code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = prime_factors(_lowerCAmelCase ) if is_square_free(_lowerCAmelCase ): return -1 if len(_lowerCAmelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
219
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Tuple = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} UpperCamelCase__: Optional[int] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } UpperCamelCase__: Dict = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } UpperCamelCase__: Tuple = "▁" class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="</s>" , __snake_case : Any="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Dict , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase : Optional[int] = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) UpperCAmelCase : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCAmelCase : Optional[Any] = len(self.sp_model ) - 1 UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] UpperCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Tuple = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : Dict ) -> Optional[int]: return len(self.sp_model ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Optional[Any] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def A ( self : int , __snake_case : int ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(__snake_case ) return spm_id if spm_id else self.unk_token_id def A ( self : int , __snake_case : Any ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__snake_case ) def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : int = '''''' UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token UpperCAmelCase : str = True UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(__snake_case ) UpperCAmelCase : Optional[int] = False out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.__dict__.copy() UpperCAmelCase : Any = None return state def __setstate__( self : Optional[int] , __snake_case : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
23
0
from __future__ import annotations def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
49
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @classmethod def A ( cls : Union[str, Any] ) -> int: UpperCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(__snake_case ) @classmethod def A ( cls : List[str] ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : int ) -> Tuple: UpperCAmelCase : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]: UpperCAmelCase : str = True UpperCAmelCase : int = flatten_dict(modela.params ) UpperCAmelCase : Dict = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase : Dict = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : int = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) ) with self.assertRaises(__snake_case ): UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : Optional[int] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(__snake_case ): UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : Optional[int] ) -> str: UpperCAmelCase : Dict = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case ) def A ( self : Dict ) -> List[Any]: UpperCAmelCase : Optional[int] = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case )
23
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowercase__ :Union[str, Any] = logging.get_logger(__name__) # General docstring lowercase__ :int = "RegNetConfig" # Base docstring lowercase__ :Optional[int] = "facebook/regnet-y-040" lowercase__ :List[str] = [1, 1088, 7, 7] # Image classification docstring lowercase__ :Dict = "facebook/regnet-y-040" lowercase__ :Union[str, Any] = "tabby, tabby cat" lowercase__ :List[str] = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowercase ( nn.Module ): def __init__( self ,A__ ,A__ ,A__ = 3 ,A__ = 1 ,A__ = 1 ,A__ = "relu" ,): super().__init__() lowercase = nn.Convad( __snake_case ,__snake_case ,kernel_size=__snake_case ,stride=__snake_case ,padding=kernel_size // 2 ,groups=__snake_case ,bias=__snake_case ,) lowercase = nn.BatchNormad(__snake_case) lowercase = ACTaFN[activation] if activation is not None else nn.Identity() def A__ ( self ,A__): lowercase = self.convolution(__snake_case) lowercase = self.normalization(__snake_case) lowercase = self.activation(__snake_case) return hidden_state class lowercase ( nn.Module ): def __init__( self ,A__): super().__init__() lowercase = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act) lowercase = config.num_channels def A__ ( self ,A__): lowercase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''') lowercase = self.embedder(__snake_case) return hidden_state class lowercase ( nn.Module ): def __init__( self ,A__ ,A__ ,A__ = 2): super().__init__() lowercase = nn.Convad(__snake_case ,__snake_case ,kernel_size=1 ,stride=__snake_case ,bias=__snake_case) lowercase = nn.BatchNormad(__snake_case) def A__ ( self ,A__): lowercase = self.convolution(__snake_case) lowercase = self.normalization(__snake_case) return hidden_state class lowercase ( nn.Module ): def __init__( self ,A__ ,A__): super().__init__() lowercase = nn.AdaptiveAvgPoolad((1, 1)) lowercase = nn.Sequential( nn.Convad(__snake_case ,__snake_case ,kernel_size=1) ,nn.ReLU() ,nn.Convad(__snake_case ,__snake_case ,kernel_size=1) ,nn.Sigmoid() ,) def A__ ( self ,A__): # b c h w -> b c 1 1 lowercase = self.pooler(__snake_case) lowercase = self.attention(__snake_case) lowercase = hidden_state * attention return hidden_state class lowercase ( nn.Module ): def __init__( self ,A__ ,A__ ,A__ ,A__ = 1): super().__init__() lowercase = in_channels != out_channels or stride != 1 lowercase = max(1 ,out_channels // config.groups_width) lowercase = ( RegNetShortCut(__snake_case ,__snake_case ,stride=__snake_case) if should_apply_shortcut else nn.Identity() ) lowercase = nn.Sequential( RegNetConvLayer(__snake_case ,__snake_case ,kernel_size=1 ,activation=config.hidden_act) ,RegNetConvLayer(__snake_case ,__snake_case ,stride=__snake_case ,groups=__snake_case ,activation=config.hidden_act) ,RegNetConvLayer(__snake_case ,__snake_case ,kernel_size=1 ,activation=__snake_case) ,) lowercase = ACTaFN[config.hidden_act] def A__ ( self ,A__): lowercase = hidden_state lowercase = self.layer(__snake_case) lowercase = self.shortcut(__snake_case) hidden_state += residual lowercase = self.activation(__snake_case) return hidden_state class lowercase ( nn.Module ): def __init__( self ,A__ ,A__ ,A__ ,A__ = 1): super().__init__() lowercase = in_channels != out_channels or stride != 1 lowercase = max(1 ,out_channels // config.groups_width) lowercase = ( RegNetShortCut(__snake_case ,__snake_case ,stride=__snake_case) if should_apply_shortcut else nn.Identity() ) lowercase = nn.Sequential( RegNetConvLayer(__snake_case ,__snake_case ,kernel_size=1 ,activation=config.hidden_act) ,RegNetConvLayer(__snake_case ,__snake_case ,stride=__snake_case ,groups=__snake_case ,activation=config.hidden_act) ,RegNetSELayer(__snake_case ,reduced_channels=int(round(in_channels / 4))) ,RegNetConvLayer(__snake_case ,__snake_case ,kernel_size=1 ,activation=__snake_case) ,) lowercase = ACTaFN[config.hidden_act] def A__ ( self ,A__): lowercase = hidden_state lowercase = self.layer(__snake_case) lowercase = self.shortcut(__snake_case) hidden_state += residual lowercase = self.activation(__snake_case) return hidden_state class lowercase ( nn.Module ): def __init__( self ,A__ ,A__ ,A__ ,A__ = 2 ,A__ = 2 ,): super().__init__() lowercase = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __snake_case ,__snake_case ,__snake_case ,stride=__snake_case ,) ,*[layer(__snake_case ,__snake_case ,__snake_case) for _ in range(depth - 1)] ,) def A__ ( self ,A__): lowercase = self.layers(__snake_case) return hidden_state class lowercase ( nn.Module ): def __init__( self ,A__): super().__init__() lowercase = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __snake_case ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,)) lowercase = zip(config.hidden_sizes ,config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(__snake_case ,config.depths[1:]): self.stages.append(RegNetStage(__snake_case ,__snake_case ,__snake_case ,depth=__snake_case)) def A__ ( self ,A__ ,A__ = False ,A__ = True): lowercase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase = hidden_states + (hidden_state,) lowercase = stage_module(__snake_case) if output_hidden_states: lowercase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=__snake_case ,hidden_states=__snake_case) class lowercase ( A__ ): lowercase_ : Union[str, Any] =RegNetConfig lowercase_ : Optional[int] ='''regnet''' lowercase_ : Optional[int] ='''pixel_values''' lowercase_ : int =True def A__ ( self ,A__): if isinstance(__snake_case ,nn.Convad): nn.init.kaiming_normal_(module.weight ,mode='''fan_out''' ,nonlinearity='''relu''') elif isinstance(__snake_case ,(nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight ,1) nn.init.constant_(module.bias ,0) def A__ ( self ,A__ ,A__=False): if isinstance(__snake_case ,__snake_case): lowercase = value lowercase__ :List[str] = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" lowercase__ :Any = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , A__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class lowercase ( A__ ): def __init__( self ,A__): super().__init__(__snake_case) lowercase = config lowercase = RegNetEmbeddings(__snake_case) lowercase = RegNetEncoder(__snake_case) lowercase = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__snake_case ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def A__ ( self ,A__ ,A__ = None ,A__ = None): lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase = return_dict if return_dict is not None else self.config.use_return_dict lowercase = self.embedder(__snake_case) lowercase = self.encoder( __snake_case ,output_hidden_states=__snake_case ,return_dict=__snake_case) lowercase = encoder_outputs[0] lowercase = self.pooler(__snake_case) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__snake_case ,pooler_output=__snake_case ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , A__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class lowercase ( A__ ): def __init__( self ,A__): super().__init__(__snake_case) lowercase = config.num_labels lowercase = RegNetModel(__snake_case) # classification head lowercase = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__snake_case ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def A__ ( self ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,): lowercase = return_dict if return_dict is not None else self.config.use_return_dict lowercase = self.regnet(__snake_case ,output_hidden_states=__snake_case ,return_dict=__snake_case) lowercase = outputs.pooler_output if return_dict else outputs[1] lowercase = self.classifier(__snake_case) lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase = '''single_label_classification''' else: lowercase = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase = MSELoss() if self.num_labels == 1: lowercase = loss_fct(logits.squeeze() ,labels.squeeze()) else: lowercase = loss_fct(__snake_case ,__snake_case) elif self.config.problem_type == "single_label_classification": lowercase = CrossEntropyLoss() lowercase = loss_fct(logits.view(-1 ,self.num_labels) ,labels.view(-1)) elif self.config.problem_type == "multi_label_classification": lowercase = BCEWithLogitsLoss() lowercase = loss_fct(__snake_case ,__snake_case) if not return_dict: lowercase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__snake_case ,logits=__snake_case ,hidden_states=outputs.hidden_states)
101
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Optional[int] , __snake_case : str , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=8 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : int=True , __snake_case : List[Any]=99 , __snake_case : str=16 , __snake_case : Tuple=5 , __snake_case : Tuple=2 , __snake_case : str=36 , __snake_case : Dict="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=512 , __snake_case : Optional[Any]=16 , __snake_case : int=2 , __snake_case : int=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : str=None , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : int = use_input_mask UpperCAmelCase : Any = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : Optional[int] = num_choices UpperCAmelCase : Any = scope def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : str = None UpperCAmelCase : Tuple = None UpperCAmelCase : int = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : int ) -> Tuple: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[Any] = self.get_config() UpperCAmelCase : int = 300 return config def A ( self : Optional[Any] ) -> Any: ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = self.prepare_config_and_inputs() UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[Any] ) -> List[str]: UpperCAmelCase : int = MraModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Optional[int] = model(__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Dict = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[Any] , ) -> Tuple: UpperCAmelCase : str = True UpperCAmelCase : Tuple = MraModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) UpperCAmelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , ) UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int ) -> Any: UpperCAmelCase : Dict = MraForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Dict , __snake_case : Any , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = MraForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int: UpperCAmelCase : int = self.num_labels UpperCAmelCase : Union[str, Any] = MraForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> int: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : List[str] = MraForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : str , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.num_choices UpperCAmelCase : int = MraForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str ) -> Dict: UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = () def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = MraModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A ( self : Optional[Any] ) -> str: self.config_tester.run_common_tests() def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__snake_case ) def A ( self : Tuple ) -> Dict: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def A ( self : Tuple ) -> List[str]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def A ( self : Dict ) -> Optional[int]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def A ( self : Any ) -> Optional[int]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def A ( self : Dict ) -> Any: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = MraModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''MRA does not output attentions''' ) def A ( self : str ) -> Optional[Any]: return @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @slow def A ( self : Tuple ) -> List[Any]: UpperCAmelCase : int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Optional[Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Any = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[int] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : int = 50265 UpperCAmelCase : int = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : str ) -> List[Any]: UpperCAmelCase : List[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) UpperCAmelCase : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : Tuple = model(__snake_case )[0] UpperCAmelCase : Optional[int] = 50265 UpperCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Optional[int] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
23
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _SCREAMING_SNAKE_CASE = "src/transformers" _SCREAMING_SNAKE_CASE = "docs/source/en/tasks" def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase = f.readlines() # Find the start prompt. UpperCamelCase = 0 while not lines[start_index].startswith(_lowerCAmelCase ): start_index += 1 start_index += 1 UpperCamelCase = start_index while not lines[end_index].startswith(_lowerCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _SCREAMING_SNAKE_CASE = direct_transformers_import(TRANSFORMERS_PATH) _SCREAMING_SNAKE_CASE = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _SCREAMING_SNAKE_CASE = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' UpperCamelCase = TASK_GUIDE_TO_MODELS[task_guide] UpperCamelCase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_lowerCAmelCase , set() ) UpperCamelCase = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def lowercase( UpperCamelCase_ , UpperCamelCase_=False ) -> Dict: '''simple docstring''' UpperCamelCase = _find_text_in_file( filename=os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) UpperCamelCase = get_model_list_for_task(_lowerCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" """ to fix this.""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _SCREAMING_SNAKE_CASE = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
343
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Any ) -> str: UpperCAmelCase : Any = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } UpperCAmelCase : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(__snake_case ) , __snake_case ) def A ( self : int ) -> str: UpperCAmelCase : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__snake_case ) , x.transpose() ) ) UpperCAmelCase : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A ( self : str ) -> Union[str, Any]: UpperCAmelCase : Any = np.random.randn(3 , 4 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Tuple = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Any = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Optional[Any]: UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : str = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A ( self : Tuple ) -> Any: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , np.asarray(transpose(__snake_case ) ) ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(__snake_case , axes=(1, 2, 0) ) ) ) ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.reshape(__snake_case , (4, 3) ) ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.reshape(__snake_case , (12, 5) ) ) ) @require_torch def A ( self : Union[str, Any] ) -> int: UpperCAmelCase : Dict = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_tf def A ( self : int ) -> List[str]: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_flax def A ( self : Any ) -> Dict: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.asarray(reshape(__snake_case , (4, 3) ) ) ) ) UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.asarray(reshape(__snake_case , (12, 5) ) ) ) ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.squeeze(__snake_case ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.squeeze(__snake_case , axis=2 ) ) ) @require_torch def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : List[str] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : str = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_tf def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_flax def A ( self : List[Any] ) -> Dict: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.asarray(squeeze(__snake_case ) ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.asarray(squeeze(__snake_case , axis=2 ) ) ) ) def A ( self : Optional[Any] ) -> int: UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.expand_dims(__snake_case , axis=1 ) ) ) @require_torch def A ( self : List[str] ) -> Tuple: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Tuple = torch.tensor(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Any = tf.constant(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_flax def A ( self : Any ) -> List[Any]: UpperCAmelCase : List[str] = np.random.randn(3 , 4 ) UpperCAmelCase : str = jnp.array(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.asarray(expand_dims(__snake_case , axis=1 ) ) ) )
23
