self : Optional[Any] ) -> int: UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.expand_dims(__snake_case , axis=1 ) ) ) @require_torch def A ( self : List[str] ) -> Tuple: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Tuple = torch.tensor(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Any = tf.constant(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_flax def A ( self : Any ) -> List[Any]: UpperCAmelCase : List[str] = np.random.randn(3 , 4 ) UpperCAmelCase : str = jnp.array(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.asarray(expand_dims(__snake_case , axis=1 ) ) ) )
23
1
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase__: Union[str, Any] = "examples/" UpperCamelCase__: Optional[Any] = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } UpperCamelCase__: Optional[int] = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } UpperCamelCase__: List[Any] = "README.md" def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> Optional[int]: with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[int] = f.read() UpperCAmelCase , UpperCAmelCase : List[Any] = REPLACE_PATTERNS[pattern] UpperCAmelCase : List[Any] = replace.replace('''VERSION''' , _lowerCAmelCase ) UpperCAmelCase : Optional[Any] = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[int]: for folder, directories, fnames in os.walk(_lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='''examples''' ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=False ) -> List[str]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not patch: update_version_in_examples(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: UpperCAmelCase : Optional[int] = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase : Optional[int] = '''1. Want to contribute a new model?''' with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[Any] = f.readlines() # Find the start of the list. UpperCAmelCase : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase : Optional[int] = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase : Union[str, Any] = f.read() UpperCAmelCase : int = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0] return packaging.version.parse(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase : Optional[int] = default_version.base_version elif patch: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase : Dict = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Tuple = default_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase ) def snake_case_ ( ) -> Any: UpperCAmelCase : List[Any] = get_version() UpperCAmelCase : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase : List[Any] = current_version.base_version # Check with the user we got that right. UpperCAmelCase : Optional[int] = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Dict = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") UpperCamelCase__: Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
23
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase__: Union[str, Any] = "examples/" UpperCamelCase__: Optional[Any] = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } UpperCamelCase__: Optional[int] = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } UpperCamelCase__: List[Any] = "README.md" def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> Optional[int]: with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[int] = f.read() UpperCAmelCase , UpperCAmelCase : List[Any] = REPLACE_PATTERNS[pattern] UpperCAmelCase : List[Any] = replace.replace('''VERSION''' , _lowerCAmelCase ) UpperCAmelCase : Optional[Any] = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[int]: for folder, directories, fnames in os.walk(_lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='''examples''' ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=False ) -> List[str]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not patch: update_version_in_examples(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: UpperCAmelCase : Optional[int] = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase : Optional[int] = '''1. Want to contribute a new model?''' with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[Any] = f.readlines() # Find the start of the list. UpperCAmelCase : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase : Optional[int] = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase : Union[str, Any] = f.read() UpperCAmelCase : int = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0] return packaging.version.parse(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase : Optional[int] = default_version.base_version elif patch: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase : Dict = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Tuple = default_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase ) def snake_case_ ( ) -> Any: UpperCAmelCase : List[Any] = get_version() UpperCAmelCase : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase : List[Any] = current_version.base_version # Check with the user we got that right. UpperCAmelCase : Optional[int] = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Dict = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") UpperCamelCase__: Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
23
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer UpperCamelCase__: Optional[Any] = logging.get_logger(__name__) UpperCamelCase__: int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase__: Tuple = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } UpperCamelCase__: List[Any] = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } UpperCamelCase__: List[Any] = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = RoFormerTokenizer def __init__( self : Optional[Any] , __snake_case : Optional[int]=None , __snake_case : Optional[int]=None , __snake_case : List[Any]=True , __snake_case : Optional[Any]="[UNK]" , __snake_case : List[str]="[SEP]" , __snake_case : str="[PAD]" , __snake_case : str="[CLS]" , __snake_case : List[str]="[MASK]" , __snake_case : Optional[Any]=True , __snake_case : List[Any]=None , **__snake_case : Union[str, Any] , ) -> Union[str, Any]: super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , **__snake_case , ) UpperCAmelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __snake_case ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __snake_case ) != strip_accents ): UpperCAmelCase : List[str] = getattr(__snake_case , pre_tok_state.pop('''type''' ) ) UpperCAmelCase : Union[str, Any] = do_lower_case UpperCAmelCase : int = strip_accents UpperCAmelCase : Optional[int] = pre_tok_class(**__snake_case ) UpperCAmelCase : int = do_lower_case def __getstate__( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.__dict__.copy() UpperCAmelCase : List[Any] = BertPreTokenizer() return state def __setstate__( self : Tuple , __snake_case : int ) -> Optional[int]: UpperCAmelCase : Tuple = d UpperCAmelCase : List[Any] = self.__dict__['''_tokenizer'''].get_vocab() UpperCAmelCase : Tuple = PreTokenizer.custom(JiebaPreTokenizer(__snake_case ) ) def A ( self : List[str] , __snake_case : str , __snake_case : str=None ) -> Optional[int]: UpperCAmelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : List[Any] = [self.sep_token_id] UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Tuple , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : Optional[Any] = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def A ( self : str , __snake_case : List[str] , __snake_case : int=None , __snake_case : List[str]=None , __snake_case : Union[str, Any]=False , **__snake_case : List[Any] , ) -> Optional[Any]: UpperCAmelCase : Optional[int] = BertPreTokenizer() return super().save_pretrained(__snake_case , __snake_case , __snake_case , __snake_case , **__snake_case )
23
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCamelCase__: Tuple = numpy.array([0, 0]) UpperCamelCase__: Union[str, Any] = numpy.array([0.5, 0.8660254]) UpperCamelCase__: Dict = numpy.array([1, 0]) UpperCamelCase__: int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] , _lowerCAmelCase : int ) -> list[numpy.ndarray]: UpperCAmelCase : Union[str, Any] = initial_vectors for _ in range(_lowerCAmelCase ): UpperCAmelCase : Union[str, Any] = iteration_step(_lowerCAmelCase ) return vectors def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> list[numpy.ndarray]: UpperCAmelCase : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase : List[str] = vectors[i + 1] new_vectors.append(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def snake_case_ ( _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : float ) -> numpy.ndarray: UpperCAmelCase : List[str] = numpy.radians(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Tuple = numpy.cos(_lowerCAmelCase ), numpy.sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> None: UpperCAmelCase : List[Any] = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase , UpperCAmelCase : str = zip(*_lowerCAmelCase ) plt.plot(_lowerCAmelCase , _lowerCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__: List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
23
1
'''simple docstring''' import enum import shutil import sys UpperCamelCase__ , UpperCamelCase__: Tuple = shutil.get_terminal_size() UpperCamelCase__: int = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"} class SCREAMING_SNAKE_CASE( enum.Enum ): """simple docstring""" lowerCamelCase__ = 0 lowerCamelCase__ = 1 def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int]="" ) -> Tuple: sys.stdout.write(str(_lowerCAmelCase ) + end ) sys.stdout.flush() def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any="" ) -> List[str]: forceWrite(f"""\u001b[{color}m{content}\u001b[0m""" , _lowerCAmelCase ) def snake_case_ ( ) -> Any: forceWrite('''\r''' ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : str ) -> Dict: forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def snake_case_ ( ) -> List[str]: forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def snake_case_ ( ) -> int: reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
23
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase : Dict = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Optional[Any] = Text('''CPU''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''GPU''' , font_size=24 ) UpperCAmelCase : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''Model''' , font_size=24 ) UpperCAmelCase : Tuple = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) UpperCAmelCase : Any = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = Text('''Loaded Checkpoint''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) UpperCAmelCase : Tuple = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase : List[Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) UpperCAmelCase : Tuple = [] UpperCAmelCase : int = [] for i, rect in enumerate(__snake_case ): UpperCAmelCase : Any = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) UpperCAmelCase : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
23
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor UpperCamelCase__: int = random.Random() def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : int=None ) -> Any: if rng is None: UpperCAmelCase : str = global_rng UpperCAmelCase : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def __init__( self : int , __snake_case : str , __snake_case : List[Any]=7 , __snake_case : Optional[int]=400 , __snake_case : List[str]=2000 , __snake_case : List[Any]=24 , __snake_case : Optional[Any]=24 , __snake_case : Dict=0.0 , __snake_case : int=16000 , __snake_case : Any=True , __snake_case : Dict=True , ) -> Tuple: UpperCAmelCase : Tuple = parent UpperCAmelCase : int = batch_size UpperCAmelCase : int = min_seq_length UpperCAmelCase : Optional[int] = max_seq_length UpperCAmelCase : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase : Optional[Any] = feature_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : List[Any] = padding_value UpperCAmelCase : Optional[Any] = sampling_rate UpperCAmelCase : Union[str, Any] = return_attention_mask UpperCAmelCase : str = do_normalize def A ( self : Dict ) -> Dict: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A ( self : Dict , __snake_case : List[Any]=False , __snake_case : int=False ) -> List[str]: def _flatten(__snake_case : List[Any] ): return list(itertools.chain(*__snake_case ) ) if equal_length: UpperCAmelCase : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase : Optional[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase : List[Any] = [np.asarray(__snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = SpeechaTextFeatureExtractor if is_speech_available() else None def A ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = SpeechaTextFeatureExtractionTester(self ) def A ( self : str , __snake_case : List[Any] ) -> Dict: self.assertTrue(np.all(np.mean(__snake_case , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__snake_case , axis=0 ) - 1 ) < 1E-3 ) ) def A ( self : Union[str, Any] ) -> int: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Union[str, Any] = [np.asarray(__snake_case ) for speech_input in speech_inputs] # Test feature size UpperCAmelCase : Optional[Any] = feature_extractor(__snake_case , padding=__snake_case , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCAmelCase : Optional[int] = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features UpperCAmelCase : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1E-3 ) ) # Test batched UpperCAmelCase : Any = feature_extractor(__snake_case , return_tensors='''np''' ).input_features UpperCAmelCase : Union[str, Any] = feature_extractor(__snake_case , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__snake_case , __snake_case ): self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase : Optional[Any] = np.asarray(__snake_case ) UpperCAmelCase : Tuple = feature_extractor(__snake_case , return_tensors='''np''' ).input_features UpperCAmelCase : Tuple = feature_extractor(__snake_case , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__snake_case , __snake_case ): self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1E-3 ) ) def A ( self : Optional[int] ) -> Any: UpperCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : List[str] = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase : Dict = [None, 16, None] for max_length, padding in zip(__snake_case , __snake_case ): UpperCAmelCase : Optional[Any] = feature_extractor( __snake_case , padding=__snake_case , max_length=__snake_case , return_attention_mask=__snake_case ) UpperCAmelCase : Optional[Any] = inputs.input_features UpperCAmelCase : Dict = inputs.attention_mask UpperCAmelCase : Optional[int] = [np.sum(__snake_case ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def A ( self : Optional[Any] ) -> List[str]: UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Optional[int] = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase : List[Any] = [None, 16, None] for max_length, padding in zip(__snake_case , __snake_case ): UpperCAmelCase : Tuple = feature_extractor( __snake_case , max_length=__snake_case , padding=__snake_case , return_tensors='''np''' , return_attention_mask=__snake_case ) UpperCAmelCase : Optional[int] = inputs.input_features UpperCAmelCase : int = inputs.attention_mask UpperCAmelCase : List[str] = [np.sum(__snake_case ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def A ( self : List[str] ) -> Any: UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Union[str, Any] = feature_extractor( __snake_case , padding='''max_length''' , max_length=4 , truncation=__snake_case , return_tensors='''np''' , return_attention_mask=__snake_case , ) UpperCAmelCase : Union[str, Any] = inputs.input_features UpperCAmelCase : int = inputs.attention_mask UpperCAmelCase : str = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def A ( self : int ) -> int: UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : List[Any] = feature_extractor( __snake_case , padding='''longest''' , max_length=4 , truncation=__snake_case , return_tensors='''np''' , return_attention_mask=__snake_case , ) UpperCAmelCase : List[str] = inputs.input_features UpperCAmelCase : Optional[int] = inputs.attention_mask UpperCAmelCase : Dict = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) UpperCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Any = feature_extractor( __snake_case , padding='''longest''' , max_length=16 , truncation=__snake_case , return_tensors='''np''' , return_attention_mask=__snake_case , ) UpperCAmelCase : List[Any] = inputs.input_features UpperCAmelCase : str = inputs.attention_mask UpperCAmelCase : Any = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def A ( self : Any ) -> Any: import torch UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : str = np.random.rand(100 , 32 ).astype(np.floataa ) UpperCAmelCase : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase : Union[str, Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCAmelCase : int = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def A ( self : Optional[Any] , __snake_case : Optional[int] ) -> Optional[Any]: from datasets import load_dataset UpperCAmelCase : List[Any] = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase : Union[str, Any] = ds.sort('''id''' ).select(range(__snake_case ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def A ( self : Dict ) -> Optional[Any]: # fmt: off UpperCAmelCase : Dict = np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ] ) # fmt: on UpperCAmelCase : List[str] = self._load_datasamples(1 ) UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Optional[int] = feature_extractor(__snake_case , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , __snake_case , atol=1E-4 ) )
23
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) UpperCamelCase__: str = None UpperCamelCase__: int = { "7B": 11008, "13B": 13824, "30B": 17920, "65B": 22016, "70B": 28672, } UpperCamelCase__: List[Any] = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : List[Any]=256 ) -> Optional[Any]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: with open(_lowerCAmelCase , '''r''' ) as f: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ) -> Optional[Any]: with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=True ) -> List[Any]: os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp''' ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[str] = read_json(os.path.join(_lowerCAmelCase , '''params.json''' ) ) UpperCAmelCase : str = NUM_SHARDS[model_size] UpperCAmelCase : Any = params['''n_layers'''] UpperCAmelCase : str = params['''n_heads'''] UpperCAmelCase : Any = n_heads // num_shards UpperCAmelCase : List[str] = params['''dim'''] UpperCAmelCase : Optional[Any] = dim // n_heads UpperCAmelCase : str = 1_0_0_0_0.0 UpperCAmelCase : Optional[int] = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase : Tuple = params['''n_kv_heads'''] # for GQA / MQA UpperCAmelCase : Optional[int] = n_heads_per_shard // num_key_value_heads UpperCAmelCase : Optional[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase : List[str] = n_heads UpperCAmelCase : Optional[int] = n_heads_per_shard UpperCAmelCase : List[str] = dim # permute for sliced rotary def permute(_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=n_heads , _lowerCAmelCase : int=dim , _lowerCAmelCase : Dict=dim ): return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase ).transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase : int = torch.load(os.path.join(_lowerCAmelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded UpperCAmelCase : Optional[Any] = [ torch.load(os.path.join(_lowerCAmelCase , f"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' ) for i in range(_lowerCAmelCase ) ] UpperCAmelCase : Any = 0 UpperCAmelCase : str = {'''weight_map''': {}} for layer_i in range(_lowerCAmelCase ): UpperCAmelCase : Optional[Any] = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : Optional[int] = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase : List[str] = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } UpperCAmelCase : Union[str, Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) UpperCAmelCase : str = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Any = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : str = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Tuple = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : Any = inv_freq for k, v in state_dict.items(): UpperCAmelCase : List[Any] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[int] = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : str = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: UpperCAmelCase : Any = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(_lowerCAmelCase )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_lowerCAmelCase )] , dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase : Optional[int] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) # Write configs UpperCAmelCase : Union[str, Any] = {'''total_size''': param_count * 2} write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , '''pytorch_model.bin.index.json''' ) ) UpperCAmelCase : int = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 UpperCAmelCase : Tuple = params['''multiple_of'''] if '''multiple_of''' in params else 256 UpperCAmelCase : Any = LlamaConfig( hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_lowerCAmelCase , ) config.save_pretrained(_lowerCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> List[str]: # Initialize the tokenizer based on the `spm` model UpperCAmelCase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) UpperCAmelCase : List[Any] = tokenizer_class(_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) def snake_case_ ( ) -> List[Any]: UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=_lowerCAmelCase , help='''Whether or not to save using `safetensors`.''' ) UpperCAmelCase : List[Any] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCAmelCase : Optional[int] = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , _lowerCAmelCase ) if __name__ == "__main__": main()
23
1
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : UNetaDModel , __snake_case : DDPMScheduler , __snake_case : Any , ) -> Union[str, Any]: super().__init__() UpperCAmelCase : str = value_function UpperCAmelCase : Optional[Any] = unet UpperCAmelCase : List[str] = scheduler UpperCAmelCase : Optional[int] = env UpperCAmelCase : Tuple = env.get_dataset() UpperCAmelCase : Union[str, Any] = {} for key in self.data.keys(): try: UpperCAmelCase : List[Any] = self.data[key].mean() except: # noqa: E722 pass UpperCAmelCase : int = {} for key in self.data.keys(): try: UpperCAmelCase : Optional[int] = self.data[key].std() except: # noqa: E722 pass UpperCAmelCase : str = env.observation_space.shape[0] UpperCAmelCase : Tuple = env.action_space.shape[0] def A ( self : Dict , __snake_case : Any , __snake_case : Tuple ) -> str: return (x_in - self.means[key]) / self.stds[key] def A ( self : List[str] , __snake_case : List[Any] , __snake_case : List[Any] ) -> Dict: return x_in * self.stds[key] + self.means[key] def A ( self : Union[str, Any] , __snake_case : Any ) -> Any: if type(__snake_case ) is dict: return {k: self.to_torch(__snake_case ) for k, v in x_in.items()} elif torch.is_tensor(__snake_case ): return x_in.to(self.unet.device ) return torch.tensor(__snake_case , device=self.unet.device ) def A ( self : int , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : int ) -> Optional[Any]: for key, val in cond.items(): UpperCAmelCase : str = val.clone() return x_in def A ( self : str , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] ) -> int: UpperCAmelCase : Union[str, Any] = x.shape[0] UpperCAmelCase : Union[str, Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCAmelCase : Optional[Any] = torch.full((batch_size,) , __snake_case , device=self.unet.device , dtype=torch.long ) for _ in range(__snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCAmelCase : List[Any] = self.value_function(x.permute(0 , 2 , 1 ) , __snake_case ).sample UpperCAmelCase : Optional[int] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCAmelCase : List[str] = self.scheduler._get_variance(__snake_case ) UpperCAmelCase : List[str] = torch.exp(0.5 * posterior_variance ) UpperCAmelCase : str = model_std * grad UpperCAmelCase : Tuple = 0 UpperCAmelCase : Any = x.detach() UpperCAmelCase : Tuple = x + scale * grad UpperCAmelCase : Tuple = self.reset_xa(__snake_case , __snake_case , self.action_dim ) UpperCAmelCase : Optional[int] = self.unet(x.permute(0 , 2 , 1 ) , __snake_case ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCAmelCase : List[str] = self.scheduler.step(__snake_case , __snake_case , __snake_case , predict_epsilon=__snake_case )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) UpperCAmelCase : Dict = self.reset_xa(__snake_case , __snake_case , self.action_dim ) UpperCAmelCase : str = self.to_torch(__snake_case ) return x, y def __call__( self : List[str] , __snake_case : int , __snake_case : Any=64 , __snake_case : Dict=32 , __snake_case : Union[str, Any]=2 , __snake_case : Any=0.1 ) -> List[Any]: # normalize the observations and create batch dimension UpperCAmelCase : Dict = self.normalize(__snake_case , '''observations''' ) UpperCAmelCase : Tuple = obs[None].repeat(__snake_case , axis=0 ) UpperCAmelCase : str = {0: self.to_torch(__snake_case )} UpperCAmelCase : Optional[Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCAmelCase : Tuple = randn_tensor(__snake_case , device=self.unet.device ) UpperCAmelCase : Optional[Any] = self.reset_xa(__snake_case , __snake_case , self.action_dim ) UpperCAmelCase : Optional[Any] = self.to_torch(__snake_case ) # run the diffusion process UpperCAmelCase , UpperCAmelCase : Tuple = self.run_diffusion(__snake_case , __snake_case , __snake_case , __snake_case ) # sort output trajectories by value UpperCAmelCase : int = y.argsort(0 , descending=__snake_case ).squeeze() UpperCAmelCase : str = x[sorted_idx] UpperCAmelCase : Dict = sorted_values[:, :, : self.action_dim] UpperCAmelCase : List[Any] = actions.detach().cpu().numpy() UpperCAmelCase : Tuple = self.de_normalize(__snake_case , key='''actions''' ) # select the action with the highest value if y is not None: UpperCAmelCase : Union[str, Any] = 0 else: # if we didn't run value guiding, select a random action UpperCAmelCase : Any = np.random.randint(0 , __snake_case ) UpperCAmelCase : Optional[Any] = denorm_actions[selected_index, 0] return denorm_actions
23
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = cos(_lowerCAmelCase ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : Any = (1 - _cos) / 2 UpperCAmelCase : List[Any] = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Dict = 1 - alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Tuple = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = _sin / 2 UpperCAmelCase : Any = 0 UpperCAmelCase : int = -ba UpperCAmelCase : Optional[Any] = 1 + alpha UpperCAmelCase : List[Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : List[str] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : str = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 1 - alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Optional[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : str = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Union[str, Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha * big_a UpperCAmelCase : Union[str, Any] = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : Any = 1 - alpha / big_a UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : Optional[int] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : str = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Dict = big_a * (pmc + aaa) UpperCAmelCase : Any = 2 * big_a * mpc UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa) UpperCAmelCase : Optional[int] = ppmc + aaa UpperCAmelCase : Optional[Any] = -2 * pmpc UpperCAmelCase : Optional[Any] = ppmc - aaa UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : int = 10 ** (gain_db / 40) UpperCAmelCase : List[str] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Any = big_a * (ppmc + aaa) UpperCAmelCase : str = -2 * big_a * pmpc UpperCAmelCase : List[Any] = big_a * (ppmc - aaa) UpperCAmelCase : Optional[Any] = pmc + aaa UpperCAmelCase : Any = 2 * mpc UpperCAmelCase : str = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
23
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: List[Any] = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: UpperCAmelCase : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ) -> List[Any]: for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase : Optional[Any] = '''''' else: UpperCAmelCase : Any = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[int] = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase : str = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : Any = in_proj_bias[: config.hidden_size] UpperCAmelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : Dict = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : int = in_proj_bias[-config.hidden_size :] def snake_case_ ( _lowerCAmelCase : Optional[Any] ) -> str: UpperCAmelCase : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ) -> Dict: UpperCAmelCase : Union[str, Any] = dct.pop(_lowerCAmelCase ) UpperCAmelCase : Any = val def snake_case_ ( ) -> List[str]: UpperCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Dict = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any]=True ) -> Union[str, Any]: UpperCAmelCase : str = ViTConfig() # patch_size if model_name[-1] == "8": UpperCAmelCase : Optional[Any] = 8 # set labels if required if not base_model: UpperCAmelCase : Optional[Any] = 1000 UpperCAmelCase : str = '''huggingface/label-files''' UpperCAmelCase : Any = '''imagenet-1k-id2label.json''' UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Union[str, Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : Any = idalabel UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCAmelCase : List[Any] = 384 UpperCAmelCase : Tuple = 1536 UpperCAmelCase : int = 12 UpperCAmelCase : Optional[Any] = 6 # load original model from torch hub UpperCAmelCase : List[Any] = torch.hub.load('''facebookresearch/dino:main''' , _lowerCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase : List[Any] = original_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = create_rename_keys(_lowerCAmelCase , base_model=_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if base_model: UpperCAmelCase : Union[str, Any] = ViTModel(_lowerCAmelCase , add_pooling_layer=_lowerCAmelCase ).eval() else: UpperCAmelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor UpperCAmelCase : str = ViTImageProcessor() UpperCAmelCase : int = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase : Dict = encoding['''pixel_values'''] UpperCAmelCase : List[Any] = model(_lowerCAmelCase ) if base_model: UpperCAmelCase : Any = original_model(_lowerCAmelCase ) assert torch.allclose(_lowerCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: UpperCAmelCase : int = original_model(_lowerCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) UpperCamelCase__: Optional[int] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
23
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: UpperCAmelCase : str = get_failure_array(_lowerCAmelCase ) # 2) Step through text searching for pattern UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern while i < len(_lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(_lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCAmelCase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( _lowerCAmelCase : str ) -> list[int]: UpperCAmelCase : Optional[Any] = [0] UpperCAmelCase : str = 0 UpperCAmelCase : List[str] = 1 while j < len(_lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCAmelCase : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(_lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) UpperCamelCase__: str = "abc1abc12" UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc" UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCamelCase__: Tuple = "ABABX" UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) UpperCamelCase__: Any = "AAAB" UpperCamelCase__: str = "ABAAAAAB" assert kmp(pattern, text) # Test 4) UpperCamelCase__: int = "abcdabcy" UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) UpperCamelCase__: List[str] = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
23
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Optional[Any] = logging.get_logger(__name__) UpperCamelCase__: Any = "▁" UpperCamelCase__: List[str] = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } UpperCamelCase__: Any = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } UpperCamelCase__: Optional[int] = { "facebook/s2t-small-librispeech-asr": 1024, } UpperCamelCase__: Union[str, Any] = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] UpperCamelCase__: Optional[int] = {"mustc": MUSTC_LANGS} class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = MAX_MODEL_INPUT_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] lowerCamelCase__ = [] def __init__( self : List[Any] , __snake_case : str , __snake_case : Any , __snake_case : List[str]="<s>" , __snake_case : str="</s>" , __snake_case : str="<pad>" , __snake_case : Any="<unk>" , __snake_case : str=False , __snake_case : List[Any]=False , __snake_case : List[Any]=None , __snake_case : Optional[Any]=None , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Optional[Any] , ) -> None: UpperCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , do_upper_case=__snake_case , do_lower_case=__snake_case , tgt_lang=__snake_case , lang_codes=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase : Union[str, Any] = do_upper_case UpperCAmelCase : int = do_lower_case UpperCAmelCase : Dict = load_json(__snake_case ) UpperCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} UpperCAmelCase : Tuple = spm_file UpperCAmelCase : Any = load_spm(__snake_case , self.sp_model_kwargs ) if lang_codes is not None: UpperCAmelCase : List[str] = lang_codes UpperCAmelCase : int = LANGUAGES[lang_codes] UpperCAmelCase : Any = [F"""<lang:{lang}>""" for lang in self.langs] UpperCAmelCase : Optional[int] = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} UpperCAmelCase : Optional[int] = self.lang_tokens UpperCAmelCase : List[str] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: UpperCAmelCase : str = {} @property def A ( self : Dict ) -> int: return len(self.encoder ) @property def A ( self : Optional[Any] ) -> str: return self._tgt_lang @tgt_lang.setter def A ( self : List[str] , __snake_case : int ) -> None: UpperCAmelCase : List[Any] = new_tgt_lang self.set_tgt_lang_special_tokens(__snake_case ) def A ( self : int , __snake_case : str ) -> None: UpperCAmelCase : Optional[Any] = self.lang_code_to_id[tgt_lang] UpperCAmelCase : Any = [lang_code_id] def A ( self : Tuple , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def A ( self : str , __snake_case : Union[str, Any] ) -> Union[str, Any]: return self.encoder.get(__snake_case , self.encoder[self.unk_token] ) def A ( self : str , __snake_case : int ) -> str: return self.decoder.get(__snake_case , self.unk_token ) def A ( self : Tuple , __snake_case : List[str] ) -> str: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Tuple = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: UpperCAmelCase : Any = self.sp_model.decode(__snake_case ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " UpperCAmelCase : List[Any] = [] else: current_sub_tokens.append(__snake_case ) UpperCAmelCase : Optional[Any] = self.sp_model.decode(__snake_case ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def A ( self : Any , __snake_case : List[str] , __snake_case : Optional[int]=None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) UpperCAmelCase : Tuple = [1] * len(self.prefix_tokens ) UpperCAmelCase : Optional[int] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def A ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> Dict: UpperCAmelCase : Optional[int] = self.__dict__.copy() UpperCAmelCase : str = None return state def __setstate__( self : str , __snake_case : Dict ) -> None: UpperCAmelCase : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : List[str] = {} UpperCAmelCase : Optional[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def A ( self : List[Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase : List[Any] = Path(__snake_case ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" UpperCAmelCase : Dict = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCAmelCase : Union[str, Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __snake_case ) if os.path.abspath(self.spm_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __snake_case ) elif not os.path.isfile(self.spm_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (str(__snake_case ), str(__snake_case )) def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: UpperCAmelCase : int = sentencepiece.SentencePieceProcessor(**_lowerCAmelCase ) spm.Load(str(_lowerCAmelCase ) ) return spm def snake_case_ ( _lowerCAmelCase : str ) -> Union[Dict, List]: with open(_lowerCAmelCase , '''r''' ) as f: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str ) -> None: with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase , indent=2 )
23
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCamelCase__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = {} with open(_lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(_lowerCAmelCase ): UpperCAmelCase : List[str] = line.strip() if line: UpperCAmelCase : str = line.split() UpperCAmelCase : Union[str, Any] = line_number UpperCAmelCase : List[Any] = words[0] UpperCAmelCase : Union[str, Any] = value return result def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Dict = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : int = shape_pointer.shape # let's reduce dimension UpperCAmelCase : Union[str, Any] = value[0] else: UpperCAmelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : int = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = value else: UpperCAmelCase : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]: UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Any = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase : List[Any] = key UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0] UpperCamelCase__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int: UpperCAmelCase : List[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase : str = '''weight_g''' elif "weight_v" in name: UpperCAmelCase : int = '''weight_v''' elif "bias" in name: UpperCAmelCase : int = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : List[str] = '''weight''' else: UpperCAmelCase : Dict = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : Dict = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : Any = True else: UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : Optional[int] = name.split('''.''' ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict: if config_path is not None: UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = idalabel UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase ) UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : Optional[int] = target_dict.eos_index UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , ) UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase ) else: UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCamelCase__: Any = parser.parse_args() UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
23
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase__: str = logging.get_logger(__name__) UpperCamelCase__: List[Any] = { "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """detr""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Tuple , __snake_case : Any=True , __snake_case : int=None , __snake_case : Dict=3 , __snake_case : Optional[Any]=100 , __snake_case : str=6 , __snake_case : Tuple=2048 , __snake_case : int=8 , __snake_case : List[Any]=6 , __snake_case : Optional[int]=2048 , __snake_case : Tuple=8 , __snake_case : Tuple=0.0 , __snake_case : Union[str, Any]=0.0 , __snake_case : str=True , __snake_case : Tuple="relu" , __snake_case : Optional[Any]=256 , __snake_case : Optional[Any]=0.1 , __snake_case : Dict=0.0 , __snake_case : Any=0.0 , __snake_case : Union[str, Any]=0.02 , __snake_case : Tuple=1.0 , __snake_case : Optional[int]=False , __snake_case : Union[str, Any]="sine" , __snake_case : Optional[Any]="resnet50" , __snake_case : str=True , __snake_case : List[Any]=False , __snake_case : Tuple=1 , __snake_case : Union[str, Any]=5 , __snake_case : Optional[int]=2 , __snake_case : int=1 , __snake_case : Optional[int]=1 , __snake_case : Union[str, Any]=5 , __snake_case : Any=2 , __snake_case : Optional[int]=0.1 , **__snake_case : Any , ) -> Any: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__snake_case , __snake_case ): UpperCAmelCase : Union[str, Any] = backbone_config.get('''model_type''' ) UpperCAmelCase : List[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : int = config_class.from_dict(__snake_case ) # set timm attributes to None UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = None, None, None UpperCAmelCase : Optional[Any] = use_timm_backbone UpperCAmelCase : Union[str, Any] = backbone_config UpperCAmelCase : List[str] = num_channels UpperCAmelCase : Optional[Any] = num_queries UpperCAmelCase : str = d_model UpperCAmelCase : List[Any] = encoder_ffn_dim UpperCAmelCase : Tuple = encoder_layers UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : List[Any] = decoder_ffn_dim UpperCAmelCase : List[Any] = decoder_layers UpperCAmelCase : List[str] = decoder_attention_heads UpperCAmelCase : List[str] = dropout UpperCAmelCase : Union[str, Any] = attention_dropout UpperCAmelCase : int = activation_dropout UpperCAmelCase : Union[str, Any] = activation_function UpperCAmelCase : Any = init_std UpperCAmelCase : List[str] = init_xavier_std UpperCAmelCase : Dict = encoder_layerdrop UpperCAmelCase : Optional[int] = decoder_layerdrop UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : Tuple = auxiliary_loss UpperCAmelCase : Union[str, Any] = position_embedding_type UpperCAmelCase : Union[str, Any] = backbone UpperCAmelCase : Optional[int] = use_pretrained_backbone UpperCAmelCase : Optional[Any] = dilation # Hungarian matcher UpperCAmelCase : Optional[int] = class_cost UpperCAmelCase : Optional[int] = bbox_cost UpperCAmelCase : Tuple = giou_cost # Loss coefficients UpperCAmelCase : List[str] = mask_loss_coefficient UpperCAmelCase : Union[str, Any] = dice_loss_coefficient UpperCAmelCase : Optional[Any] = bbox_loss_coefficient UpperCAmelCase : Tuple = giou_loss_coefficient UpperCAmelCase : Dict = eos_coefficient super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def A ( self : Optional[Any] ) -> int: return self.encoder_attention_heads @property def A ( self : int ) -> int: return self.d_model @classmethod def A ( cls : List[Any] , __snake_case : PretrainedConfig , **__snake_case : str ) -> str: return cls(backbone_config=__snake_case , **__snake_case ) def A ( self : Union[str, Any] ) -> Dict[str, any]: UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase : Any = self.backbone_config.to_dict() UpperCAmelCase : int = self.__class__.model_type return output class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = version.parse("""1.11""" ) @property def A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def A ( self : List[str] ) -> float: return 1E-5 @property def A ( self : str ) -> int: return 12