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor __a = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __snake_case( _lowerCAmelCase ) -> List[str]: if isinstance(_lowerCAmelCase , torch.Tensor ): return image elif isinstance(_lowerCAmelCase , PIL.Image.Image ): snake_case__ : List[Any] = [image] snake_case__ : str = [trans(img.convert("""RGB""" ) ) for img in image] snake_case__ : List[Any] = torch.stack(_lowerCAmelCase ) return image class UpperCAmelCase_ ( A__ ): """simple docstring""" def __init__( self : Union[str, Any] , snake_case_ : int , snake_case_ : List[Any] ): super().__init__() # make sure scheduler can always be converted to DDIM snake_case__ : Union[str, Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__snake_case , scheduler=__snake_case ) def lowerCamelCase ( self : Tuple , snake_case_ : Union[str, Any] ): if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}" ) def lowerCamelCase ( self : List[str] , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : List[Any] ): # get the original timestep using init_timestep snake_case__ : Optional[int] = min(int(num_inference_steps * strength ) , __snake_case ) snake_case__ : Tuple = max(num_inference_steps - init_timestep , 0 ) snake_case__ : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase ( self : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : str=None ): if not isinstance(__snake_case , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__snake_case )}" ) snake_case__ : Optional[Any] = image.to(device=__snake_case , dtype=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) snake_case__ : Optional[int] = init_latents.shape snake_case__ : Tuple = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents print("""add noise to latents at timestep""" , __snake_case ) snake_case__ : List[Any] = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) snake_case__ : Any = init_latents return latents @torch.no_grad() def __call__( self : Union[str, Any] , snake_case_ : Union[torch.FloatTensor, PIL.Image.Image] = None , snake_case_ : float = 0.8 , snake_case_ : int = 1 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : float = 0.0 , snake_case_ : int = 50 , snake_case_ : Optional[bool] = None , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ): self.check_inputs(__snake_case ) # 2. Preprocess image snake_case__ : int = preprocess(__snake_case ) # 3. set timesteps self.scheduler.set_timesteps(__snake_case , device=self.device ) snake_case__ : Union[str, Any] = self.get_timesteps(__snake_case , __snake_case , self.device ) snake_case__ : List[Any] = timesteps[:1].repeat(__snake_case ) # 4. Prepare latent variables snake_case__ : Union[str, Any] = self.prepare_latents(__snake_case , __snake_case , __snake_case , self.unet.dtype , self.device , __snake_case ) snake_case__ : Dict = latents # 5. Denoising loop for t in self.progress_bar(__snake_case ): # 1. predict noise model_output snake_case__ : List[Any] = self.unet(__snake_case , __snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case__ : Any = self.scheduler.step( __snake_case , __snake_case , __snake_case , eta=__snake_case , use_clipped_model_output=__snake_case , generator=__snake_case , ).prev_sample snake_case__ : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case__ : Dict = self.numpy_to_pil(__snake_case ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__snake_case )
35
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase__: Union[str, Any] = "examples/" UpperCamelCase__: Optional[Any] = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } UpperCamelCase__: Optional[int] = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } UpperCamelCase__: List[Any] = "README.md" def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> Optional[int]: with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[int] = f.read() UpperCAmelCase , UpperCAmelCase : List[Any] = REPLACE_PATTERNS[pattern] UpperCAmelCase : List[Any] = replace.replace('''VERSION''' , _lowerCAmelCase ) UpperCAmelCase : Optional[Any] = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[int]: for folder, directories, fnames in os.walk(_lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='''examples''' ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=False ) -> List[str]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not patch: update_version_in_examples(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: UpperCAmelCase : Optional[int] = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase : Optional[int] = '''1. Want to contribute a new model?''' with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[Any] = f.readlines() # Find the start of the list. UpperCAmelCase : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase : Optional[int] = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase : Union[str, Any] = f.read() UpperCAmelCase : int = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0] return packaging.version.parse(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase : Optional[int] = default_version.base_version elif patch: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase : Dict = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Tuple = default_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase ) def snake_case_ ( ) -> Any: UpperCAmelCase : List[Any] = get_version() UpperCAmelCase : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase : List[Any] = current_version.base_version # Check with the user we got that right. UpperCAmelCase : Optional[int] = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Dict = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") UpperCamelCase__: Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
23
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _A = logging.get_logger(__name__) class lowercase_ ( A__ ): def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
122
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCamelCase__: Tuple = numpy.array([0, 0]) UpperCamelCase__: Union[str, Any] = numpy.array([0.5, 0.8660254]) UpperCamelCase__: Dict = numpy.array([1, 0]) UpperCamelCase__: int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] , _lowerCAmelCase : int ) -> list[numpy.ndarray]: UpperCAmelCase : Union[str, Any] = initial_vectors for _ in range(_lowerCAmelCase ): UpperCAmelCase : Union[str, Any] = iteration_step(_lowerCAmelCase ) return vectors def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> list[numpy.ndarray]: UpperCAmelCase : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase : List[str] = vectors[i + 1] new_vectors.append(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def snake_case_ ( _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : float ) -> numpy.ndarray: UpperCAmelCase : List[str] = numpy.radians(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Tuple = numpy.cos(_lowerCAmelCase ), numpy.sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> None: UpperCAmelCase : List[Any] = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase , UpperCAmelCase : str = zip(*_lowerCAmelCase ) plt.plot(_lowerCAmelCase , _lowerCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__: List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
23
0
import os from collections import deque import torch from torch.utils.data import Dataset class a_ ( A__ ): """simple docstring""" def __init__( self : Optional[int] ,snake_case : Optional[int]="" ,snake_case : List[Any]="train" ): assert os.path.isdir(__snake_case ) SCREAMING_SNAKE_CASE =[] SCREAMING_SNAKE_CASE =os.listdir(__snake_case ) for story_filename in story_filenames_list: if "summary" in story_filename: continue SCREAMING_SNAKE_CASE =os.path.join(__snake_case ,__snake_case ) if not os.path.isfile(__snake_case ): continue self.documents.append(__snake_case ) def __len__( self : Dict ): return len(self.documents ) def __getitem__( self : Union[str, Any] ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =self.documents[idx] SCREAMING_SNAKE_CASE =document_path.split('/' )[-1] with open(__snake_case ,encoding='utf-8' ) as source: SCREAMING_SNAKE_CASE =source.read() SCREAMING_SNAKE_CASE =process_story(__snake_case ) return document_name, story_lines, summary_lines def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =list(filter(lambda lowerCAmelCase_ : len(_lowerCAmelCase ) != 0, [line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it SCREAMING_SNAKE_CASE =[_add_missing_period(_lowerCAmelCase ) for line in nonempty_lines] # gather article lines SCREAMING_SNAKE_CASE =[] SCREAMING_SNAKE_CASE =deque(_lowerCAmelCase ) while True: try: SCREAMING_SNAKE_CASE =lines.popleft() if element.startswith('@highlight' ): break story_lines.append(_lowerCAmelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines SCREAMING_SNAKE_CASE =list(filter(lambda lowerCAmelCase_ : not t.startswith('@highlight' ), _lowerCAmelCase ) ) return story_lines, summary_lines def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')'''] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if len(_lowerCAmelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(_lowerCAmelCase )) ) return sequence def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =torch.ones_like(_lowerCAmelCase ) SCREAMING_SNAKE_CASE =sequence == pad_token_id SCREAMING_SNAKE_CASE =0 return mask def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =[tokenizer.encode(_lowerCAmelCase ) for line in story_lines] SCREAMING_SNAKE_CASE =[token for sentence in story_lines_token_ids for token in sentence] SCREAMING_SNAKE_CASE =[tokenizer.encode(_lowerCAmelCase ) for line in summary_lines] SCREAMING_SNAKE_CASE =[token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =[] for sequence in batch: SCREAMING_SNAKE_CASE =-1 SCREAMING_SNAKE_CASE =[] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(_lowerCAmelCase ) return torch.tensor(_lowerCAmelCase )
334
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase : Dict = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Optional[Any] = Text('''CPU''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''GPU''' , font_size=24 ) UpperCAmelCase : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''Model''' , font_size=24 ) UpperCAmelCase : Tuple = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) UpperCAmelCase : Any = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = Text('''Loaded Checkpoint''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) UpperCAmelCase : Tuple = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase : List[Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) UpperCAmelCase : Tuple = [] UpperCAmelCase : int = [] for i, rect in enumerate(__snake_case ): UpperCAmelCase : Any = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) UpperCAmelCase : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
23
0
import random def UpperCamelCase_( _snake_case : list , _snake_case : str ): """simple docstring""" __a =[], [], [] for element in data: if element < pivot: less.append(_lowerCAmelCase ) elif element > pivot: greater.append(_lowerCAmelCase ) else: equal.append(_lowerCAmelCase ) return less, equal, greater def UpperCamelCase_( _snake_case : list , _snake_case : int ): """simple docstring""" if index >= len(_lowerCAmelCase ) or index < 0: return None __a =items[random.randint(0 , len(_lowerCAmelCase ) - 1 )] __a =0 __a =_partition(_lowerCAmelCase , _lowerCAmelCase ) __a =len(_lowerCAmelCase ) __a =len(_lowerCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_lowerCAmelCase , _lowerCAmelCase ) # must be in larger else: return quick_select(_lowerCAmelCase , index - (m + count) )
218
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) UpperCamelCase__: str = None UpperCamelCase__: int = { "7B": 11008, "13B": 13824, "30B": 17920, "65B": 22016, "70B": 28672, } UpperCamelCase__: List[Any] = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : List[Any]=256 ) -> Optional[Any]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: with open(_lowerCAmelCase , '''r''' ) as f: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ) -> Optional[Any]: with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=True ) -> List[Any]: os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp''' ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[str] = read_json(os.path.join(_lowerCAmelCase , '''params.json''' ) ) UpperCAmelCase : str = NUM_SHARDS[model_size] UpperCAmelCase : Any = params['''n_layers'''] UpperCAmelCase : str = params['''n_heads'''] UpperCAmelCase : Any = n_heads // num_shards UpperCAmelCase : List[str] = params['''dim'''] UpperCAmelCase : Optional[Any] = dim // n_heads UpperCAmelCase : str = 1_0_0_0_0.0 UpperCAmelCase : Optional[int] = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase : Tuple = params['''n_kv_heads'''] # for GQA / MQA UpperCAmelCase : Optional[int] = n_heads_per_shard // num_key_value_heads UpperCAmelCase : Optional[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase : List[str] = n_heads UpperCAmelCase : Optional[int] = n_heads_per_shard UpperCAmelCase : List[str] = dim # permute for sliced rotary def permute(_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=n_heads , _lowerCAmelCase : int=dim , _lowerCAmelCase : Dict=dim ): return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase ).transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase : int = torch.load(os.path.join(_lowerCAmelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded UpperCAmelCase : Optional[Any] = [ torch.load(os.path.join(_lowerCAmelCase , f"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' ) for i in range(_lowerCAmelCase ) ] UpperCAmelCase : Any = 0 UpperCAmelCase : str = {'''weight_map''': {}} for layer_i in range(_lowerCAmelCase ): UpperCAmelCase : Optional[Any] = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : Optional[int] = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase : List[str] = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } UpperCAmelCase : Union[str, Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) UpperCAmelCase : str = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Any = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : str = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Tuple = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : Any = inv_freq for k, v in state_dict.items(): UpperCAmelCase : List[Any] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[int] = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : str = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: UpperCAmelCase : Any = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(_lowerCAmelCase )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_lowerCAmelCase )] , dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase : Optional[int] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) # Write configs UpperCAmelCase : Union[str, Any] = {'''total_size''': param_count * 2} write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , '''pytorch_model.bin.index.json''' ) ) UpperCAmelCase : int = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 UpperCAmelCase : Tuple = params['''multiple_of'''] if '''multiple_of''' in params else 256 UpperCAmelCase : Any = LlamaConfig( hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_lowerCAmelCase , ) config.save_pretrained(_lowerCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> List[str]: # Initialize the tokenizer based on the `spm` model UpperCAmelCase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) UpperCAmelCase : List[Any] = tokenizer_class(_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) def snake_case_ ( ) -> List[Any]: UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=_lowerCAmelCase , help='''Whether or not to save using `safetensors`.''' ) UpperCAmelCase : List[Any] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCAmelCase : Optional[int] = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , _lowerCAmelCase ) if __name__ == "__main__": main()
23
0
'''simple docstring''' import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def UpperCamelCase_ ( snake_case_ : Any ) -> Tuple: '''simple docstring''' if "model" in orig_key: __lowerCAmelCase = orig_key.replace("""model.""" , """""" ) if "norm1" in orig_key: __lowerCAmelCase = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" ) if "norm2" in orig_key: __lowerCAmelCase = orig_key.replace("""norm2""" , """output.LayerNorm""" ) if "norm" in orig_key: __lowerCAmelCase = orig_key.replace("""norm""" , """LayerNorm""" ) if "transformer" in orig_key: __lowerCAmelCase = orig_key.split(""".""" )[0].split("""_""" )[-1] __lowerCAmelCase = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: __lowerCAmelCase = orig_key.replace("""mha.attn""" , """attention.self""" ) if "mha" in orig_key: __lowerCAmelCase = orig_key.replace("""mha""" , """attention""" ) if "W_q" in orig_key: __lowerCAmelCase = orig_key.replace("""W_q""" , """self.query""" ) if "W_k" in orig_key: __lowerCAmelCase = orig_key.replace("""W_k""" , """self.key""" ) if "W_v" in orig_key: __lowerCAmelCase = orig_key.replace("""W_v""" , """self.value""" ) if "ff1" in orig_key: __lowerCAmelCase = orig_key.replace("""ff1""" , """intermediate.dense""" ) if "ff2" in orig_key: __lowerCAmelCase = orig_key.replace("""ff2""" , """output.dense""" ) if "ff" in orig_key: __lowerCAmelCase = orig_key.replace("""ff""" , """output.dense""" ) if "mlm_class" in orig_key: __lowerCAmelCase = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" ) if "mlm" in orig_key: __lowerCAmelCase = orig_key.replace("""mlm""" , """cls.predictions.transform""" ) if "cls" not in orig_key: __lowerCAmelCase = '''yoso.''' + orig_key return orig_key def UpperCamelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Dict ) -> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(_lowerCAmelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: __lowerCAmelCase = val __lowerCAmelCase = orig_state_dict['''cls.predictions.decoder.bias'''] __lowerCAmelCase = torch.arange(_lowerCAmelCase ).expand((1, -1) ) + 2 return orig_state_dict def UpperCamelCase_ ( snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : int ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location="""cpu""" )['''model_state_dict'''] __lowerCAmelCase = YosoConfig.from_json_file(_lowerCAmelCase ) __lowerCAmelCase = YosoForMaskedLM(_lowerCAmelCase ) __lowerCAmelCase = convert_checkpoint_helper(config.max_position_embeddings , _lowerCAmelCase ) print(model.load_state_dict(_lowerCAmelCase ) ) model.eval() model.save_pretrained(_lowerCAmelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": _A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _A : List[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
229
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = cos(_lowerCAmelCase ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : Any = (1 - _cos) / 2 UpperCAmelCase : List[Any] = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Dict = 1 - alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Tuple = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = _sin / 2 UpperCAmelCase : Any = 0 UpperCAmelCase : int = -ba UpperCAmelCase : Optional[Any] = 1 + alpha UpperCAmelCase : List[Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : List[str] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : str = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 1 - alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Optional[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : str = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Union[str, Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha * big_a UpperCAmelCase : Union[str, Any] = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : Any = 1 - alpha / big_a UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : Optional[int] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : str = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Dict = big_a * (pmc + aaa) UpperCAmelCase : Any = 2 * big_a * mpc UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa) UpperCAmelCase : Optional[int] = ppmc + aaa UpperCAmelCase : Optional[Any] = -2 * pmpc UpperCAmelCase : Optional[Any] = ppmc - aaa UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : int = 10 ** (gain_db / 40) UpperCAmelCase : List[str] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Any = big_a * (ppmc + aaa) UpperCAmelCase : str = -2 * big_a * pmpc UpperCAmelCase : List[Any] = big_a * (ppmc - aaa) UpperCAmelCase : Optional[Any] = pmc + aaa UpperCAmelCase : Any = 2 * mpc UpperCAmelCase : str = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
23
0
def lowerCAmelCase__(__snake_case ,__snake_case ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(100, 0.25) = }""") print(f"""{price_plus_tax(125.50, 0.05) = }""")
209
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: UpperCAmelCase : str = get_failure_array(_lowerCAmelCase ) # 2) Step through text searching for pattern UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern while i < len(_lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(_lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCAmelCase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( _lowerCAmelCase : str ) -> list[int]: UpperCAmelCase : Optional[Any] = [0] UpperCAmelCase : str = 0 UpperCAmelCase : List[str] = 1 while j < len(_lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCAmelCase : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(_lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) UpperCamelCase__: str = "abc1abc12" UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc" UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCamelCase__: Tuple = "ABABX" UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) UpperCamelCase__: Any = "AAAB" UpperCamelCase__: str = "ABAAAAAB" assert kmp(pattern, text) # Test 4) UpperCamelCase__: int = "abcdabcy" UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) UpperCamelCase__: List[str] = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
23
0
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def lowercase ( self : Dict ): return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=__snake_case , ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def lowercase ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__snake_case ) class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def lowercase ( self : Tuple ): return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=__snake_case , ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def lowercase ( self : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : str ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__snake_case ) def _UpperCAmelCase ( ) -> Optional[Any]: return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def _UpperCAmelCase ( ) -> Union[str, Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class lowerCAmelCase__ ( A__ ): @require_beam def lowercase ( self : Tuple ): _snake_case = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _snake_case = DummyBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) _snake_case = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __snake_case ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def lowercase ( self : List[Any] ): import apache_beam as beam _snake_case = beam.io.parquetio.WriteToParquet _snake_case = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _snake_case = DummyBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: _snake_case = partial(__snake_case , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __snake_case , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( __snake_case , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) _snake_case = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __snake_case ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def lowercase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_cache_dir: _snake_case = DummyBeamDataset(cache_dir=__snake_case ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def lowercase ( self : Optional[Any] ): _snake_case = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _snake_case = NestedBeamDataset(cache_dir=__snake_case , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) _snake_case = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __snake_case ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __snake_case ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
288
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCamelCase__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = {} with open(_lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(_lowerCAmelCase ): UpperCAmelCase : List[str] = line.strip() if line: UpperCAmelCase : str = line.split() UpperCAmelCase : Union[str, Any] = line_number UpperCAmelCase : List[Any] = words[0] UpperCAmelCase : Union[str, Any] = value return result def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Dict = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : int = shape_pointer.shape # let's reduce dimension UpperCAmelCase : Union[str, Any] = value[0] else: UpperCAmelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : int = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = value else: UpperCAmelCase : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]: UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Any = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase : List[Any] = key UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0] UpperCamelCase__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int: UpperCAmelCase : List[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase : str = '''weight_g''' elif "weight_v" in name: UpperCAmelCase : int = '''weight_v''' elif "bias" in name: UpperCAmelCase : int = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : List[str] = '''weight''' else: UpperCAmelCase : Dict = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : Dict = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : Any = True else: UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : Optional[int] = name.split('''.''' ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict: if config_path is not None: UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = idalabel UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase ) UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : Optional[int] = target_dict.eos_index UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , ) UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase ) else: UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCamelCase__: Any = parser.parse_args() UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
23
0
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : str ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = int(_lowerCAmelCase ) # Initialize Result SCREAMING_SNAKE_CASE__ = [] # Traverse through all denomination for denomination in reversed(_lowerCAmelCase ): # Find denominations while int(_lowerCAmelCase ) >= int(_lowerCAmelCase ): total_value -= int(_lowerCAmelCase ) answer.append(_lowerCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __lowerCamelCase : int = [] __lowerCamelCase : Optional[Any] = "0" if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __lowerCamelCase : int = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) __lowerCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __lowerCamelCase : Any = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __lowerCamelCase : Any = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F"""Following is minimal change for {value}: """) __lowerCamelCase : Union[str, Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
219
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case ) UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )] UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case ) UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Tuple = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def A ( self : List[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : int = num_samples * [prompt] UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Tuple = shard(__snake_case ) UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : List[str] = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[int] = jax.device_count() UpperCAmelCase : List[str] = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : str = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) UpperCAmelCase : Tuple = scheduler.create_state() UpperCAmelCase : Dict = scheduler_state UpperCAmelCase : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : int = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Any = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : str = replicate(__snake_case ) UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def A ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , ) UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[str] = shard(__snake_case ) UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) UpperCAmelCase : int = replicate(__snake_case ) UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[Any] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : int = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
import os import sys import transformers __snake_case :Optional[int] = "3" print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
49
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase : str = n - 1 UpperCAmelCase : List[Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase : List[str] = 0 while count < prec: UpperCAmelCase : int = random.randint(2 , n - 1 ) UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if b != 1: UpperCAmelCase : int = True for _ in range(_lowerCAmelCase ): if b == n - 1: UpperCAmelCase : Dict = False break UpperCAmelCase : str = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
23
0
def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if num < 0: return False lowercase = num lowercase = 0 while num > 0: lowercase = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
101
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: Optional[int] = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: UpperCAmelCase : Tuple = 1024 UpperCAmelCase : List[Any] = 4096 UpperCAmelCase : str = 24 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = [5, 11, 17, 23] UpperCAmelCase : List[Any] = [256, 512, 1024, 1024] UpperCAmelCase : Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase : Optional[Any] = 768 UpperCAmelCase : Tuple = [1, 1, 1, 0.5] UpperCAmelCase : int = [256, 512, 768, 768] UpperCAmelCase : Any = 150 UpperCAmelCase : Tuple = 16 UpperCAmelCase : Any = (1, 384, 384) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = '''project''' if "ade" in checkpoint_url: UpperCAmelCase : Any = True UpperCAmelCase : str = 768 UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5] UpperCAmelCase : List[Any] = 150 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = '''huggingface/label-files''' UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : List[Any] = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase : str = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : int = in_proj_bias[: config.hidden_size] UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def snake_case_ ( ) -> List[str]: UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any: UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase ) UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384 UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase ) UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' ) # forward pass UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth if show_prediction: UpperCAmelCase : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) UpperCamelCase__: Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
23
0
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets _SCREAMING_SNAKE_CASE = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" _SCREAMING_SNAKE_CASE = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" _SCREAMING_SNAKE_CASE = r"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCamelCase = 0.0 for i, j in zip(__snake_case , __snake_case ): n_correct += 1.0 if math_equivalence.is_equiv(__snake_case , __snake_case ) else 0.0 UpperCamelCase = n_correct / len(__snake_case ) return { "accuracy": accuracy, }
343
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase__: Optional[int] = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
23
0
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" lowercase = MODEL_FOR_MASKED_LM_MAPPING lowercase = TF_MODEL_FOR_MASKED_LM_MAPPING def lowerCamelCase ( self : List[str] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowerCamelCase ( self : List[str] ): snake_case__ : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) snake_case__ : str = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-0_5, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-0_5, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) snake_case__ : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-0_5, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-0_5, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) snake_case__ : Any = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-0_5, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-0_5, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-0_5, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) snake_case__ : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS"""}, ] , ) snake_case__ : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS"""}, ] , ) snake_case__ : Tuple = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-0_5, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-0_5, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-0_5, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) snake_case__ : int = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ [ { """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-0_5, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-0_5, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def lowerCamelCase ( self : Optional[Any] ): snake_case__ : List[Any] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() snake_case__ : List[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__snake_case , __snake_case ) @slow @require_torch def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Tuple = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__snake_case ) @slow @require_tf def lowerCamelCase ( self : Dict ): snake_case__ : Tuple = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__snake_case ) def lowerCamelCase ( self : Dict , snake_case_ : Any ): snake_case__ : List[str] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__snake_case ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) snake_case__ : Optional[int] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__snake_case ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) snake_case__ : Tuple = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) snake_case__ : Optional[Any] = None snake_case__ : Union[str, Any] = None self.run_pipeline_test(__snake_case , [] ) @require_tf def lowerCamelCase ( self : Dict ): snake_case__ : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) snake_case__ : Dict = None snake_case__ : Union[str, Any] = None self.run_pipeline_test(__snake_case , [] ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : Optional[int] ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) snake_case__ : Union[str, Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) snake_case__ : Optional[Any] = [ f"This is another {tokenizer.mask_token} test", ] return fill_masker, examples def lowerCamelCase ( self : List[str] , snake_case_ : Any , snake_case_ : str ): snake_case__ : int = fill_masker.tokenizer snake_case__ : Tuple = fill_masker.model snake_case__ : Optional[Any] = fill_masker( f"This is a {tokenizer.mask_token}" , ) self.assertEqual( __snake_case , [ {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, ] , ) snake_case__ : int = fill_masker([f"This is a {tokenizer.mask_token}"] ) self.assertEqual( __snake_case , [ {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, ] , ) snake_case__ : Union[str, Any] = fill_masker([f"This is a {tokenizer.mask_token}", f"Another {tokenizer.mask_token} great test."] ) self.assertEqual( __snake_case , [ [ {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, ], [ {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, ], ] , ) with self.assertRaises(__snake_case ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__snake_case ): fill_masker("""This is""" ) self.run_test_top_k(__snake_case , __snake_case ) self.run_test_targets(__snake_case , __snake_case ) self.run_test_top_k_targets(__snake_case , __snake_case ) self.fill_mask_with_duplicate_targets_and_top_k(__snake_case , __snake_case ) self.fill_mask_with_multiple_masks(__snake_case , __snake_case ) def lowerCamelCase ( self : Any , snake_case_ : Any , snake_case_ : List[Any] ): snake_case__ : Tuple = tokenizer.get_vocab() snake_case__ : List[str] = sorted(vocab.keys() )[:2] # Pipeline argument snake_case__ : Any = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , targets=__snake_case ) snake_case__ : Dict = fill_masker(f"This is a {tokenizer.mask_token}" ) self.assertEqual( __snake_case , [ {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, ] , ) snake_case__ : Any = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __snake_case ) snake_case__ : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__snake_case ) ) # Call argument snake_case__ : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) snake_case__ : Union[str, Any] = fill_masker(f"This is a {tokenizer.mask_token}" , targets=__snake_case ) self.assertEqual( __snake_case , [ {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, ] , ) snake_case__ : Tuple = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __snake_case ) snake_case__ : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__snake_case ) ) # Score equivalence snake_case__ : int = fill_masker(f"This is a {tokenizer.mask_token}" , targets=__snake_case ) snake_case__ : int = [top_mask['''token_str'''] for top_mask in outputs] snake_case__ : Optional[int] = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ) == set(__snake_case ): snake_case__ : List[str] = fill_masker(f"This is a {tokenizer.mask_token}" , targets=__snake_case ) snake_case__ : str = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) # Raises with invalid with self.assertRaises(__snake_case ): snake_case__ : Any = fill_masker(f"This is a {tokenizer.mask_token}" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__snake_case ): snake_case__ : Union[str, Any] = fill_masker(f"This is a {tokenizer.mask_token}" , targets=[""""""] ) with self.assertRaises(__snake_case ): snake_case__ : Any = fill_masker(f"This is a {tokenizer.mask_token}" , targets="""""" ) def lowerCamelCase ( self : Optional[Any] , snake_case_ : Any , snake_case_ : Optional[int] ): snake_case__ : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , top_k=2 ) snake_case__ : Optional[int] = fill_masker(f"This is a {tokenizer.mask_token}" ) self.assertEqual( __snake_case , [ {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, ] , ) snake_case__ : Union[str, Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) snake_case__ : Tuple = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( __snake_case , [ {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, ] , ) self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) def lowerCamelCase ( self : Dict , snake_case_ : List[Any] , snake_case_ : Tuple ): snake_case__ : List[str] = tokenizer.get_vocab() snake_case__ : Optional[int] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) # top_k=2, ntargets=3 snake_case__ : Union[str, Any] = sorted(vocab.keys() )[:3] snake_case__ : Any = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=2 , targets=__snake_case ) # If we use the most probably targets, and filter differently, we should still # have the same results snake_case__ : Union[str, Any] = [el['''token_str'''] for el in sorted(__snake_case , key=lambda snake_case_ : x["score"] , reverse=__snake_case )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ).issubset(__snake_case ): snake_case__ : Tuple = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=3 , targets=__snake_case ) # They should yield exactly the same result self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) def lowerCamelCase ( self : Tuple , snake_case_ : Dict , snake_case_ : Dict ): snake_case__ : List[str] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) snake_case__ : str = tokenizer.get_vocab() # String duplicates + id duplicates snake_case__ : Optional[int] = sorted(vocab.keys() )[:3] snake_case__ : Union[str, Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] snake_case__ : List[Any] = fill_masker(f"My name is {tokenizer.mask_token}" , targets=__snake_case , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__snake_case ) , 3 ) def lowerCamelCase ( self : Tuple , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ): snake_case__ : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) snake_case__ : Optional[Any] = fill_masker( f"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( __snake_case , [ [ {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, ], [ {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, ], [ {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, {"""sequence""": ANY(__snake_case ), """score""": ANY(__snake_case ), """token""": ANY(__snake_case ), """token_str""": ANY(__snake_case )}, ], ] , )