23
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case ) UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )] UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case ) UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Tuple = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def A ( self : List[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : int = num_samples * [prompt] UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Tuple = shard(__snake_case ) UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : List[str] = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[int] = jax.device_count() UpperCAmelCase : List[str] = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : str = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) UpperCAmelCase : Tuple = scheduler.create_state() UpperCAmelCase : Dict = scheduler_state UpperCAmelCase : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : int = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Any = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : str = replicate(__snake_case ) UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def A ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , ) UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[str] = shard(__snake_case ) UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) UpperCAmelCase : int = replicate(__snake_case ) UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[Any] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : int = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL UpperCamelCase__: Optional[Any] = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : List[Any] ) -> List[List[ImageInput]]: if isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowerCAmelCase ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = ["""pixel_values"""] def __init__( self : Optional[int] , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 255 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , **__snake_case : Dict , ) -> None: super().__init__(**__snake_case ) UpperCAmelCase : List[Any] = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase : Union[str, Any] = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase : Union[str, Any] = get_size_dict(__snake_case , param_name='''crop_size''' ) UpperCAmelCase : Any = do_resize UpperCAmelCase : Optional[int] = size UpperCAmelCase : List[str] = do_center_crop UpperCAmelCase : Union[str, Any] = crop_size UpperCAmelCase : Dict = resample UpperCAmelCase : str = do_rescale UpperCAmelCase : List[str] = rescale_factor UpperCAmelCase : List[str] = offset UpperCAmelCase : Tuple = do_normalize UpperCAmelCase : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : str , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Union[str, Any] , ) -> np.ndarray: UpperCAmelCase : int = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" in size: UpperCAmelCase : str = get_resize_output_image_size(__snake_case , size['''shortest_edge'''] , default_to_square=__snake_case ) elif "height" in size and "width" in size: UpperCAmelCase : Optional[int] = (size['''height'''], size['''width''']) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def A ( self : Dict , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[str] , ) -> np.ndarray: UpperCAmelCase : Optional[Any] = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(__snake_case , size=(size['''height'''], size['''width''']) , data_format=__snake_case , **__snake_case ) def A ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : bool = True , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[int] , ) -> Union[str, Any]: UpperCAmelCase : List[str] = image.astype(np.floataa ) if offset: UpperCAmelCase : List[Any] = image - (scale / 2) return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def A ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[int] , ) -> np.ndarray: return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def A ( self : int , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. UpperCAmelCase : Optional[int] = to_numpy_array(__snake_case ) if do_resize: UpperCAmelCase : Optional[int] = self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) if do_center_crop: UpperCAmelCase : str = self.center_crop(__snake_case , size=__snake_case ) if do_rescale: UpperCAmelCase : Union[str, Any] = self.rescale(image=__snake_case , scale=__snake_case , offset=__snake_case ) if do_normalize: UpperCAmelCase : Tuple = self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) UpperCAmelCase : int = to_channel_dimension_format(__snake_case , __snake_case ) return image def A ( self : Optional[Any] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : int , ) -> PIL.Image.Image: UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Tuple = resample if resample is not None else self.resample UpperCAmelCase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : Dict = offset if offset is not None else self.offset UpperCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : str = image_std if image_std is not None else self.image_std UpperCAmelCase : Optional[int] = size if size is not None else self.size UpperCAmelCase : Optional[Any] = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : str = get_size_dict(__snake_case , param_name='''crop_size''' ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase : Union[str, Any] = make_batched(__snake_case ) UpperCAmelCase : List[Any] = [ [ self._preprocess_image( image=__snake_case , do_resize=__snake_case , size=__snake_case , resample=__snake_case , do_center_crop=__snake_case , crop_size=__snake_case , do_rescale=__snake_case , rescale_factor=__snake_case , offset=__snake_case , do_normalize=__snake_case , image_mean=__snake_case , image_std=__snake_case , data_format=__snake_case , ) for img in video ] for video in videos ] UpperCAmelCase : Dict = {'''pixel_values''': videos} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
23
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase : str = n - 1 UpperCAmelCase : List[Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase : List[str] = 0 while count < prec: UpperCAmelCase : int = random.randint(2 , n - 1 ) UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if b != 1: UpperCAmelCase : int = True for _ in range(_lowerCAmelCase ): if b == n - 1: UpperCAmelCase : Dict = False break UpperCAmelCase : str = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
23
1
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: def wrapper(*_lowerCAmelCase : str , **_lowerCAmelCase : Tuple ): UpperCAmelCase : int = timeit.default_timer() UpperCAmelCase : int = func(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase : Dict = timeit.default_timer() - starttime return delta UpperCAmelCase : List[str] = func.__name__ return wrapper def snake_case_ ( _lowerCAmelCase : dict , _lowerCAmelCase : Any=100 , _lowerCAmelCase : Optional[int]=None ) -> Optional[int]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[Any] = seq_shapes or {} for i in range(_lowerCAmelCase ): UpperCAmelCase : List[str] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_lowerCAmelCase , _ArrayXD ): UpperCAmelCase : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_lowerCAmelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase : Any = '''The small grey turtle was surprisingly fast when challenged.''' else: UpperCAmelCase : List[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_lowerCAmelCase , datasets.Sequence ): while isinstance(_lowerCAmelCase , datasets.Sequence ): UpperCAmelCase : Union[str, Any] = v.feature UpperCAmelCase : Union[str, Any] = seq_shapes[k] UpperCAmelCase : List[str] = np.random.rand(*_lowerCAmelCase ).astype(v.dtype ) UpperCAmelCase : List[Any] = data dummy_data.append((i, example) ) return dummy_data def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any]=100 , _lowerCAmelCase : Dict=None ) -> Union[str, Any]: UpperCAmelCase : List[str] = generate_examples(_lowerCAmelCase , num_examples=_lowerCAmelCase , seq_shapes=_lowerCAmelCase ) with ArrowWriter(features=_lowerCAmelCase , path=_lowerCAmelCase ) as writer: for key, record in dummy_data: UpperCAmelCase : Union[str, Any] = features.encode_example(_lowerCAmelCase ) writer.write(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : int = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) UpperCAmelCase : List[str] = datasets.Dataset.from_file(filename=_lowerCAmelCase , info=datasets.DatasetInfo(features=_lowerCAmelCase ) ) return dataset
23
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: Optional[int] = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: UpperCAmelCase : Tuple = 1024 UpperCAmelCase : List[Any] = 4096 UpperCAmelCase : str = 24 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = [5, 11, 17, 23] UpperCAmelCase : List[Any] = [256, 512, 1024, 1024] UpperCAmelCase : Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase : Optional[Any] = 768 UpperCAmelCase : Tuple = [1, 1, 1, 0.5] UpperCAmelCase : int = [256, 512, 768, 768] UpperCAmelCase : Any = 150 UpperCAmelCase : Tuple = 16 UpperCAmelCase : Any = (1, 384, 384) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = '''project''' if "ade" in checkpoint_url: UpperCAmelCase : Any = True UpperCAmelCase : str = 768 UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5] UpperCAmelCase : List[Any] = 150 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = '''huggingface/label-files''' UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : List[Any] = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase : str = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : int = in_proj_bias[: config.hidden_size] UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def snake_case_ ( ) -> List[str]: UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any: UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase ) UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384 UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase ) UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' ) # forward pass UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth if show_prediction: UpperCAmelCase : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) UpperCamelCase__: Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
23
1
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE( A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = IFImgaImgSuperResolutionPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} def A ( self : int ) -> List[str]: return self._get_superresolution_dummy_components() def A ( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any=0 ) -> Union[str, Any]: if str(__snake_case ).startswith('''mps''' ): UpperCAmelCase : Union[str, Any] = torch.manual_seed(__snake_case ) else: UpperCAmelCase : Optional[int] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) UpperCAmelCase : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(__snake_case ) ).to(__snake_case ) UpperCAmelCase : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A ( self : int ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def A ( self : List[Any] ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def A ( self : Any ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def A ( self : Dict ) -> Any: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def A ( self : Optional[int] ) -> Any: self._test_save_load_local() def A ( self : Tuple ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase__: Optional[int] = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
23
1
'''simple docstring''' from __future__ import annotations from cmath import sqrt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> tuple[complex, complex]: if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) UpperCAmelCase : List[Any] = b * b - 4 * a * c UpperCAmelCase : int = (-b + sqrt(_lowerCAmelCase )) / (2 * a) UpperCAmelCase : List[Any] = (-b - sqrt(_lowerCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def snake_case_ ( ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : List[str] = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
23
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if len(_lowerCAmelCase ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(_lowerCAmelCase ) or left < -len(_lowerCAmelCase ) or right >= len(_lowerCAmelCase ) or right < -len(_lowerCAmelCase ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid] UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
23
1
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__: str = logging.get_logger(__name__) UpperCamelCase__: str = {"vocab_file": "vocab.json"} UpperCamelCase__: Optional[int] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } UpperCamelCase__: List[str] = {"mgp-str": 27} class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any]="[GO]" , __snake_case : List[Any]="[GO]" , __snake_case : Union[str, Any]="[s]" , __snake_case : Optional[Any]="[GO]" , **__snake_case : List[Any] ) -> Union[str, Any]: super().__init__( unk_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , **__snake_case , ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase : Union[str, Any] = json.load(__snake_case ) UpperCAmelCase : Optional[int] = {v: k for k, v in self.vocab.items()} @property def A ( self : Union[str, Any] ) -> List[str]: return len(self.vocab ) def A ( self : Dict ) -> List[Any]: return dict(self.vocab , **self.added_tokens_encoder ) def A ( self : int , __snake_case : Union[str, Any] ) -> Dict: UpperCAmelCase : int = [] for s in text: char_tokens.extend(__snake_case ) return char_tokens def A ( self : Optional[int] , __snake_case : List[str] ) -> List[Any]: return self.vocab.get(__snake_case , self.vocab.get(self.unk_token ) ) def A ( self : Optional[Any] , __snake_case : Optional[int] ) -> int: return self.decoder.get(__snake_case ) def A ( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__snake_case ) ) return UpperCAmelCase : List[str] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) return (vocab_file,)
23
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : str = self.unet.config.sample_size UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size) UpperCAmelCase : int = self.unet UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma UpperCAmelCase : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(__snake_case ) self.scheduler.set_sigmas(__snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample # prediction step UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean UpperCAmelCase : int = sample_mean.clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__snake_case )
23
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class SCREAMING_SNAKE_CASE( datasets.BeamBasedBuilder ): """simple docstring""" def A ( self : Dict ) -> Tuple: return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=__snake_case , ) def A ( self : Union[str, Any] , __snake_case : List[str] , __snake_case : str ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def A ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Optional[Any] ) -> Optional[Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__snake_case ) class SCREAMING_SNAKE_CASE( datasets.BeamBasedBuilder ): """simple docstring""" def A ( self : Tuple ) -> Union[str, Any]: return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=__snake_case , ) def A ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] ) -> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def A ( self : Tuple , __snake_case : Tuple , __snake_case : str ) -> str: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__snake_case ) def snake_case_ ( ) -> Optional[Any]: return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def snake_case_ ( ) -> Union[str, Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" @require_beam def A ( self : Tuple ) -> Dict: UpperCAmelCase : Dict = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : str = DummyBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) UpperCAmelCase : str = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __snake_case ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def A ( self : List[Any] ) -> List[Any]: import apache_beam as beam UpperCAmelCase : Tuple = beam.io.parquetio.WriteToParquet UpperCAmelCase : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : Any = DummyBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: UpperCAmelCase : str = partial(__snake_case , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __snake_case , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( __snake_case , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) UpperCAmelCase : Any = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __snake_case ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def A ( self : Optional[Any] ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : Any = DummyBeamDataset(cache_dir=__snake_case ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : List[str] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase : List[str] = NestedBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) UpperCAmelCase : List[Any] = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __snake_case ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
23
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """MCTCTFeatureExtractor""" lowerCamelCase__ = """AutoTokenizer""" def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str: super().__init__(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = self.feature_extractor UpperCAmelCase : Union[str, Any] = False def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) UpperCAmelCase : int = kwargs.pop('''raw_speech''' ) else: UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case ) UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : Any = args[0] UpperCAmelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase : str = encodings['''input_ids'''] return inputs def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : List[str] = args[0] UpperCAmelCase : List[Any] = args[1:] if input_features is not None: UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case ) if labels is not None: UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase : List[str] = labels['''input_ids'''] return input_features def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def A ( self : Any ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) UpperCAmelCase : Dict = True UpperCAmelCase : List[Any] = self.tokenizer yield UpperCAmelCase : Tuple = self.feature_extractor UpperCAmelCase : List[Any] = False
23
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def snake_case_ ( _lowerCAmelCase : Optional[Any] ) -> Any: UpperCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: UpperCAmelCase : List[str] = 6 UpperCAmelCase : int = 128 UpperCAmelCase : str = (2, 2, 18, 2) UpperCAmelCase : List[Any] = (4, 8, 16, 32) elif "large" in model_name: UpperCAmelCase : List[str] = 12 UpperCAmelCase : List[str] = 192 UpperCAmelCase : List[str] = (2, 2, 18, 2) UpperCAmelCase : int = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) UpperCAmelCase : Union[str, Any] = window_size UpperCAmelCase : Union[str, Any] = embed_dim UpperCAmelCase : Union[str, Any] = depths UpperCAmelCase : Tuple = num_heads return config def snake_case_ ( _lowerCAmelCase : Tuple ) -> int: if "encoder.mask_token" in name: UpperCAmelCase : str = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: UpperCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: UpperCAmelCase : Any = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: UpperCAmelCase : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase : Optional[int] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase : str = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase : Any = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": UpperCAmelCase : List[Any] = '''layernorm.weight''' if name == "encoder.norm.bias": UpperCAmelCase : List[Any] = '''layernorm.bias''' if "decoder" in name: pass else: UpperCAmelCase : str = '''swin.''' + name return name def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple ) -> Dict: for key in orig_state_dict.copy().keys(): UpperCAmelCase : List[str] = orig_state_dict.pop(_lowerCAmelCase ) if "attn_mask" in key: pass elif "qkv" in key: UpperCAmelCase : Optional[int] = key.split('''.''' ) UpperCAmelCase : Any = int(key_split[2] ) UpperCAmelCase : Tuple = int(key_split[4] ) UpperCAmelCase : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase : Optional[int] = val[:dim, :] UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2, : ] UpperCAmelCase : List[Any] = val[-dim:, :] else: UpperCAmelCase : List[Any] = val[ :dim ] UpperCAmelCase : List[Any] = val[ dim : dim * 2 ] UpperCAmelCase : List[Any] = val[ -dim: ] else: UpperCAmelCase : Any = val return orig_state_dict def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> int: UpperCAmelCase : int = torch.load(_lowerCAmelCase , map_location='''cpu''' )['''model'''] UpperCAmelCase : Dict = get_swin_config(_lowerCAmelCase ) UpperCAmelCase : Any = SwinForMaskedImageModeling(_lowerCAmelCase ) model.eval() UpperCAmelCase : str = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) UpperCAmelCase : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : int = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) UpperCAmelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) UpperCAmelCase : int = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ) with torch.no_grad(): UpperCAmelCase : Dict = model(**_lowerCAmelCase ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print(f"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(f"""microsoft/{model_name}""" ) image_processor.push_to_hub(f"""microsoft/{model_name}""" ) if __name__ == "__main__": UpperCamelCase__: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase__: Tuple = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
23
'''simple docstring''' from math import isclose, sqrt def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]: UpperCAmelCase : Optional[int] = point_y / 4 / point_x UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4 UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase : List[str] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : float = first_x_coord UpperCAmelCase : float = first_y_coord UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
23
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase__: Any = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Tuple = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys UpperCamelCase__: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__: str = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Union[str, Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def snake_case_ ( _lowerCAmelCase : int ) -> typing.Counter[int]: UpperCAmelCase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(_lowerCAmelCase , max_perimeter + 1 ): UpperCAmelCase : List[str] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_lowerCAmelCase ): UpperCAmelCase : Dict = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def snake_case_ ( _lowerCAmelCase : int = 1000 ) -> int: UpperCAmelCase : str = pythagorean_triple(_lowerCAmelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
23
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AltDiffusionPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def A ( self : Dict ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase : Dict = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCAmelCase : List[Any] = CLIPTextModel(__snake_case ) UpperCAmelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) UpperCAmelCase : Optional[int] = 77 UpperCAmelCase : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str]=0 ) -> Union[str, Any]: if str(__snake_case ).startswith('''mps''' ): UpperCAmelCase : str = torch.manual_seed(__snake_case ) else: UpperCAmelCase : Tuple = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Union[str, Any] ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def A ( self : Tuple ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Any = self.get_dummy_components() torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase : List[str] = RobertaSeriesModelWithTransformation(__snake_case ) UpperCAmelCase : str = text_encoder UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case ) UpperCAmelCase : str = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : Optional[int] = '''A photo of an astronaut''' UpperCAmelCase : List[Any] = alt_pipe(**__snake_case ) UpperCAmelCase : Optional[Any] = output.images UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : int = PNDMScheduler(skip_prk_steps=__snake_case ) torch.manual_seed(0 ) UpperCAmelCase : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase : Union[str, Any] = RobertaSeriesModelWithTransformation(__snake_case ) UpperCAmelCase : Union[str, Any] = text_encoder UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case ) UpperCAmelCase : Dict = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : int = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : Optional[int] = alt_pipe(**__snake_case ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[int] = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ) -> Any: # make sure here that pndm scheduler skips prk UpperCAmelCase : List[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=__snake_case ) UpperCAmelCase : Tuple = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Any = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = alt_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : Tuple ) -> int: UpperCAmelCase : int = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) UpperCAmelCase : Tuple = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=__snake_case , safety_checker=__snake_case ) UpperCAmelCase : Dict = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Tuple = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : List[Any] = alt_pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='''numpy''' ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
23
1
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase : str = n - 1 UpperCAmelCase : List[Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase : List[str] = 0 while count < prec: UpperCAmelCase : int = random.randint(2 , n - 1 ) UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if b != 1: UpperCAmelCase : int = True for _ in range(_lowerCAmelCase ): if b == n - 1: UpperCAmelCase : Dict = False break UpperCAmelCase : str = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
23
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Optional[int]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ) -> Dict: UpperCAmelCase : Dict = tmp_path / '''cache''' UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : str = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> Optional[int]: UpperCAmelCase : Any = tmp_path / '''cache''' UpperCAmelCase : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Any = features.copy() if features else default_expected_features UpperCAmelCase : List[Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Dict = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ) -> Tuple: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : Optional[int] = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} UpperCAmelCase : int = features.copy() if features else default_expected_features UpperCAmelCase : Any = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> Union[str, Any]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCAmelCase : Tuple = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} UpperCAmelCase : List[str] = features.copy() UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = tmp_path / '''cache''' UpperCAmelCase : List[str] = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> Optional[Any]: UpperCAmelCase : Any = tmp_path / '''cache''' UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : List[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Dict: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : str = jsonl_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Dict = [jsonl_path] UpperCAmelCase : int = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[int] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=("train",) ) -> Union[str, Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: UpperCAmelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ) -> Any: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Optional[int] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : Dict = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = JsonDatasetReader({'''train''': jsonl_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> Union[str, Any]: if split: UpperCAmelCase : Optional[int] = {split: jsonl_path} else: UpperCAmelCase : Any = '''train''' UpperCAmelCase : Any = {'''train''': jsonl_path, '''test''': jsonl_path} UpperCAmelCase : Tuple = tmp_path / '''cache''' UpperCAmelCase : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict ) -> str: return [json.loads(_lowerCAmelCase ) for line in buffer] class SCREAMING_SNAKE_CASE: """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[Any] ) -> List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def A ( self : str , __snake_case : str , __snake_case : str , __snake_case : int ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : Any = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A ( self : Any , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : List[str] = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 def A ( self : List[Any] , __snake_case : str ) -> Dict: with pytest.raises(__snake_case ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def A ( self : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Union[str, Any]: UpperCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / F"""test.json.{extension}""" UpperCAmelCase : List[Any] = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: UpperCAmelCase : str = f.read() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: UpperCAmelCase : Optional[int] = f.read() assert exported_content == original_content
23
1
'''simple docstring''' class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Optional[Any] ) -> None: UpperCAmelCase : dict[str, TrieNode] = {} # Mapping from char to TrieNode UpperCAmelCase : str = False def A ( self : Tuple , __snake_case : list[str] ) -> None: for word in words: self.insert(__snake_case ) def A ( self : Union[str, Any] , __snake_case : str ) -> None: UpperCAmelCase : Any = self for char in word: if char not in curr.nodes: UpperCAmelCase : str = TrieNode() UpperCAmelCase : str = curr.nodes[char] UpperCAmelCase : Optional[Any] = True def A ( self : Optional[Any] , __snake_case : str ) -> bool: UpperCAmelCase : str = self for char in word: if char not in curr.nodes: return False UpperCAmelCase : List[str] = curr.nodes[char] return curr.is_leaf def A ( self : List[str] , __snake_case : str ) -> None: def _delete(__snake_case : TrieNode , __snake_case : str , __snake_case : int ) -> bool: if index == len(__snake_case ): # If word does not exist if not curr.is_leaf: return False UpperCAmelCase : Union[str, Any] = False return len(curr.nodes ) == 0 UpperCAmelCase : Optional[Any] = word[index] UpperCAmelCase : str = curr.nodes.get(__snake_case ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCAmelCase : Union[str, Any] = _delete(__snake_case , __snake_case , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , __snake_case , 0 ) def snake_case_ ( _lowerCAmelCase : TrieNode , _lowerCAmelCase : str ) -> None: if node.is_leaf: print(_lowerCAmelCase , end=''' ''' ) for key, value in node.nodes.items(): print_words(_lowerCAmelCase , word + key ) def snake_case_ ( ) -> bool: UpperCAmelCase : List[str] = '''banana bananas bandana band apple all beast'''.split() UpperCAmelCase : int = TrieNode() root.insert_many(_lowerCAmelCase ) # print_words(root, "") assert all(root.find(_lowerCAmelCase ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : bool ) -> None: print(str(_lowerCAmelCase ) , '''works!''' if passes else '''doesn\'t work :(''' ) def snake_case_ ( ) -> None: assert test_trie() def snake_case_ ( ) -> None: print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
23
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Tuple = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} UpperCamelCase__: Optional[int] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } UpperCamelCase__: Dict = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } UpperCamelCase__: Tuple = "▁" class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="</s>" , __snake_case : Any="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Dict , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase : Optional[int] = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) UpperCAmelCase : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCAmelCase : Optional[Any] = len(self.sp_model ) - 1 UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] UpperCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Tuple = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : Dict ) -> Optional[int]: return len(self.sp_model ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Optional[Any] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def A ( self : int , __snake_case : int ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(__snake_case ) return spm_id if spm_id else self.unk_token_id def A ( self : int , __snake_case : Any ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__snake_case ) def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : int = '''''' UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token UpperCAmelCase : str = True UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(__snake_case ) UpperCAmelCase : Optional[int] = False out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.__dict__.copy() UpperCAmelCase : Any = None return state def __setstate__( self : Optional[int] , __snake_case : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
23
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__: str = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Dict = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys UpperCamelCase__: List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @classmethod def A ( cls : Union[str, Any] ) -> int: UpperCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(__snake_case ) @classmethod def A ( cls : List[str] ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : int ) -> Tuple: UpperCAmelCase : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]: UpperCAmelCase : str = True UpperCAmelCase : int = flatten_dict(modela.params ) UpperCAmelCase : Dict = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase : Dict = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : int = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) ) with self.assertRaises(__snake_case ): UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : Optional[int] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(__snake_case ): UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : Optional[int] ) -> str: UpperCAmelCase : Dict = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case ) def A ( self : Dict ) -> List[Any]: UpperCAmelCase : Optional[int] = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case )
23
1
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef UpperCamelCase__: Optional[Any] = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any ) -> List[str]: warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , '''sklearn''' ) return (preds == labels).mean() def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ) -> List[str]: warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , '''sklearn''' ) UpperCAmelCase : int = simple_accuracy(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] ) -> List[str]: warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , '''sklearn''' ) UpperCAmelCase : List[Any] = pearsonr(_lowerCAmelCase , _lowerCAmelCase )[0] UpperCAmelCase : List[Any] = spearmanr(_lowerCAmelCase , _lowerCAmelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> Union[str, Any]: warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , '''sklearn''' ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ), f"""Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "mrpc": return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "sts-b": return pearson_and_spearman(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "qqp": return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "rte": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "hans": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> Dict: warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , '''sklearn''' ) if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError(_lowerCAmelCase )
23
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Optional[int] , __snake_case : str , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=8 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : int=True , __snake_case : List[Any]=99 , __snake_case : str=16 , __snake_case : Tuple=5 , __snake_case : Tuple=2 , __snake_case : str=36 , __snake_case : Dict="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=512 , __snake_case : Optional[Any]=16 , __snake_case : int=2 , __snake_case : int=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : str=None , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : int = use_input_mask UpperCAmelCase : Any = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : Optional[int] = num_choices UpperCAmelCase : Any = scope def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : str = None UpperCAmelCase : Tuple = None UpperCAmelCase : int = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : int ) -> Tuple: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[Any] = self.get_config() UpperCAmelCase : int = 300 return config def A ( self : Optional[Any] ) -> Any: ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = self.prepare_config_and_inputs() UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[Any] ) -> List[str]: UpperCAmelCase : int = MraModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Optional[int] = model(__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Dict = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[Any] , ) -> Tuple: UpperCAmelCase : str = True UpperCAmelCase : Tuple = MraModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) UpperCAmelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , ) UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int ) -> Any: UpperCAmelCase : Dict = MraForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Dict , __snake_case : Any , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = MraForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int: UpperCAmelCase : int = self.num_labels UpperCAmelCase : Union[str, Any] = MraForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> int: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : List[str] = MraForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : str , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.num_choices UpperCAmelCase : int = MraForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str ) -> Dict: UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = () def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = MraModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A ( self : Optional[Any] ) -> str: self.config_tester.run_common_tests() def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__snake_case ) def A ( self : Tuple ) -> Dict: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def A ( self : Tuple ) -> List[str]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def A ( self : Dict ) -> Optional[int]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def A ( self : Any ) -> Optional[int]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def A ( self : Dict ) -> Any: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = MraModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''MRA does not output attentions''' ) def A ( self : str ) -> Optional[Any]: return @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @slow def A ( self : Tuple ) -> List[Any]: UpperCAmelCase : int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Optional[Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Any = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[int] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : int = 50265 UpperCAmelCase : int = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : str ) -> List[Any]: UpperCAmelCase : List[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) UpperCAmelCase : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : Tuple = model(__snake_case )[0] UpperCAmelCase : Optional[int] = 50265 UpperCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Optional[int] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
23