35
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if len(_lowerCAmelCase ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(_lowerCAmelCase ) or left < -len(_lowerCAmelCase ) or right >= len(_lowerCAmelCase ) or right < -len(_lowerCAmelCase ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid] UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
23
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _A = None _A = logging.get_logger(__name__) _A = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _A = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } _A = { "facebook/mbart-large-en-ro": 1_024, "facebook/mbart-large-cc25": 1_024, } # fmt: off _A = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class lowercase_ ( A__ ): A__ : List[str] = VOCAB_FILES_NAMES A__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = ["""input_ids""", """attention_mask"""] A__ : Dict = MBartTokenizer A__ : List[str] = [] A__ : int = [] def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( vocab_file=__snake_case , tokenizer_file=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCamelCase_ = vocab_file UpperCamelCase_ = False if not self.vocab_file else True UpperCamelCase_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) UpperCamelCase_ = { lang_code: self.convert_tokens_to_ids(__snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase_ = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase_ = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self._src_lang @src_lang.setter def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCamelCase_ = src_lang UpperCamelCase_ = self(__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , **__snake_case ) UpperCamelCase_ = self.convert_tokens_to_ids(__snake_case ) UpperCamelCase_ = tgt_lang_id return inputs def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = "en_XX" , __UpperCamelCase = None , __UpperCamelCase = "ro_RO" , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = src_lang UpperCamelCase_ = tgt_lang return super().prepare_seqaseq_batch(__snake_case , __snake_case , **__snake_case ) def lowerCamelCase_ ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase_ ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.convert_tokens_to_ids(__snake_case ) UpperCamelCase_ = [] UpperCamelCase_ = [self.eos_token_id, self.cur_lang_code] UpperCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.convert_tokens_to_ids(__snake_case ) UpperCamelCase_ = [] UpperCamelCase_ = [self.eos_token_id, self.cur_lang_code] UpperCamelCase_ = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase_ = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase_ = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return UpperCamelCase_ = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
122
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : str = self.unet.config.sample_size UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size) UpperCAmelCase : int = self.unet UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma UpperCAmelCase : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(__snake_case ) self.scheduler.set_sigmas(__snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample # prediction step UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean UpperCAmelCase : int = sample_mean.clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__snake_case )
23
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =FileLock(str(tmpdir / 'foo.lock' ) ) SCREAMING_SNAKE_CASE =FileLock(str(tmpdir / 'foo.lock' ) ) SCREAMING_SNAKE_CASE =0.01 with locka.acquire(): with pytest.raises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE =time.time() locka.acquire(_lowerCAmelCase ) assert time.time() - _start > timeout def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE ='''a''' * 1000 + '''.lock''' SCREAMING_SNAKE_CASE =FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(_lowerCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 SCREAMING_SNAKE_CASE =FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_lowerCAmelCase ): locka.acquire(0 )
334
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """MCTCTFeatureExtractor""" lowerCamelCase__ = """AutoTokenizer""" def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str: super().__init__(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = self.feature_extractor UpperCAmelCase : Union[str, Any] = False def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) UpperCAmelCase : int = kwargs.pop('''raw_speech''' ) else: UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case ) UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : Any = args[0] UpperCAmelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase : str = encodings['''input_ids'''] return inputs def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : List[str] = args[0] UpperCAmelCase : List[Any] = args[1:] if input_features is not None: UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case ) if labels is not None: UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase : List[str] = labels['''input_ids'''] return input_features def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def A ( self : Any ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) UpperCAmelCase : Dict = True UpperCAmelCase : List[Any] = self.tokenizer yield UpperCAmelCase : Tuple = self.feature_extractor UpperCAmelCase : List[Any] = False
23
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _lowerCAmelCase : int = datasets.utils.logging.get_logger(__name__) @dataclass class __magic_name__ ( datasets.BuilderConfig ): SCREAMING_SNAKE_CASE = 1_0_0_0_0 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None class __magic_name__ ( datasets.ArrowBasedBuilder ): SCREAMING_SNAKE_CASE = ParquetConfig def __magic_name__ ( self ) -> str: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) __a =dl_manager.download_and_extract(self.config.data_files ) if isinstance(__snake_case , (str, list, tuple) ): __a =data_files if isinstance(__snake_case , __snake_case ): __a =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __a =[dl_manager.iter_files(__snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] __a =[] for split_name, files in data_files.items(): if isinstance(__snake_case , __snake_case ): __a =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __a =[dl_manager.iter_files(__snake_case ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__snake_case ): with open(__snake_case , 'rb' ) as f: __a =datasets.Features.from_arrow_schema(pq.read_schema(__snake_case ) ) break splits.append(datasets.SplitGenerator(name=__snake_case , gen_kwargs={'files': files} ) ) return splits def __magic_name__ ( self , __snake_case ) -> pa.Table: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __a =table_cast(__snake_case , self.info.features.arrow_schema ) return pa_table def __magic_name__ ( self , __snake_case ) -> Dict: '''simple docstring''' __a =self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(__snake_case ) ): with open(__snake_case , 'rb' ) as f: __a =pq.ParquetFile(__snake_case ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __a =pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(__snake_case ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(__snake_case )}: {e}' ) raise
218
'''simple docstring''' from math import isclose, sqrt def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]: UpperCAmelCase : Optional[int] = point_y / 4 / point_x UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4 UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase : List[str] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : float = first_x_coord UpperCAmelCase : float = first_y_coord UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
23
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Tuple = logging.get_logger(__name__) _A : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class _lowercase ( A__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = """mra""" def __init__( self : int , SCREAMING_SNAKE_CASE__ : Tuple=5_02_65 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=12 , SCREAMING_SNAKE_CASE__ : Tuple=30_72 , SCREAMING_SNAKE_CASE__ : str="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_12 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : Dict=0.0_2 , SCREAMING_SNAKE_CASE__ : int=1e-5 , SCREAMING_SNAKE_CASE__ : str="absolute" , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : List[str]="full" , SCREAMING_SNAKE_CASE__ : Any=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE__ : Any=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , **SCREAMING_SNAKE_CASE__ : int , ) -> str: super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = type_vocab_size __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = block_per_row __lowerCAmelCase = approx_mode __lowerCAmelCase = initial_prior_first_n_blocks __lowerCAmelCase = initial_prior_diagonal_n_blocks
229
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__: str = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Union[str, Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Union[str, Any]: '''simple docstring''' for param, grad_param in zip(model_a.parameters() ,model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad ,grad_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad ,grad_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case=True ) -> Any: '''simple docstring''' model.train() lowerCamelCase__ = model(_lowerCAmelCase ) lowerCamelCase__ = F.mse_loss(_lowerCAmelCase ,target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCAmelCase ) def lowerCAmelCase__(__snake_case ,__snake_case=False ) -> str: '''simple docstring''' set_seed(42 ) lowerCamelCase__ = RegressionModel() lowerCamelCase__ = deepcopy(_lowerCAmelCase ) lowerCamelCase__ = RegressionDataset(length=80 ) lowerCamelCase__ = DataLoader(_lowerCAmelCase ,batch_size=16 ) model.to(accelerator.device ) if sched: lowerCamelCase__ = AdamW(params=model.parameters() ,lr=1E-3 ) lowerCamelCase__ = AdamW(params=ddp_model.parameters() ,lr=1E-3 ) lowerCamelCase__ = LambdaLR(_lowerCAmelCase ,lr_lambda=lambda __snake_case : epoch**0.6_5 ) lowerCamelCase__ = LambdaLR(_lowerCAmelCase ,lr_lambda=lambda __snake_case : epoch**0.6_5 ) # Make a copy of `model` if sched: lowerCamelCase__ = accelerator.prepare(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) else: lowerCamelCase__ = accelerator.prepare(_lowerCAmelCase ,_lowerCAmelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase__(__snake_case ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = get_training_setup(_lowerCAmelCase ) # Use a single batch lowerCamelCase__ = next(iter(_lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCamelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCamelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCAmelCase ): step_model(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) else: # Sync grads step_model(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad ,ddp_param.grad ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCamelCase__ = ddp_input[torch.randperm(len(_lowerCAmelCase ) )] def lowerCAmelCase__(__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = get_training_setup(_lowerCAmelCase ) # Use a single batch lowerCamelCase__ = next(iter(_lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCamelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCamelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCAmelCase ): step_model(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) else: # Sync grads step_model(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is False ), F'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is True ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCamelCase__ = ddp_input[torch.randperm(len(_lowerCAmelCase ) )] def lowerCAmelCase__(__snake_case=False ,__snake_case=False ) -> Dict: '''simple docstring''' lowerCamelCase__ = Accelerator( split_batches=_lowerCAmelCase ,dispatch_batches=_lowerCAmelCase ,gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCamelCase__ = get_training_setup(_lowerCAmelCase ) for iteration, batch in enumerate(_lowerCAmelCase ): lowerCamelCase__ = batch.values() # Gather the distributed inputs and targs for the base model lowerCamelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCamelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCAmelCase ): step_model(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() ,ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCAmelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad ,ddp_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) lowerCamelCase__ = ddp_input[torch.randperm(len(_lowerCAmelCase ) )] GradientState._reset_state() def lowerCAmelCase__(__snake_case=False ,__snake_case=False ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ = Accelerator( split_batches=_lowerCAmelCase ,dispatch_batches=_lowerCAmelCase ,gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCamelCase__ = get_training_setup(_lowerCAmelCase ,_lowerCAmelCase ) for iteration, batch in enumerate(_lowerCAmelCase ): lowerCamelCase__ = batch.values() # Gather the distributed inputs and targs for the base model lowerCamelCase__ = accelerator.gather((ddp_input, ddp_target) ) lowerCamelCase__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCAmelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCAmelCase ): step_model(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' lowerCamelCase__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCAmelCase )) if accelerator.num_processes > 1: check_model_parameters(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def lowerCAmelCase__() -> Tuple: '''simple docstring''' lowerCamelCase__ = Accelerator() lowerCamelCase__ = RegressionDataset(length=80 ) lowerCamelCase__ = DataLoader(_lowerCAmelCase ,batch_size=16 ) lowerCamelCase__ = RegressionDataset(length=96 ) lowerCamelCase__ = DataLoader(_lowerCAmelCase ,batch_size=16 ) lowerCamelCase__ = accelerator.prepare(_lowerCAmelCase ,_lowerCAmelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCAmelCase ) if iteration < len(_lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_lowerCAmelCase ) if batch_num < len(_lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase__() -> Optional[int]: '''simple docstring''' lowerCamelCase__ = Accelerator() lowerCamelCase__ = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(_lowerCAmelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(_lowerCAmelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' ,F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' ,) test_gradient_accumulation(_lowerCAmelCase ,_lowerCAmelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' ,'''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' ,'''`split_batches=False`, `dispatch_batches=False`**''' ,) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' ,F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' ,) test_gradient_accumulation_with_opt_and_scheduler(_lowerCAmelCase ,_lowerCAmelCase ) def lowerCAmelCase__(__snake_case ) -> Tuple: '''simple docstring''' main() if __name__ == "__main__": main()
209
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AltDiffusionPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def A ( self : Dict ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase : Dict = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCAmelCase : List[Any] = CLIPTextModel(__snake_case ) UpperCAmelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) UpperCAmelCase : Optional[int] = 77 UpperCAmelCase : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str]=0 ) -> Union[str, Any]: if str(__snake_case ).startswith('''mps''' ): UpperCAmelCase : str = torch.manual_seed(__snake_case ) else: UpperCAmelCase : Tuple = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Union[str, Any] ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def A ( self : Tuple ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Any = self.get_dummy_components() torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase : List[str] = RobertaSeriesModelWithTransformation(__snake_case ) UpperCAmelCase : str = text_encoder UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case ) UpperCAmelCase : str = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : Optional[int] = '''A photo of an astronaut''' UpperCAmelCase : List[Any] = alt_pipe(**__snake_case ) UpperCAmelCase : Optional[Any] = output.images UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : int = PNDMScheduler(skip_prk_steps=__snake_case ) torch.manual_seed(0 ) UpperCAmelCase : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase : Union[str, Any] = RobertaSeriesModelWithTransformation(__snake_case ) UpperCAmelCase : Union[str, Any] = text_encoder UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case ) UpperCAmelCase : Dict = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : int = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : Optional[int] = alt_pipe(**__snake_case ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[int] = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ) -> Any: # make sure here that pndm scheduler skips prk UpperCAmelCase : List[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=__snake_case ) UpperCAmelCase : Tuple = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Any = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = alt_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : Tuple ) -> int: UpperCAmelCase : int = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) UpperCAmelCase : Tuple = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=__snake_case , safety_checker=__snake_case ) UpperCAmelCase : Dict = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Tuple = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : List[Any] = alt_pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='''numpy''' ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
23
0
"""simple docstring""" from __future__ import annotations from typing import Any def _UpperCAmelCase ( __lowerCamelCase : list[Any] ) -> None: create_state_space_tree(_lowerCAmelCase , [] , 0 ) def _UpperCAmelCase ( __lowerCamelCase : list[Any] , __lowerCamelCase : list[Any] , __lowerCamelCase : int ) -> None: if index == len(_lowerCAmelCase ): print(_lowerCAmelCase ) return create_state_space_tree(_lowerCAmelCase , _lowerCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_lowerCAmelCase , _lowerCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": UpperCAmelCase__ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
288