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase__: Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = ["""pixel_values"""] def __init__( self : List[Any] , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 255 , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = True , **__snake_case : List[str] , ) -> None: super().__init__(**__snake_case ) UpperCAmelCase : Any = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase : int = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase : List[str] = get_size_dict(__snake_case , default_to_square=__snake_case , param_name='''crop_size''' ) UpperCAmelCase : Any = do_resize UpperCAmelCase : List[Any] = size UpperCAmelCase : str = resample UpperCAmelCase : Tuple = do_center_crop UpperCAmelCase : Any = crop_size UpperCAmelCase : str = do_rescale UpperCAmelCase : int = rescale_factor UpperCAmelCase : Union[str, Any] = do_normalize UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase : Dict = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase : List[Any] = do_convert_rgb def A ( self : Union[str, Any] , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[Any] , ) -> np.ndarray: UpperCAmelCase : List[str] = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__snake_case , size=size['''shortest_edge'''] , default_to_square=__snake_case ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def A ( self : Tuple , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Union[str, Any] , ) -> np.ndarray: UpperCAmelCase : Tuple = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__snake_case , size=(size['''height'''], size['''width''']) , data_format=__snake_case , **__snake_case ) def A ( self : Any , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ) -> List[str]: return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def A ( self : List[Any] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Dict , ) -> np.ndarray: return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def A ( self : List[str] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : int = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , **__snake_case : Optional[int] , ) -> PIL.Image.Image: UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : str = size if size is not None else self.size UpperCAmelCase : Dict = get_size_dict(__snake_case , param_name='''size''' , default_to_square=__snake_case ) UpperCAmelCase : List[str] = resample if resample is not None else self.resample UpperCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : Any = get_size_dict(__snake_case , param_name='''crop_size''' , default_to_square=__snake_case ) UpperCAmelCase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std UpperCAmelCase : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase : List[str] = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase : str = [convert_to_rgb(__snake_case ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase : Union[str, Any] = [to_numpy_array(__snake_case ) for image in images] if do_resize: UpperCAmelCase : int = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: UpperCAmelCase : Optional[Any] = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: UpperCAmelCase : Optional[int] = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: UpperCAmelCase : int = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] UpperCAmelCase : List[Any] = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] UpperCAmelCase : Tuple = {'''pixel_values''': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
23
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Any ) -> str: UpperCAmelCase : Any = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } UpperCAmelCase : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(__snake_case ) , __snake_case ) def A ( self : int ) -> str: UpperCAmelCase : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__snake_case ) , x.transpose() ) ) UpperCAmelCase : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A ( self : str ) -> Union[str, Any]: UpperCAmelCase : Any = np.random.randn(3 , 4 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Tuple = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Any = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Optional[Any]: UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : str = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A ( self : Tuple ) -> Any: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , np.asarray(transpose(__snake_case ) ) ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(__snake_case , axes=(1, 2, 0) ) ) ) ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.reshape(__snake_case , (4, 3) ) ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.reshape(__snake_case , (12, 5) ) ) ) @require_torch def A ( self : Union[str, Any] ) -> int: UpperCAmelCase : Dict = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_tf def A ( self : int ) -> List[str]: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_flax def A ( self : Any ) -> Dict: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.asarray(reshape(__snake_case , (4, 3) ) ) ) ) UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.asarray(reshape(__snake_case , (12, 5) ) ) ) ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.squeeze(__snake_case ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.squeeze(__snake_case , axis=2 ) ) ) @require_torch def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : List[str] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : str = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_tf def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_flax def A ( self : List[Any] ) -> Dict: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.asarray(squeeze(__snake_case ) ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.asarray(squeeze(__snake_case , axis=2 ) ) ) ) def A ( self : Optional[Any] ) -> int: UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.expand_dims(__snake_case , axis=1 ) ) ) @require_torch def A ( self : List[str] ) -> Tuple: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Tuple = torch.tensor(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Any = tf.constant(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_flax def A ( self : Any ) -> List[Any]: UpperCAmelCase : List[str] = np.random.randn(3 , 4 ) UpperCAmelCase : str = jnp.array(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.asarray(expand_dims(__snake_case , axis=1 ) ) ) )
23
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__: Any = logging.get_logger(__name__) UpperCamelCase__: Optional[Any] = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """trocr""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : Optional[Any] , __snake_case : Any=50265 , __snake_case : Optional[Any]=1024 , __snake_case : str=12 , __snake_case : List[Any]=16 , __snake_case : Any=4096 , __snake_case : List[str]="gelu" , __snake_case : Tuple=512 , __snake_case : Optional[int]=0.1 , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : int=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=0.0 , __snake_case : Dict=True , __snake_case : List[str]=False , __snake_case : Tuple=True , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=1 , __snake_case : str=0 , __snake_case : Dict=2 , **__snake_case : Any , ) -> Dict: UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Any = d_model UpperCAmelCase : Dict = decoder_layers UpperCAmelCase : str = decoder_attention_heads UpperCAmelCase : str = decoder_ffn_dim UpperCAmelCase : List[str] = activation_function UpperCAmelCase : Optional[Any] = max_position_embeddings UpperCAmelCase : List[Any] = dropout UpperCAmelCase : List[str] = attention_dropout UpperCAmelCase : str = activation_dropout UpperCAmelCase : Dict = init_std UpperCAmelCase : Optional[Any] = decoder_layerdrop UpperCAmelCase : Tuple = use_cache UpperCAmelCase : str = scale_embedding UpperCAmelCase : str = use_learned_position_embeddings UpperCAmelCase : str = layernorm_embedding super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , **__snake_case , )
23
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase__: Union[str, Any] = "examples/" UpperCamelCase__: Optional[Any] = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } UpperCamelCase__: Optional[int] = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } UpperCamelCase__: List[Any] = "README.md" def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> Optional[int]: with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[int] = f.read() UpperCAmelCase , UpperCAmelCase : List[Any] = REPLACE_PATTERNS[pattern] UpperCAmelCase : List[Any] = replace.replace('''VERSION''' , _lowerCAmelCase ) UpperCAmelCase : Optional[Any] = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[int]: for folder, directories, fnames in os.walk(_lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='''examples''' ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=False ) -> List[str]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not patch: update_version_in_examples(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: UpperCAmelCase : Optional[int] = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase : Optional[int] = '''1. Want to contribute a new model?''' with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[Any] = f.readlines() # Find the start of the list. UpperCAmelCase : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase : Optional[int] = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase : Union[str, Any] = f.read() UpperCAmelCase : int = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0] return packaging.version.parse(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase : Optional[int] = default_version.base_version elif patch: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase : Dict = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Tuple = default_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase ) def snake_case_ ( ) -> Any: UpperCAmelCase : List[Any] = get_version() UpperCAmelCase : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase : List[Any] = current_version.base_version # Check with the user we got that right. UpperCAmelCase : Optional[int] = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Dict = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") UpperCamelCase__: Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
23
1
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCamelCase__: Union[str, Any] = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Optional[int] , __snake_case : Path , __snake_case : Union[str, None] = None , __snake_case : Union[List[str], None] = None , __snake_case : Union[str, List[str], None] = None , __snake_case : bool = True , ) -> Tuple: UpperCAmelCase : Optional[Any] = [file for file in os.listdir(__snake_case ) if os.path.isfile(os.path.join(__snake_case , __snake_case ) )] if identifier is not None: UpperCAmelCase : str = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__snake_case , __snake_case ): for n_ in n_identifier: UpperCAmelCase : Dict = [file for file in files if n_ not in file] else: UpperCAmelCase : Dict = [file for file in files if n_identifier not in file] UpperCAmelCase : int = ignore_files or [] ignore_files.append('''__init__.py''' ) UpperCAmelCase : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __snake_case ) if only_modules: UpperCAmelCase : List[str] = file.split('''.''' )[0] try: UpperCAmelCase : Dict = getattr(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = doctest.DocTestSuite(__snake_case ) UpperCAmelCase : str = unittest.TextTestRunner().run(__snake_case ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase : Any = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def A ( self : Any ) -> Tuple: UpperCAmelCase : List[str] = Path('''src/transformers''' ) UpperCAmelCase : int = '''modeling''' UpperCAmelCase : Tuple = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__snake_case , identifier=__snake_case , ignore_files=__snake_case ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : List[Any] = Path('''src/transformers''' ) UpperCAmelCase : Tuple = '''tokenization''' self.analyze_directory(__snake_case , identifier=__snake_case ) def A ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = Path('''src/transformers''' ) UpperCAmelCase : str = '''configuration''' self.analyze_directory(__snake_case , identifier=__snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase : Union[str, Any] = Path('''src/transformers''' ) UpperCAmelCase : str = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__snake_case , n_identifier=__snake_case ) def A ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase : Dict = Path('''docs/source''' ) UpperCAmelCase : Union[str, Any] = ['''favicon.ico'''] self.analyze_directory(__snake_case , ignore_files=__snake_case , only_modules=__snake_case )
23
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCamelCase__: Tuple = numpy.array([0, 0]) UpperCamelCase__: Union[str, Any] = numpy.array([0.5, 0.8660254]) UpperCamelCase__: Dict = numpy.array([1, 0]) UpperCamelCase__: int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] , _lowerCAmelCase : int ) -> list[numpy.ndarray]: UpperCAmelCase : Union[str, Any] = initial_vectors for _ in range(_lowerCAmelCase ): UpperCAmelCase : Union[str, Any] = iteration_step(_lowerCAmelCase ) return vectors def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> list[numpy.ndarray]: UpperCAmelCase : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase : List[str] = vectors[i + 1] new_vectors.append(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def snake_case_ ( _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : float ) -> numpy.ndarray: UpperCAmelCase : List[str] = numpy.radians(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Tuple = numpy.cos(_lowerCAmelCase ), numpy.sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> None: UpperCAmelCase : List[Any] = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase , UpperCAmelCase : str = zip(*_lowerCAmelCase ) plt.plot(_lowerCAmelCase , _lowerCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__: List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
23
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: Optional[int] = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: UpperCAmelCase : Tuple = 1024 UpperCAmelCase : List[Any] = 4096 UpperCAmelCase : str = 24 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = [5, 11, 17, 23] UpperCAmelCase : List[Any] = [256, 512, 1024, 1024] UpperCAmelCase : Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase : Optional[Any] = 768 UpperCAmelCase : Tuple = [1, 1, 1, 0.5] UpperCAmelCase : int = [256, 512, 768, 768] UpperCAmelCase : Any = 150 UpperCAmelCase : Tuple = 16 UpperCAmelCase : Any = (1, 384, 384) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = '''project''' if "ade" in checkpoint_url: UpperCAmelCase : Any = True UpperCAmelCase : str = 768 UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5] UpperCAmelCase : List[Any] = 150 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = '''huggingface/label-files''' UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : List[Any] = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase : str = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : int = in_proj_bias[: config.hidden_size] UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def snake_case_ ( ) -> List[str]: UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any: UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase ) UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384 UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase ) UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' ) # forward pass UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth if show_prediction: UpperCAmelCase : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) UpperCamelCase__: Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
23
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase : Dict = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Optional[Any] = Text('''CPU''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''GPU''' , font_size=24 ) UpperCAmelCase : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''Model''' , font_size=24 ) UpperCAmelCase : Tuple = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) UpperCAmelCase : Any = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = Text('''Loaded Checkpoint''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) UpperCAmelCase : Tuple = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase : List[Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) UpperCAmelCase : Tuple = [] UpperCAmelCase : int = [] for i, rect in enumerate(__snake_case ): UpperCAmelCase : Any = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) UpperCAmelCase : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
23
1
'''simple docstring''' import sys from collections import defaultdict class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Any ) -> str: UpperCAmelCase : Union[str, Any] = [] def A ( self : str , __snake_case : Any ) -> Optional[int]: return self.node_position[vertex] def A ( self : Dict , __snake_case : Optional[int] , __snake_case : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = pos def A ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Dict , __snake_case : str ) -> Dict: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCAmelCase : Union[str, Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCAmelCase : Tuple = 2 * start + 1 else: UpperCAmelCase : List[str] = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCAmelCase , UpperCAmelCase : str = heap[smallest_child], positions[smallest_child] UpperCAmelCase , UpperCAmelCase : str = ( heap[start], positions[start], ) UpperCAmelCase , UpperCAmelCase : Any = temp, tempa UpperCAmelCase : Union[str, Any] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __snake_case ) self.top_to_bottom(__snake_case , __snake_case , __snake_case , __snake_case ) def A ( self : Tuple , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str ) -> Dict: UpperCAmelCase : Union[str, Any] = position[index] while index != 0: UpperCAmelCase : List[str] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCAmelCase : List[Any] = heap[parent] UpperCAmelCase : str = position[parent] self.set_position(position[parent] , __snake_case ) else: UpperCAmelCase : Optional[Any] = val UpperCAmelCase : Dict = temp self.set_position(__snake_case , __snake_case ) break UpperCAmelCase : Optional[int] = parent else: UpperCAmelCase : Any = val UpperCAmelCase : Optional[int] = temp self.set_position(__snake_case , 0 ) def A ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> Any: UpperCAmelCase : Tuple = len(__snake_case ) // 2 - 1 for i in range(__snake_case , -1 , -1 ): self.top_to_bottom(__snake_case , __snake_case , len(__snake_case ) , __snake_case ) def A ( self : Dict , __snake_case : Optional[Any] , __snake_case : int ) -> int: UpperCAmelCase : List[Any] = positions[0] UpperCAmelCase : Optional[int] = sys.maxsize self.top_to_bottom(__snake_case , 0 , len(__snake_case ) , __snake_case ) return temp def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: UpperCAmelCase : Union[str, Any] = Heap() UpperCAmelCase : str = [0] * len(_lowerCAmelCase ) UpperCAmelCase : str = [-1] * len(_lowerCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCAmelCase : Optional[int] = [] # Heap of Distance of vertices from their neighboring vertex UpperCAmelCase : List[str] = [] for vertex in range(len(_lowerCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowerCAmelCase ) heap.node_position.append(_lowerCAmelCase ) UpperCAmelCase : List[str] = [] UpperCAmelCase : Tuple = 1 UpperCAmelCase : Union[str, Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Tuple = distance heap.heapify(_lowerCAmelCase , _lowerCAmelCase ) for _ in range(1 , len(_lowerCAmelCase ) ): UpperCAmelCase : str = heap.delete_minimum(_lowerCAmelCase , _lowerCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCAmelCase : Optional[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowerCAmelCase )] ): UpperCAmelCase : Tuple = distance heap.bottom_to_top( _lowerCAmelCase , heap.get_position(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[Any] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCamelCase__: Any = int(input("Enter number of edges: ").strip()) UpperCamelCase__: Any = defaultdict(list) for _ in range(edges_number): UpperCamelCase__: Tuple = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
23
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) UpperCamelCase__: str = None UpperCamelCase__: int = { "7B": 11008, "13B": 13824, "30B": 17920, "65B": 22016, "70B": 28672, } UpperCamelCase__: List[Any] = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : List[Any]=256 ) -> Optional[Any]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: with open(_lowerCAmelCase , '''r''' ) as f: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ) -> Optional[Any]: with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=True ) -> List[Any]: os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp''' ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[str] = read_json(os.path.join(_lowerCAmelCase , '''params.json''' ) ) UpperCAmelCase : str = NUM_SHARDS[model_size] UpperCAmelCase : Any = params['''n_layers'''] UpperCAmelCase : str = params['''n_heads'''] UpperCAmelCase : Any = n_heads // num_shards UpperCAmelCase : List[str] = params['''dim'''] UpperCAmelCase : Optional[Any] = dim // n_heads UpperCAmelCase : str = 1_0_0_0_0.0 UpperCAmelCase : Optional[int] = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase : Tuple = params['''n_kv_heads'''] # for GQA / MQA UpperCAmelCase : Optional[int] = n_heads_per_shard // num_key_value_heads UpperCAmelCase : Optional[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase : List[str] = n_heads UpperCAmelCase : Optional[int] = n_heads_per_shard UpperCAmelCase : List[str] = dim # permute for sliced rotary def permute(_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=n_heads , _lowerCAmelCase : int=dim , _lowerCAmelCase : Dict=dim ): return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase ).transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase : int = torch.load(os.path.join(_lowerCAmelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded UpperCAmelCase : Optional[Any] = [ torch.load(os.path.join(_lowerCAmelCase , f"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' ) for i in range(_lowerCAmelCase ) ] UpperCAmelCase : Any = 0 UpperCAmelCase : str = {'''weight_map''': {}} for layer_i in range(_lowerCAmelCase ): UpperCAmelCase : Optional[Any] = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : Optional[int] = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase : List[str] = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } UpperCAmelCase : Union[str, Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) UpperCAmelCase : str = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Any = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : str = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Tuple = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : Any = inv_freq for k, v in state_dict.items(): UpperCAmelCase : List[Any] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[int] = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : str = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: UpperCAmelCase : Any = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(_lowerCAmelCase )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_lowerCAmelCase )] , dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase : Optional[int] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) # Write configs UpperCAmelCase : Union[str, Any] = {'''total_size''': param_count * 2} write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , '''pytorch_model.bin.index.json''' ) ) UpperCAmelCase : int = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 UpperCAmelCase : Tuple = params['''multiple_of'''] if '''multiple_of''' in params else 256 UpperCAmelCase : Any = LlamaConfig( hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_lowerCAmelCase , ) config.save_pretrained(_lowerCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> List[str]: # Initialize the tokenizer based on the `spm` model UpperCAmelCase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) UpperCAmelCase : List[Any] = tokenizer_class(_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) def snake_case_ ( ) -> List[Any]: UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=_lowerCAmelCase , help='''Whether or not to save using `safetensors`.''' ) UpperCAmelCase : List[Any] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCAmelCase : Optional[int] = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , _lowerCAmelCase ) if __name__ == "__main__": main()
23
1
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCamelCase__: Tuple = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : List[Any] , __snake_case : Dict , __snake_case : str , __snake_case : Any=None , __snake_case : List[str]=1 ) -> List[str]: UpperCAmelCase : str = tokenizer UpperCAmelCase : Tuple = dataset UpperCAmelCase : int = len(__snake_case ) if n_tasks is None else n_tasks UpperCAmelCase : str = n_copies def __iter__( self : Union[str, Any] ) -> Dict: UpperCAmelCase : Union[str, Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) UpperCAmelCase : Any = self.tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : Any , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> List[Any]: UpperCAmelCase : Dict = start_length UpperCAmelCase : Tuple = eof_strings UpperCAmelCase : Union[str, Any] = tokenizer def __call__( self : List[Any] , __snake_case : List[str] , __snake_case : List[Any] , **__snake_case : Union[str, Any] ) -> Dict: UpperCAmelCase : Tuple = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) UpperCAmelCase : List[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__snake_case ) def snake_case_ ( _lowerCAmelCase : List[str] ) -> Optional[int]: UpperCAmelCase : int = re.split('''(%s)''' % '''|'''.join(_lowerCAmelCase ) , _lowerCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int=20 , **_lowerCAmelCase : Tuple ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = defaultdict(_lowerCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCAmelCase ) ): with torch.no_grad(): UpperCAmelCase : Union[str, Any] = batch['''ids'''].shape[-1] UpperCAmelCase : List[str] = accelerator.unwrap_model(_lowerCAmelCase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=_lowerCAmelCase , **_lowerCAmelCase ) # each task is generated batch_size times UpperCAmelCase : Tuple = batch['''task_id'''].repeat(_lowerCAmelCase ) UpperCAmelCase : Any = accelerator.pad_across_processes( _lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) UpperCAmelCase : int = generated_tokens.cpu().numpy() UpperCAmelCase : Tuple = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCAmelCase , _lowerCAmelCase ): gen_token_dict[task].append(_lowerCAmelCase ) UpperCAmelCase : Dict = [[] for _ in range(_lowerCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: UpperCAmelCase : Optional[int] = tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) code_gens[task].append(remove_last_block(_lowerCAmelCase ) ) return code_gens def snake_case_ ( ) -> List[Any]: # Setup configuration UpperCAmelCase : Any = HfArgumentParser(_lowerCAmelCase ) UpperCAmelCase : Tuple = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric UpperCAmelCase : Union[str, Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing UpperCAmelCase : Union[str, Any] = '''false''' if args.num_workers is None: UpperCAmelCase : Optional[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate UpperCAmelCase : int = Accelerator() set_seed(args.seed , device_specific=_lowerCAmelCase ) # Load model and tokenizer UpperCAmelCase : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase : Optional[int] = tokenizer.eos_token UpperCAmelCase : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings UpperCAmelCase : Any = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCAmelCase , _lowerCAmelCase )] ), } # Load evaluation dataset and metric UpperCAmelCase : Optional[int] = load_dataset('''openai_humaneval''' ) UpperCAmelCase : Any = load_metric('''code_eval''' ) UpperCAmelCase : Optional[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) UpperCAmelCase : Tuple = args.n_samples // args.batch_size UpperCAmelCase : int = TokenizedDataset(_lowerCAmelCase , human_eval['''test'''] , n_copies=_lowerCAmelCase , n_tasks=_lowerCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences UpperCAmelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: UpperCAmelCase : Tuple = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception UpperCAmelCase , UpperCAmelCase : str = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = complete_code( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , n_tasks=_lowerCAmelCase , batch_size=args.batch_size , **_lowerCAmelCase , ) if accelerator.is_main_process: UpperCAmelCase : str = [] for task in tqdm(range(_lowerCAmelCase ) ): UpperCAmelCase : Union[str, Any] = human_eval['''test'''][task]['''test'''] UpperCAmelCase : Union[str, Any] = f"""check({human_eval["test"][task]["entry_point"]})""" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric UpperCAmelCase , UpperCAmelCase : Union[str, Any] = code_eval_metric.compute( references=_lowerCAmelCase , predictions=_lowerCAmelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
23
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = cos(_lowerCAmelCase ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : Any = (1 - _cos) / 2 UpperCAmelCase : List[Any] = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Dict = 1 - alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Tuple = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = _sin / 2 UpperCAmelCase : Any = 0 UpperCAmelCase : int = -ba UpperCAmelCase : Optional[Any] = 1 + alpha UpperCAmelCase : List[Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : List[str] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : str = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 1 - alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Optional[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : str = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Union[str, Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha * big_a UpperCAmelCase : Union[str, Any] = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : Any = 1 - alpha / big_a UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : Optional[int] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : str = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Dict = big_a * (pmc + aaa) UpperCAmelCase : Any = 2 * big_a * mpc UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa) UpperCAmelCase : Optional[int] = ppmc + aaa UpperCAmelCase : Optional[Any] = -2 * pmpc UpperCAmelCase : Optional[Any] = ppmc - aaa UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : int = 10 ** (gain_db / 40) UpperCAmelCase : List[str] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Any = big_a * (ppmc + aaa) UpperCAmelCase : str = -2 * big_a * pmpc UpperCAmelCase : List[Any] = big_a * (ppmc - aaa) UpperCAmelCase : Optional[Any] = pmc + aaa UpperCAmelCase : Any = 2 * mpc UpperCAmelCase : str = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
23
1
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def snake_case_ ( _lowerCAmelCase : np.ndarray ) -> np.ndarray: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def snake_case_ ( _lowerCAmelCase : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def snake_case_ ( _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray ) -> np.ndarray: UpperCAmelCase : int = np.zeros_like(_lowerCAmelCase ) UpperCAmelCase : Dict = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image UpperCAmelCase : Dict = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): UpperCAmelCase : List[str] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() UpperCAmelCase : Any = int(summation > 0 ) return output if __name__ == "__main__": # read original image UpperCamelCase__: int = Path(__file__).resolve().parent / "image_data" / "lena.jpg" UpperCamelCase__: Optional[Any] = np.array(Image.open(lena_path)) # kernel to be applied UpperCamelCase__: Union[str, Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) UpperCamelCase__: Optional[Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image UpperCamelCase__: Union[str, Any] = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
23
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: UpperCAmelCase : str = get_failure_array(_lowerCAmelCase ) # 2) Step through text searching for pattern UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern while i < len(_lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(_lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCAmelCase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( _lowerCAmelCase : str ) -> list[int]: UpperCAmelCase : Optional[Any] = [0] UpperCAmelCase : str = 0 UpperCAmelCase : List[str] = 1 while j < len(_lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCAmelCase : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(_lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) UpperCamelCase__: str = "abc1abc12" UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc" UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCamelCase__: Tuple = "ABABX" UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) UpperCamelCase__: Any = "AAAB" UpperCamelCase__: str = "ABAAAAAB" assert kmp(pattern, text) # Test 4) UpperCamelCase__: int = "abcdabcy" UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) UpperCamelCase__: List[str] = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
23
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Tuple = {"vocab_file": "spiece.model"} UpperCamelCase__: List[Any] = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : Dict , __snake_case : Optional[Any] , __snake_case : Optional[Any]=False , __snake_case : str=True , __snake_case : List[Any]=False , __snake_case : Union[str, Any]="<s>" , __snake_case : Tuple="</s>" , __snake_case : str="<unk>" , __snake_case : int="<sep>" , __snake_case : str="<pad>" , __snake_case : Optional[int]="<cls>" , __snake_case : Dict="<mask>" , __snake_case : str=["<eop>", "<eod>"] , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Any , ) -> None: UpperCAmelCase : Any = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase : Union[str, Any] = 3 UpperCAmelCase : str = do_lower_case UpperCAmelCase : Optional[Any] = remove_space UpperCAmelCase : str = keep_accents UpperCAmelCase : Optional[Any] = vocab_file UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) UpperCAmelCase : List[str] = jieba UpperCAmelCase : Any = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def A ( self : Tuple ) -> Dict: return len(self.sp_model ) def A ( self : Tuple ) -> int: UpperCAmelCase : Dict = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Any: UpperCAmelCase : int = self.__dict__.copy() UpperCAmelCase : Optional[Any] = None return state def __setstate__( self : Any , __snake_case : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Dict = {} UpperCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : int , __snake_case : int ) -> Tuple: if self.remove_space: UpperCAmelCase : Dict = ''' '''.join(inputs.strip().split() ) else: UpperCAmelCase : Any = inputs UpperCAmelCase : List[str] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: UpperCAmelCase : int = unicodedata.normalize('''NFKD''' , __snake_case ) UpperCAmelCase : List[str] = ''''''.join([c for c in outputs if not unicodedata.combining(__snake_case )] ) if self.do_lower_case: UpperCAmelCase : Union[str, Any] = outputs.lower() return outputs def A ( self : Any , __snake_case : str ) -> List[str]: UpperCAmelCase : Dict = self.preprocess_text(__snake_case ) UpperCAmelCase : Union[str, Any] = self.sp_model.encode(__snake_case , out_type=__snake_case ) UpperCAmelCase : List[Any] = [] for piece in pieces: if len(__snake_case ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): UpperCAmelCase : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__snake_case , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase : Union[str, Any] = cur_pieces[1:] else: UpperCAmelCase : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__snake_case ) else: new_pieces.append(__snake_case ) return new_pieces def A ( self : Dict , __snake_case : Tuple ) -> List[Any]: return self.sp_model.PieceToId(__snake_case ) def A ( self : Any , __snake_case : str ) -> List[Any]: return self.sp_model.IdToPiece(__snake_case ) def A ( self : str , __snake_case : Tuple ) -> Dict: UpperCAmelCase : List[Any] = ''''''.join(__snake_case ).replace(__snake_case , ''' ''' ).strip() return out_string def A ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Dict = [self.sep_token_id] UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1, 1] return ([0] * len(__snake_case )) + [1, 1] def A ( self : Any , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Any = [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A ( self : Tuple , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Any = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def A ( self : Optional[Any] , *__snake_case : Any , **__snake_case : Optional[Any] ) -> int: UpperCAmelCase : Any = super()._decode(*__snake_case , **__snake_case ) UpperCAmelCase : Any = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
23
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCamelCase__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = {} with open(_lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(_lowerCAmelCase ): UpperCAmelCase : List[str] = line.strip() if line: UpperCAmelCase : str = line.split() UpperCAmelCase : Union[str, Any] = line_number UpperCAmelCase : List[Any] = words[0] UpperCAmelCase : Union[str, Any] = value return result def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Dict = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : int = shape_pointer.shape # let's reduce dimension UpperCAmelCase : Union[str, Any] = value[0] else: UpperCAmelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : int = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = value else: UpperCAmelCase : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]: UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Any = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase : List[Any] = key UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0] UpperCamelCase__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int: UpperCAmelCase : List[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase : str = '''weight_g''' elif "weight_v" in name: UpperCAmelCase : int = '''weight_v''' elif "bias" in name: UpperCAmelCase : int = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : List[str] = '''weight''' else: UpperCAmelCase : Dict = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : Dict = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : Any = True else: UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : Optional[int] = name.split('''.''' ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict: if config_path is not None: UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = idalabel UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase ) UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : Optional[int] = target_dict.eos_index UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , ) UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase ) else: UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCamelCase__: Any = parser.parse_args() UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
23
1
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCamelCase__: str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE: """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = None @staticmethod def A ( ) -> Optional[Any]: raise NotImplementedError def A ( self : Dict , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : str , **__snake_case : str ) -> Optional[int]: raise NotImplementedError def A ( self : Union[str, Any] , __snake_case : str ) -> Union[str, Any]: raise NotImplementedError def A ( self : List[Any] ) -> List[Any]: if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def A ( cls : List[Any] ) -> List[Any]: return F"""`pip install {cls.pip_package or cls.name}`""" class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """optuna""" @staticmethod def A ( ) -> str: return is_optuna_available() def A ( self : Optional[int] , __snake_case : Tuple , __snake_case : int , __snake_case : str , **__snake_case : Tuple ) -> Dict: return run_hp_search_optuna(__snake_case , __snake_case , __snake_case , **__snake_case ) def A ( self : Union[str, Any] , __snake_case : str ) -> str: return default_hp_space_optuna(__snake_case ) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """ray""" lowerCamelCase__ = """'ray[tune]'""" @staticmethod def A ( ) -> str: return is_ray_available() def A ( self : Union[str, Any] , __snake_case : Any , __snake_case : int , __snake_case : str , **__snake_case : Optional[int] ) -> List[Any]: return run_hp_search_ray(__snake_case , __snake_case , __snake_case , **__snake_case ) def A ( self : List[str] , __snake_case : List[Any] ) -> List[Any]: return default_hp_space_ray(__snake_case ) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """sigopt""" @staticmethod def A ( ) -> List[str]: return is_sigopt_available() def A ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : str , **__snake_case : Union[str, Any] ) -> Tuple: return run_hp_search_sigopt(__snake_case , __snake_case , __snake_case , **__snake_case ) def A ( self : int , __snake_case : Optional[Any] ) -> Any: return default_hp_space_sigopt(__snake_case ) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """wandb""" @staticmethod def A ( ) -> Tuple: return is_wandb_available() def A ( self : Any , __snake_case : List[Any] , __snake_case : int , __snake_case : str , **__snake_case : Tuple ) -> Optional[Any]: return run_hp_search_wandb(__snake_case , __snake_case , __snake_case , **__snake_case ) def A ( self : str , __snake_case : str ) -> int: return default_hp_space_wandb(__snake_case ) UpperCamelCase__: Optional[int] = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def snake_case_ ( ) -> str: UpperCAmelCase : int = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_lowerCAmelCase ) > 0: UpperCAmelCase : Union[str, Any] = available_backends[0].name if len(_lowerCAmelCase ) > 1: logger.info( f"""{len(_lowerCAmelCase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
23