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Optional[int]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ) -> Dict: UpperCAmelCase : Dict = tmp_path / '''cache''' UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : str = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> Optional[int]: UpperCAmelCase : Any = tmp_path / '''cache''' UpperCAmelCase : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Any = features.copy() if features else default_expected_features UpperCAmelCase : List[Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Dict = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ) -> Tuple: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : Optional[int] = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} UpperCAmelCase : int = features.copy() if features else default_expected_features UpperCAmelCase : Any = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> Union[str, Any]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCAmelCase : Tuple = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} UpperCAmelCase : List[str] = features.copy() UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = tmp_path / '''cache''' UpperCAmelCase : List[str] = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> Optional[Any]: UpperCAmelCase : Any = tmp_path / '''cache''' UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : List[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Dict: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : str = jsonl_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Dict = [jsonl_path] UpperCAmelCase : int = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[int] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=("train",) ) -> Union[str, Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: UpperCAmelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ) -> Any: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Optional[int] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : Dict = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = JsonDatasetReader({'''train''': jsonl_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> Union[str, Any]: if split: UpperCAmelCase : Optional[int] = {split: jsonl_path} else: UpperCAmelCase : Any = '''train''' UpperCAmelCase : Any = {'''train''': jsonl_path, '''test''': jsonl_path} UpperCAmelCase : Tuple = tmp_path / '''cache''' UpperCAmelCase : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict ) -> str: return [json.loads(_lowerCAmelCase ) for line in buffer] class SCREAMING_SNAKE_CASE: """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[Any] ) -> List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def A ( self : str , __snake_case : str , __snake_case : str , __snake_case : int ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : Any = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A ( self : Any , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : List[str] = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 def A ( self : List[Any] , __snake_case : str ) -> Dict: with pytest.raises(__snake_case ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def A ( self : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Union[str, Any]: UpperCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / F"""test.json.{extension}""" UpperCAmelCase : List[Any] = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: UpperCAmelCase : str = f.read() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: UpperCAmelCase : Optional[int] = f.read() assert exported_content == original_content
23
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : str = {} class __snake_case ( A__ ): lowerCAmelCase_ = "llama" lowerCAmelCase_ = ["past_key_values"] def __init__( self : str , _lowercase : Any=3_20_00 , _lowercase : int=40_96 , _lowercase : Optional[Any]=1_10_08 , _lowercase : int=32 , _lowercase : Any=32 , _lowercase : Any=None , _lowercase : Union[str, Any]="silu" , _lowercase : List[str]=20_48 , _lowercase : Optional[int]=0.02 , _lowercase : Any=1E-6 , _lowercase : Tuple=True , _lowercase : int=0 , _lowercase : int=1 , _lowercase : Any=2 , _lowercase : Dict=1 , _lowercase : Any=False , _lowercase : Any=None , **_lowercase : List[Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads # for backward compatibility if num_key_value_heads is None: SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = num_key_value_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = rms_norm_eps SCREAMING_SNAKE_CASE__ = pretraining_tp SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , tie_word_embeddings=__snake_case , **__snake_case , ) def __a ( self : int ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) SCREAMING_SNAKE_CASE__ = self.rope_scaling.get("""type""" , __snake_case ) SCREAMING_SNAKE_CASE__ = self.rope_scaling.get("""factor""" , __snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__snake_case , __snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
219
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Tuple = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} UpperCamelCase__: Optional[int] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } UpperCamelCase__: Dict = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } UpperCamelCase__: Tuple = "▁" class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="</s>" , __snake_case : Any="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Dict , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase : Optional[int] = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) UpperCAmelCase : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCAmelCase : Optional[Any] = len(self.sp_model ) - 1 UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] UpperCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Tuple = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : Dict ) -> Optional[int]: return len(self.sp_model ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Optional[Any] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def A ( self : int , __snake_case : int ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(__snake_case ) return spm_id if spm_id else self.unk_token_id def A ( self : int , __snake_case : Any ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__snake_case ) def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : int = '''''' UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token UpperCAmelCase : str = True UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(__snake_case ) UpperCAmelCase : Optional[int] = False out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.__dict__.copy() UpperCAmelCase : Any = None return state def __setstate__( self : Optional[int] , __snake_case : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
23
0
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(_lowerCAmelCase ) * abs(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
49
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @classmethod def A ( cls : Union[str, Any] ) -> int: UpperCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(__snake_case ) @classmethod def A ( cls : List[str] ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : int ) -> Tuple: UpperCAmelCase : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]: UpperCAmelCase : str = True UpperCAmelCase : int = flatten_dict(modela.params ) UpperCAmelCase : Dict = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase : Dict = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : int = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) ) with self.assertRaises(__snake_case ): UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : Optional[int] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(__snake_case ): UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : Optional[int] ) -> str: UpperCAmelCase : Dict = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case ) def A ( self : Dict ) -> List[Any]: UpperCAmelCase : Optional[int] = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case )
23
0
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowercase__ :str = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } lowercase__ :Tuple = "ETAOINSHRDLCUMWFGYPBVKJXQZ" lowercase__ :Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return x[0] def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = get_letter_count(_lowerCAmelCase ) lowercase = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_lowerCAmelCase ) lowercase = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_lowerCAmelCase ) lowercase = ''''''.join(freq_to_letter[freq] ) lowercase = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_lowerCAmelCase , reverse=_lowerCAmelCase ) lowercase = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_lowerCAmelCase ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = get_frequency_order(_lowerCAmelCase ) lowercase = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
101
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Optional[int] , __snake_case : str , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=8 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : int=True , __snake_case : List[Any]=99 , __snake_case : str=16 , __snake_case : Tuple=5 , __snake_case : Tuple=2 , __snake_case : str=36 , __snake_case : Dict="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=512 , __snake_case : Optional[Any]=16 , __snake_case : int=2 , __snake_case : int=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : str=None , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : int = use_input_mask UpperCAmelCase : Any = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : Optional[int] = num_choices UpperCAmelCase : Any = scope def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : str = None UpperCAmelCase : Tuple = None UpperCAmelCase : int = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : int ) -> Tuple: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[Any] = self.get_config() UpperCAmelCase : int = 300 return config def A ( self : Optional[Any] ) -> Any: ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = self.prepare_config_and_inputs() UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[Any] ) -> List[str]: UpperCAmelCase : int = MraModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Optional[int] = model(__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Dict = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[Any] , ) -> Tuple: UpperCAmelCase : str = True UpperCAmelCase : Tuple = MraModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) UpperCAmelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , ) UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int ) -> Any: UpperCAmelCase : Dict = MraForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Dict , __snake_case : Any , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = MraForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int: UpperCAmelCase : int = self.num_labels UpperCAmelCase : Union[str, Any] = MraForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> int: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : List[str] = MraForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : str , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.num_choices UpperCAmelCase : int = MraForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str ) -> Dict: UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = () def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = MraModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A ( self : Optional[Any] ) -> str: self.config_tester.run_common_tests() def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__snake_case ) def A ( self : Tuple ) -> Dict: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def A ( self : Tuple ) -> List[str]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def A ( self : Dict ) -> Optional[int]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def A ( self : Any ) -> Optional[int]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def A ( self : Dict ) -> Any: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = MraModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''MRA does not output attentions''' ) def A ( self : str ) -> Optional[Any]: return @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @slow def A ( self : Tuple ) -> List[Any]: UpperCAmelCase : int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Optional[Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Any = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[int] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : int = 50265 UpperCAmelCase : int = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : str ) -> List[Any]: UpperCAmelCase : List[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) UpperCAmelCase : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : Tuple = model(__snake_case )[0] UpperCAmelCase : Optional[int] = 50265 UpperCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Optional[int] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
23
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging _SCREAMING_SNAKE_CASE = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] _SCREAMING_SNAKE_CASE = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = " Hello world! cécé herlolip" _SCREAMING_SNAKE_CASE = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCamelCase = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' UpperCamelCase = dct.pop(_lowerCAmelCase ) UpperCamelCase = val def lowercase( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = torch.load(_lowerCAmelCase , map_location="""cpu""" ) UpperCamelCase = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = emb.weight.shape UpperCamelCase = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> List[Any]: '''simple docstring''' if not os.path.exists(_lowerCAmelCase ): UpperCamelCase = torch.hub.load("""pytorch/fairseq""" , _lowerCAmelCase ).eval() else: UpperCamelCase = load_xsum_checkpoint(_lowerCAmelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: UpperCamelCase = checkpoint_path.replace(""".""" , """-""" ) UpperCamelCase = BartConfig.from_pretrained(_lowerCAmelCase ) UpperCamelCase = bart.encode(_lowerCAmelCase ).unsqueeze(0 ) UpperCamelCase = BartTokenizer.from_pretrained(_lowerCAmelCase ).encode(_lowerCAmelCase , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(_lowerCAmelCase , _lowerCAmelCase ).all(): raise ValueError( f"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": UpperCamelCase = bart.state_dict() remove_ignore_keys_(_lowerCAmelCase ) UpperCamelCase = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase = BartForSequenceClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) UpperCamelCase = bart.predict("""mnli""" , _lowerCAmelCase , return_logits=_lowerCAmelCase ) UpperCamelCase = model(_lowerCAmelCase )[0] # logits else: # no classification heads to worry about UpperCamelCase = bart.model.state_dict() remove_ignore_keys_(_lowerCAmelCase ) UpperCamelCase = state_dict['''decoder.embed_tokens.weight'''] UpperCamelCase = bart.extract_features(_lowerCAmelCase ) if hf_checkpoint_name == "facebook/bart-large": UpperCamelCase = BartModel(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) UpperCamelCase = model(_lowerCAmelCase ).model[0] else: UpperCamelCase = BartForConditionalGeneration(_lowerCAmelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(_lowerCAmelCase ) if hasattr(_lowerCAmelCase , """lm_head""" ): UpperCamelCase = make_linear_from_emb(model.model.shared ) UpperCamelCase = model.model(_lowerCAmelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
343
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Any ) -> str: UpperCAmelCase : Any = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } UpperCAmelCase : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(__snake_case ) , __snake_case ) def A ( self : int ) -> str: UpperCAmelCase : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__snake_case ) , x.transpose() ) ) UpperCAmelCase : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A ( self : str ) -> Union[str, Any]: UpperCAmelCase : Any = np.random.randn(3 , 4 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Tuple = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Any = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Optional[Any]: UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : str = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A ( self : Tuple ) -> Any: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , np.asarray(transpose(__snake_case ) ) ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(__snake_case , axes=(1, 2, 0) ) ) ) ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.reshape(__snake_case , (4, 3) ) ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.reshape(__snake_case , (12, 5) ) ) ) @require_torch def A ( self : Union[str, Any] ) -> int: UpperCAmelCase : Dict = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_tf def A ( self : int ) -> List[str]: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_flax def A ( self : Any ) -> Dict: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.asarray(reshape(__snake_case , (4, 3) ) ) ) ) UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.asarray(reshape(__snake_case , (12, 5) ) ) ) ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.squeeze(__snake_case ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.squeeze(__snake_case , axis=2 ) ) ) @require_torch def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : List[str] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : str = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_tf def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_flax def A ( self : List[Any] ) -> Dict: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.asarray(squeeze(__snake_case ) ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.asarray(squeeze(__snake_case , axis=2 ) ) ) ) def A ( self : Optional[Any] ) -> int: UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.expand_dims(__snake_case , axis=1 ) ) ) @require_torch def A ( self : List[str] ) -> Tuple: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Tuple = torch.tensor(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Any = tf.constant(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_flax def A ( self : Any ) -> List[Any]: UpperCAmelCase : List[str] = np.random.randn(3 , 4 ) UpperCAmelCase : str = jnp.array(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.asarray(expand_dims(__snake_case , axis=1 ) ) ) )
23
0
'''simple docstring''' import enum import shutil import sys __a = shutil.get_terminal_size() __a = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"} class UpperCAmelCase_ ( enum.Enum ): """simple docstring""" lowercase = 0 lowercase = 1 def __snake_case( _lowerCAmelCase , _lowerCAmelCase="" ) -> Tuple: sys.stdout.write(str(_lowerCAmelCase ) + end ) sys.stdout.flush() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="" ) -> List[str]: forceWrite(f"\u001b[{color}m{content}\u001b[0m" , _lowerCAmelCase ) def __snake_case( ) -> Any: forceWrite("""\r""" ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: forceWrite(f"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}" ) def __snake_case( ) -> List[str]: forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def __snake_case( ) -> int: reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
35
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase__: Union[str, Any] = "examples/" UpperCamelCase__: Optional[Any] = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } UpperCamelCase__: Optional[int] = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } UpperCamelCase__: List[Any] = "README.md" def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> Optional[int]: with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[int] = f.read() UpperCAmelCase , UpperCAmelCase : List[Any] = REPLACE_PATTERNS[pattern] UpperCAmelCase : List[Any] = replace.replace('''VERSION''' , _lowerCAmelCase ) UpperCAmelCase : Optional[Any] = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[int]: for folder, directories, fnames in os.walk(_lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='''examples''' ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=False ) -> List[str]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not patch: update_version_in_examples(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: UpperCAmelCase : Optional[int] = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase : Optional[int] = '''1. Want to contribute a new model?''' with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[Any] = f.readlines() # Find the start of the list. UpperCAmelCase : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase : Optional[int] = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase : Union[str, Any] = f.read() UpperCAmelCase : int = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0] return packaging.version.parse(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase : Optional[int] = default_version.base_version elif patch: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase : Dict = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Tuple = default_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase ) def snake_case_ ( ) -> Any: UpperCAmelCase : List[Any] = get_version() UpperCAmelCase : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase : List[Any] = current_version.base_version # Check with the user we got that right. UpperCAmelCase : Optional[int] = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Dict = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") UpperCamelCase__: Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
23
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCamelCase__: Tuple = numpy.array([0, 0]) UpperCamelCase__: Union[str, Any] = numpy.array([0.5, 0.8660254]) UpperCamelCase__: Dict = numpy.array([1, 0]) UpperCamelCase__: int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] , _lowerCAmelCase : int ) -> list[numpy.ndarray]: UpperCAmelCase : Union[str, Any] = initial_vectors for _ in range(_lowerCAmelCase ): UpperCAmelCase : Union[str, Any] = iteration_step(_lowerCAmelCase ) return vectors def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> list[numpy.ndarray]: UpperCAmelCase : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase : List[str] = vectors[i + 1] new_vectors.append(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def snake_case_ ( _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : float ) -> numpy.ndarray: UpperCAmelCase : List[str] = numpy.radians(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Tuple = numpy.cos(_lowerCAmelCase ), numpy.sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> None: UpperCAmelCase : List[Any] = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase , UpperCAmelCase : str = zip(*_lowerCAmelCase ) plt.plot(_lowerCAmelCase , _lowerCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__: List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
23
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =10 def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =[1, 2, 3, 4] SCREAMING_SNAKE_CASE =[1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__snake_case ,self.block_size ,0 ) ,__snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] SCREAMING_SNAKE_CASE =[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__snake_case ,self.block_size ,0 ) ,__snake_case ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] SCREAMING_SNAKE_CASE =[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__snake_case ,self.block_size ,0 ) ,__snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE ='''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' SCREAMING_SNAKE_CASE =process_story(__snake_case ) self.assertEqual(__snake_case ,[] ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE ='''''' SCREAMING_SNAKE_CASE =process_story(__snake_case ) self.assertEqual(__snake_case ,[] ) self.assertEqual(__snake_case ,[] ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) SCREAMING_SNAKE_CASE =process_story(__snake_case ) SCREAMING_SNAKE_CASE =[ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(__snake_case ,__snake_case ) SCREAMING_SNAKE_CASE =['''It was the best of times.'''] self.assertEqual(__snake_case ,__snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =torch.tensor([1, 2, 3, 4] ) SCREAMING_SNAKE_CASE =torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__snake_case ,0 ).numpy() ,expected.numpy() ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =torch.tensor([1, 2, 3, 4, 23, 23, 23] ) SCREAMING_SNAKE_CASE =torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__snake_case ,23 ).numpy() ,expected.numpy() ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =torch.tensor([8, 2, 3, 4, 1, 1, 1] ) SCREAMING_SNAKE_CASE =torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__snake_case ,1 ).numpy() ,expected.numpy() ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =101 SCREAMING_SNAKE_CASE =torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) SCREAMING_SNAKE_CASE =torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) SCREAMING_SNAKE_CASE =compute_token_type_ids(__snake_case ,__snake_case ) np.testing.assert_array_equal(__snake_case ,__snake_case )
334
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase : Dict = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Optional[Any] = Text('''CPU''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''GPU''' , font_size=24 ) UpperCAmelCase : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''Model''' , font_size=24 ) UpperCAmelCase : Tuple = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) UpperCAmelCase : Any = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = Text('''Loaded Checkpoint''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) UpperCAmelCase : Tuple = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase : List[Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) UpperCAmelCase : Tuple = [] UpperCAmelCase : int = [] for i, rect in enumerate(__snake_case ): UpperCAmelCase : Any = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) UpperCAmelCase : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
23
0
import os import sys import unittest _lowerCAmelCase : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _lowerCAmelCase : Optional[Any] = os.path.join(git_repo_path, "src", "transformers") _lowerCAmelCase : List[Any] = "\n{0} = None\n" _lowerCAmelCase : Optional[Any] = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" _lowerCAmelCase : List[str] = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(__snake_case ) __a =find_backend(' if not is_tokenizers_available():' ) self.assertEqual(__snake_case , 'tokenizers' ) __a =find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(__snake_case , 'tensorflow_text' ) __a =find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(__snake_case , 'sentencepiece_and_tokenizers' ) __a =find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(__snake_case , 'sentencepiece_and_tensorflow_text' ) __a =find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(__snake_case , 'sentencepiece_and_tokenizers_and_vision' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , __snake_case ) self.assertIn('tensorflow_text' , __snake_case ) self.assertIn('sentencepiece_and_tokenizers' , __snake_case ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(__snake_case , '\nCONSTANT = None\n' ) __a =create_dummy_object('function' , '\'torch\'' ) self.assertEqual( __snake_case , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) __a =''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' __a =create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(__snake_case , __snake_case ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a ='''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' __a =create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , __snake_case )
218
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) UpperCamelCase__: str = None UpperCamelCase__: int = { "7B": 11008, "13B": 13824, "30B": 17920, "65B": 22016, "70B": 28672, } UpperCamelCase__: List[Any] = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : List[Any]=256 ) -> Optional[Any]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: with open(_lowerCAmelCase , '''r''' ) as f: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ) -> Optional[Any]: with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=True ) -> List[Any]: os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp''' ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[str] = read_json(os.path.join(_lowerCAmelCase , '''params.json''' ) ) UpperCAmelCase : str = NUM_SHARDS[model_size] UpperCAmelCase : Any = params['''n_layers'''] UpperCAmelCase : str = params['''n_heads'''] UpperCAmelCase : Any = n_heads // num_shards UpperCAmelCase : List[str] = params['''dim'''] UpperCAmelCase : Optional[Any] = dim // n_heads UpperCAmelCase : str = 1_0_0_0_0.0 UpperCAmelCase : Optional[int] = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase : Tuple = params['''n_kv_heads'''] # for GQA / MQA UpperCAmelCase : Optional[int] = n_heads_per_shard // num_key_value_heads UpperCAmelCase : Optional[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase : List[str] = n_heads UpperCAmelCase : Optional[int] = n_heads_per_shard UpperCAmelCase : List[str] = dim # permute for sliced rotary def permute(_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=n_heads , _lowerCAmelCase : int=dim , _lowerCAmelCase : Dict=dim ): return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase ).transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase : int = torch.load(os.path.join(_lowerCAmelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded UpperCAmelCase : Optional[Any] = [ torch.load(os.path.join(_lowerCAmelCase , f"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' ) for i in range(_lowerCAmelCase ) ] UpperCAmelCase : Any = 0 UpperCAmelCase : str = {'''weight_map''': {}} for layer_i in range(_lowerCAmelCase ): UpperCAmelCase : Optional[Any] = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : Optional[int] = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase : List[str] = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } UpperCAmelCase : Union[str, Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) UpperCAmelCase : str = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Any = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : str = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Tuple = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : Any = inv_freq for k, v in state_dict.items(): UpperCAmelCase : List[Any] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[int] = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : str = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: UpperCAmelCase : Any = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(_lowerCAmelCase )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_lowerCAmelCase )] , dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase : Optional[int] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) # Write configs UpperCAmelCase : Union[str, Any] = {'''total_size''': param_count * 2} write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , '''pytorch_model.bin.index.json''' ) ) UpperCAmelCase : int = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 UpperCAmelCase : Tuple = params['''multiple_of'''] if '''multiple_of''' in params else 256 UpperCAmelCase : Any = LlamaConfig( hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_lowerCAmelCase , ) config.save_pretrained(_lowerCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> List[str]: # Initialize the tokenizer based on the `spm` model UpperCAmelCase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) UpperCAmelCase : List[Any] = tokenizer_class(_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) def snake_case_ ( ) -> List[Any]: UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=_lowerCAmelCase , help='''Whether or not to save using `safetensors`.''' ) UpperCAmelCase : List[Any] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCAmelCase : Optional[int] = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , _lowerCAmelCase ) if __name__ == "__main__": main()
23
0
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _A : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCamelCase_ ( snake_case_ : Union[List, PIL.Image.Image, torch.Tensor] ) -> List[str]: '''simple docstring''' warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , _lowerCAmelCase , ) if isinstance(_lowerCAmelCase , torch.Tensor ): return image elif isinstance(_lowerCAmelCase , PIL.Image.Image ): __lowerCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): __lowerCAmelCase = image[0].size __lowerCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __lowerCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] __lowerCAmelCase = np.concatenate(_lowerCAmelCase , axis=0 ) __lowerCAmelCase = np.array(_lowerCAmelCase ).astype(np.floataa ) / 2_55.0 __lowerCAmelCase = image.transpose(0 , 3 , 1 , 2 ) __lowerCAmelCase = 2.0 * image - 1.0 __lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): __lowerCAmelCase = torch.cat(_lowerCAmelCase , dim=0 ) return image def UpperCamelCase_ ( snake_case_ : Union[List, PIL.Image.Image, torch.Tensor] ) -> Tuple: '''simple docstring''' if isinstance(_lowerCAmelCase , torch.Tensor ): return mask elif isinstance(_lowerCAmelCase , PIL.Image.Image ): __lowerCAmelCase = [mask] if isinstance(mask[0] , PIL.Image.Image ): __lowerCAmelCase = mask[0].size __lowerCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowerCAmelCase = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] __lowerCAmelCase = np.concatenate(_lowerCAmelCase , axis=0 ) __lowerCAmelCase = mask.astype(np.floataa ) / 2_55.0 __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ) elif isinstance(mask[0] , torch.Tensor ): __lowerCAmelCase = torch.cat(_lowerCAmelCase , dim=0 ) return mask class _lowercase ( A__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = 42 _SCREAMING_SNAKE_CASE : int = 42 def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[torch.Tensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE__ : Union[torch.Tensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE__ : int = 2_50 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: __lowerCAmelCase = image __lowerCAmelCase = _preprocess_image(__snake_case ) __lowerCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCAmelCase = _preprocess_mask(__snake_case ) __lowerCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) __lowerCAmelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __lowerCAmelCase = original_image.shape __lowerCAmelCase = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__snake_case , __snake_case , __snake_case , self.device ) __lowerCAmelCase = eta __lowerCAmelCase = self.scheduler.timesteps[0] + 1 __lowerCAmelCase = generator[0] if isinstance(__snake_case , __snake_case ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __lowerCAmelCase = self.unet(__snake_case , __snake_case ).sample # compute previous image: x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ).prev_sample else: # compute the reverse: x_t-1 -> x_t __lowerCAmelCase = self.scheduler.undo_step(__snake_case , __snake_case , __snake_case ) __lowerCAmelCase = t __lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
229
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = cos(_lowerCAmelCase ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : Any = (1 - _cos) / 2 UpperCAmelCase : List[Any] = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Dict = 1 - alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Tuple = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = _sin / 2 UpperCAmelCase : Any = 0 UpperCAmelCase : int = -ba UpperCAmelCase : Optional[Any] = 1 + alpha UpperCAmelCase : List[Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : List[str] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : str = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 1 - alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Optional[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : str = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Union[str, Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha * big_a UpperCAmelCase : Union[str, Any] = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : Any = 1 - alpha / big_a UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : Optional[int] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : str = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Dict = big_a * (pmc + aaa) UpperCAmelCase : Any = 2 * big_a * mpc UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa) UpperCAmelCase : Optional[int] = ppmc + aaa UpperCAmelCase : Optional[Any] = -2 * pmpc UpperCAmelCase : Optional[Any] = ppmc - aaa UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : int = 10 ** (gain_db / 40) UpperCAmelCase : List[str] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Any = big_a * (ppmc + aaa) UpperCAmelCase : str = -2 * big_a * pmpc UpperCAmelCase : List[Any] = big_a * (ppmc - aaa) UpperCAmelCase : Optional[Any] = pmc + aaa UpperCAmelCase : Any = 2 * mpc UpperCAmelCase : str = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
23
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _a = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } _a = { "camembert-base": 512, } _a = "▁" class __A ( A__ ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] lowerCAmelCase_ = CamembertTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( __snake_case , tokenizer_file=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase__ = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
209
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: UpperCAmelCase : str = get_failure_array(_lowerCAmelCase ) # 2) Step through text searching for pattern UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern while i < len(_lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(_lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCAmelCase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( _lowerCAmelCase : str ) -> list[int]: UpperCAmelCase : Optional[Any] = [0] UpperCAmelCase : str = 0 UpperCAmelCase : List[str] = 1 while j < len(_lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCAmelCase : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(_lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) UpperCamelCase__: str = "abc1abc12" UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc" UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCamelCase__: Tuple = "ABABX" UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) UpperCamelCase__: Any = "AAAB" UpperCamelCase__: str = "ABAAAAAB" assert kmp(pattern, text) # Test 4) UpperCamelCase__: int = "abcdabcy" UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) UpperCamelCase__: List[str] = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
23
0
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowerCAmelCase__ ( unittest.TestCase ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) __a = ["""accelerate""", """launch"""] __a = Path.home() / """.cache/huggingface/accelerate""" __a = """default_config.yaml""" __a = config_folder / config_file __a = config_folder / """_default_config.yaml""" __a = Path("""tests/test_configs""" ) @classmethod def lowercase ( cls : int ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase ( cls : Dict ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase ( self : Union[str, Any] ): _snake_case = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase ( self : Any ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=__snake_case ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(__snake_case ), self.test_file_path] , env=os.environ.copy() ) def lowercase ( self : str ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowerCAmelCase__ ( unittest.TestCase ): __a = """test-tpu""" __a = """us-central1-a""" __a = """ls""" __a = ["""accelerate""", """tpu-config"""] __a = """cd /usr/share""" __a = """tests/test_samples/test_command_file.sh""" __a = """Running gcloud compute tpus tpu-vm ssh""" def lowercase ( self : List[Any] ): _snake_case = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __snake_case , ) def lowercase ( self : Union[str, Any] ): _snake_case = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __snake_case , ) def lowercase ( self : str ): _snake_case = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=__snake_case ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all''' , __snake_case , ) def lowercase ( self : str ): _snake_case = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __snake_case , ) def lowercase ( self : Optional[int] ): _snake_case = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all''' , __snake_case , ) def lowercase ( self : Union[str, Any] ): _snake_case = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all''' , __snake_case , ) def lowercase ( self : Tuple ): _snake_case = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all''' , __snake_case , ) def lowercase ( self : int ): _snake_case = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all''' , __snake_case , ) def lowercase ( self : Union[str, Any] ): _snake_case = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all''' , __snake_case , )
288