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case ) UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )] UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case ) UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Tuple = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def A ( self : List[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : int = num_samples * [prompt] UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Tuple = shard(__snake_case ) UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : List[str] = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[int] = jax.device_count() UpperCAmelCase : List[str] = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : str = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) UpperCAmelCase : Tuple = scheduler.create_state() UpperCAmelCase : Dict = scheduler_state UpperCAmelCase : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : int = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Any = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : str = replicate(__snake_case ) UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def A ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , ) UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[str] = shard(__snake_case ) UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) UpperCAmelCase : int = replicate(__snake_case ) UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[Any] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : int = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @property def A ( self : List[Any] ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : List[Any] = self.dummy_uncond_unet UpperCAmelCase : Optional[int] = PNDMScheduler() UpperCAmelCase : Any = PNDMPipeline(unet=__snake_case , scheduler=__snake_case ) pndm.to(__snake_case ) pndm.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Any = pndm(generator=__snake_case , num_inference_steps=20 , output_type='''numpy''' ).images UpperCAmelCase : Dict = torch.manual_seed(0 ) UpperCAmelCase : List[Any] = pndm(generator=__snake_case , num_inference_steps=20 , output_type='''numpy''' , return_dict=__snake_case )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Optional[Any] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Optional[int] ) -> str: UpperCAmelCase : str = '''google/ddpm-cifar10-32''' UpperCAmelCase : Optional[Any] = UNetaDModel.from_pretrained(__snake_case ) UpperCAmelCase : List[str] = PNDMScheduler() UpperCAmelCase : int = PNDMPipeline(unet=__snake_case , scheduler=__snake_case ) pndm.to(__snake_case ) pndm.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Any = pndm(generator=__snake_case , output_type='''numpy''' ).images UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : List[Any] = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
23
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase : str = n - 1 UpperCAmelCase : List[Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase : List[str] = 0 while count < prec: UpperCAmelCase : int = random.randint(2 , n - 1 ) UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if b != 1: UpperCAmelCase : int = True for _ in range(_lowerCAmelCase ): if b == n - 1: UpperCAmelCase : Dict = False break UpperCAmelCase : str = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
23
1
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = DownBlockaD # noqa F405 lowerCamelCase__ = """down""" def A ( self : Dict ) -> Union[str, Any]: UpperCAmelCase : Any = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ResnetDownsampleBlockaD # noqa F405 lowerCamelCase__ = """down""" def A ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AttnDownBlockaD # noqa F405 lowerCamelCase__ = """down""" def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = CrossAttnDownBlockaD # noqa F405 lowerCamelCase__ = """down""" def A ( self : int ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Dict = 32 return init_dict, inputs_dict def A ( self : List[Any] ) -> int: UpperCAmelCase : str = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = SimpleCrossAttnDownBlockaD # noqa F405 lowerCamelCase__ = """down""" @property def A ( self : Optional[int] ) -> str: return super().get_dummy_input(include_encoder_hidden_states=__snake_case ) def A ( self : Optional[Any] ) -> str: UpperCAmelCase , UpperCAmelCase : Optional[int] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : int = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = SkipDownBlockaD # noqa F405 lowerCamelCase__ = """down""" @property def A ( self : Any ) -> Optional[Any]: return super().get_dummy_input(include_skip_sample=__snake_case ) def A ( self : Any ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AttnSkipDownBlockaD # noqa F405 lowerCamelCase__ = """down""" @property def A ( self : List[Any] ) -> List[str]: return super().get_dummy_input(include_skip_sample=__snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase : Any = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = DownEncoderBlockaD # noqa F405 lowerCamelCase__ = """down""" @property def A ( self : Tuple ) -> Union[str, Any]: return super().get_dummy_input(include_temb=__snake_case ) def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : Any = { '''in_channels''': 32, '''out_channels''': 32, } UpperCAmelCase : Any = self.dummy_input return init_dict, inputs_dict def A ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase : Dict = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AttnDownEncoderBlockaD # noqa F405 lowerCamelCase__ = """down""" @property def A ( self : str ) -> Union[str, Any]: return super().get_dummy_input(include_temb=__snake_case ) def A ( self : Dict ) -> Dict: UpperCAmelCase : Optional[int] = { '''in_channels''': 32, '''out_channels''': 32, } UpperCAmelCase : List[Any] = self.dummy_input return init_dict, inputs_dict def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[Any] = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = UNetMidBlockaD # noqa F405 lowerCamelCase__ = """mid""" def A ( self : int ) -> str: UpperCAmelCase : List[Any] = { '''in_channels''': 32, '''temb_channels''': 128, } UpperCAmelCase : Optional[Any] = self.dummy_input return init_dict, inputs_dict def A ( self : List[str] ) -> Any: UpperCAmelCase : Dict = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = UNetMidBlockaDCrossAttn # noqa F405 lowerCamelCase__ = """mid""" def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Optional[int] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Any = 32 return init_dict, inputs_dict def A ( self : Any ) -> List[Any]: UpperCAmelCase : int = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCamelCase__ = """mid""" @property def A ( self : Optional[int] ) -> List[Any]: return super().get_dummy_input(include_encoder_hidden_states=__snake_case ) def A ( self : List[Any] ) -> str: UpperCAmelCase , UpperCAmelCase : Optional[Any] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = 32 return init_dict, inputs_dict def A ( self : int ) -> str: UpperCAmelCase : Optional[int] = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = UpBlockaD # noqa F405 lowerCamelCase__ = """up""" @property def A ( self : Optional[Any] ) -> Optional[int]: return super().get_dummy_input(include_res_hidden_states_tuple=__snake_case ) def A ( self : Dict ) -> List[str]: UpperCAmelCase : Tuple = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ResnetUpsampleBlockaD # noqa F405 lowerCamelCase__ = """up""" @property def A ( self : Union[str, Any] ) -> Optional[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=__snake_case ) def A ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase : Optional[Any] = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = CrossAttnUpBlockaD # noqa F405 lowerCamelCase__ = """up""" @property def A ( self : Optional[int] ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=__snake_case ) def A ( self : Union[str, Any] ) -> int: UpperCAmelCase , UpperCAmelCase : Optional[Any] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : List[str] = 32 return init_dict, inputs_dict def A ( self : Any ) -> Optional[Any]: UpperCAmelCase : List[str] = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = SimpleCrossAttnUpBlockaD # noqa F405 lowerCamelCase__ = """up""" @property def A ( self : Dict ) -> int: return super().get_dummy_input(include_res_hidden_states_tuple=__snake_case , include_encoder_hidden_states=__snake_case ) def A ( self : Tuple ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[str] = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase : List[str] = 32 return init_dict, inputs_dict def A ( self : int ) -> int: UpperCAmelCase : Optional[Any] = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AttnUpBlockaD # noqa F405 lowerCamelCase__ = """up""" @property def A ( self : Optional[int] ) -> Tuple: return super().get_dummy_input(include_res_hidden_states_tuple=__snake_case ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def A ( self : str ) -> Tuple: UpperCAmelCase : Any = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = SkipUpBlockaD # noqa F405 lowerCamelCase__ = """up""" @property def A ( self : Optional[Any] ) -> Optional[int]: return super().get_dummy_input(include_res_hidden_states_tuple=__snake_case ) def A ( self : Any ) -> Optional[int]: UpperCAmelCase : Optional[int] = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AttnSkipUpBlockaD # noqa F405 lowerCamelCase__ = """up""" @property def A ( self : Dict ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=__snake_case ) def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Optional[int] = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = UpDecoderBlockaD # noqa F405 lowerCamelCase__ = """up""" @property def A ( self : str ) -> Optional[int]: return super().get_dummy_input(include_temb=__snake_case ) def A ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Tuple = {'''in_channels''': 32, '''out_channels''': 32} UpperCAmelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : int = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(__snake_case ) class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AttnUpDecoderBlockaD # noqa F405 lowerCamelCase__ = """up""" @property def A ( self : str ) -> Tuple: return super().get_dummy_input(include_temb=__snake_case ) def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Tuple = {'''in_channels''': 32, '''out_channels''': 32} UpperCAmelCase : Tuple = self.dummy_input return init_dict, inputs_dict def A ( self : Union[str, Any] ) -> Any: UpperCAmelCase : Any = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(__snake_case )
23
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: Optional[int] = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: UpperCAmelCase : Tuple = 1024 UpperCAmelCase : List[Any] = 4096 UpperCAmelCase : str = 24 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = [5, 11, 17, 23] UpperCAmelCase : List[Any] = [256, 512, 1024, 1024] UpperCAmelCase : Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase : Optional[Any] = 768 UpperCAmelCase : Tuple = [1, 1, 1, 0.5] UpperCAmelCase : int = [256, 512, 768, 768] UpperCAmelCase : Any = 150 UpperCAmelCase : Tuple = 16 UpperCAmelCase : Any = (1, 384, 384) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = '''project''' if "ade" in checkpoint_url: UpperCAmelCase : Any = True UpperCAmelCase : str = 768 UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5] UpperCAmelCase : List[Any] = 150 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = '''huggingface/label-files''' UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : List[Any] = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase : str = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : int = in_proj_bias[: config.hidden_size] UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def snake_case_ ( ) -> List[str]: UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any: UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase ) UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384 UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase ) UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' ) # forward pass UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth if show_prediction: UpperCAmelCase : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) UpperCamelCase__: Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
23
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCamelCase__: int = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : int , __snake_case : int , __snake_case : int , __snake_case : float , **__snake_case : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = feature_size UpperCAmelCase : Dict = sampling_rate UpperCAmelCase : Any = padding_value UpperCAmelCase : Union[str, Any] = kwargs.pop('''padding_side''' , '''right''' ) UpperCAmelCase : Dict = kwargs.pop('''return_attention_mask''' , __snake_case ) super().__init__(**__snake_case ) def A ( self : Tuple , __snake_case : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case : Union[bool, str, PaddingStrategy] = True , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase : List[str] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase : List[str] = processed_features[self.model_input_names[0]] UpperCAmelCase : Optional[Any] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: UpperCAmelCase : Optional[int] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase : List[Any] = required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase : Optional[int] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): UpperCAmelCase : List[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): UpperCAmelCase : Optional[int] = '''tf''' elif is_torch_tensor(__snake_case ): UpperCAmelCase : List[Any] = '''pt''' elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase : Tuple = '''np''' else: raise ValueError( F"""type of {first_element} unknown: {type(__snake_case )}. """ '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase : Union[str, Any] = to_numpy(__snake_case ) else: UpperCAmelCase : Tuple = [to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase : List[Any] = self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) UpperCAmelCase : Any = processed_features[self.model_input_names[0]] UpperCAmelCase : int = len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) UpperCAmelCase : int = [] for i in range(__snake_case ): UpperCAmelCase : int = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase : Optional[Any] = self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase : Dict = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase : Any = PaddingStrategy.MAX_LENGTH UpperCAmelCase : Optional[Any] = {} for i in range(__snake_case ): # padding UpperCAmelCase : Union[str, Any] = self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase : Union[str, Any] = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase : Optional[Any] = value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def A ( self : Dict , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ) -> dict: UpperCAmelCase : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase : int = len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase : str = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase : List[Any] = np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase : Optional[int] = max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase : List[Any] = np.pad( processed_features['''attention_mask'''] , (0, difference) ) UpperCAmelCase : int = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase : Optional[Any] = np.pad( __snake_case , __snake_case , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase : Dict = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) UpperCAmelCase : Optional[int] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase : Optional[int] = np.pad( __snake_case , __snake_case , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def A ( self : Tuple , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ) -> Union[str, Any]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) UpperCAmelCase : Any = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase : Optional[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase : Union[str, Any] = len(__snake_case ) > max_length if needs_to_be_truncated: UpperCAmelCase : List[Any] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase : Union[str, Any] = processed_features['''attention_mask'''][:max_length] return processed_features def A ( self : Union[str, Any] , __snake_case : List[str]=False , __snake_case : Any=None ) -> Union[str, Any]: # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase : Optional[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): UpperCAmelCase : Tuple = PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): UpperCAmelCase : Union[str, Any] = padding else: UpperCAmelCase : List[Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
23
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase__: Optional[int] = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
23
1
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE( A__ , A__ , A__ ): """simple docstring""" @register_to_config def __init__( self : str , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : float , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : str , __snake_case : bool = False , ) -> int: super().__init__() UpperCAmelCase : Any = nn.Embedding(__snake_case , __snake_case ) UpperCAmelCase : Tuple = nn.Embedding(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = False UpperCAmelCase : Dict = nn.Dropout(p=__snake_case ) UpperCAmelCase : str = TaConfig( vocab_size=__snake_case , d_model=__snake_case , num_heads=__snake_case , d_kv=__snake_case , d_ff=__snake_case , dropout_rate=__snake_case , feed_forward_proj=__snake_case , is_decoder=__snake_case , is_encoder_decoder=__snake_case , ) UpperCAmelCase : List[str] = nn.ModuleList() for lyr_num in range(__snake_case ): UpperCAmelCase : int = TaBlock(__snake_case ) self.encoders.append(__snake_case ) UpperCAmelCase : Dict = TaLayerNorm(__snake_case ) UpperCAmelCase : Dict = nn.Dropout(p=__snake_case ) def A ( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : str ) -> Dict: UpperCAmelCase : Dict = self.token_embedder(__snake_case ) UpperCAmelCase : Tuple = encoder_input_tokens.shape[1] UpperCAmelCase : Union[str, Any] = torch.arange(__snake_case , device=encoder_input_tokens.device ) x += self.position_encoding(__snake_case ) UpperCAmelCase : int = self.dropout_pre(__snake_case ) # inverted the attention mask UpperCAmelCase : List[str] = encoder_input_tokens.size() UpperCAmelCase : str = self.get_extended_attention_mask(__snake_case , __snake_case ) for lyr in self.encoders: UpperCAmelCase : Dict = lyr(__snake_case , __snake_case )[0] UpperCAmelCase : Optional[int] = self.layer_norm(__snake_case ) return self.dropout_post(__snake_case ), encoder_inputs_mask
23
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if len(_lowerCAmelCase ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(_lowerCAmelCase ) or left < -len(_lowerCAmelCase ) or right >= len(_lowerCAmelCase ) or right < -len(_lowerCAmelCase ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid] UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
23
1
'''simple docstring''' from jiwer import compute_measures import datasets UpperCamelCase__: List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" UpperCamelCase__: Dict = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" UpperCamelCase__: List[str] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE( datasets.Metric ): """simple docstring""" def A ( self : Optional[int] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def A ( self : str , __snake_case : List[Any]=None , __snake_case : List[str]=None , __snake_case : Union[str, Any]=False ) -> Dict: if concatenate_texts: return compute_measures(__snake_case , __snake_case )["wer"] else: UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : List[str] = 0 for prediction, reference in zip(__snake_case , __snake_case ): UpperCAmelCase : int = compute_measures(__snake_case , __snake_case ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
23
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : str = self.unet.config.sample_size UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size) UpperCAmelCase : int = self.unet UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma UpperCAmelCase : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(__snake_case ) self.scheduler.set_sigmas(__snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample # prediction step UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean UpperCAmelCase : int = sample_mean.clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__snake_case )
23
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__: Optional[int] = logging.get_logger(__name__) UpperCamelCase__: int = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """vit""" def __init__( self : Dict , __snake_case : int=768 , __snake_case : Optional[int]=12 , __snake_case : Any=12 , __snake_case : Optional[Any]=3072 , __snake_case : Any="gelu" , __snake_case : str=0.0 , __snake_case : str=0.0 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=1E-12 , __snake_case : List[str]=224 , __snake_case : Tuple=16 , __snake_case : Dict=3 , __snake_case : List[str]=True , __snake_case : Optional[int]=16 , **__snake_case : Dict , ) -> Optional[Any]: super().__init__(**__snake_case ) UpperCAmelCase : str = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : str = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : Any = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Optional[int] = layer_norm_eps UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : Any = patch_size UpperCAmelCase : Union[str, Any] = num_channels UpperCAmelCase : Any = qkv_bias UpperCAmelCase : Union[str, Any] = encoder_stride class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = version.parse("""1.11""" ) @property def A ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def A ( self : Union[str, Any] ) -> float: return 1E-4
23
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """MCTCTFeatureExtractor""" lowerCamelCase__ = """AutoTokenizer""" def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str: super().__init__(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = self.feature_extractor UpperCAmelCase : Union[str, Any] = False def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) UpperCAmelCase : int = kwargs.pop('''raw_speech''' ) else: UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case ) UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : Any = args[0] UpperCAmelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase : str = encodings['''input_ids'''] return inputs def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : List[str] = args[0] UpperCAmelCase : List[Any] = args[1:] if input_features is not None: UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case ) if labels is not None: UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase : List[str] = labels['''input_ids'''] return input_features def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def A ( self : Any ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) UpperCAmelCase : Dict = True UpperCAmelCase : List[Any] = self.tokenizer yield UpperCAmelCase : Tuple = self.feature_extractor UpperCAmelCase : List[Any] = False
23
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , __snake_case : Tuple , __snake_case : Dict=13 , __snake_case : Optional[int]=7 , __snake_case : Optional[int]=True , __snake_case : Dict=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : List[Any]=99 , __snake_case : List[Any]=32 , __snake_case : Union[str, Any]=5 , __snake_case : Optional[int]=4 , __snake_case : Optional[int]=37 , __snake_case : Union[str, Any]="gelu" , __snake_case : int=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Optional[int]=512 , __snake_case : int=16 , __snake_case : List[str]=2 , __snake_case : Dict=0.02 , __snake_case : Tuple=4 , ) -> Union[str, Any]: UpperCAmelCase : int = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Tuple = use_attention_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Optional[int] = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Any = type_vocab_size UpperCAmelCase : List[Any] = type_sequence_label_size UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = num_choices def A ( self : List[str] ) -> List[str]: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_attention_mask: UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : str = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : Optional[Any] = True UpperCAmelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = True lowerCamelCase__ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : str = FlaxRobertaModelTester(self ) @slow def A ( self : Optional[Any] ) -> int: for model_class_name in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained('''roberta-base''' , from_pt=__snake_case ) UpperCAmelCase : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case )
23
'''simple docstring''' from math import isclose, sqrt def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]: UpperCAmelCase : Optional[int] = point_y / 4 / point_x UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4 UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase : List[str] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : float = first_x_coord UpperCAmelCase : float = first_y_coord UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
23
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__: str = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Union[str, Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__: str = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Union[str, Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCamelCase__: Union[str, Any] = "http://www.mocksite.com/file1.txt" UpperCamelCase__: Tuple = "\"text\": [\"foo\", \"foo\"]" UpperCamelCase__: Dict = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class SCREAMING_SNAKE_CASE: """simple docstring""" lowerCamelCase__ = 200 lowerCamelCase__ = {"""Content-Length""": """100"""} lowerCamelCase__ = {} def A ( self : Tuple , **__snake_case : Dict ) -> List[Any]: return [bytes(__snake_case , '''utf-8''' )] def snake_case_ ( *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : str ) -> List[str]: return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Dict ) -> str: import requests monkeypatch.setattr(_lowerCAmelCase , '''request''' , _lowerCAmelCase ) UpperCAmelCase : Optional[Any] = URL if issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : List[Any] = url elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : int = [url] elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : str = {'''train''': url} UpperCAmelCase : Dict = '''dummy''' UpperCAmelCase : Optional[int] = '''downloads''' UpperCAmelCase : List[str] = tmp_path UpperCAmelCase : Optional[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , use_etag=_lowerCAmelCase , ) UpperCAmelCase : Tuple = DownloadManager(dataset_name=_lowerCAmelCase , download_config=_lowerCAmelCase ) UpperCAmelCase : Any = dl_manager.download(_lowerCAmelCase ) UpperCAmelCase : Any = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Optional[Any] = [downloaded_paths] UpperCAmelCase : Any = [urls] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): assert "train" in downloaded_paths.keys() UpperCAmelCase : Any = downloaded_paths.values() UpperCAmelCase : Tuple = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCAmelCase , _lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] UpperCAmelCase : List[str] = Path(_lowerCAmelCase ) UpperCAmelCase : List[Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() UpperCAmelCase : List[Any] = downloaded_path.read_text() assert content == CONTENT UpperCAmelCase : Union[str, Any] = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() UpperCAmelCase : Any = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> int: UpperCAmelCase : Optional[int] = str(_lowerCAmelCase ) if issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Union[str, Any] = filename elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : int = [filename] elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Union[str, Any] = {'''train''': filename} UpperCAmelCase : Optional[int] = '''dummy''' UpperCAmelCase : Union[str, Any] = xz_file.parent UpperCAmelCase : Tuple = '''extracted''' UpperCAmelCase : List[Any] = DownloadConfig( cache_dir=_lowerCAmelCase , use_etag=_lowerCAmelCase , ) UpperCAmelCase : Optional[Any] = DownloadManager(dataset_name=_lowerCAmelCase , download_config=_lowerCAmelCase ) UpperCAmelCase : List[Any] = dl_manager.extract(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : int = [extracted_paths] UpperCAmelCase : int = [paths] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): assert "train" in extracted_paths.keys() UpperCAmelCase : Any = extracted_paths.values() UpperCAmelCase : Tuple = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCAmelCase , _lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] UpperCAmelCase : Union[str, Any] = Path(_lowerCAmelCase ) UpperCAmelCase : List[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCAmelCase , etag=_lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() UpperCAmelCase : Union[str, Any] = extracted_path.read_text() UpperCAmelCase : List[str] = text_file.read_text() assert extracted_file_content == expected_file_content def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> str: assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(_lowerCAmelCase , start=1 ): UpperCAmelCase : str = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ) -> Optional[int]: UpperCAmelCase : Optional[Any] = request.getfixturevalue(_lowerCAmelCase ) UpperCAmelCase : Any = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ): _test_jsonl(_lowerCAmelCase , _lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ) -> Tuple: UpperCAmelCase : int = request.getfixturevalue(_lowerCAmelCase ) UpperCAmelCase : str = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ): _test_jsonl(_lowerCAmelCase , _lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def snake_case_ ( _lowerCAmelCase : List[Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCAmelCase ) , start=1 ): assert os.path.basename(_lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
23
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AltDiffusionPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def A ( self : Dict ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase : Dict = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCAmelCase : List[Any] = CLIPTextModel(__snake_case ) UpperCAmelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) UpperCAmelCase : Optional[int] = 77 UpperCAmelCase : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str]=0 ) -> Union[str, Any]: if str(__snake_case ).startswith('''mps''' ): UpperCAmelCase : str = torch.manual_seed(__snake_case ) else: UpperCAmelCase : Tuple = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Union[str, Any] ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def A ( self : Tuple ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Any = self.get_dummy_components() torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase : List[str] = RobertaSeriesModelWithTransformation(__snake_case ) UpperCAmelCase : str = text_encoder UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case ) UpperCAmelCase : str = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : Optional[int] = '''A photo of an astronaut''' UpperCAmelCase : List[Any] = alt_pipe(**__snake_case ) UpperCAmelCase : Optional[Any] = output.images UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : int = PNDMScheduler(skip_prk_steps=__snake_case ) torch.manual_seed(0 ) UpperCAmelCase : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase : Union[str, Any] = RobertaSeriesModelWithTransformation(__snake_case ) UpperCAmelCase : Union[str, Any] = text_encoder UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case ) UpperCAmelCase : Dict = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : int = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : Optional[int] = alt_pipe(**__snake_case ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[int] = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ) -> Any: # make sure here that pndm scheduler skips prk UpperCAmelCase : List[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=__snake_case ) UpperCAmelCase : Tuple = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Any = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = alt_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : Tuple ) -> int: UpperCAmelCase : int = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) UpperCAmelCase : Tuple = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=__snake_case , safety_checker=__snake_case ) UpperCAmelCase : Dict = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Tuple = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : List[Any] = alt_pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='''numpy''' ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
23
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Optional[int] = logging.get_logger(__name__) UpperCamelCase__: List[str] = {"vocab_file": "sentencepiece.model"} UpperCamelCase__: Tuple = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase__: Optional[int] = { "google/rembert": 256, } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[int]=False , __snake_case : Tuple=True , __snake_case : int=True , __snake_case : str="[CLS]" , __snake_case : Tuple="[SEP]" , __snake_case : str="[UNK]" , __snake_case : Optional[Any]="[SEP]" , __snake_case : Union[str, Any]="[PAD]" , __snake_case : Dict="[CLS]" , __snake_case : Optional[Any]="[MASK]" , **__snake_case : List[Any] , ) -> int: super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) UpperCAmelCase : Tuple = do_lower_case UpperCAmelCase : Dict = remove_space UpperCAmelCase : Any = keep_accents UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor() self.sp_model.Load(__snake_case ) @property def A ( self : Union[str, Any] ) -> Optional[int]: return len(self.sp_model ) def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> Optional[Any]: UpperCAmelCase : List[Any] = self.__dict__.copy() UpperCAmelCase : Dict = None return state def __setstate__( self : Any , __snake_case : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : List[str] = d UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def A ( self : Tuple , __snake_case : Any , __snake_case : Union[str, Any]=False ) -> Union[str, Any]: UpperCAmelCase : int = self.sp_model.EncodeAsPieces(__snake_case ) return pieces def A ( self : str , __snake_case : Union[str, Any] ) -> int: return self.sp_model.PieceToId(__snake_case ) def A ( self : str , __snake_case : str ) -> List[Any]: return self.sp_model.IdToPiece(__snake_case ) def A ( self : int , __snake_case : Any ) -> List[Any]: UpperCAmelCase : Optional[int] = self.sp_model.decode_pieces(__snake_case ) return out_string def A ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : List[Any] = [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] def A ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : int , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__snake_case ) ) return UpperCAmelCase : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
23
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Optional[int]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ) -> Dict: UpperCAmelCase : Dict = tmp_path / '''cache''' UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : str = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> Optional[int]: UpperCAmelCase : Any = tmp_path / '''cache''' UpperCAmelCase : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Any = features.copy() if features else default_expected_features UpperCAmelCase : List[Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Dict = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ) -> Tuple: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : Optional[int] = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} UpperCAmelCase : int = features.copy() if features else default_expected_features UpperCAmelCase : Any = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> Union[str, Any]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCAmelCase : Tuple = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} UpperCAmelCase : List[str] = features.copy() UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = tmp_path / '''cache''' UpperCAmelCase : List[str] = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> Optional[Any]: UpperCAmelCase : Any = tmp_path / '''cache''' UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : List[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Dict: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : str = jsonl_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Dict = [jsonl_path] UpperCAmelCase : int = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[int] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=("train",) ) -> Union[str, Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: UpperCAmelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ) -> Any: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Optional[int] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : Dict = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = JsonDatasetReader({'''train''': jsonl_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> Union[str, Any]: if split: UpperCAmelCase : Optional[int] = {split: jsonl_path} else: UpperCAmelCase : Any = '''train''' UpperCAmelCase : Any = {'''train''': jsonl_path, '''test''': jsonl_path} UpperCAmelCase : Tuple = tmp_path / '''cache''' UpperCAmelCase : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict ) -> str: return [json.loads(_lowerCAmelCase ) for line in buffer] class SCREAMING_SNAKE_CASE: """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[Any] ) -> List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def A ( self : str , __snake_case : str , __snake_case : str , __snake_case : int ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : Any = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A ( self : Any , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : List[str] = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 def A ( self : List[Any] , __snake_case : str ) -> Dict: with pytest.raises(__snake_case ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def A ( self : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Union[str, Any]: UpperCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / F"""test.json.{extension}""" UpperCAmelCase : List[Any] = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: UpperCAmelCase : str = f.read() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: UpperCAmelCase : Optional[int] = f.read() assert exported_content == original_content
23
1
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: UpperCAmelCase : str = get_failure_array(_lowerCAmelCase ) # 2) Step through text searching for pattern UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern while i < len(_lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(_lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCAmelCase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( _lowerCAmelCase : str ) -> list[int]: UpperCAmelCase : Optional[Any] = [0] UpperCAmelCase : str = 0 UpperCAmelCase : List[str] = 1 while j < len(_lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCAmelCase : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(_lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) UpperCamelCase__: str = "abc1abc12" UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc" UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCamelCase__: Tuple = "ABABX" UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) UpperCamelCase__: Any = "AAAB" UpperCamelCase__: str = "ABAAAAAB" assert kmp(pattern, text) # Test 4) UpperCamelCase__: int = "abcdabcy" UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) UpperCamelCase__: List[str] = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
23
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Tuple = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} UpperCamelCase__: Optional[int] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } UpperCamelCase__: Dict = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } UpperCamelCase__: Tuple = "▁" class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="</s>" , __snake_case : Any="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Dict , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase : Optional[int] = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) UpperCAmelCase : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCAmelCase : Optional[Any] = len(self.sp_model ) - 1 UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] UpperCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Tuple = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : Dict ) -> Optional[int]: return len(self.sp_model ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Optional[Any] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def A ( self : int , __snake_case : int ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(__snake_case ) return spm_id if spm_id else self.unk_token_id def A ( self : int , __snake_case : Any ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__snake_case ) def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : int = '''''' UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token UpperCAmelCase : str = True UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(__snake_case ) UpperCAmelCase : Optional[int] = False out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.__dict__.copy() UpperCAmelCase : Any = None return state def __setstate__( self : Optional[int] , __snake_case : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
23