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCamelCase__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = {} with open(_lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(_lowerCAmelCase ): UpperCAmelCase : List[str] = line.strip() if line: UpperCAmelCase : str = line.split() UpperCAmelCase : Union[str, Any] = line_number UpperCAmelCase : List[Any] = words[0] UpperCAmelCase : Union[str, Any] = value return result def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Dict = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : int = shape_pointer.shape # let's reduce dimension UpperCAmelCase : Union[str, Any] = value[0] else: UpperCAmelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : int = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = value else: UpperCAmelCase : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]: UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Any = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase : List[Any] = key UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0] UpperCamelCase__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int: UpperCAmelCase : List[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase : str = '''weight_g''' elif "weight_v" in name: UpperCAmelCase : int = '''weight_v''' elif "bias" in name: UpperCAmelCase : int = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : List[str] = '''weight''' else: UpperCAmelCase : Dict = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : Dict = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : Any = True else: UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : Optional[int] = name.split('''.''' ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict: if config_path is not None: UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = idalabel UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase ) UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : Optional[int] = target_dict.eos_index UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , ) UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase ) else: UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCamelCase__: Any = parser.parse_args() UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
23
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __snake_case ( A__ , A__ , A__ , unittest.TestCase ): lowerCAmelCase_ = StableUnCLIPImgaImgPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase_ = frozenset([] ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE__ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__snake_case , projection_dim=__snake_case , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = StableUnCLIPImageNormalizer(embedding_dim=__snake_case ) SCREAMING_SNAKE_CASE__ = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__snake_case , layers_per_block=1 , upcast_attention=__snake_case , use_linear_projection=__snake_case , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="""v_prediction""" , set_alpha_to_one=__snake_case , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL() SCREAMING_SNAKE_CASE__ = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __a ( self : Dict , _lowercase : int , _lowercase : Union[str, Any]=0 , _lowercase : Union[str, Any]=True ): """simple docstring""" if str(__snake_case ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__snake_case ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) if pil_image: SCREAMING_SNAKE_CASE__ = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE__ = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE__ = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline(**__snake_case ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__snake_case ) inputs.update({"""image_embeds""": None} ) SCREAMING_SNAKE_CASE__ = sd_pipe(**__snake_case ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=__snake_case ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__snake_case ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __a ( self : Optional[Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__snake_case ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe(__snake_case , """anime turle""" , generator=__snake_case , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe(__snake_case , """anime turle""" , generator=__snake_case , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = pipe( __snake_case , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
219
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case ) UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )] UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case ) UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Tuple = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def A ( self : List[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : int = num_samples * [prompt] UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Tuple = shard(__snake_case ) UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : List[str] = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[int] = jax.device_count() UpperCAmelCase : List[str] = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : str = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) UpperCAmelCase : Tuple = scheduler.create_state() UpperCAmelCase : Dict = scheduler_state UpperCAmelCase : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : int = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Any = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : str = replicate(__snake_case ) UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def A ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , ) UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[str] = shard(__snake_case ) UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) UpperCAmelCase : int = replicate(__snake_case ) UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[Any] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : int = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __snake_case :List[Any] = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) __a = path + '''.py''' assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) __a = path + '''.py''' assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs __a = expected_configs[0] assert expected_config in infos __a = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos __a = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
49
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase : str = n - 1 UpperCAmelCase : List[Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase : List[str] = 0 while count < prec: UpperCAmelCase : int = random.randint(2 , n - 1 ) UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if b != 1: UpperCAmelCase : int = True for _ in range(_lowerCAmelCase ): if b == n - 1: UpperCAmelCase : Dict = False break UpperCAmelCase : str = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
23
0
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): def __init__( self ,A__ ,A__=1_3 ,A__=7 ,A__=True ,A__=True ,A__=True ,A__=True ,A__=9_9 ,A__=3_2 ,A__=5 ,A__=4 ,A__=3_7 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=1_6 ,A__=2 ,A__=0.02 ,A__=4 ,): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_choices def A__ ( self): lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) lowercase = None if self.use_attention_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length]) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size) lowercase = RobertaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__snake_case ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def A__ ( self): lowercase = self.prepare_config_and_inputs() lowercase = config_and_inputs lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def A__ ( self): lowercase = self.prepare_config_and_inputs() lowercase = config_and_inputs lowercase = True lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) lowercase = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( A__ , unittest.TestCase ): lowercase_ : Any =True lowercase_ : Optional[Any] =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def A__ ( self): lowercase = FlaxRobertaModelTester(self) @slow def A__ ( self): for model_class_name in self.all_model_classes: lowercase = model_class_name.from_pretrained('''roberta-base''' ,from_pt=__snake_case) lowercase = model(np.ones((1, 1))) self.assertIsNotNone(__snake_case)
101
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: Optional[int] = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: UpperCAmelCase : Tuple = 1024 UpperCAmelCase : List[Any] = 4096 UpperCAmelCase : str = 24 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = [5, 11, 17, 23] UpperCAmelCase : List[Any] = [256, 512, 1024, 1024] UpperCAmelCase : Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase : Optional[Any] = 768 UpperCAmelCase : Tuple = [1, 1, 1, 0.5] UpperCAmelCase : int = [256, 512, 768, 768] UpperCAmelCase : Any = 150 UpperCAmelCase : Tuple = 16 UpperCAmelCase : Any = (1, 384, 384) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = '''project''' if "ade" in checkpoint_url: UpperCAmelCase : Any = True UpperCAmelCase : str = 768 UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5] UpperCAmelCase : List[Any] = 150 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = '''huggingface/label-files''' UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : List[Any] = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase : str = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : int = in_proj_bias[: config.hidden_size] UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def snake_case_ ( ) -> List[str]: UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any: UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase ) UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384 UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase ) UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' ) # forward pass UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth if show_prediction: UpperCAmelCase : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) UpperCamelCase__: Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
23
0
import math import random from typing import Any from .hill_climbing import SearchProblem def lowercase( UpperCamelCase_ , UpperCamelCase_ = True , UpperCamelCase_ = math.inf , UpperCamelCase_ = -math.inf , UpperCamelCase_ = math.inf , UpperCamelCase_ = -math.inf , UpperCamelCase_ = False , UpperCamelCase_ = 100 , UpperCamelCase_ = 0.0_1 , UpperCamelCase_ = 1 , ) -> Any: '''simple docstring''' UpperCamelCase = False UpperCamelCase = search_prob UpperCamelCase = start_temperate UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = None while not search_end: UpperCamelCase = current_state.score() if best_state is None or current_score > best_state.score(): UpperCamelCase = current_state scores.append(_lowerCAmelCase ) iterations += 1 UpperCamelCase = None UpperCamelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCamelCase = random.randint(0 , len(_lowerCAmelCase ) - 1 ) # picking a random neighbor UpperCamelCase = neighbors.pop(_lowerCAmelCase ) UpperCamelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCamelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCamelCase = picked_neighbor else: UpperCamelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCamelCase = picked_neighbor UpperCamelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCamelCase = True else: UpperCamelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowerCAmelCase ) , _lowerCAmelCase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _SCREAMING_SNAKE_CASE = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) _SCREAMING_SNAKE_CASE = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _SCREAMING_SNAKE_CASE = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) _SCREAMING_SNAKE_CASE = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' return (3 * x**2) - (6 * y) _SCREAMING_SNAKE_CASE = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _SCREAMING_SNAKE_CASE = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) _SCREAMING_SNAKE_CASE = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _SCREAMING_SNAKE_CASE = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
343
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase__: Optional[int] = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
23
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __a = logging.get_logger(__name__) # pylint: disable=invalid-name __a = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=8 ) -> Any: snake_case__ : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 snake_case__ : List[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCAmelCase_ ( A__ ): """simple docstring""" def __init__( self : List[str] , snake_case_ : UNetaDConditionModel , snake_case_ : DDPMScheduler , snake_case_ : VQModel , ): super().__init__() self.register_modules( unet=__snake_case , scheduler=__snake_case , movq=__snake_case , ) snake_case__ : Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : int ): if latents is None: snake_case__ : Optional[int] = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) snake_case__ : List[Any] = latents.to(__snake_case ) snake_case__ : Optional[int] = latents * scheduler.init_noise_sigma return latents def lowerCamelCase ( self : Dict , snake_case_ : Dict=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) snake_case__ : Tuple = torch.device(f"cuda:{gpu_id}" ) snake_case__ : Tuple = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__snake_case , __snake_case ) def lowerCamelCase ( self : List[str] , snake_case_ : Tuple=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) snake_case__ : Dict = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case__ : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: snake_case__ : Any = cpu_offload_with_hook(__snake_case , __snake_case , prev_module_hook=__snake_case ) # We'll offload the last model manually. snake_case__ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase ( self : List[str] ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__snake_case , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__snake_case ) def __call__( self : Tuple , snake_case_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case_ : int = 512 , snake_case_ : int = 512 , snake_case_ : int = 100 , snake_case_ : float = 4.0 , snake_case_ : int = 1 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : Optional[torch.FloatTensor] = None , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ): snake_case__ : int = self._execution_device snake_case__ : Optional[int] = guidance_scale > 1.0 if isinstance(__snake_case , __snake_case ): snake_case__ : Union[str, Any] = torch.cat(__snake_case , dim=0 ) snake_case__ : str = image_embeds.shape[0] * num_images_per_prompt if isinstance(__snake_case , __snake_case ): snake_case__ : Tuple = torch.cat(__snake_case , dim=0 ) if do_classifier_free_guidance: snake_case__ : Optional[Any] = image_embeds.repeat_interleave(__snake_case , dim=0 ) snake_case__ : int = negative_image_embeds.repeat_interleave(__snake_case , dim=0 ) snake_case__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__snake_case ) self.scheduler.set_timesteps(__snake_case , device=__snake_case ) snake_case__ : Optional[int] = self.scheduler.timesteps snake_case__ : Dict = self.unet.config.in_channels snake_case__ : str = downscale_height_and_width(__snake_case , __snake_case , self.movq_scale_factor ) # create initial latent snake_case__ : Optional[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __snake_case , __snake_case , __snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance snake_case__ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case__ : str = {'''image_embeds''': image_embeds} snake_case__ : Tuple = self.unet( sample=__snake_case , timestep=__snake_case , encoder_hidden_states=__snake_case , added_cond_kwargs=__snake_case , return_dict=__snake_case , )[0] if do_classifier_free_guidance: snake_case__ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) snake_case__ : str = noise_pred.chunk(2 ) snake_case__ : int = variance_pred.chunk(2 ) snake_case__ : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case__ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case__ : Optional[int] = self.scheduler.step( __snake_case , __snake_case , __snake_case , generator=__snake_case , )[0] # post-processing snake_case__ : Optional[int] = self.movq.decode(__snake_case , force_not_quantize=__snake_case )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: snake_case__ : List[Any] = image * 0.5 + 0.5 snake_case__ : int = image.clamp(0 , 1 ) snake_case__ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case__ : Optional[Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
35
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if len(_lowerCAmelCase ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(_lowerCAmelCase ) or left < -len(_lowerCAmelCase ) or right >= len(_lowerCAmelCase ) or right < -len(_lowerCAmelCase ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid] UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
23
0
import os import numpy import onnx def lowerCamelCase__ ( a__ : str , a__ : Optional[Any] ) -> int: UpperCamelCase_ = a.name UpperCamelCase_ = b.name UpperCamelCase_ = '''''' UpperCamelCase_ = '''''' UpperCamelCase_ = a == b UpperCamelCase_ = name_a UpperCamelCase_ = name_b return res def lowerCamelCase__ ( a__ : str , a__ : Any , a__ : Tuple ) -> Any: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCAmelCase , _lowerCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCAmelCase , _lowerCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCAmelCase , _lowerCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCAmelCase , _lowerCAmelCase ) def lowerCamelCase__ ( a__ : int , a__ : Any , a__ : Optional[Any] ) -> Any: for n in graph_proto.node: _node_replace_input_with(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCamelCase__ ( a__ : str , a__ : List[Any] , a__ : List[str] ) -> int: UpperCamelCase_ = list(model.graph.initializer ) UpperCamelCase_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i UpperCamelCase_ = inits[i].name UpperCamelCase_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCAmelCase , _lowerCAmelCase ) def lowerCamelCase__ ( a__ : int ) -> Tuple: UpperCamelCase_ = os.path.dirname(_lowerCAmelCase ) UpperCamelCase_ = os.path.basename(_lowerCAmelCase ) UpperCamelCase_ = onnx.load(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCamelCase_ = list(model.graph.initializer ) UpperCamelCase_ = set() UpperCamelCase_ = {} UpperCamelCase_ = [] UpperCamelCase_ = 0 for i in range(len(_lowerCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCAmelCase ) dup_set.add(_lowerCAmelCase ) UpperCamelCase_ = inits[j].data_type UpperCamelCase_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCAmelCase ) total_reduced_size += mem_size UpperCamelCase_ = inits[i].name UpperCamelCase_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCAmelCase ) else: UpperCamelCase_ = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) UpperCamelCase_ = sorted(_lowerCAmelCase ) _remove_dup_initializers_from_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase_ = '''optimized_''' + model_file_name UpperCamelCase_ = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) onnx.save(_lowerCAmelCase , _lowerCAmelCase ) return new_model
122
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : str = self.unet.config.sample_size UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size) UpperCAmelCase : int = self.unet UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma UpperCAmelCase : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(__snake_case ) self.scheduler.set_sigmas(__snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample # prediction step UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean UpperCAmelCase : int = sample_mean.clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__snake_case )
23
0
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: SCREAMING_SNAKE_CASE =mf_knapsack(i - 1, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) else: SCREAMING_SNAKE_CASE =max( mf_knapsack(i - 1, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ), mf_knapsack(i - 1, _lowerCAmelCase, _lowerCAmelCase, j - wt[i - 1] ) + val[i - 1], ) SCREAMING_SNAKE_CASE =val return f[i][j] def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =[[0] * (w + 1) for _ in range(n + 1 )] for i in range(1, n + 1 ): for w_ in range(1, w + 1 ): if wt[i - 1] <= w_: SCREAMING_SNAKE_CASE =max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_] ) else: SCREAMING_SNAKE_CASE =dp[i - 1][w_] return dp[n][w_], dp def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if not (isinstance(_lowerCAmelCase, (list, tuple) ) and isinstance(_lowerCAmelCase, (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) SCREAMING_SNAKE_CASE =len(_lowerCAmelCase ) if num_items != len(_lowerCAmelCase ): SCREAMING_SNAKE_CASE =( '''The number of weights must be the same as the number of values.\n''' F'But got {num_items} weights and {len(_lowerCAmelCase )} values' ) raise ValueError(_lowerCAmelCase ) for i in range(_lowerCAmelCase ): if not isinstance(wt[i], _lowerCAmelCase ): SCREAMING_SNAKE_CASE =( '''All weights must be integers but got weight of ''' F'type {type(wt[i] )} at index {i}' ) raise TypeError(_lowerCAmelCase ) SCREAMING_SNAKE_CASE =knapsack(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) SCREAMING_SNAKE_CASE =set() _construct_solution(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) return optimal_val, example_optional_set def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_lowerCAmelCase, _lowerCAmelCase, i - 1, _lowerCAmelCase, _lowerCAmelCase ) else: optimal_set.add(_lowerCAmelCase ) _construct_solution(_lowerCAmelCase, _lowerCAmelCase, i - 1, j - wt[i - 1], _lowerCAmelCase ) if __name__ == "__main__": _lowerCamelCase =[3, 2, 4, 4] _lowerCamelCase =[4, 3, 2, 3] _lowerCamelCase =4 _lowerCamelCase =6 _lowerCamelCase =[[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _lowerCamelCase =knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _lowerCamelCase =knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