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : Union[str, Any] , __snake_case : Optional[int] ) -> List[str]: UpperCAmelCase : str = data def __iter__( self : Union[str, Any] ) -> str: for element in self.data: yield element def snake_case_ ( _lowerCAmelCase : str=True ) -> List[str]: UpperCAmelCase : Optional[int] = Accelerator(even_batches=_lowerCAmelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def snake_case_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : bool = False ) -> List[Any]: if iterable: UpperCAmelCase : Any = DummyIterableDataset(torch.as_tensor(range(_lowerCAmelCase ) ) ) else: UpperCAmelCase : Union[str, Any] = TensorDataset(torch.as_tensor(range(_lowerCAmelCase ) ) ) UpperCAmelCase : Tuple = DataLoader(_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCAmelCase : List[str] = accelerator.prepare(_lowerCAmelCase ) return dl def snake_case_ ( _lowerCAmelCase : Accelerator , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : List[int] , _lowerCAmelCase : List[int] , ) -> Optional[int]: UpperCAmelCase : Optional[Any] = create_dataloader(accelerator=_lowerCAmelCase , dataset_size=_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCAmelCase : int = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def snake_case_ ( ) -> Union[str, Any]: UpperCAmelCase : Dict = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( _lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( _lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def snake_case_ ( ) -> Dict: UpperCAmelCase : Tuple = create_accelerator(even_batches=_lowerCAmelCase ) verify_dataloader_batch_sizes( _lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( _lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def snake_case_ ( ) -> Tuple: UpperCAmelCase : Union[str, Any] = create_accelerator(even_batches=_lowerCAmelCase ) UpperCAmelCase : int = torch.nn.Linear(1 , 1 ) UpperCAmelCase : Any = accelerator.prepare(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 ) UpperCAmelCase : Union[str, Any] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(_lowerCAmelCase ): UpperCAmelCase : str = ddp_model(batch[0].float() ) UpperCAmelCase : List[Any] = output.sum() loss.backward() batch_idxs.append(_lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> List[str]: with warnings.catch_warnings(record=_lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , _lowerCAmelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def snake_case_ ( ) -> Dict: UpperCAmelCase : Dict = True UpperCAmelCase : Optional[int] = False UpperCAmelCase : Tuple = create_accelerator(even_batches=_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = torch.nn.Linear(1 , 1 ) UpperCAmelCase : List[str] = accelerator.prepare(_lowerCAmelCase ) UpperCAmelCase : str = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 ) UpperCAmelCase : Any = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCAmelCase ): UpperCAmelCase : Tuple = train_dl.batch_sampler.even_batches UpperCAmelCase : List[Any] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def snake_case_ ( ) -> Dict: UpperCAmelCase : List[Any] = True UpperCAmelCase : List[Any] = False UpperCAmelCase : Tuple = create_accelerator(even_batches=_lowerCAmelCase ) UpperCAmelCase : List[str] = torch.nn.Linear(1 , 1 ) UpperCAmelCase : List[Any] = accelerator.prepare(_lowerCAmelCase ) create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCAmelCase ) UpperCAmelCase : int = create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCAmelCase ): UpperCAmelCase : Any = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def snake_case_ ( ) -> Dict: UpperCAmelCase : Tuple = create_accelerator() UpperCAmelCase : Any = torch.nn.Linear(1 , 1 ) UpperCAmelCase : Dict = accelerator.prepare(_lowerCAmelCase ) create_dataloader(_lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCAmelCase ) with warnings.catch_warnings(record=_lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCAmelCase ): pass assert issubclass(w[-1].category , _lowerCAmelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def snake_case_ ( ) -> Optional[int]: UpperCAmelCase : str = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) UpperCAmelCase : str = accelerator.state.distributed_type UpperCAmelCase : str = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = original_state if __name__ == "__main__": main()
23
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @classmethod def A ( cls : Union[str, Any] ) -> int: UpperCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(__snake_case ) @classmethod def A ( cls : List[str] ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : int ) -> Tuple: UpperCAmelCase : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]: UpperCAmelCase : str = True UpperCAmelCase : int = flatten_dict(modela.params ) UpperCAmelCase : Dict = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase : Dict = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : int = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) ) with self.assertRaises(__snake_case ): UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : Optional[int] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(__snake_case ): UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : Optional[int] ) -> str: UpperCAmelCase : Dict = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case ) def A ( self : Dict ) -> List[Any]: UpperCAmelCase : Optional[int] = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case )
23
1
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE( A__ , A__ ): """simple docstring""" @register_to_config def __init__( self : int , __snake_case : int = 128 , __snake_case : int = 256 , __snake_case : float = 20_00.0 , __snake_case : int = 768 , __snake_case : int = 12 , __snake_case : int = 12 , __snake_case : int = 64 , __snake_case : int = 2048 , __snake_case : float = 0.1 , ) -> Any: super().__init__() UpperCAmelCase : List[Any] = nn.Sequential( nn.Linear(__snake_case , d_model * 4 , bias=__snake_case ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__snake_case ) , nn.SiLU() , ) UpperCAmelCase : Union[str, Any] = nn.Embedding(__snake_case , __snake_case ) UpperCAmelCase : Any = False UpperCAmelCase : Union[str, Any] = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) UpperCAmelCase : Tuple = nn.Dropout(p=__snake_case ) UpperCAmelCase : int = nn.ModuleList() for lyr_num in range(__snake_case ): # FiLM conditional T5 decoder UpperCAmelCase : List[Any] = DecoderLayer(d_model=__snake_case , d_kv=__snake_case , num_heads=__snake_case , d_ff=__snake_case , dropout_rate=__snake_case ) self.decoders.append(__snake_case ) UpperCAmelCase : Optional[int] = TaLayerNorm(__snake_case ) UpperCAmelCase : Union[str, Any] = nn.Dropout(p=__snake_case ) UpperCAmelCase : Tuple = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) def A ( self : Any , __snake_case : List[Any] , __snake_case : Optional[int] ) -> Dict: UpperCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def A ( self : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCAmelCase : Union[str, Any] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCAmelCase : Optional[Any] = self.conditioning_emb(__snake_case ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCAmelCase : Optional[Any] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCAmelCase : int = torch.broadcast_to( torch.arange(__snake_case , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCAmelCase : Optional[Any] = self.position_encoding(__snake_case ) UpperCAmelCase : Tuple = self.continuous_inputs_projection(__snake_case ) inputs += position_encodings UpperCAmelCase : Optional[Any] = self.dropout(__snake_case ) # decoder: No padding present. UpperCAmelCase : List[str] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCAmelCase : Tuple = [(x, self.encoder_decoder_mask(__snake_case , __snake_case )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCAmelCase : Optional[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCAmelCase : Optional[int] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCAmelCase : Any = lyr( __snake_case , conditioning_emb=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , )[0] UpperCAmelCase : List[Any] = self.decoder_norm(__snake_case ) UpperCAmelCase : Union[str, Any] = self.post_dropout(__snake_case ) UpperCAmelCase : Optional[int] = self.spec_out(__snake_case ) return spec_out class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Union[str, Any]=1E-6 ) -> Optional[Any]: super().__init__() UpperCAmelCase : Union[str, Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__snake_case , d_kv=__snake_case , num_heads=__snake_case , dropout_rate=__snake_case ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__snake_case , d_kv=__snake_case , num_heads=__snake_case , dropout_rate=__snake_case , layer_norm_epsilon=__snake_case , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__snake_case , d_ff=__snake_case , dropout_rate=__snake_case , layer_norm_epsilon=__snake_case ) ) def A ( self : Optional[int] , __snake_case : List[Any] , __snake_case : int=None , __snake_case : List[str]=None , __snake_case : Optional[int]=None , __snake_case : Optional[Any]=None , __snake_case : Any=None , ) -> List[str]: UpperCAmelCase : Optional[int] = self.layer[0]( __snake_case , conditioning_emb=__snake_case , attention_mask=__snake_case , ) if encoder_hidden_states is not None: UpperCAmelCase : Any = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) UpperCAmelCase : str = self.layer[1]( __snake_case , key_value_states=__snake_case , attention_mask=__snake_case , ) # Apply Film Conditional Feed Forward layer UpperCAmelCase : Tuple = self.layer[-1](__snake_case , __snake_case ) return (hidden_states,) class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Union[str, Any] ) -> Optional[int]: super().__init__() UpperCAmelCase : Optional[int] = TaLayerNorm(__snake_case ) UpperCAmelCase : Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=__snake_case ) UpperCAmelCase : Union[str, Any] = Attention(query_dim=__snake_case , heads=__snake_case , dim_head=__snake_case , out_bias=__snake_case , scale_qk=__snake_case ) UpperCAmelCase : Union[str, Any] = nn.Dropout(__snake_case ) def A ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , ) -> Optional[Any]: # pre_self_attention_layer_norm UpperCAmelCase : Union[str, Any] = self.layer_norm(__snake_case ) if conditioning_emb is not None: UpperCAmelCase : Optional[int] = self.FiLMLayer(__snake_case , __snake_case ) # Self-attention block UpperCAmelCase : Tuple = self.attention(__snake_case ) UpperCAmelCase : Optional[int] = hidden_states + self.dropout(__snake_case ) return hidden_states class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : int , __snake_case : List[Any] , __snake_case : Any ) -> Union[str, Any]: super().__init__() UpperCAmelCase : Optional[int] = Attention(query_dim=__snake_case , heads=__snake_case , dim_head=__snake_case , out_bias=__snake_case , scale_qk=__snake_case ) UpperCAmelCase : List[str] = TaLayerNorm(__snake_case , eps=__snake_case ) UpperCAmelCase : Optional[Any] = nn.Dropout(__snake_case ) def A ( self : Any , __snake_case : int , __snake_case : int=None , __snake_case : int=None , ) -> List[Any]: UpperCAmelCase : Tuple = self.layer_norm(__snake_case ) UpperCAmelCase : Any = self.attention( __snake_case , encoder_hidden_states=__snake_case , attention_mask=attention_mask.squeeze(1 ) , ) UpperCAmelCase : Optional[Any] = hidden_states + self.dropout(__snake_case ) return layer_output class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : int , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int ) -> int: super().__init__() UpperCAmelCase : List[str] = TaDenseGatedActDense(d_model=__snake_case , d_ff=__snake_case , dropout_rate=__snake_case ) UpperCAmelCase : int = TaFiLMLayer(in_features=d_model * 4 , out_features=__snake_case ) UpperCAmelCase : Any = TaLayerNorm(__snake_case , eps=__snake_case ) UpperCAmelCase : Dict = nn.Dropout(__snake_case ) def A ( self : List[Any] , __snake_case : List[Any] , __snake_case : Dict=None ) -> str: UpperCAmelCase : List[Any] = self.layer_norm(__snake_case ) if conditioning_emb is not None: UpperCAmelCase : Tuple = self.film(__snake_case , __snake_case ) UpperCAmelCase : Union[str, Any] = self.DenseReluDense(__snake_case ) UpperCAmelCase : Tuple = hidden_states + self.dropout(__snake_case ) return hidden_states class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Any , __snake_case : Union[str, Any] ) -> str: super().__init__() UpperCAmelCase : Tuple = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) UpperCAmelCase : Optional[int] = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) UpperCAmelCase : Tuple = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) UpperCAmelCase : int = nn.Dropout(__snake_case ) UpperCAmelCase : Dict = NewGELUActivation() def A ( self : Optional[int] , __snake_case : List[Any] ) -> Tuple: UpperCAmelCase : List[str] = self.act(self.wi_a(__snake_case ) ) UpperCAmelCase : str = self.wi_a(__snake_case ) UpperCAmelCase : Any = hidden_gelu * hidden_linear UpperCAmelCase : Any = self.dropout(__snake_case ) UpperCAmelCase : Union[str, Any] = self.wo(__snake_case ) return hidden_states class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : List[str] , __snake_case : str , __snake_case : List[str]=1E-6 ) -> str: super().__init__() UpperCAmelCase : int = nn.Parameter(torch.ones(__snake_case ) ) UpperCAmelCase : Union[str, Any] = eps def A ( self : List[Any] , __snake_case : Dict ) -> List[str]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 UpperCAmelCase : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__snake_case ) UpperCAmelCase : Optional[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def A ( self : Tuple , __snake_case : torch.Tensor ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(__snake_case , 3.0 )) )) class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] ) -> List[str]: super().__init__() UpperCAmelCase : List[str] = nn.Linear(__snake_case , out_features * 2 , bias=__snake_case ) def A ( self : Dict , __snake_case : List[str] , __snake_case : str ) -> int: UpperCAmelCase : Dict = self.scale_bias(__snake_case ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = torch.chunk(__snake_case , 2 , -1 ) UpperCAmelCase : Optional[int] = x * (1 + scale) + shift return x
23
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Optional[int] , __snake_case : str , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=8 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : int=True , __snake_case : List[Any]=99 , __snake_case : str=16 , __snake_case : Tuple=5 , __snake_case : Tuple=2 , __snake_case : str=36 , __snake_case : Dict="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=512 , __snake_case : Optional[Any]=16 , __snake_case : int=2 , __snake_case : int=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : str=None , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : int = use_input_mask UpperCAmelCase : Any = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : Optional[int] = num_choices UpperCAmelCase : Any = scope def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : str = None UpperCAmelCase : Tuple = None UpperCAmelCase : int = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : int ) -> Tuple: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[Any] = self.get_config() UpperCAmelCase : int = 300 return config def A ( self : Optional[Any] ) -> Any: ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = self.prepare_config_and_inputs() UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[Any] ) -> List[str]: UpperCAmelCase : int = MraModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Optional[int] = model(__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Dict = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[Any] , ) -> Tuple: UpperCAmelCase : str = True UpperCAmelCase : Tuple = MraModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) UpperCAmelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , ) UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int ) -> Any: UpperCAmelCase : Dict = MraForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Dict , __snake_case : Any , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = MraForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int: UpperCAmelCase : int = self.num_labels UpperCAmelCase : Union[str, Any] = MraForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> int: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : List[str] = MraForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : str , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.num_choices UpperCAmelCase : int = MraForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str ) -> Dict: UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = () def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = MraModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A ( self : Optional[Any] ) -> str: self.config_tester.run_common_tests() def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__snake_case ) def A ( self : Tuple ) -> Dict: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def A ( self : Tuple ) -> List[str]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def A ( self : Dict ) -> Optional[int]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def A ( self : Any ) -> Optional[int]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def A ( self : Dict ) -> Any: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = MraModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''MRA does not output attentions''' ) def A ( self : str ) -> Optional[Any]: return @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @slow def A ( self : Tuple ) -> List[Any]: UpperCAmelCase : int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Optional[Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Any = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[int] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : int = 50265 UpperCAmelCase : int = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : str ) -> List[Any]: UpperCAmelCase : List[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) UpperCAmelCase : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : Tuple = model(__snake_case )[0] UpperCAmelCase : Optional[int] = 50265 UpperCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Optional[int] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
23
1
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCamelCase__: Tuple = logging.getLogger(__name__) UpperCamelCase__: str = 50 # max width of layer names UpperCamelCase__: List[str] = 70 # max width of quantizer names def snake_case_ ( _lowerCAmelCase : List[Any] ) -> Any: UpperCAmelCase : List[str] = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=_lowerCAmelCase , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=_lowerCAmelCase , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=_lowerCAmelCase , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=_lowerCAmelCase , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=_lowerCAmelCase , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=_lowerCAmelCase , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] ) -> List[Any]: if args.calibrator == "max": UpperCAmelCase : str = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) UpperCAmelCase : Optional[int] = '''histogram''' elif args.calibrator == "mse": UpperCAmelCase : List[str] = '''histogram''' else: raise ValueError(f"""Invalid calibrator {args.calibrator}""" ) UpperCAmelCase : Optional[int] = QuantDescriptor(num_bits=args.aprec , calib_method=_lowerCAmelCase ) UpperCAmelCase : List[str] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_lowerCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : int=False ) -> List[str]: logger.info('''Configuring Model for Quantization''' ) logger.info(f"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_lowerCAmelCase , ['''embeddings'''] , which='''weight''' , _disabled=_lowerCAmelCase ) if args.quant_disable: set_quantizer_by_name(_lowerCAmelCase , [''''''] , _disabled=_lowerCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(_lowerCAmelCase , args.quant_disable_keyword , _disabled=_lowerCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(_lowerCAmelCase , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=_lowerCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(_lowerCAmelCase , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=_lowerCAmelCase ) if args.recalibrate_weights: recalibrate_weights(_lowerCAmelCase ) if args.fuse_qkv: fuse_qkv(_lowerCAmelCase , _lowerCAmelCase ) if args.clip_gelu: clip_gelu(_lowerCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : str ) -> List[Any]: logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"""{name:80}: {module}""" ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> str: logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ) -> Any: def fusea(_lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_lowerCAmelCase , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return UpperCAmelCase : Union[str, Any] = qq._amax.detach().item() UpperCAmelCase : Tuple = qk._amax.detach().item() UpperCAmelCase : Optional[int] = qv._amax.detach().item() UpperCAmelCase : str = max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) qq._amax.fill_(_lowerCAmelCase ) qk._amax.fill_(_lowerCAmelCase ) qv._amax.fill_(_lowerCAmelCase ) logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): UpperCAmelCase : Union[str, Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_lowerCAmelCase ) UpperCAmelCase : Dict = mod._input_quantizer._amax.data.detach().item() logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def snake_case_ ( _lowerCAmelCase : Dict ) -> Any: for name, mod in model.named_modules(): if hasattr(_lowerCAmelCase , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: UpperCAmelCase : Any = mod.weight.shape[0] UpperCAmelCase : Dict = mod._weight_quantizer._amax.detach() UpperCAmelCase : Any = torch.ones(_lowerCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def snake_case_ ( _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: for name, mod in model.named_modules(): if hasattr(_lowerCAmelCase , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase : str = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase : Any = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase : List[str] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_lowerCAmelCase , keepdims=_lowerCAmelCase ).detach() logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) UpperCAmelCase : Optional[Any] = amax def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any]=25 , _lowerCAmelCase : Dict=180 , _lowerCAmelCase : str=None ) -> str: if ignore is None: UpperCAmelCase : Optional[Any] = [] elif not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Any = [ignore] UpperCAmelCase : Tuple = 0 for name, mod in model.named_modules(): if not hasattr(_lowerCAmelCase , '''weight''' ): continue UpperCAmelCase : Union[str, Any] = max(_lowerCAmelCase , len(_lowerCAmelCase ) ) for name, mod in model.named_modules(): UpperCAmelCase : Union[str, Any] = getattr(_lowerCAmelCase , '''_input_quantizer''' , _lowerCAmelCase ) UpperCAmelCase : Tuple = getattr(_lowerCAmelCase , '''_weight_quantizer''' , _lowerCAmelCase ) if not hasattr(_lowerCAmelCase , '''weight''' ): continue if type(_lowerCAmelCase ) in ignore: continue if [True for s in ignore if type(_lowerCAmelCase ) is str and s in name]: continue UpperCAmelCase : str = f"""Act:{input_q.extra_repr()}""" UpperCAmelCase : int = f"""Wgt:{weight_q.extra_repr()}""" UpperCAmelCase : Tuple = f"""{name:{name_width}} {act_str} {wgt_str}""" if len(_lowerCAmelCase ) <= line_width: logger.info(_lowerCAmelCase ) else: logger.info(f"""{name:{name_width}} {act_str}""" ) logger.info(f"""{" ":{name_width}} {wgt_str}""" ) def snake_case_ ( _lowerCAmelCase : Dict ) -> List[Any]: UpperCAmelCase : List[Any] = 0 for name, mod in model.named_modules(): if isinstance(_lowerCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(f"""{name:80} {mod}""" ) count += 1 print(f"""{count} TensorQuantizers found in model""" ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ) -> Tuple: UpperCAmelCase : Any = getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if quantizer_mod is not None: assert hasattr(_lowerCAmelCase , _lowerCAmelCase ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: logger.warning(f"""{name} has no {quantizer}""" ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any]="both" , **_lowerCAmelCase : Optional[Any] ) -> List[str]: UpperCAmelCase : List[Any] = f"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" if which in ["input", "both"]: set_quantizer(_lowerCAmelCase , _lowerCAmelCase , '''_input_quantizer''' , _lowerCAmelCase , _lowerCAmelCase ) if which in ["weight", "both"]: set_quantizer(_lowerCAmelCase , _lowerCAmelCase , '''_weight_quantizer''' , _lowerCAmelCase , _lowerCAmelCase ) logger.info(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Any ) -> str: for name, mod in model.named_modules(): if hasattr(_lowerCAmelCase , '''_input_quantizer''' ) or hasattr(_lowerCAmelCase , '''_weight_quantizer''' ): for n in names: if re.search(_lowerCAmelCase , _lowerCAmelCase ): set_quantizers(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : List[str] = f"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) logger.info(_lowerCAmelCase )
23
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Any ) -> str: UpperCAmelCase : Any = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } UpperCAmelCase : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(__snake_case ) , __snake_case ) def A ( self : int ) -> str: UpperCAmelCase : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__snake_case ) , x.transpose() ) ) UpperCAmelCase : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A ( self : str ) -> Union[str, Any]: UpperCAmelCase : Any = np.random.randn(3 , 4 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Tuple = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Any = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Optional[Any]: UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : str = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A ( self : Tuple ) -> Any: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , np.asarray(transpose(__snake_case ) ) ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(__snake_case , axes=(1, 2, 0) ) ) ) ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.reshape(__snake_case , (4, 3) ) ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.reshape(__snake_case , (12, 5) ) ) ) @require_torch def A ( self : Union[str, Any] ) -> int: UpperCAmelCase : Dict = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_tf def A ( self : int ) -> List[str]: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_flax def A ( self : Any ) -> Dict: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.asarray(reshape(__snake_case , (4, 3) ) ) ) ) UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.asarray(reshape(__snake_case , (12, 5) ) ) ) ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.squeeze(__snake_case ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.squeeze(__snake_case , axis=2 ) ) ) @require_torch def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : List[str] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : str = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_tf def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_flax def A ( self : List[Any] ) -> Dict: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.asarray(squeeze(__snake_case ) ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.asarray(squeeze(__snake_case , axis=2 ) ) ) ) def A ( self : Optional[Any] ) -> int: UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.expand_dims(__snake_case , axis=1 ) ) ) @require_torch def A ( self : List[str] ) -> Tuple: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Tuple = torch.tensor(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Any = tf.constant(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_flax def A ( self : Any ) -> List[Any]: UpperCAmelCase : List[str] = np.random.randn(3 , 4 ) UpperCAmelCase : str = jnp.array(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.asarray(expand_dims(__snake_case , axis=1 ) ) ) )
23
1
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Any ) -> List[Any]: # Return True if there is node that has not iterated. UpperCAmelCase : Tuple = [False] * len(_lowerCAmelCase ) UpperCAmelCase : Tuple = [] queue.append(_lowerCAmelCase ) UpperCAmelCase : List[Any] = True while queue: UpperCAmelCase : List[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCAmelCase ) UpperCAmelCase : str = True UpperCAmelCase : Dict = u return visited[t] def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ) -> Any: # This array is filled by BFS and to store path UpperCAmelCase : Optional[Any] = [-1] * (len(_lowerCAmelCase )) UpperCAmelCase : Tuple = 0 while bfs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Tuple = float('''Inf''' ) UpperCAmelCase : Union[str, Any] = sink while s != source: # Find the minimum value in select path UpperCAmelCase : Optional[int] = min(_lowerCAmelCase , graph[parent[s]][s] ) UpperCAmelCase : str = parent[s] max_flow += path_flow UpperCAmelCase : Union[str, Any] = sink while v != source: UpperCAmelCase : Dict = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase : Any = parent[v] return max_flow UpperCamelCase__: List[str] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] UpperCamelCase__ , UpperCamelCase__: List[str] = 0, 5 print(ford_fulkerson(graph, source, sink))
23
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase__: Union[str, Any] = "examples/" UpperCamelCase__: Optional[Any] = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } UpperCamelCase__: Optional[int] = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } UpperCamelCase__: List[Any] = "README.md" def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> Optional[int]: with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[int] = f.read() UpperCAmelCase , UpperCAmelCase : List[Any] = REPLACE_PATTERNS[pattern] UpperCAmelCase : List[Any] = replace.replace('''VERSION''' , _lowerCAmelCase ) UpperCAmelCase : Optional[Any] = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[int]: for folder, directories, fnames in os.walk(_lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='''examples''' ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=False ) -> List[str]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not patch: update_version_in_examples(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: UpperCAmelCase : Optional[int] = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase : Optional[int] = '''1. Want to contribute a new model?''' with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[Any] = f.readlines() # Find the start of the list. UpperCAmelCase : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase : Optional[int] = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase : Union[str, Any] = f.read() UpperCAmelCase : int = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0] return packaging.version.parse(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase : Optional[int] = default_version.base_version elif patch: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase : Dict = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Tuple = default_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase ) def snake_case_ ( ) -> Any: UpperCAmelCase : List[Any] = get_version() UpperCAmelCase : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase : List[Any] = current_version.base_version # Check with the user we got that right. UpperCAmelCase : Optional[int] = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Dict = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") UpperCamelCase__: Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
23
1
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency UpperCamelCase__: str = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } UpperCamelCase__: Tuple = "ETAOINSHRDLCUMWFGYPBVKJXQZ" UpperCamelCase__: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def snake_case_ ( _lowerCAmelCase : str ) -> dict[str, int]: UpperCAmelCase : List[Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def snake_case_ ( _lowerCAmelCase : tuple ) -> str: return x[0] def snake_case_ ( _lowerCAmelCase : str ) -> str: UpperCAmelCase : Tuple = get_letter_count(_lowerCAmelCase ) UpperCAmelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_lowerCAmelCase ) UpperCAmelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_lowerCAmelCase ) UpperCAmelCase : Tuple = ''''''.join(freq_to_letter[freq] ) UpperCAmelCase : Tuple = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_lowerCAmelCase , reverse=_lowerCAmelCase ) UpperCAmelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : str ) -> int: UpperCAmelCase : Dict = get_frequency_order(_lowerCAmelCase ) UpperCAmelCase : Any = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
23
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCamelCase__: Tuple = numpy.array([0, 0]) UpperCamelCase__: Union[str, Any] = numpy.array([0.5, 0.8660254]) UpperCamelCase__: Dict = numpy.array([1, 0]) UpperCamelCase__: int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] , _lowerCAmelCase : int ) -> list[numpy.ndarray]: UpperCAmelCase : Union[str, Any] = initial_vectors for _ in range(_lowerCAmelCase ): UpperCAmelCase : Union[str, Any] = iteration_step(_lowerCAmelCase ) return vectors def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> list[numpy.ndarray]: UpperCAmelCase : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase : List[str] = vectors[i + 1] new_vectors.append(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def snake_case_ ( _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : float ) -> numpy.ndarray: UpperCAmelCase : List[str] = numpy.radians(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Tuple = numpy.cos(_lowerCAmelCase ), numpy.sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> None: UpperCAmelCase : List[Any] = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase , UpperCAmelCase : str = zip(*_lowerCAmelCase ) plt.plot(_lowerCAmelCase , _lowerCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__: List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
23
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : int ) -> List[str]: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=__snake_case , ) assert hasattr(self , '''env''' ) def A ( self : int , __snake_case : List[Any] ) -> Union[str, Any]: UpperCAmelCase : List[Any] = F"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings UpperCAmelCase : Optional[Any] = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='''py36''' , ) def A ( self : Dict , __snake_case : Optional[Any] ) -> List[str]: TrainingJobAnalytics(__snake_case ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def A ( self : Tuple , __snake_case : int ) -> Any: # create estimator UpperCAmelCase : Dict = self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe UpperCAmelCase : List[str] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase : str = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCAmelCase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __snake_case )
23
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase : Dict = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Optional[Any] = Text('''CPU''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''GPU''' , font_size=24 ) UpperCAmelCase : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''Model''' , font_size=24 ) UpperCAmelCase : Tuple = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) UpperCAmelCase : Any = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = Text('''Loaded Checkpoint''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) UpperCAmelCase : Tuple = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase : List[Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) UpperCAmelCase : Tuple = [] UpperCAmelCase : int = [] for i, rect in enumerate(__snake_case ): UpperCAmelCase : Any = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) UpperCAmelCase : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
23
1
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Dict = tempfile.mkdtemp() UpperCAmelCase : List[Any] = 8 # DPR tok UpperCAmelCase : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) UpperCAmelCase : List[Any] = os.path.join(__snake_case , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok UpperCAmelCase : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase : Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) UpperCAmelCase : List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase : str = {'''unk_token''': '''<unk>'''} UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) UpperCAmelCase : Tuple = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase : Optional[Any] = os.path.join(__snake_case , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def A ( self : str ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def A ( self : List[Any] ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def A ( self : Dict ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def A ( self : List[str] ) -> Dict: shutil.rmtree(self.tmpdirname ) def A ( self : List[str] ) -> List[str]: UpperCAmelCase : Union[str, Any] = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : str = self.get_dummy_dataset() UpperCAmelCase : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: UpperCAmelCase : List[str] = dataset UpperCAmelCase : str = RagRetriever( __snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def A ( self : List[Any] , __snake_case : bool ) -> List[str]: UpperCAmelCase : Optional[int] = self.get_dummy_dataset() UpperCAmelCase : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: UpperCAmelCase : int = os.path.join(self.tmpdirname , '''dataset''' ) UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset UpperCAmelCase : str = RagRetriever( __snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: UpperCAmelCase : Union[str, Any] = RagRetriever( __snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __snake_case ) , ) return retriever def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : Optional[int] = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase : Dict = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) UpperCAmelCase : int = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__snake_case , open(__snake_case , '''wb''' ) ) UpperCAmelCase : List[str] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) UpperCAmelCase : Dict = RagRetriever( __snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def A ( self : Dict ) -> Optional[Any]: UpperCAmelCase : List[Any] = 1 UpperCAmelCase : Optional[int] = self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = retriever.retrieve(__snake_case , n_docs=__snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __snake_case ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A ( self : Any ) -> List[str]: UpperCAmelCase : List[Any] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: UpperCAmelCase : List[Any] = self.get_dummy_dataset() retriever.save_pretrained(__snake_case ) UpperCAmelCase : Tuple = RagRetriever.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Optional[int] = retriever.retrieve(__snake_case , n_docs=1 ) self.assertTrue(out is not None ) def A ( self : Union[str, Any] ) -> Any: UpperCAmelCase : Any = 1 UpperCAmelCase : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case ) UpperCAmelCase : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = retriever.retrieve(__snake_case , n_docs=__snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __snake_case ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A ( self : Tuple ) -> Any: UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__snake_case ) UpperCAmelCase : Dict = RagRetriever.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : List[Any] = retriever.retrieve(__snake_case , n_docs=1 ) self.assertTrue(out is not None ) def A ( self : Any ) -> Optional[Any]: UpperCAmelCase : Optional[int] = 1 UpperCAmelCase : int = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case ) UpperCAmelCase : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = retriever.retrieve(__snake_case , n_docs=__snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __snake_case ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__snake_case ) UpperCAmelCase : Optional[Any] = RagRetriever.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : List[Any] = retriever.retrieve(__snake_case , n_docs=1 ) self.assertTrue(out is not None ) def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase : List[str] = 1 UpperCAmelCase : Union[str, Any] = self.get_dummy_legacy_index_retriever() UpperCAmelCase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = retriever.retrieve(__snake_case , n_docs=__snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __snake_case ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A ( self : List[str] ) -> List[str]: UpperCAmelCase : int = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__snake_case ) UpperCAmelCase : int = RagRetriever.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : int = retriever.retrieve(__snake_case , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def A ( self : int ) -> Tuple: import torch UpperCAmelCase : List[str] = 1 UpperCAmelCase : List[str] = self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase : str = [[5, 7], [10, 11]] UpperCAmelCase : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Optional[int] = retriever(__snake_case , __snake_case , prefix=retriever.config.generator.prefix , n_docs=__snake_case ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(__snake_case , np.ndarray ) UpperCAmelCase : Tuple = retriever( __snake_case , __snake_case , prefix=retriever.config.generator.prefix , n_docs=__snake_case , return_tensors='''pt''' , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__snake_case , torch.Tensor ) self.assertIsInstance(__snake_case , torch.Tensor ) self.assertIsInstance(__snake_case , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def A ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = self.get_dpr_ctx_encoder_tokenizer() UpperCAmelCase : List[Any] = 1 UpperCAmelCase : Optional[int] = self.get_dummy_custom_hf_index_retriever(from_disk=__snake_case ) retriever.set_ctx_encoder_tokenizer(__snake_case ) UpperCAmelCase : Union[str, Any] = [[5, 7], [10, 11]] UpperCAmelCase : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase : Optional[int] = retriever(__snake_case , __snake_case , prefix=retriever.config.generator.prefix , n_docs=__snake_case ) self.assertEqual( len(__snake_case ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __snake_case ) # check for doc token related keys in dictionary.
23
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) UpperCamelCase__: str = None UpperCamelCase__: int = { "7B": 11008, "13B": 13824, "30B": 17920, "65B": 22016, "70B": 28672, } UpperCamelCase__: List[Any] = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : List[Any]=256 ) -> Optional[Any]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: with open(_lowerCAmelCase , '''r''' ) as f: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ) -> Optional[Any]: with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=True ) -> List[Any]: os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp''' ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[str] = read_json(os.path.join(_lowerCAmelCase , '''params.json''' ) ) UpperCAmelCase : str = NUM_SHARDS[model_size] UpperCAmelCase : Any = params['''n_layers'''] UpperCAmelCase : str = params['''n_heads'''] UpperCAmelCase : Any = n_heads // num_shards UpperCAmelCase : List[str] = params['''dim'''] UpperCAmelCase : Optional[Any] = dim // n_heads UpperCAmelCase : str = 1_0_0_0_0.0 UpperCAmelCase : Optional[int] = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase : Tuple = params['''n_kv_heads'''] # for GQA / MQA UpperCAmelCase : Optional[int] = n_heads_per_shard // num_key_value_heads UpperCAmelCase : Optional[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase : List[str] = n_heads UpperCAmelCase : Optional[int] = n_heads_per_shard UpperCAmelCase : List[str] = dim # permute for sliced rotary def permute(_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=n_heads , _lowerCAmelCase : int=dim , _lowerCAmelCase : Dict=dim ): return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase ).transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase : int = torch.load(os.path.join(_lowerCAmelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded UpperCAmelCase : Optional[Any] = [ torch.load(os.path.join(_lowerCAmelCase , f"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' ) for i in range(_lowerCAmelCase ) ] UpperCAmelCase : Any = 0 UpperCAmelCase : str = {'''weight_map''': {}} for layer_i in range(_lowerCAmelCase ): UpperCAmelCase : Optional[Any] = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : Optional[int] = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase : List[str] = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } UpperCAmelCase : Union[str, Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) UpperCAmelCase : str = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Any = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : str = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Tuple = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : Any = inv_freq for k, v in state_dict.items(): UpperCAmelCase : List[Any] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[int] = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : str = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: UpperCAmelCase : Any = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(_lowerCAmelCase )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_lowerCAmelCase )] , dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase : Optional[int] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) # Write configs UpperCAmelCase : Union[str, Any] = {'''total_size''': param_count * 2} write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , '''pytorch_model.bin.index.json''' ) ) UpperCAmelCase : int = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 UpperCAmelCase : Tuple = params['''multiple_of'''] if '''multiple_of''' in params else 256 UpperCAmelCase : Any = LlamaConfig( hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_lowerCAmelCase , ) config.save_pretrained(_lowerCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> List[str]: # Initialize the tokenizer based on the `spm` model UpperCAmelCase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) UpperCAmelCase : List[Any] = tokenizer_class(_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) def snake_case_ ( ) -> List[Any]: UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=_lowerCAmelCase , help='''Whether or not to save using `safetensors`.''' ) UpperCAmelCase : List[Any] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCAmelCase : Optional[int] = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , _lowerCAmelCase ) if __name__ == "__main__": main()
23
1
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging UpperCamelCase__: Tuple = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str]=False ) -> List[str]: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: UpperCAmelCase : Optional[Any] = os.path.abspath(_lowerCAmelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) UpperCAmelCase : List[str] = torch.load(_lowerCAmelCase , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) UpperCAmelCase : Any = convert_pytorch_state_dict_to_flax(_lowerCAmelCase , _lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCAmelCase : List[Any] = convert_pytorch_sharded_state_dict_to_flax(_lowerCAmelCase , _lowerCAmelCase ) return flax_state_dict def snake_case_ ( _lowerCAmelCase : Tuple[str] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, jnp.ndarray] , _lowerCAmelCase : str , ) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(_lowerCAmelCase : Tuple[str] ) -> bool: return len(set(_lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCAmelCase : Dict = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCAmelCase : List[Any] = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCAmelCase : str = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCAmelCase : Dict = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): UpperCAmelCase : Any = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase : Dict = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): UpperCAmelCase : Dict = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCAmelCase : str = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCAmelCase : Optional[int] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCAmelCase : Union[str, Any] = pt_tuple_key[-2] + '''_v''' if name is not None: UpperCAmelCase : List[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ) -> Optional[Any]: # convert pytorch tensor to numpy UpperCAmelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase : Any = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCAmelCase : Optional[Any] = flax_model.params['''params'''] else: UpperCAmelCase : Any = flax_model.params UpperCAmelCase : str = flatten_dict(_lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase : List[str] = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(_lowerCAmelCase ) UpperCAmelCase : str = {} UpperCAmelCase : Union[str, Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase : Optional[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase : Optional[Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary UpperCAmelCase : Dict = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase : Dict = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase : List[Any] = rename_key_and_reshape_tensor( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # add model prefix if necessary UpperCAmelCase : Optional[int] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase : Any = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCAmelCase : Dict = jnp.asarray(_lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase : List[str] = jnp.asarray(_lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase : str = jnp.asarray(_lowerCAmelCase ) return unflatten_dict(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any ) -> str: import torch # Load the index UpperCAmelCase : int = {} for shard_file in shard_filenames: # load using msgpack utils UpperCAmelCase : str = torch.load(_lowerCAmelCase ) UpperCAmelCase : int = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase : Optional[int] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase : str = flax_model.params['''params'''] UpperCAmelCase : int = flatten_dict(_lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: UpperCAmelCase : Any = flax_model.params UpperCAmelCase : List[Any] = flatten_dict(_lowerCAmelCase ) UpperCAmelCase : str = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase : Optional[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase : Any = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary UpperCAmelCase : str = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase : str = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase : str = rename_key_and_reshape_tensor( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # add model prefix if necessary UpperCAmelCase : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCAmelCase : Tuple = jnp.asarray(_lowerCAmelCase ) continue if "var" in flax_key[-1]: UpperCAmelCase : Tuple = jnp.asarray(_lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase : int = jnp.asarray(_lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase : Any = jnp.asarray(_lowerCAmelCase ) return unflatten_dict(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> Tuple: UpperCAmelCase : Any = os.path.abspath(_lowerCAmelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class UpperCAmelCase : Dict = getattr(_lowerCAmelCase , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(_lowerCAmelCase , '''rb''' ) as state_f: try: UpperCAmelCase : Tuple = from_bytes(_lowerCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights UpperCAmelCase : Tuple = flatten_dict(jax.tree_util.tree_map(lambda _lowerCAmelCase : x.dtype == jnp.bfloataa , _lowerCAmelCase ) ).values() if any(_lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) UpperCAmelCase : Any = jax.tree_util.tree_map( lambda _lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = flatten_dict(_lowerCAmelCase ) UpperCAmelCase : str = pt_model.state_dict() UpperCAmelCase : List[str] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) UpperCAmelCase : Any = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCAmelCase : Dict = [] UpperCAmelCase : Union[str, Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase : Any = flax_key_tuple[0] == pt_model.base_model_prefix UpperCAmelCase : Optional[Any] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase : Tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase : str = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_lowerCAmelCase ) not in pt_model_dict: # conv layer UpperCAmelCase : str = flax_key_tuple[:-1] + ('''weight''',) UpperCAmelCase : List[str] = jnp.transpose(_lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ) not in pt_model_dict: # linear layer UpperCAmelCase : Any = flax_key_tuple[:-1] + ('''weight''',) UpperCAmelCase : List[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCAmelCase : Dict = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: UpperCAmelCase : str = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: UpperCAmelCase : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCAmelCase : Any = '''.'''.join(_lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCAmelCase : Union[str, Any] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCAmelCase : str = key.split('''.''' ) UpperCAmelCase : Dict = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCAmelCase : Dict = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCAmelCase : str = key_components[-2] + '''_v''' if name is not None: UpperCAmelCase : Any = key_components[:-3] + [name] UpperCAmelCase : Union[str, Any] = '''.'''.join(_lowerCAmelCase ) UpperCAmelCase : Dict = key if flax_key in special_pt_names: UpperCAmelCase : Optional[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCAmelCase : Optional[int] = np.asarray(_lowerCAmelCase ) if not isinstance(_lowerCAmelCase , np.ndarray ) else flax_tensor UpperCAmelCase : Optional[int] = torch.from_numpy(_lowerCAmelCase ) # remove from missing keys missing_keys.remove(_lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCAmelCase ) pt_model.load_state_dict(_lowerCAmelCase ) # re-transform missing_keys to list UpperCAmelCase : Any = list(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(_lowerCAmelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
23
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = cos(_lowerCAmelCase ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : Any = (1 - _cos) / 2 UpperCAmelCase : List[Any] = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Dict = 1 - alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Tuple = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = _sin / 2 UpperCAmelCase : Any = 0 UpperCAmelCase : int = -ba UpperCAmelCase : Optional[Any] = 1 + alpha UpperCAmelCase : List[Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : List[str] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : str = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 1 - alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Optional[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : str = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Union[str, Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha * big_a UpperCAmelCase : Union[str, Any] = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : Any = 1 - alpha / big_a UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : Optional[int] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : str = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Dict = big_a * (pmc + aaa) UpperCAmelCase : Any = 2 * big_a * mpc UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa) UpperCAmelCase : Optional[int] = ppmc + aaa UpperCAmelCase : Optional[Any] = -2 * pmpc UpperCAmelCase : Optional[Any] = ppmc - aaa UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : int = 10 ** (gain_db / 40) UpperCAmelCase : List[str] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Any = big_a * (ppmc + aaa) UpperCAmelCase : str = -2 * big_a * pmpc UpperCAmelCase : List[Any] = big_a * (ppmc - aaa) UpperCAmelCase : Optional[Any] = pmc + aaa UpperCAmelCase : Any = 2 * mpc UpperCAmelCase : str = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
23
1
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : str ) -> list: UpperCAmelCase : Union[str, Any] = [0] * len(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): # use last results for better performance - dynamic programming UpperCAmelCase : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCAmelCase : int = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCAmelCase : Any = j return prefix_result def snake_case_ ( _lowerCAmelCase : str ) -> int: return max(prefix_function(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
23
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: UpperCAmelCase : str = get_failure_array(_lowerCAmelCase ) # 2) Step through text searching for pattern UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern while i < len(_lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(_lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCAmelCase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( _lowerCAmelCase : str ) -> list[int]: UpperCAmelCase : Optional[Any] = [0] UpperCAmelCase : str = 0 UpperCAmelCase : List[str] = 1 while j < len(_lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCAmelCase : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(_lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) UpperCamelCase__: str = "abc1abc12" UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc" UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCamelCase__: Tuple = "ABABX" UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) UpperCamelCase__: Any = "AAAB" UpperCamelCase__: str = "ABAAAAAB" assert kmp(pattern, text) # Test 4) UpperCamelCase__: int = "abcdabcy" UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) UpperCamelCase__: List[str] = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
23
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase__: int = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : Optional[Any] , *__snake_case : Optional[int] , **__snake_case : Optional[Any] ) -> None: warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
23
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCamelCase__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = {} with open(_lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(_lowerCAmelCase ): UpperCAmelCase : List[str] = line.strip() if line: UpperCAmelCase : str = line.split() UpperCAmelCase : Union[str, Any] = line_number UpperCAmelCase : List[Any] = words[0] UpperCAmelCase : Union[str, Any] = value return result def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Dict = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : int = shape_pointer.shape # let's reduce dimension UpperCAmelCase : Union[str, Any] = value[0] else: UpperCAmelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : int = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = value else: UpperCAmelCase : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]: UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Any = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase : List[Any] = key UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0] UpperCamelCase__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int: UpperCAmelCase : List[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase : str = '''weight_g''' elif "weight_v" in name: UpperCAmelCase : int = '''weight_v''' elif "bias" in name: UpperCAmelCase : int = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : List[str] = '''weight''' else: UpperCAmelCase : Dict = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : Dict = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : Any = True else: UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : Optional[int] = name.split('''.''' ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict: if config_path is not None: UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = idalabel UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase ) UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : Optional[int] = target_dict.eos_index UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , ) UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase ) else: UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCamelCase__: Any = parser.parse_args() UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
23
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Optional[Any] , __snake_case : str , __snake_case : Tuple=3 , __snake_case : Dict=7 , __snake_case : List[str]=True , __snake_case : List[Any]=True , __snake_case : Any=False , __snake_case : Dict=True , __snake_case : Optional[Any]=99 , __snake_case : List[Any]=32 , __snake_case : List[Any]=5 , __snake_case : int=4 , __snake_case : Optional[Any]=37 , __snake_case : int="gelu" , __snake_case : Dict=0.1 , __snake_case : Dict=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Optional[int]=16 , __snake_case : List[Any]=2 , __snake_case : int=0.02 , __snake_case : int=3 , __snake_case : Tuple=4 , __snake_case : Tuple=None , ) -> Optional[int]: UpperCAmelCase : str = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : str = seq_length UpperCAmelCase : Dict = is_training UpperCAmelCase : Tuple = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : Any = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Any = type_vocab_size UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : Any = num_labels UpperCAmelCase : Optional[Any] = num_choices UpperCAmelCase : Any = scope def A ( self : List[Any] ) -> int: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Optional[int] = None UpperCAmelCase : List[str] = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[Any] ) -> List[str]: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__snake_case , ) def A ( self : str , __snake_case : List[Any] , __snake_case : int , __snake_case : Tuple , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> Any: UpperCAmelCase : List[Any] = FalconModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case ) UpperCAmelCase : int = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Any , __snake_case : int , __snake_case : Dict , __snake_case : Any , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Optional[int] , ) -> List[str]: UpperCAmelCase : str = True UpperCAmelCase : Union[str, Any] = FalconModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) UpperCAmelCase : int = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , ) UpperCAmelCase : Any = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Optional[Any] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : int , __snake_case : str , __snake_case : str , __snake_case : Optional[int] , ) -> Optional[int]: UpperCAmelCase : List[Any] = FalconForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : int = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : str , __snake_case : str , ) -> int: UpperCAmelCase : List[Any] = True UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Tuple = FalconForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() # first forward pass UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , use_cache=__snake_case , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : str = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : Dict = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0] UpperCAmelCase : Tuple = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0] # select random slice UpperCAmelCase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) ) def A ( self : int ) -> Tuple: UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = (FalconForCausalLM,) if is_torch_available() else () lowerCamelCase__ = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def A ( self : str ) -> Optional[Any]: UpperCAmelCase : Dict = FalconModelTester(self ) UpperCAmelCase : Any = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A ( self : int ) -> Any: self.config_tester.run_common_tests() def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : List[str] ) -> List[str]: UpperCAmelCase , *UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: UpperCAmelCase : Optional[Any] = alibi self.model_tester.create_and_check_model(__snake_case , *__snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Union[str, Any] = input_dict['''input_ids'''] UpperCAmelCase : Any = input_ids.ne(1 ).to(__snake_case ) UpperCAmelCase : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Tuple = FalconForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[Any] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = 3 UpperCAmelCase : Tuple = '''single_label_classification''' UpperCAmelCase : Union[str, Any] = input_dict['''input_ids'''] UpperCAmelCase : Dict = input_ids.ne(1 ).to(__snake_case ) UpperCAmelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Tuple = FalconForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[Any] = input_dict['''input_ids'''] UpperCAmelCase : Tuple = FalconForCausalLM(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Dict = model(__snake_case , use_cache=__snake_case ) UpperCAmelCase : Tuple = input_ids.shape[0] UpperCAmelCase : Any = model._convert_to_rw_cache(result.past_key_values ) UpperCAmelCase : Any = model._convert_cache_to_standard_format(__snake_case , __snake_case ) for layer in range(len(__snake_case ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def A ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Union[str, Any] = 3 UpperCAmelCase : List[Any] = '''multi_label_classification''' UpperCAmelCase : Tuple = input_dict['''input_ids'''] UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__snake_case ) UpperCAmelCase : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : str = FalconForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Dict = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : List[str] ) -> Tuple: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__snake_case , '''use_cache''' ): return UpperCAmelCase : List[str] = model_class(__snake_case ).to(__snake_case ) if "use_cache" not in inputs: UpperCAmelCase : Optional[Any] = True UpperCAmelCase : Optional[int] = model(**__snake_case ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return UpperCAmelCase : List[Any] = ( getattr(__snake_case , '''decoder_layers''' , __snake_case ) or getattr(__snake_case , '''num_decoder_layers''' , __snake_case ) or config.num_hidden_layers ) UpperCAmelCase : Any = getattr(__snake_case , '''num_kv_heads''' , config.num_attention_heads ) UpperCAmelCase : Optional[Any] = getattr(__snake_case , '''d_model''' , config.hidden_size ) UpperCAmelCase : Union[str, Any] = embed_dim // num_attention_heads UpperCAmelCase : List[str] = outputs['''past_key_values'''] self.assertEqual(len(__snake_case ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : List[Any] = inputs['''input_ids'''].shape for i in range(__snake_case ): if config.new_decoder_architecture: UpperCAmelCase : Tuple = config.num_attention_heads elif config.multi_query: UpperCAmelCase : List[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @slow def A ( self : Any ) -> Tuple: UpperCAmelCase : Dict = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) UpperCAmelCase : List[str] = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(__snake_case ) UpperCAmelCase : int = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__snake_case ) UpperCAmelCase : List[Any] = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) UpperCAmelCase : List[str] = model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=19 ) UpperCAmelCase : str = tokenizer.batch_decode(__snake_case )[0] self.assertEqual(__snake_case , __snake_case ) @slow def A ( self : Tuple ) -> List[Any]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(__snake_case ) UpperCAmelCase : List[Any] = FalconForCausalLM.from_pretrained(__snake_case ) model.eval() model.to(__snake_case ) UpperCAmelCase : List[str] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__snake_case ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=4 ) model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=4 ) model.generate(**__snake_case , num_beams=2 , max_new_tokens=4 ) @slow def A ( self : str ) -> Optional[int]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FalconForCausalLM.from_pretrained(__snake_case ) model.eval() model.to(device=__snake_case ) UpperCAmelCase : int = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__snake_case ) # Test results are the same with and without cache UpperCAmelCase : Dict = model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=20 , use_cache=__snake_case ) UpperCAmelCase : Tuple = model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=20 , use_cache=__snake_case ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
23
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case ) UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )] UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case ) UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Tuple = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def A ( self : List[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : int = num_samples * [prompt] UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Tuple = shard(__snake_case ) UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : List[str] = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[int] = jax.device_count() UpperCAmelCase : List[str] = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : str = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) UpperCAmelCase : Tuple = scheduler.create_state() UpperCAmelCase : Dict = scheduler_state UpperCAmelCase : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : int = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Any = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : str = replicate(__snake_case ) UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def A ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , ) UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[str] = shard(__snake_case ) UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) UpperCAmelCase : int = replicate(__snake_case ) UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[Any] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : int = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
1
'''simple docstring''' import cmath import math def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> complex: UpperCAmelCase : Tuple = math.radians(_lowerCAmelCase ) UpperCAmelCase : str = math.radians(_lowerCAmelCase ) # Convert voltage and current to rectangular form UpperCAmelCase : Union[str, Any] = cmath.rect(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : str = cmath.rect(_lowerCAmelCase , _lowerCAmelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
23
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase : str = n - 1 UpperCAmelCase : List[Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase : List[str] = 0 while count < prec: UpperCAmelCase : int = random.randint(2 , n - 1 ) UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if b != 1: UpperCAmelCase : int = True for _ in range(_lowerCAmelCase ): if b == n - 1: UpperCAmelCase : Dict = False break UpperCAmelCase : str = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
23
1
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : bool = False ) -> str: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : List[str] = f"""Expected string as input, found {type(_lowerCAmelCase )}""" raise ValueError(_lowerCAmelCase ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : List[Any] = f"""Expected boolean as use_pascal parameter, found {type(_lowerCAmelCase )}""" raise ValueError(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = input_str.split('''_''' ) UpperCAmelCase : Optional[int] = 0 if use_pascal else 1 UpperCAmelCase : int = words[start_index:] UpperCAmelCase : int = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCAmelCase : Dict = '''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
23
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: Optional[int] = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: UpperCAmelCase : Tuple = 1024 UpperCAmelCase : List[Any] = 4096 UpperCAmelCase : str = 24 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = [5, 11, 17, 23] UpperCAmelCase : List[Any] = [256, 512, 1024, 1024] UpperCAmelCase : Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase : Optional[Any] = 768 UpperCAmelCase : Tuple = [1, 1, 1, 0.5] UpperCAmelCase : int = [256, 512, 768, 768] UpperCAmelCase : Any = 150 UpperCAmelCase : Tuple = 16 UpperCAmelCase : Any = (1, 384, 384) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = '''project''' if "ade" in checkpoint_url: UpperCAmelCase : Any = True UpperCAmelCase : str = 768 UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5] UpperCAmelCase : List[Any] = 150 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = '''huggingface/label-files''' UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : List[Any] = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase : str = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : int = in_proj_bias[: config.hidden_size] UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def snake_case_ ( ) -> List[str]: UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any: UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase ) UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384 UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase ) UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' ) # forward pass UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth if show_prediction: UpperCAmelCase : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) UpperCamelCase__: Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
23
1
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : bool = True , _lowerCAmelCase : float = math.inf , _lowerCAmelCase : float = -math.inf , _lowerCAmelCase : float = math.inf , _lowerCAmelCase : float = -math.inf , _lowerCAmelCase : bool = False , _lowerCAmelCase : float = 100 , _lowerCAmelCase : float = 0.0_1 , _lowerCAmelCase : float = 1 , ) -> Any: UpperCAmelCase : Dict = False UpperCAmelCase : List[Any] = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Any = [] UpperCAmelCase : int = 0 UpperCAmelCase : Optional[int] = None while not search_end: UpperCAmelCase : Any = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[str] = current_state scores.append(_lowerCAmelCase ) iterations += 1 UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : Optional[Any] = random.randint(0 , len(_lowerCAmelCase ) - 1 ) # picking a random neighbor UpperCAmelCase : List[Any] = neighbors.pop(_lowerCAmelCase ) UpperCAmelCase : List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[int] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[Any] = picked_neighbor UpperCAmelCase : Any = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Union[str, Any] = True else: UpperCAmelCase : int = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowerCAmelCase ) , _lowerCAmelCase ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> List[str]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCamelCase__: Dict = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCamelCase__: List[str] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) # starting the problem with initial coordinates (12, 47) UpperCamelCase__: List[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCamelCase__: Dict = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int ) -> List[str]: return (3 * x**2) - (6 * y) UpperCamelCase__: Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCamelCase__: Optional[int] = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"{local_min.score()}" ) UpperCamelCase__: str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCamelCase__: Union[str, Any] = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"{local_min.score()}" )
23
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase__: Optional[int] = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
23
1
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup UpperCamelCase__: str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : Dict , **__snake_case : List[str] ) -> Optional[Any]: requires_backends(self , ['''bs4'''] ) super().__init__(**__snake_case ) def A ( self : str , __snake_case : int ) -> Optional[Any]: UpperCAmelCase : str = [] UpperCAmelCase : int = [] UpperCAmelCase : List[str] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCAmelCase : Dict = parent.find_all(child.name , recursive=__snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__snake_case ) else next(i for i, s in enumerate(__snake_case , 1 ) if s is child ) ) UpperCAmelCase : int = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def A ( self : Any , __snake_case : int ) -> List[Any]: UpperCAmelCase : List[str] = BeautifulSoup(__snake_case , '''html.parser''' ) UpperCAmelCase : str = [] UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : int = [] for element in html_code.descendants: if type(__snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCAmelCase : List[str] = html.unescape(__snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(__snake_case ) UpperCAmelCase , UpperCAmelCase : str = self.xpath_soup(__snake_case ) stringaxtag_seq.append(__snake_case ) stringaxsubs_seq.append(__snake_case ) if len(__snake_case ) != len(__snake_case ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(__snake_case ) != len(__snake_case ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def A ( self : Tuple , __snake_case : List[str] , __snake_case : Tuple ) -> Dict: UpperCAmelCase : int = '''''' for tagname, subs in zip(__snake_case , __snake_case ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self : Any , __snake_case : Optional[int] ) -> BatchFeature: UpperCAmelCase : List[Any] = False # Check that strings has a valid type if isinstance(__snake_case , __snake_case ): UpperCAmelCase : Dict = True elif isinstance(__snake_case , (list, tuple) ): if len(__snake_case ) == 0 or isinstance(html_strings[0] , __snake_case ): UpperCAmelCase : int = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(__snake_case )}.""" ) UpperCAmelCase : List[str] = bool(isinstance(__snake_case , (list, tuple) ) and (isinstance(html_strings[0] , __snake_case )) ) if not is_batched: UpperCAmelCase : Any = [html_strings] # Get nodes + xpaths UpperCAmelCase : Tuple = [] UpperCAmelCase : List[str] = [] for html_string in html_strings: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = self.get_three_from_single(__snake_case ) nodes.append(__snake_case ) UpperCAmelCase : Any = [] for node, tag_list, sub_list in zip(__snake_case , __snake_case , __snake_case ): UpperCAmelCase : str = self.construct_xpath(__snake_case , __snake_case ) xpath_strings.append(__snake_case ) xpaths.append(__snake_case ) # return as Dict UpperCAmelCase : int = {'''nodes''': nodes, '''xpaths''': xpaths} UpperCAmelCase : int = BatchFeature(data=__snake_case , tensor_type=__snake_case ) return encoded_inputs
23
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if len(_lowerCAmelCase ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(_lowerCAmelCase ) or left < -len(_lowerCAmelCase ) or right >= len(_lowerCAmelCase ) or right < -len(_lowerCAmelCase ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid] UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
23
1
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : int ) -> int: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCAmelCase : str = f"""The input value of [n={number}] has to be > 0""" raise ValueError(_lowerCAmelCase ) else: UpperCAmelCase : List[str] = sylvester(number - 1 ) UpperCAmelCase : Tuple = num - 1 UpperCAmelCase : Any = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
23
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : str = self.unet.config.sample_size UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size) UpperCAmelCase : int = self.unet UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma UpperCAmelCase : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(__snake_case ) self.scheduler.set_sigmas(__snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample # prediction step UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean UpperCAmelCase : int = sample_mean.clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__snake_case )
23
1
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] ) -> List[str]: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file UpperCAmelCase : List[str] = TapasConfig.from_json_file(_lowerCAmelCase ) # set absolute/relative position embeddings parameter UpperCAmelCase : Optional[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": UpperCAmelCase : Any = TapasForQuestionAnswering(config=_lowerCAmelCase ) elif task == "WTQ": # run_task_main.py hparams UpperCAmelCase : int = 4 UpperCAmelCase : int = True # hparam_utils.py hparams UpperCAmelCase : Union[str, Any] = 0.6_6_4_6_9_4 UpperCAmelCase : Tuple = 0.2_0_7_9_5_1 UpperCAmelCase : Dict = 0.1_2_1_1_9_4 UpperCAmelCase : Optional[int] = True UpperCAmelCase : str = True UpperCAmelCase : List[Any] = False UpperCAmelCase : Tuple = 0.0_3_5_2_5_1_3 UpperCAmelCase : Optional[Any] = TapasForQuestionAnswering(config=_lowerCAmelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Tuple = False # hparam_utils.py hparams UpperCAmelCase : Union[str, Any] = 3_6.4_5_1_9 UpperCAmelCase : Optional[Any] = 0.9_0_3_4_2_1 UpperCAmelCase : Dict = 2_2_2.0_8_8 UpperCAmelCase : int = True UpperCAmelCase : Tuple = True UpperCAmelCase : Tuple = True UpperCAmelCase : Any = 0.7_6_3_1_4_1 UpperCAmelCase : Tuple = TapasForQuestionAnswering(config=_lowerCAmelCase ) elif task == "TABFACT": UpperCAmelCase : List[str] = TapasForSequenceClassification(config=_lowerCAmelCase ) elif task == "MLM": UpperCAmelCase : List[str] = TapasForMaskedLM(config=_lowerCAmelCase ) elif task == "INTERMEDIATE_PRETRAINING": UpperCAmelCase : List[Any] = TapasModel(config=_lowerCAmelCase ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_lowerCAmelCase ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) UpperCAmelCase : Dict = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(_lowerCAmelCase ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": UpperCamelCase__: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase__: Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
23
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """MCTCTFeatureExtractor""" lowerCamelCase__ = """AutoTokenizer""" def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str: super().__init__(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = self.feature_extractor UpperCAmelCase : Union[str, Any] = False def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) UpperCAmelCase : int = kwargs.pop('''raw_speech''' ) else: UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case ) UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : Any = args[0] UpperCAmelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase : str = encodings['''input_ids'''] return inputs def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : List[str] = args[0] UpperCAmelCase : List[Any] = args[1:] if input_features is not None: UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case ) if labels is not None: UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase : List[str] = labels['''input_ids'''] return input_features def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def A ( self : Any ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) UpperCAmelCase : Dict = True UpperCAmelCase : List[Any] = self.tokenizer yield UpperCAmelCase : Tuple = self.feature_extractor UpperCAmelCase : List[Any] = False
23
1
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase : List[str] = gray_code_sequence_string(_lowerCAmelCase ) # # convert them to integers for i in range(len(_lowerCAmelCase ) ): UpperCAmelCase : Optional[int] = int(sequence[i] , 2 ) return sequence def snake_case_ ( _lowerCAmelCase : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase : Optional[int] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase : Optional[Any] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase : Tuple = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase : Tuple = '''0''' + smaller_sequence[i] sequence.append(_lowerCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase : Optional[Any] = '''1''' + smaller_sequence[i] sequence.append(_lowerCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
23
'''simple docstring''' from math import isclose, sqrt def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]: UpperCAmelCase : Optional[int] = point_y / 4 / point_x UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4 UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase : List[str] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : float = first_x_coord UpperCAmelCase : float = first_y_coord UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
23
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__: Union[str, Any] = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: List[str] = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Dict = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys UpperCamelCase__: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__: str = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Union[str, Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : str ) -> Optional[int]: UpperCAmelCase : Any = [] def A ( self : Union[str, Any] , __snake_case : str , __snake_case : Any , __snake_case : Dict , **__snake_case : List[Any] ) -> int: self.events.append('''on_init_end''' ) def A ( self : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : List[Any] , **__snake_case : List[Any] ) -> Dict: self.events.append('''on_train_begin''' ) def A ( self : Any , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Any , **__snake_case : List[Any] ) -> int: self.events.append('''on_train_end''' ) def A ( self : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[int] , **__snake_case : List[Any] ) -> int: self.events.append('''on_epoch_begin''' ) def A ( self : str , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[Any] , **__snake_case : str ) -> Optional[int]: self.events.append('''on_epoch_end''' ) def A ( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Any , **__snake_case : Any ) -> Optional[int]: self.events.append('''on_step_begin''' ) def A ( self : Any , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] , **__snake_case : Tuple ) -> Optional[Any]: self.events.append('''on_step_end''' ) def A ( self : Optional[Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : List[str] , **__snake_case : Any ) -> Dict: self.events.append('''on_evaluate''' ) def A ( self : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : int , **__snake_case : str ) -> Optional[Any]: self.events.append('''on_predict''' ) def A ( self : Dict , __snake_case : Any , __snake_case : int , __snake_case : Dict , **__snake_case : List[Any] ) -> Union[str, Any]: self.events.append('''on_save''' ) def A ( self : str , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Any , **__snake_case : Tuple ) -> List[Any]: self.events.append('''on_log''' ) def A ( self : List[str] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Tuple , **__snake_case : Optional[int] ) -> int: self.events.append('''on_prediction_step''' ) @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[Any] ) -> Optional[int]: UpperCAmelCase : Dict = tempfile.mkdtemp() def A ( self : Tuple ) -> Any: shutil.rmtree(self.output_dir ) def A ( self : Tuple , __snake_case : Optional[int]=0 , __snake_case : Any=0 , __snake_case : List[Any]=64 , __snake_case : int=64 , __snake_case : Union[str, Any]=None , __snake_case : Dict=False , **__snake_case : str ) -> List[Any]: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. UpperCAmelCase : Dict = RegressionDataset(length=__snake_case ) UpperCAmelCase : List[Any] = RegressionDataset(length=__snake_case ) UpperCAmelCase : Dict = RegressionModelConfig(a=__snake_case , b=__snake_case ) UpperCAmelCase : Tuple = RegressionPreTrainedModel(__snake_case ) UpperCAmelCase : Tuple = TrainingArguments(self.output_dir , disable_tqdm=__snake_case , report_to=[] , **__snake_case ) return Trainer( __snake_case , __snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , callbacks=__snake_case , ) def A ( self : Any , __snake_case : List[Any] , __snake_case : List[Any] ) -> Union[str, Any]: self.assertEqual(len(__snake_case ) , len(__snake_case ) ) # Order doesn't matter UpperCAmelCase : Dict = sorted(__snake_case , key=lambda __snake_case : cb.__name__ if isinstance(__snake_case , __snake_case ) else cb.__class__.__name__ ) UpperCAmelCase : str = sorted(__snake_case , key=lambda __snake_case : cb.__name__ if isinstance(__snake_case , __snake_case ) else cb.__class__.__name__ ) for cba, cba in zip(__snake_case , __snake_case ): if isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case ) elif isinstance(__snake_case , __snake_case ) and not isinstance(__snake_case , __snake_case ): self.assertEqual(__snake_case , cba.__class__ ) elif not isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ): self.assertEqual(cba.__class__ , __snake_case ) else: self.assertEqual(__snake_case , __snake_case ) def A ( self : Dict , __snake_case : List[str] ) -> int: UpperCAmelCase : Any = ['''on_init_end''', '''on_train_begin'''] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[int] = len(trainer.get_eval_dataloader() ) UpperCAmelCase : str = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(__snake_case ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def A ( self : Any ) -> List[Any]: UpperCAmelCase : Dict = self.get_trainer() UpperCAmelCase : Optional[Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) # Callbacks passed at init are added to the default callbacks UpperCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(__snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback UpperCAmelCase : List[str] = self.get_trainer(disable_tqdm=__snake_case ) UpperCAmelCase : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] UpperCAmelCase : Optional[Any] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(__snake_case ) expected_callbacks.remove(__snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) UpperCAmelCase : Dict = self.get_trainer() UpperCAmelCase : Optional[Any] = trainer.pop_callback(__snake_case ) self.assertEqual(cb.__class__ , __snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) trainer.add_callback(__snake_case ) expected_callbacks.insert(0 , __snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) # We can also add, pop, or remove by instance UpperCAmelCase : Any = self.get_trainer() UpperCAmelCase : Union[str, Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(__snake_case ) expected_callbacks.remove(__snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) UpperCAmelCase : Optional[Any] = self.get_trainer() UpperCAmelCase : Dict = trainer.callback_handler.callbacks[0] UpperCAmelCase : str = trainer.pop_callback(__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) trainer.add_callback(__snake_case ) expected_callbacks.insert(0 , __snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , __snake_case ) def A ( self : int ) -> Union[str, Any]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' , category=__snake_case ) UpperCAmelCase : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() UpperCAmelCase : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) ) # Independent log/save/eval UpperCAmelCase : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() UpperCAmelCase : List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) ) UpperCAmelCase : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() UpperCAmelCase : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) ) UpperCAmelCase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='''steps''' ) trainer.train() UpperCAmelCase : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) ) UpperCAmelCase : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='''epoch''' ) trainer.train() UpperCAmelCase : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) ) # A bit of everything UpperCAmelCase : List[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='''steps''' , ) trainer.train() UpperCAmelCase : Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(__snake_case , self.get_expected_events(__snake_case ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: UpperCAmelCase : Optional[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(__snake_case ) in warn_mock.call_args[0][0]
23
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AltDiffusionPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def A ( self : Dict ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase : Dict = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCAmelCase : List[Any] = CLIPTextModel(__snake_case ) UpperCAmelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) UpperCAmelCase : Optional[int] = 77 UpperCAmelCase : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str]=0 ) -> Union[str, Any]: if str(__snake_case ).startswith('''mps''' ): UpperCAmelCase : str = torch.manual_seed(__snake_case ) else: UpperCAmelCase : Tuple = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Union[str, Any] ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def A ( self : Tuple ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Any = self.get_dummy_components() torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase : List[str] = RobertaSeriesModelWithTransformation(__snake_case ) UpperCAmelCase : str = text_encoder UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case ) UpperCAmelCase : str = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : Optional[int] = '''A photo of an astronaut''' UpperCAmelCase : List[Any] = alt_pipe(**__snake_case ) UpperCAmelCase : Optional[Any] = output.images UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : int = PNDMScheduler(skip_prk_steps=__snake_case ) torch.manual_seed(0 ) UpperCAmelCase : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase : Union[str, Any] = RobertaSeriesModelWithTransformation(__snake_case ) UpperCAmelCase : Union[str, Any] = text_encoder UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case ) UpperCAmelCase : Dict = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : int = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : Optional[int] = alt_pipe(**__snake_case ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[int] = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ) -> Any: # make sure here that pndm scheduler skips prk UpperCAmelCase : List[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=__snake_case ) UpperCAmelCase : Tuple = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Any = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = alt_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : Tuple ) -> int: UpperCAmelCase : int = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) UpperCAmelCase : Tuple = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=__snake_case , safety_checker=__snake_case ) UpperCAmelCase : Dict = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Tuple = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : List[Any] = alt_pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='''numpy''' ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
23
1
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) UpperCamelCase__: Dict = logging.getLogger() def snake_case_ ( ) -> Dict: UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase : List[Any] = parser.parse_args() return args.f class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Optional[int] ) -> None: UpperCAmelCase : Any = logging.StreamHandler(sys.stdout ) logger.addHandler(__snake_case ) def A ( self : str , __snake_case : Optional[int] ) -> int: UpperCAmelCase : Any = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , '''run_glue_deebert.py''' ) with patch.object(__snake_case , '''argv''' , __snake_case ): UpperCAmelCase : int = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__snake_case , 0.6_66 ) @slow @require_torch_non_multi_gpu def A ( self : Tuple ) -> int: UpperCAmelCase : List[Any] = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(__snake_case ) UpperCAmelCase : Union[str, Any] = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__snake_case ) UpperCAmelCase : Optional[int] = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__snake_case )
23
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Optional[int]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ) -> Dict: UpperCAmelCase : Dict = tmp_path / '''cache''' UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : str = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> Optional[int]: UpperCAmelCase : Any = tmp_path / '''cache''' UpperCAmelCase : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Any = features.copy() if features else default_expected_features UpperCAmelCase : List[Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Dict = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ) -> Tuple: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : Optional[int] = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} UpperCAmelCase : int = features.copy() if features else default_expected_features UpperCAmelCase : Any = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> Union[str, Any]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCAmelCase : Tuple = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} UpperCAmelCase : List[str] = features.copy() UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = tmp_path / '''cache''' UpperCAmelCase : List[str] = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> Optional[Any]: UpperCAmelCase : Any = tmp_path / '''cache''' UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : List[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Dict: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : str = jsonl_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Dict = [jsonl_path] UpperCAmelCase : int = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[int] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=("train",) ) -> Union[str, Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: UpperCAmelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ) -> Any: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Optional[int] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : Dict = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = JsonDatasetReader({'''train''': jsonl_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> Union[str, Any]: if split: UpperCAmelCase : Optional[int] = {split: jsonl_path} else: UpperCAmelCase : Any = '''train''' UpperCAmelCase : Any = {'''train''': jsonl_path, '''test''': jsonl_path} UpperCAmelCase : Tuple = tmp_path / '''cache''' UpperCAmelCase : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict ) -> str: return [json.loads(_lowerCAmelCase ) for line in buffer] class SCREAMING_SNAKE_CASE: """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[Any] ) -> List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def A ( self : str , __snake_case : str , __snake_case : str , __snake_case : int ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : Any = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A ( self : Any , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : List[str] = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 def A ( self : List[Any] , __snake_case : str ) -> Dict: with pytest.raises(__snake_case ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def A ( self : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Union[str, Any]: UpperCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / F"""test.json.{extension}""" UpperCAmelCase : List[Any] = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: UpperCAmelCase : str = f.read() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: UpperCAmelCase : Optional[int] = f.read() assert exported_content == original_content
23
1
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" lowerCamelCase__ = MODEL_FOR_MASKED_LM_MAPPING lowerCamelCase__ = TF_MODEL_FOR_MASKED_LM_MAPPING def A ( self : List[str] ) -> List[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def A ( self : List[str] ) -> List[Any]: UpperCAmelCase : Tuple = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) UpperCAmelCase : str = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 38015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 25506, '''token_str''': ''' accuser'''}, ] , ) UpperCAmelCase : Optional[Any] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-05, '''token''': 38015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-05, '''token''': 25506, '''token_str''': ''' accuser''', }, ] , ) UpperCAmelCase : Any = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 13606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def A ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) UpperCAmelCase : List[Any] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 35676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase : int = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-05, '''token''': 35676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase : Tuple = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 2941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 13606, '''token_str''': ''' Clara'''}, ] , ) UpperCAmelCase : int = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ [ { '''score''': 2.2E-05, '''token''': 35676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-05, '''token''': 35676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : List[Any] = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() UpperCAmelCase : List[Any] = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__snake_case , __snake_case ) @slow @require_torch def A ( self : Optional[Any] ) -> int: UpperCAmelCase : Tuple = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(__snake_case ) @slow @require_tf def A ( self : Dict ) -> Optional[int]: UpperCAmelCase : Tuple = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(__snake_case ) def A ( self : Dict , __snake_case : Any ) -> str: UpperCAmelCase : List[str] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_08, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_07, '''token''': 1573, '''token_str''': ''' Chris'''}, ] , ) UpperCAmelCase : Optional[int] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_51, '''token''': 2201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_14, '''token''': 12790, '''token_str''': ''' Lyon''', }, ] , ) UpperCAmelCase : Tuple = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_00, '''token''': 13606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_00, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def A ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : List[str] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Union[str, Any] = None self.run_pipeline_test(__snake_case , [] ) @require_tf def A ( self : Dict ) -> List[Any]: UpperCAmelCase : List[str] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None self.run_pipeline_test(__snake_case , [] ) def A ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : int , __snake_case : Optional[int] ) -> Union[str, Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : Optional[Any] = [ F"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def A ( self : List[str] , __snake_case : Any , __snake_case : str ) -> str: UpperCAmelCase : int = fill_masker.tokenizer UpperCAmelCase : Tuple = fill_masker.model UpperCAmelCase : Optional[Any] = fill_masker( F"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : int = fill_masker([F"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : Union[str, Any] = fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( __snake_case , [ [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], ] , ) with self.assertRaises(__snake_case ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__snake_case ): fill_masker('''This is''' ) self.run_test_top_k(__snake_case , __snake_case ) self.run_test_targets(__snake_case , __snake_case ) self.run_test_top_k_targets(__snake_case , __snake_case ) self.fill_mask_with_duplicate_targets_and_top_k(__snake_case , __snake_case ) self.fill_mask_with_multiple_masks(__snake_case , __snake_case ) def A ( self : Any , __snake_case : Any , __snake_case : List[Any] ) -> List[Any]: UpperCAmelCase : Tuple = tokenizer.get_vocab() UpperCAmelCase : List[str] = sorted(vocab.keys() )[:2] # Pipeline argument UpperCAmelCase : Any = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , targets=__snake_case ) UpperCAmelCase : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : Any = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , __snake_case ) UpperCAmelCase : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(__snake_case ) ) # Call argument UpperCAmelCase : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : Tuple = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , __snake_case ) UpperCAmelCase : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(__snake_case ) ) # Score equivalence UpperCAmelCase : int = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case ) UpperCAmelCase : int = [top_mask['''token_str'''] for top_mask in outputs] UpperCAmelCase : Optional[int] = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ) == set(__snake_case ): UpperCAmelCase : List[str] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case ) UpperCAmelCase : str = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) # Raises with invalid with self.assertRaises(__snake_case ): UpperCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__snake_case ): UpperCAmelCase : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[''''''] ) with self.assertRaises(__snake_case ): UpperCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets='''''' ) def A ( self : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] ) -> Optional[Any]: UpperCAmelCase : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , top_k=2 ) UpperCAmelCase : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase : Union[str, Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : Tuple = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) def A ( self : Dict , __snake_case : List[Any] , __snake_case : Tuple ) -> int: UpperCAmelCase : List[str] = tokenizer.get_vocab() UpperCAmelCase : Optional[int] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) # top_k=2, ntargets=3 UpperCAmelCase : Union[str, Any] = sorted(vocab.keys() )[:3] UpperCAmelCase : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=__snake_case ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCAmelCase : Union[str, Any] = [el['''token_str'''] for el in sorted(__snake_case , key=lambda __snake_case : x["score"] , reverse=__snake_case )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ).issubset(__snake_case ): UpperCAmelCase : Tuple = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=__snake_case ) # They should yield exactly the same result self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) def A ( self : Tuple , __snake_case : Dict , __snake_case : Dict ) -> Union[str, Any]: UpperCAmelCase : List[str] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : str = tokenizer.get_vocab() # String duplicates + id duplicates UpperCAmelCase : Optional[int] = sorted(vocab.keys() )[:3] UpperCAmelCase : Union[str, Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCAmelCase : List[Any] = fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=__snake_case , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__snake_case ) , 3 ) def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase : Optional[Any] = fill_masker( F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( __snake_case , [ [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], ] , )
23
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Tuple = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} UpperCamelCase__: Optional[int] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } UpperCamelCase__: Dict = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } UpperCamelCase__: Tuple = "▁" class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="</s>" , __snake_case : Any="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Dict , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase : Optional[int] = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) UpperCAmelCase : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCAmelCase : Optional[Any] = len(self.sp_model ) - 1 UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] UpperCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Tuple = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : Dict ) -> Optional[int]: return len(self.sp_model ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Optional[Any] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def A ( self : int , __snake_case : int ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(__snake_case ) return spm_id if spm_id else self.unk_token_id def A ( self : int , __snake_case : Any ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__snake_case ) def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : int = '''''' UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token UpperCAmelCase : str = True UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(__snake_case ) UpperCAmelCase : Optional[int] = False out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.__dict__.copy() UpperCAmelCase : Any = None return state def __setstate__( self : Optional[int] , __snake_case : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
23
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @property def A ( self : Dict ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def A ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase : Any = self.dummy_uncond_unet UpperCAmelCase : Optional[Any] = ScoreSdeVeScheduler() UpperCAmelCase : Tuple = ScoreSdeVePipeline(unet=__snake_case , scheduler=__snake_case ) sde_ve.to(__snake_case ) sde_ve.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : str = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__snake_case ).images UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Dict = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__snake_case , return_dict=__snake_case )[ 0 ] UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Union[str, Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : List[Any] = '''google/ncsnpp-church-256''' UpperCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained(__snake_case ) UpperCAmelCase : List[str] = ScoreSdeVeScheduler.from_pretrained(__snake_case ) UpperCAmelCase : Tuple = ScoreSdeVePipeline(unet=__snake_case , scheduler=__snake_case ) sde_ve.to(__snake_case ) sde_ve.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : str = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=__snake_case ).images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Optional[int] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
23
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @classmethod def A ( cls : Union[str, Any] ) -> int: UpperCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(__snake_case ) @classmethod def A ( cls : List[str] ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : int ) -> Tuple: UpperCAmelCase : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]: UpperCAmelCase : str = True UpperCAmelCase : int = flatten_dict(modela.params ) UpperCAmelCase : Dict = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase : Dict = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : int = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) ) with self.assertRaises(__snake_case ): UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : Optional[int] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(__snake_case ): UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : Optional[int] ) -> str: UpperCAmelCase : Dict = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case ) def A ( self : Dict ) -> List[Any]: UpperCAmelCase : Optional[int] = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case )
23
1
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") UpperCamelCase__: int = int(input("Enter number: ").strip()) print(F"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
23
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Optional[int] , __snake_case : str , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=8 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : int=True , __snake_case : List[Any]=99 , __snake_case : str=16 , __snake_case : Tuple=5 , __snake_case : Tuple=2 , __snake_case : str=36 , __snake_case : Dict="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=512 , __snake_case : Optional[Any]=16 , __snake_case : int=2 , __snake_case : int=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : str=None , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : int = use_input_mask UpperCAmelCase : Any = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : Optional[int] = num_choices UpperCAmelCase : Any = scope def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : str = None UpperCAmelCase : Tuple = None UpperCAmelCase : int = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : int ) -> Tuple: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[Any] = self.get_config() UpperCAmelCase : int = 300 return config def A ( self : Optional[Any] ) -> Any: ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = self.prepare_config_and_inputs() UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[Any] ) -> List[str]: UpperCAmelCase : int = MraModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Optional[int] = model(__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Dict = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[Any] , ) -> Tuple: UpperCAmelCase : str = True UpperCAmelCase : Tuple = MraModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) UpperCAmelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , ) UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int ) -> Any: UpperCAmelCase : Dict = MraForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Dict , __snake_case : Any , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = MraForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int: UpperCAmelCase : int = self.num_labels UpperCAmelCase : Union[str, Any] = MraForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> int: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : List[str] = MraForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : str , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.num_choices UpperCAmelCase : int = MraForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str ) -> Dict: UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = () def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = MraModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A ( self : Optional[Any] ) -> str: self.config_tester.run_common_tests() def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__snake_case ) def A ( self : Tuple ) -> Dict: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def A ( self : Tuple ) -> List[str]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def A ( self : Dict ) -> Optional[int]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def A ( self : Any ) -> Optional[int]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def A ( self : Dict ) -> Any: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = MraModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''MRA does not output attentions''' ) def A ( self : str ) -> Optional[Any]: return @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @slow def A ( self : Tuple ) -> List[Any]: UpperCAmelCase : int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Optional[Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Any = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[int] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : int = 50265 UpperCAmelCase : int = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : str ) -> List[Any]: UpperCAmelCase : List[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) UpperCAmelCase : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : Tuple = model(__snake_case )[0] UpperCAmelCase : Optional[int] = 50265 UpperCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Optional[int] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
23
1
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if len(_lowerCAmelCase ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(_lowerCAmelCase ) or left < -len(_lowerCAmelCase ) or right >= len(_lowerCAmelCase ) or right < -len(_lowerCAmelCase ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid] UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
23
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Any ) -> str: UpperCAmelCase : Any = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } UpperCAmelCase : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(__snake_case ) , __snake_case ) def A ( self : int ) -> str: UpperCAmelCase : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__snake_case ) , x.transpose() ) ) UpperCAmelCase : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A ( self : str ) -> Union[str, Any]: UpperCAmelCase : Any = np.random.randn(3 , 4 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Tuple = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Any = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Optional[Any]: UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : str = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A ( self : Tuple ) -> Any: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , np.asarray(transpose(__snake_case ) ) ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(__snake_case , axes=(1, 2, 0) ) ) ) ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.reshape(__snake_case , (4, 3) ) ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.reshape(__snake_case , (12, 5) ) ) ) @require_torch def A ( self : Union[str, Any] ) -> int: UpperCAmelCase : Dict = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_tf def A ( self : int ) -> List[str]: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_flax def A ( self : Any ) -> Dict: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.asarray(reshape(__snake_case , (4, 3) ) ) ) ) UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.asarray(reshape(__snake_case , (12, 5) ) ) ) ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.squeeze(__snake_case ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.squeeze(__snake_case , axis=2 ) ) ) @require_torch def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : List[str] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : str = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_tf def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_flax def A ( self : List[Any] ) -> Dict: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.asarray(squeeze(__snake_case ) ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.asarray(squeeze(__snake_case , axis=2 ) ) ) ) def A ( self : Optional[Any] ) -> int: UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.expand_dims(__snake_case , axis=1 ) ) ) @require_torch def A ( self : List[str] ) -> Tuple: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Tuple = torch.tensor(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Any = tf.constant(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_flax def A ( self : Any ) -> List[Any]: UpperCAmelCase : List[str] = np.random.randn(3 , 4 ) UpperCAmelCase : str = jnp.array(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.asarray(expand_dims(__snake_case , axis=1 ) ) ) )
23
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCamelCase__: Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : str , *__snake_case : str , **__snake_case : int ) -> None: warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
23
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase__: Union[str, Any] = "examples/" UpperCamelCase__: Optional[Any] = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } UpperCamelCase__: Optional[int] = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } UpperCamelCase__: List[Any] = "README.md" def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> Optional[int]: with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[int] = f.read() UpperCAmelCase , UpperCAmelCase : List[Any] = REPLACE_PATTERNS[pattern] UpperCAmelCase : List[Any] = replace.replace('''VERSION''' , _lowerCAmelCase ) UpperCAmelCase : Optional[Any] = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[int]: for folder, directories, fnames in os.walk(_lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='''examples''' ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=False ) -> List[str]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not patch: update_version_in_examples(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: UpperCAmelCase : Optional[int] = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase : Optional[int] = '''1. Want to contribute a new model?''' with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[Any] = f.readlines() # Find the start of the list. UpperCAmelCase : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase : Optional[int] = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase : Union[str, Any] = f.read() UpperCAmelCase : int = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0] return packaging.version.parse(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase : Optional[int] = default_version.base_version elif patch: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase : Dict = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Tuple = default_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase ) def snake_case_ ( ) -> Any: UpperCAmelCase : List[Any] = get_version() UpperCAmelCase : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase : List[Any] = current_version.base_version # Check with the user we got that right. UpperCAmelCase : Optional[int] = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Dict = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") UpperCamelCase__: Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
23
1
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : list[int] ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) UpperCAmelCase : Tuple = sum(_lowerCAmelCase ) / len(_lowerCAmelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
23
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCamelCase__: Tuple = numpy.array([0, 0]) UpperCamelCase__: Union[str, Any] = numpy.array([0.5, 0.8660254]) UpperCamelCase__: Dict = numpy.array([1, 0]) UpperCamelCase__: int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] , _lowerCAmelCase : int ) -> list[numpy.ndarray]: UpperCAmelCase : Union[str, Any] = initial_vectors for _ in range(_lowerCAmelCase ): UpperCAmelCase : Union[str, Any] = iteration_step(_lowerCAmelCase ) return vectors def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> list[numpy.ndarray]: UpperCAmelCase : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase : List[str] = vectors[i + 1] new_vectors.append(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def snake_case_ ( _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : float ) -> numpy.ndarray: UpperCAmelCase : List[str] = numpy.radians(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Tuple = numpy.cos(_lowerCAmelCase ), numpy.sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> None: UpperCAmelCase : List[Any] = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase , UpperCAmelCase : str = zip(*_lowerCAmelCase ) plt.plot(_lowerCAmelCase , _lowerCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__: List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
23
1
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def snake_case_ ( _lowerCAmelCase : int="ro" , _lowerCAmelCase : Dict="en" , _lowerCAmelCase : Union[str, Any]="wmt16" , _lowerCAmelCase : Optional[int]=None ) -> None: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) UpperCAmelCase : Tuple = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) UpperCAmelCase : int = datasets.load_dataset(_lowerCAmelCase , _lowerCAmelCase ) if save_dir is None: UpperCAmelCase : Optional[int] = f"""{dataset}-{pair}""" UpperCAmelCase : str = Path(_lowerCAmelCase ) save_dir.mkdir(exist_ok=_lowerCAmelCase ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets UpperCAmelCase : Optional[int] = '''val''' if split == '''validation''' else split UpperCAmelCase : List[str] = save_dir.joinpath(f"""{fn}.source""" ) UpperCAmelCase : Optional[int] = save_dir.joinpath(f"""{fn}.target""" ) UpperCAmelCase : Optional[int] = src_path.open('''w+''' ) UpperCAmelCase : Union[str, Any] = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): UpperCAmelCase : Union[str, Any] = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
23
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase : Dict = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Optional[Any] = Text('''CPU''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''GPU''' , font_size=24 ) UpperCAmelCase : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''Model''' , font_size=24 ) UpperCAmelCase : Tuple = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) UpperCAmelCase : Any = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = Text('''Loaded Checkpoint''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) UpperCAmelCase : Tuple = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase : List[Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) UpperCAmelCase : Tuple = [] UpperCAmelCase : int = [] for i, rect in enumerate(__snake_case ): UpperCAmelCase : Any = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) UpperCAmelCase : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
23
1
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example UpperCamelCase__: str = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCamelCase__: Optional[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def snake_case_ ( _lowerCAmelCase : list[list[int]] ) -> list[list[int]]: UpperCAmelCase : Tuple = [] for i in range(len(_lowerCAmelCase ) ): UpperCAmelCase : Any = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours UpperCAmelCase : Optional[Any] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(_lowerCAmelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(_lowerCAmelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(_lowerCAmelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. UpperCAmelCase : Any = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(_lowerCAmelCase ) return next_generation def snake_case_ ( _lowerCAmelCase : list[list[int]] , _lowerCAmelCase : int ) -> list[Image.Image]: UpperCAmelCase : Any = [] for _ in range(_lowerCAmelCase ): # Create output image UpperCAmelCase : Dict = Image.new('''RGB''' , (len(cells[0] ), len(_lowerCAmelCase )) ) UpperCAmelCase : Optional[Any] = img.load() # Save cells to image for x in range(len(_lowerCAmelCase ) ): for y in range(len(cells[0] ) ): UpperCAmelCase : int = 255 - cells[y][x] * 255 UpperCAmelCase : List[str] = (colour, colour, colour) # Save image images.append(_lowerCAmelCase ) UpperCAmelCase : str = new_generation(_lowerCAmelCase ) return images if __name__ == "__main__": UpperCamelCase__: Optional[int] = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
23
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) UpperCamelCase__: str = None UpperCamelCase__: int = { "7B": 11008, "13B": 13824, "30B": 17920, "65B": 22016, "70B": 28672, } UpperCamelCase__: List[Any] = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : List[Any]=256 ) -> Optional[Any]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: with open(_lowerCAmelCase , '''r''' ) as f: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ) -> Optional[Any]: with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=True ) -> List[Any]: os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp''' ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[str] = read_json(os.path.join(_lowerCAmelCase , '''params.json''' ) ) UpperCAmelCase : str = NUM_SHARDS[model_size] UpperCAmelCase : Any = params['''n_layers'''] UpperCAmelCase : str = params['''n_heads'''] UpperCAmelCase : Any = n_heads // num_shards UpperCAmelCase : List[str] = params['''dim'''] UpperCAmelCase : Optional[Any] = dim // n_heads UpperCAmelCase : str = 1_0_0_0_0.0 UpperCAmelCase : Optional[int] = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase : Tuple = params['''n_kv_heads'''] # for GQA / MQA UpperCAmelCase : Optional[int] = n_heads_per_shard // num_key_value_heads UpperCAmelCase : Optional[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase : List[str] = n_heads UpperCAmelCase : Optional[int] = n_heads_per_shard UpperCAmelCase : List[str] = dim # permute for sliced rotary def permute(_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=n_heads , _lowerCAmelCase : int=dim , _lowerCAmelCase : Dict=dim ): return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase ).transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase : int = torch.load(os.path.join(_lowerCAmelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded UpperCAmelCase : Optional[Any] = [ torch.load(os.path.join(_lowerCAmelCase , f"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' ) for i in range(_lowerCAmelCase ) ] UpperCAmelCase : Any = 0 UpperCAmelCase : str = {'''weight_map''': {}} for layer_i in range(_lowerCAmelCase ): UpperCAmelCase : Optional[Any] = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : Optional[int] = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase : List[str] = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } UpperCAmelCase : Union[str, Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) UpperCAmelCase : str = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Any = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : str = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Tuple = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : Any = inv_freq for k, v in state_dict.items(): UpperCAmelCase : List[Any] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[int] = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : str = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: UpperCAmelCase : Any = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(_lowerCAmelCase )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_lowerCAmelCase )] , dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase : Optional[int] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) # Write configs UpperCAmelCase : Union[str, Any] = {'''total_size''': param_count * 2} write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , '''pytorch_model.bin.index.json''' ) ) UpperCAmelCase : int = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 UpperCAmelCase : Tuple = params['''multiple_of'''] if '''multiple_of''' in params else 256 UpperCAmelCase : Any = LlamaConfig( hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_lowerCAmelCase , ) config.save_pretrained(_lowerCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> List[str]: # Initialize the tokenizer based on the `spm` model UpperCAmelCase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) UpperCAmelCase : List[Any] = tokenizer_class(_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) def snake_case_ ( ) -> List[Any]: UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=_lowerCAmelCase , help='''Whether or not to save using `safetensors`.''' ) UpperCAmelCase : List[Any] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCAmelCase : Optional[int] = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , _lowerCAmelCase ) if __name__ == "__main__": main()
23
1
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int ) -> Optional[Any]: UpperCAmelCase : Dict = old_name if "patch_embed" in old_name: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = old_name.split('''.''' ) if layer == "0": UpperCAmelCase : Dict = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": UpperCAmelCase : List[Any] = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": UpperCAmelCase : Any = old_name.replace('''3''' , '''convolution2''' ) else: UpperCAmelCase : Tuple = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''' , _lowerCAmelCase ): UpperCAmelCase : int = R'''\b\d{2}\b''' if bool(re.search(_lowerCAmelCase , _lowerCAmelCase ) ): UpperCAmelCase : Optional[int] = re.search(R'''\d\.\d\d.''' , _lowerCAmelCase ).group() else: UpperCAmelCase : str = re.search(R'''\d\.\d.''' , _lowerCAmelCase ).group() if int(match[0] ) < 6: UpperCAmelCase : int = old_name.replace(_lowerCAmelCase , '''''' ) UpperCAmelCase : int = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) UpperCAmelCase : int = '''intermediate_stages.''' + trimmed_name else: UpperCAmelCase : str = old_name.replace(_lowerCAmelCase , '''''' ) if int(match[2] ) < num_meta4D_last_stage: UpperCAmelCase : Optional[int] = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: UpperCAmelCase : Any = str(int(match[2] ) - num_meta4D_last_stage ) UpperCAmelCase : str = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: UpperCAmelCase : str = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: UpperCAmelCase : Union[str, Any] = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: UpperCAmelCase : Any = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: UpperCAmelCase : List[str] = trimmed_name.replace('''fc2''' , '''linear_out''' ) UpperCAmelCase : Tuple = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''' , _lowerCAmelCase ): UpperCAmelCase : Any = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: UpperCAmelCase : Dict = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): UpperCAmelCase : Union[str, Any] = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): UpperCAmelCase : Dict = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: UpperCAmelCase : Optional[Any] = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: UpperCAmelCase : List[str] = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: UpperCAmelCase : List[str] = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: UpperCAmelCase : Tuple = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": UpperCAmelCase : List[str] = new_name.replace('''norm''' , '''layernorm''' ) UpperCAmelCase : Optional[Any] = '''efficientformer.''' + new_name else: UpperCAmelCase : Dict = '''efficientformer.encoder.''' + new_name return new_name def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> List[Any]: for key in checkpoint.copy().keys(): UpperCAmelCase : str = checkpoint.pop(_lowerCAmelCase ) UpperCAmelCase : Tuple = val return checkpoint def snake_case_ ( ) -> Dict: UpperCAmelCase : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return image def snake_case_ ( _lowerCAmelCase : Path , _lowerCAmelCase : Path , _lowerCAmelCase : Path , _lowerCAmelCase : bool ) -> Any: UpperCAmelCase : Tuple = torch.load(_lowerCAmelCase , map_location='''cpu''' )['''model'''] UpperCAmelCase : Optional[Any] = EfficientFormerConfig.from_json_file(_lowerCAmelCase ) UpperCAmelCase : List[Any] = EfficientFormerForImageClassificationWithTeacher(_lowerCAmelCase ) UpperCAmelCase : List[Any] = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) UpperCAmelCase : int = config.depths[-1] - config.num_metaad_blocks + 1 UpperCAmelCase : int = convert_torch_checkpoint(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() UpperCAmelCase : Any = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image UpperCAmelCase : Any = prepare_img() UpperCAmelCase : int = 256 UpperCAmelCase : Optional[Any] = 224 UpperCAmelCase : List[str] = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) UpperCAmelCase : Optional[Any] = processor(images=_lowerCAmelCase , return_tensors='''pt''' ).pixel_values # original processing pipeline UpperCAmelCase : Optional[Any] = Compose( [ Resize(_lowerCAmelCase , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(_lowerCAmelCase ), ToTensor(), Normalize(_lowerCAmelCase , _lowerCAmelCase ), ] ) UpperCAmelCase : Dict = image_transforms(_lowerCAmelCase ).unsqueeze(0 ) assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = model(_lowerCAmelCase ) UpperCAmelCase : List[str] = outputs.logits UpperCAmelCase : str = (1, 1000) if "l1" in model_name: UpperCAmelCase : Union[str, Any] = torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :10] , _lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: UpperCAmelCase : int = torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :10] , _lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: UpperCAmelCase : Tuple = torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(_lowerCAmelCase ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add model''' , use_temp_dir=_lowerCAmelCase , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add image processor''' , use_temp_dir=_lowerCAmelCase , ) if __name__ == "__main__": UpperCamelCase__: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) UpperCamelCase__: Tuple = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
23
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = cos(_lowerCAmelCase ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : Any = (1 - _cos) / 2 UpperCAmelCase : List[Any] = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Dict = 1 - alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Tuple = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = _sin / 2 UpperCAmelCase : Any = 0 UpperCAmelCase : int = -ba UpperCAmelCase : Optional[Any] = 1 + alpha UpperCAmelCase : List[Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : List[str] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : str = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 1 - alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Optional[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : str = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Union[str, Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha * big_a UpperCAmelCase : Union[str, Any] = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : Any = 1 - alpha / big_a UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : Optional[int] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : str = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Dict = big_a * (pmc + aaa) UpperCAmelCase : Any = 2 * big_a * mpc UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa) UpperCAmelCase : Optional[int] = ppmc + aaa UpperCAmelCase : Optional[Any] = -2 * pmpc UpperCAmelCase : Optional[Any] = ppmc - aaa UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : int = 10 ** (gain_db / 40) UpperCAmelCase : List[str] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Any = big_a * (ppmc + aaa) UpperCAmelCase : str = -2 * big_a * pmpc UpperCAmelCase : List[Any] = big_a * (ppmc - aaa) UpperCAmelCase : Optional[Any] = pmc + aaa UpperCAmelCase : Any = 2 * mpc UpperCAmelCase : str = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
23
1
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase__: Optional[Any] = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase__: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: UpperCAmelCase : str = get_failure_array(_lowerCAmelCase ) # 2) Step through text searching for pattern UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern while i < len(_lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(_lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCAmelCase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( _lowerCAmelCase : str ) -> list[int]: UpperCAmelCase : Optional[Any] = [0] UpperCAmelCase : str = 0 UpperCAmelCase : List[str] = 1 while j < len(_lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCAmelCase : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(_lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) UpperCamelCase__: str = "abc1abc12" UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc" UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCamelCase__: Tuple = "ABABX" UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) UpperCamelCase__: Any = "AAAB" UpperCamelCase__: str = "ABAAAAAB" assert kmp(pattern, text) # Test 4) UpperCamelCase__: int = "abcdabcy" UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) UpperCamelCase__: List[str] = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
23
1
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : bool = False ) -> list[float]: if radian_mode: return [magnitude * cos(_lowerCAmelCase ), magnitude * sin(_lowerCAmelCase )] return [magnitude * cos(radians(_lowerCAmelCase ) ), magnitude * sin(radians(_lowerCAmelCase ) )] def snake_case_ ( _lowerCAmelCase : NDArray[floataa] , _lowerCAmelCase : NDArray[floataa] , _lowerCAmelCase : float = 10**-1 ) -> bool: UpperCAmelCase : NDArray[floataa] = cross(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : float = sum(_lowerCAmelCase ) return abs(_lowerCAmelCase ) < eps if __name__ == "__main__": # Test to check if it works UpperCamelCase__: List[Any] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) UpperCamelCase__: NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg UpperCamelCase__: Optional[Any] = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) UpperCamelCase__: int = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg UpperCamelCase__: List[Any] = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) UpperCamelCase__: List[str] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
23
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCamelCase__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = {} with open(_lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(_lowerCAmelCase ): UpperCAmelCase : List[str] = line.strip() if line: UpperCAmelCase : str = line.split() UpperCAmelCase : Union[str, Any] = line_number UpperCAmelCase : List[Any] = words[0] UpperCAmelCase : Union[str, Any] = value return result def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Dict = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : int = shape_pointer.shape # let's reduce dimension UpperCAmelCase : Union[str, Any] = value[0] else: UpperCAmelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : int = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = value else: UpperCAmelCase : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]: UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Any = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase : List[Any] = key UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0] UpperCamelCase__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int: UpperCAmelCase : List[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase : str = '''weight_g''' elif "weight_v" in name: UpperCAmelCase : int = '''weight_v''' elif "bias" in name: UpperCAmelCase : int = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : List[str] = '''weight''' else: UpperCAmelCase : Dict = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : Dict = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : Any = True else: UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : Optional[int] = name.split('''.''' ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict: if config_path is not None: UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = idalabel UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase ) UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : Optional[int] = target_dict.eos_index UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , ) UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase ) else: UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCamelCase__: Any = parser.parse_args() UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
23
1
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging UpperCamelCase__: List[str] = logging.get_logger(__name__) UpperCamelCase__: Tuple = {"vocab_file": "vocab.txt"} UpperCamelCase__: Any = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } UpperCamelCase__: Dict = { "facebook/esm2_t6_8M_UR50D": 1024, "facebook/esm2_t12_35M_UR50D": 1024, } def snake_case_ ( _lowerCAmelCase : int ) -> Dict: with open(_lowerCAmelCase , '''r''' ) as f: UpperCAmelCase : List[Any] = f.read().splitlines() return [l.strip() for l in lines] class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Any , __snake_case : str , __snake_case : int="<unk>" , __snake_case : List[Any]="<cls>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : List[str]="<mask>" , __snake_case : Tuple="<eos>" , **__snake_case : Optional[int] , ) -> Optional[int]: super().__init__(**__snake_case ) UpperCAmelCase : Tuple = load_vocab_file(__snake_case ) UpperCAmelCase : int = dict(enumerate(self.all_tokens ) ) UpperCAmelCase : List[str] = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase : int = unk_token UpperCAmelCase : Optional[int] = cls_token UpperCAmelCase : Dict = pad_token UpperCAmelCase : Optional[int] = mask_token UpperCAmelCase : Any = eos_token UpperCAmelCase : Optional[Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A ( self : Optional[Any] , __snake_case : int ) -> str: return self._id_to_token.get(__snake_case , self.unk_token ) def A ( self : str , __snake_case : str ) -> int: return self._token_to_id.get(__snake_case , self._token_to_id.get(self.unk_token ) ) def A ( self : int , __snake_case : Optional[int] , **__snake_case : Tuple ) -> str: return text.split() def A ( self : int , __snake_case : Any=False ) -> Optional[int]: return len(self._id_to_token ) def A ( self : Any ) -> str: return {token: i for i, token in enumerate(self.all_tokens )} def A ( self : Tuple , __snake_case : str ) -> int: return self._token_to_id.get(__snake_case , self._token_to_id.get(self.unk_token ) ) def A ( self : str , __snake_case : int ) -> str: return self._id_to_token.get(__snake_case , self.unk_token ) def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Union[str, Any] = [self.cls_token_id] UpperCAmelCase : Optional[int] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A ( self : Any , __snake_case : List , __snake_case : Optional[List] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase : List[Any] = [1] + ([0] * len(__snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(__snake_case ) + [1] return mask def A ( self : Any , __snake_case : List[str] , __snake_case : Dict ) -> Any: UpperCAmelCase : int = os.path.join(__snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(__snake_case , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def A ( self : int ) -> int: return self.get_vocab_size(with_added_tokens=__snake_case ) def A ( self : int , __snake_case : Union[List[str], List[AddedToken]] , __snake_case : bool = False ) -> int: return super()._add_tokens(__snake_case , special_tokens=__snake_case )
23
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case ) UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )] UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case ) UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Tuple = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def A ( self : List[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : int = num_samples * [prompt] UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Tuple = shard(__snake_case ) UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : List[str] = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[int] = jax.device_count() UpperCAmelCase : List[str] = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : str = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) UpperCAmelCase : Tuple = scheduler.create_state() UpperCAmelCase : Dict = scheduler_state UpperCAmelCase : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : int = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Any = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : str = replicate(__snake_case ) UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def A ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , ) UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[str] = shard(__snake_case ) UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) UpperCAmelCase : int = replicate(__snake_case ) UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[Any] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : int = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
1
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @classmethod def A ( cls : Union[str, Any] ) -> int: UpperCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(__snake_case ) @classmethod def A ( cls : List[str] ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : int ) -> Tuple: UpperCAmelCase : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]: UpperCAmelCase : str = True UpperCAmelCase : int = flatten_dict(modela.params ) UpperCAmelCase : Dict = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase : Dict = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : int = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) ) with self.assertRaises(__snake_case ): UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : Optional[int] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(__snake_case ): UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : Optional[int] ) -> str: UpperCAmelCase : Dict = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case ) def A ( self : Dict ) -> List[Any]: UpperCAmelCase : Optional[int] = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case )
23
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase : str = n - 1 UpperCAmelCase : List[Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase : List[str] = 0 while count < prec: UpperCAmelCase : int = random.randint(2 , n - 1 ) UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if b != 1: UpperCAmelCase : int = True for _ in range(_lowerCAmelCase ): if b == n - 1: UpperCAmelCase : Dict = False break UpperCAmelCase : str = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
23
1
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : int ) -> bool: UpperCAmelCase : Tuple = str(_lowerCAmelCase ) return len(_lowerCAmelCase ) == 9 and set(_lowerCAmelCase ) == set('''123456789''' ) def snake_case_ ( ) -> int | None: for base_num in range(9999 , 4999 , -1 ): UpperCAmelCase : Tuple = 100002 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate for base_num in range(333 , 99 , -1 ): UpperCAmelCase : Tuple = 1002003 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate return None if __name__ == "__main__": print(F"{solution() = }")
23
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: Optional[int] = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: UpperCAmelCase : Tuple = 1024 UpperCAmelCase : List[Any] = 4096 UpperCAmelCase : str = 24 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = [5, 11, 17, 23] UpperCAmelCase : List[Any] = [256, 512, 1024, 1024] UpperCAmelCase : Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase : Optional[Any] = 768 UpperCAmelCase : Tuple = [1, 1, 1, 0.5] UpperCAmelCase : int = [256, 512, 768, 768] UpperCAmelCase : Any = 150 UpperCAmelCase : Tuple = 16 UpperCAmelCase : Any = (1, 384, 384) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = '''project''' if "ade" in checkpoint_url: UpperCAmelCase : Any = True UpperCAmelCase : str = 768 UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5] UpperCAmelCase : List[Any] = 150 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = '''huggingface/label-files''' UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : List[Any] = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase : str = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : int = in_proj_bias[: config.hidden_size] UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def snake_case_ ( ) -> List[str]: UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any: UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase ) UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384 UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase ) UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' ) # forward pass UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth if show_prediction: UpperCAmelCase : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) UpperCamelCase__: Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
23
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
23
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase__: Optional[int] = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
23
1
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union UpperCamelCase__: List[str] = TypeVar("T") UpperCamelCase__: Any = Union[List[T], Tuple[T, ...]] UpperCamelCase__: Dict = Union[T, List[T], Dict[str, T]] UpperCamelCase__: Optional[Any] = Union[str, bytes, os.PathLike]
23
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if len(_lowerCAmelCase ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(_lowerCAmelCase ) or left < -len(_lowerCAmelCase ) or right >= len(_lowerCAmelCase ) or right < -len(_lowerCAmelCase ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid] UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
23
1
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase__: Dict = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) UpperCamelCase__: List[str] = [] UpperCamelCase__: int = [] UpperCamelCase__: Optional[int] = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} UpperCamelCase__: List[str] = [ { "type": "header", "text": { "type": "plain_text", "text": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", "emoji": True, }, } ] UpperCamelCase__: List[str] = 0 for log in Path().glob("*.log"): UpperCamelCase__: Tuple = 0 with open(log, "r") as f: for line in f: UpperCamelCase__: Optional[int] = json.loads(line) if line.get("nodeid", "") != "": UpperCamelCase__: Tuple = line["nodeid"] if line.get("duration", None) is not None: UpperCamelCase__: Union[str, Any] = F"{line['duration']:.4f}" if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase__: Dict = [] log.unlink() UpperCamelCase__: Dict = "" UpperCamelCase__: Union[str, Any] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase__: str = [] UpperCamelCase__: Any = {} for test in failed_tests: UpperCamelCase__: Optional[int] = test[0].split("::") UpperCamelCase__: Any = data[0].split("/")[-1] if data[0] not in filesafailed: UpperCamelCase__: List[Any] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase__: Tuple = [test[0] for test in failed_table] UpperCamelCase__: Optional[int] = list(set(files)) # Count number of instances in failed_tests UpperCamelCase__: Optional[Any] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase__: Optional[int] = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: UpperCamelCase__: Optional[Any] = "Too many failed tests, please see the full report in the Action results." UpperCamelCase__: List[Any] = len(err) + 10 UpperCamelCase__: Any = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: UpperCamelCase__: int = "No failed tests! 🤗" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient UpperCamelCase__: str = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": UpperCamelCase__: int = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) UpperCamelCase__: int = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) UpperCamelCase__: Optional[Any] = { "type": "context", "elements": [ { "type": "plain_text", "text": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) UpperCamelCase__: Dict = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) UpperCamelCase__: int = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase__: Dict = "" for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase__: List[Any] = row[0] else: UpperCamelCase__: Tuple = "" UpperCamelCase__: Dict = { "type": "section", "text": { "type": "mrkdwn", "text": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
23
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : str = self.unet.config.sample_size UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size) UpperCAmelCase : int = self.unet UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma UpperCAmelCase : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(__snake_case ) self.scheduler.set_sigmas(__snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample # prediction step UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean UpperCAmelCase : int = sample_mean.clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__snake_case )
23
1
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def snake_case_ ( _lowerCAmelCase : List[Any] ) -> Union[str, Any]: UpperCAmelCase : int = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple ) -> Tuple: UpperCAmelCase , UpperCAmelCase : Tuple = emb.weight.shape UpperCAmelCase : Union[str, Any] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = emb.weight.data return lin_layer def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=None ) -> Tuple: UpperCAmelCase : List[str] = {} for old_key in state_dict.keys(): UpperCAmelCase : Optional[int] = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCAmelCase : str = key.replace('''moe_layer.experts.0''' , f"""ffn.experts.expert_{expert_idx}""" ) else: UpperCAmelCase : List[str] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: UpperCAmelCase : int = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: UpperCAmelCase : Optional[int] = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: UpperCAmelCase : List[Any] = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: UpperCAmelCase : Dict = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: UpperCAmelCase : int = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: UpperCAmelCase : Optional[Any] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) UpperCAmelCase : int = state_dict[old_key] return new_dict def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str = WEIGHTS_NAME ) -> Optional[int]: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Any = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) for expert in range(_lowerCAmelCase ): UpperCAmelCase : str = switch_checkpoint_path + f"""-rank-{expert}.pt""" if os.path.isfile(_lowerCAmelCase ): UpperCAmelCase : Optional[Any] = torch.load(_lowerCAmelCase )['''model'''] remove_ignore_keys_(_lowerCAmelCase ) UpperCAmelCase : List[Any] = rename_fairseq_keys(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = os.path.join( _lowerCAmelCase , weights_name.replace('''.bin''' , f"""-{len(_lowerCAmelCase )+1:05d}-of-???.bin""" ) ) torch.save(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_lowerCAmelCase )[0]].dtype ) # Add the last block UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , weights_name.replace('''.bin''' , f"""-{len(_lowerCAmelCase )+1:05d}-of-???.bin""" ) ) UpperCAmelCase : Any = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(_lowerCAmelCase ) UpperCAmelCase : int = rename_fairseq_keys(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[Any] = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowerCAmelCase ) == 1: UpperCAmelCase : List[str] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) torch.save(_lowerCAmelCase , _lowerCAmelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowerCAmelCase , _lowerCAmelCase ) # Otherwise, let's build the index UpperCAmelCase : str = {} for idx, shard in enumerate(_lowerCAmelCase ): UpperCAmelCase : Optional[int] = weights_name.replace('''.bin''' , f"""-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin""" ) UpperCAmelCase : int = os.path.join(_lowerCAmelCase , weights_name.replace('''.bin''' , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) for key in shard: UpperCAmelCase : Any = shard_file # Add the metadata UpperCAmelCase : List[str] = {'''total_size''': total_size} UpperCAmelCase : List[str] = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase : List[Any] = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + '''\n''' f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCamelCase__: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) UpperCamelCase__: List[Any] = parser.parse_args() UpperCamelCase__ , UpperCamelCase__: Optional[Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) UpperCamelCase__: Optional[Any] = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) UpperCamelCase__: str = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
23
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """MCTCTFeatureExtractor""" lowerCamelCase__ = """AutoTokenizer""" def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str: super().__init__(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = self.feature_extractor UpperCAmelCase : Union[str, Any] = False def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) UpperCAmelCase : int = kwargs.pop('''raw_speech''' ) else: UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case ) UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : Any = args[0] UpperCAmelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase : str = encodings['''input_ids'''] return inputs def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : List[str] = args[0] UpperCAmelCase : List[Any] = args[1:] if input_features is not None: UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case ) if labels is not None: UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase : List[str] = labels['''input_ids'''] return input_features def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def A ( self : Any ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) UpperCAmelCase : Dict = True UpperCAmelCase : List[Any] = self.tokenizer yield UpperCAmelCase : Tuple = self.feature_extractor UpperCAmelCase : List[Any] = False
23
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : str , __snake_case : List[Any] , __snake_case : Optional[int]=13 , __snake_case : List[Any]=32 , __snake_case : List[str]=3 , __snake_case : Union[str, Any]=4 , __snake_case : int=[10, 20, 30, 40] , __snake_case : Any=[2, 2, 3, 2] , __snake_case : Any=True , __snake_case : Optional[Any]=True , __snake_case : int=37 , __snake_case : List[Any]="gelu" , __snake_case : Dict=10 , __snake_case : Optional[Any]=0.02 , __snake_case : int=["stage2", "stage3", "stage4"] , __snake_case : Union[str, Any]=[2, 3, 4] , __snake_case : Optional[int]=None , ) -> Any: UpperCAmelCase : Tuple = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Optional[int] = hidden_sizes UpperCAmelCase : Tuple = depths UpperCAmelCase : Union[str, Any] = is_training UpperCAmelCase : Optional[Any] = use_labels UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Optional[int] = num_labels UpperCAmelCase : int = initializer_range UpperCAmelCase : Dict = out_features UpperCAmelCase : str = out_indices UpperCAmelCase : Any = scope def A ( self : List[Any] ) -> Dict: UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def A ( self : Dict ) -> Optional[int]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__snake_case , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def A ( self : str , __snake_case : Tuple , __snake_case : Any , __snake_case : str ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ConvNextVaModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Dict = model(__snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A ( self : Any , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: UpperCAmelCase : List[Any] = ConvNextVaForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : int = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : int , __snake_case : Any , __snake_case : List[Any] , __snake_case : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Any = ConvNextVaBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : List[Any] = None UpperCAmelCase : Dict = ConvNextVaBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Dict = model(__snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A ( self : List[str] ) -> List[str]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {'''pixel_values''': pixel_values} return config, inputs_dict def A ( self : Tuple ) -> Tuple: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : List[str] = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__ = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A ( self : Dict ) -> Union[str, Any]: UpperCAmelCase : List[Any] = ConvNextVaModelTester(self ) UpperCAmelCase : Any = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def A ( self : Dict ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Any ) -> int: return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def A ( self : Union[str, Any] ) -> Optional[int]: pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def A ( self : Optional[int] ) -> Tuple: pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def A ( self : Tuple ) -> int: pass def A ( self : Union[str, Any] ) -> Optional[int]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : str = True if model_class.__name__ in [ *get_values(__snake_case ), *get_values(__snake_case ), ]: continue UpperCAmelCase : Union[str, Any] = model_class(__snake_case ) model.to(__snake_case ) model.train() UpperCAmelCase : str = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) UpperCAmelCase : Optional[Any] = model(**__snake_case ).loss loss.backward() def A ( self : Optional[int] ) -> str: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = False UpperCAmelCase : Optional[Any] = True if ( model_class.__name__ in [*get_values(__snake_case ), *get_values(__snake_case )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : str = model_class(__snake_case ) model.to(__snake_case ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : str = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) UpperCAmelCase : List[Any] = model(**__snake_case ).loss loss.backward() def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[str] = model_class(__snake_case ) UpperCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def A ( self : Any ) -> Dict: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : Optional[Any] ) -> Tuple: def check_hidden_states_output(__snake_case : Any , __snake_case : Dict , __snake_case : int ): UpperCAmelCase : Optional[int] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase : str = model(**self._prepare_for_class(__snake_case , __snake_case ) ) UpperCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__snake_case ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def A ( self : Any ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def A ( self : Dict ) -> Optional[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = ConvNextVaModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def snake_case_ ( ) -> Union[str, Any]: UpperCAmelCase : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : Any ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Tuple = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(__snake_case ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Optional[int] = preprocessor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase : Any = model(**__snake_case ) # verify the logits UpperCAmelCase : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __snake_case ) UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
23
'''simple docstring''' from math import isclose, sqrt def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]: UpperCAmelCase : Optional[int] = point_y / 4 / point_x UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4 UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase : List[str] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : float = first_x_coord UpperCAmelCase : float = first_y_coord UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
23
1
'''simple docstring''' import os import sys import unittest UpperCamelCase__: int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCamelCase__: Optional[Any] = os.path.join(git_repo_path, "src", "transformers") UpperCamelCase__: List[Any] = "\n{0} = None\n" UpperCamelCase__: Optional[Any] = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" UpperCamelCase__: List[str] = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Optional[int]: UpperCAmelCase : int = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(__snake_case ) UpperCAmelCase : List[Any] = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(__snake_case , '''tokenizers''' ) UpperCAmelCase : Any = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(__snake_case , '''tensorflow_text''' ) UpperCAmelCase : Union[str, Any] = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(__snake_case , '''sentencepiece_and_tokenizers''' ) UpperCAmelCase : Dict = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(__snake_case , '''sentencepiece_and_tensorflow_text''' ) UpperCAmelCase : int = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(__snake_case , '''sentencepiece_and_tokenizers_and_vision''' ) def A ( self : List[Any] ) -> Optional[int]: UpperCAmelCase : Optional[int] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , __snake_case ) self.assertIn('''tensorflow_text''' , __snake_case ) self.assertIn('''sentencepiece_and_tokenizers''' , __snake_case ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def A ( self : Union[str, Any] ) -> str: UpperCAmelCase : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(__snake_case , '''\nCONSTANT = None\n''' ) UpperCAmelCase : Any = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( __snake_case , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) UpperCAmelCase : List[Any] = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' UpperCAmelCase : Dict = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(__snake_case , __snake_case ) def A ( self : List[Any] ) -> Tuple: UpperCAmelCase : List[str] = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' UpperCAmelCase : List[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , __snake_case )
23
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__: str = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Union[str, Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
1