334
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """MCTCTFeatureExtractor""" lowerCamelCase__ = """AutoTokenizer""" def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str: super().__init__(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = self.feature_extractor UpperCAmelCase : Union[str, Any] = False def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) UpperCAmelCase : int = kwargs.pop('''raw_speech''' ) else: UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case ) UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : Any = args[0] UpperCAmelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase : str = encodings['''input_ids'''] return inputs def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : List[str] = args[0] UpperCAmelCase : List[Any] = args[1:] if input_features is not None: UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case ) if labels is not None: UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase : List[str] = labels['''input_ids'''] return input_features def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def A ( self : Any ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) UpperCAmelCase : Dict = True UpperCAmelCase : List[Any] = self.tokenizer yield UpperCAmelCase : Tuple = self.feature_extractor UpperCAmelCase : List[Any] = False
23
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( A__ , A__ , A__ , unittest.TestCase ): SCREAMING_SNAKE_CASE = AltDiffusionPipeline SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS def __magic_name__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) __a =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __a =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) __a =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __a =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) __a =CLIPTextModel(__snake_case ) __a =XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) __a =77 __a ={ '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__ ( self , __snake_case , __snake_case=0 ) -> Union[str, Any]: '''simple docstring''' if str(__snake_case ).startswith('mps' ): __a =torch.manual_seed(__snake_case ) else: __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __magic_name__ ( self ) -> List[str]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a ='''cpu''' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() torch.manual_seed(0 ) __a =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder __a =RobertaSeriesModelWithTransformation(__snake_case ) __a =text_encoder __a =AltDiffusionPipeline(**__snake_case ) __a =alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a ='''A photo of an astronaut''' __a =alt_pipe(**__snake_case ) __a =output.images __a =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a =np.array( [0.574_8162, 0.6044_7145, 0.4882_1217, 0.5010_0636, 0.543_1185, 0.4576_3683, 0.4965_7696, 0.4813_2733, 0.4757_3093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a ='''cpu''' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =PNDMScheduler(skip_prk_steps=__snake_case ) torch.manual_seed(0 ) __a =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder __a =RobertaSeriesModelWithTransformation(__snake_case ) __a =text_encoder __a =AltDiffusionPipeline(**__snake_case ) __a =alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =alt_pipe(**__snake_case ) __a =output.images __a =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a =np.array( [0.5160_5093, 0.570_7241, 0.4736_5507, 0.5057_8886, 0.563_3877, 0.464_2503, 0.518_2081, 0.4876_3484, 0.4908_4237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> Any: '''simple docstring''' # make sure here that pndm scheduler skips prk __a =AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=__snake_case ) __a =alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) __a ='''A painting of a squirrel eating a burger''' __a =torch.manual_seed(0 ) __a =alt_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) __a =output.images __a =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __a =np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> int: '''simple docstring''' __a =DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) __a =AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=__snake_case , safety_checker=__snake_case ) __a =alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) __a ='''A painting of a squirrel eating a burger''' __a =torch.manual_seed(0 ) __a =alt_pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='numpy' ) __a =output.images __a =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __a =np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
218
'''simple docstring''' from math import isclose, sqrt def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]: UpperCAmelCase : Optional[int] = point_y / 4 / point_x UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4 UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase : List[str] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : float = first_x_coord UpperCAmelCase : float = first_y_coord UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
23
0
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = CLIPTokenizer _SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTokenizerFast _SCREAMING_SNAKE_CASE : Tuple = True _SCREAMING_SNAKE_CASE : List[str] = {} _SCREAMING_SNAKE_CASE : Dict = False def a ( self : Any ) -> Optional[int]: super().setUp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__snake_case ) ) def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def a ( self : List[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = '''lower newer''' return input_text, output_text def a ( self : Dict ) -> List[Any]: __lowerCAmelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] __lowerCAmelCase = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) @require_ftfy def a ( self : str ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __lowerCAmelCase = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' __lowerCAmelCase = tokenizer_s.tokenize(__snake_case ) __lowerCAmelCase = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __lowerCAmelCase = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' __lowerCAmelCase = tokenizer_s.tokenize(__snake_case ) __lowerCAmelCase = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Test that the tokenization is identical on unicode of space type __lowerCAmelCase = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __lowerCAmelCase = tokenizer_s.tokenize(__snake_case ) __lowerCAmelCase = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Test that the tokenization is identical on unicode of line break type __lowerCAmelCase = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __lowerCAmelCase = tokenizer_s.tokenize(__snake_case ) __lowerCAmelCase = tokenizer_r.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def a ( self : Tuple ) -> Optional[int]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __lowerCAmelCase = f"""{text_of_1_token} {text_of_1_token}""" __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , ) __lowerCAmelCase = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__snake_case ) + 1, len(__snake_case ) + 1 + len(__snake_case )) , ) __lowerCAmelCase = f""" {text}""" __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __snake_case , use_fast=__snake_case , ) __lowerCAmelCase = tokenizer_r(__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__snake_case ) + 1, 1 + len(__snake_case ) + 1 + len(__snake_case )) , ) def a ( self : str ) -> str: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(__snake_case ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a ( self : str ) -> Dict: super().test_tokenization_python_rust_equals() def a ( self : Optional[Any] ) -> Optional[Any]: # CLIP always lower cases letters pass
229
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__: str = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Union[str, Any] = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCamelCase__: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
23
0
def lowerCAmelCase__(__snake_case ) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) lowerCamelCase__ = sum(_lowerCAmelCase ) / len(_lowerCAmelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
209
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AltDiffusionPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def A ( self : Dict ) -> int: torch.manual_seed(0 ) UpperCAmelCase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase : Dict = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCAmelCase : List[Any] = CLIPTextModel(__snake_case ) UpperCAmelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) UpperCAmelCase : Optional[int] = 77 UpperCAmelCase : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A ( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str]=0 ) -> Union[str, Any]: if str(__snake_case ).startswith('''mps''' ): UpperCAmelCase : str = torch.manual_seed(__snake_case ) else: UpperCAmelCase : Tuple = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def A ( self : Union[str, Any] ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def A ( self : Tuple ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Any = self.get_dummy_components() torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase : List[str] = RobertaSeriesModelWithTransformation(__snake_case ) UpperCAmelCase : str = text_encoder UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case ) UpperCAmelCase : str = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Optional[int] = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : Optional[int] = '''A photo of an astronaut''' UpperCAmelCase : List[Any] = alt_pipe(**__snake_case ) UpperCAmelCase : Optional[Any] = output.images UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : List[str] = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : int = PNDMScheduler(skip_prk_steps=__snake_case ) torch.manual_seed(0 ) UpperCAmelCase : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase : Union[str, Any] = RobertaSeriesModelWithTransformation(__snake_case ) UpperCAmelCase : Union[str, Any] = text_encoder UpperCAmelCase : Optional[int] = AltDiffusionPipeline(**__snake_case ) UpperCAmelCase : Dict = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : int = self.get_dummy_inputs(__snake_case ) UpperCAmelCase : Optional[int] = alt_pipe(**__snake_case ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Optional[int] = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ) -> Any: # make sure here that pndm scheduler skips prk UpperCAmelCase : List[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=__snake_case ) UpperCAmelCase : Tuple = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : List[Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Any = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = alt_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : Tuple ) -> int: UpperCAmelCase : int = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) UpperCAmelCase : Tuple = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=__snake_case , safety_checker=__snake_case ) UpperCAmelCase : Dict = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Tuple = '''A painting of a squirrel eating a burger''' UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : List[Any] = alt_pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='''numpy''' ) UpperCAmelCase : Dict = output.images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
23
0
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCAmelCase__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ): _snake_case = torch.nn.Linear(10 , 10 ) _snake_case = torch.optim.SGD(model.parameters() , 0.1 ) _snake_case = Accelerator() _snake_case = accelerator.prepare(__snake_case ) try: pickle.loads(pickle.dumps(__snake_case ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
288
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Optional[int]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ) -> Dict: UpperCAmelCase : Dict = tmp_path / '''cache''' UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : str = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> Optional[int]: UpperCAmelCase : Any = tmp_path / '''cache''' UpperCAmelCase : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Any = features.copy() if features else default_expected_features UpperCAmelCase : List[Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Dict = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ) -> Tuple: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : Optional[int] = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} UpperCAmelCase : int = features.copy() if features else default_expected_features UpperCAmelCase : Any = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> Union[str, Any]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCAmelCase : Tuple = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} UpperCAmelCase : List[str] = features.copy() UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = tmp_path / '''cache''' UpperCAmelCase : List[str] = JsonDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> Optional[Any]: UpperCAmelCase : Any = tmp_path / '''cache''' UpperCAmelCase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : List[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any ) -> Dict: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : str = jsonl_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Dict = [jsonl_path] UpperCAmelCase : int = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[int] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict=("train",) ) -> Union[str, Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: UpperCAmelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ) -> Any: UpperCAmelCase : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Optional[int] = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : Dict = tmp_path / '''cache''' UpperCAmelCase : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features UpperCAmelCase : Union[str, Any] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Tuple = JsonDatasetReader({'''train''': jsonl_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> Union[str, Any]: if split: UpperCAmelCase : Optional[int] = {split: jsonl_path} else: UpperCAmelCase : Any = '''train''' UpperCAmelCase : Any = {'''train''': jsonl_path, '''test''': jsonl_path} UpperCAmelCase : Tuple = tmp_path / '''cache''' UpperCAmelCase : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase : Optional[Any] = JsonDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict ) -> str: return [json.loads(_lowerCAmelCase ) for line in buffer] class SCREAMING_SNAKE_CASE: """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def A ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[Any] ) -> List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case ).write() buffer.seek(0 ) UpperCAmelCase : Union[str, Any] = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def A ( self : str , __snake_case : str , __snake_case : str , __snake_case : int ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : Any = load_json_function(__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(exported_content[0] , __snake_case ) assert len(__snake_case ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def A ( self : Any , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , lines=__snake_case , orient=__snake_case , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : List[str] = load_json(__snake_case ) assert isinstance(__snake_case , __snake_case ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__snake_case , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__snake_case ) == 10 def A ( self : List[Any] , __snake_case : str ) -> Dict: with pytest.raises(__snake_case ): with io.BytesIO() as buffer: JsonDatasetWriter(__snake_case , __snake_case , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def A ( self : Optional[int] , __snake_case : Any , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Union[str, Any]: UpperCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / F"""test.json.{extension}""" UpperCAmelCase : List[Any] = str(shared_datadir / F"""test_file.json.{extension}""" ) JsonDatasetWriter(__snake_case , __snake_case , compression=__snake_case ).write() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: UpperCAmelCase : str = f.read() with fsspec.open(__snake_case , '''rb''' , compression='''infer''' ) as f: UpperCAmelCase : Optional[int] = f.read() assert exported_content == original_content
23
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = checkpoint SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = vae_state_dict['''encoder.conv_in.weight'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''encoder.conv_in.bias'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''encoder.conv_out.weight'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''encoder.conv_out.bias'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''encoder.norm_out.weight'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''encoder.norm_out.bias'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''decoder.conv_in.weight'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''decoder.conv_in.bias'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''decoder.conv_out.weight'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''decoder.conv_out.bias'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''decoder.norm_out.weight'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''decoder.norm_out.bias'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''quant_conv.weight'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''quant_conv.bias'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''post_quant_conv.weight'''] SCREAMING_SNAKE_CASE__ = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only SCREAMING_SNAKE_CASE__ = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) SCREAMING_SNAKE_CASE__ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(_lowerCAmelCase ) } # Retrieves the keys for the decoder up blocks only SCREAMING_SNAKE_CASE__ = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) SCREAMING_SNAKE_CASE__ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(_lowerCAmelCase ) } for i in range(_lowerCAmelCase ): SCREAMING_SNAKE_CASE__ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: SCREAMING_SNAKE_CASE__ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) SCREAMING_SNAKE_CASE__ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) SCREAMING_SNAKE_CASE__ = renew_vae_resnet_paths(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = {'''old''': f"""down.{i}.block""", '''new''': f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = [key for key in vae_state_dict if '''encoder.mid.block''' in key] SCREAMING_SNAKE_CASE__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE__ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] SCREAMING_SNAKE_CASE__ = renew_vae_resnet_paths(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = {'''old''': f"""mid.block_{i}""", '''new''': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] SCREAMING_SNAKE_CASE__ = renew_vae_attention_paths(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) conv_attn_to_linear(_lowerCAmelCase ) for i in range(_lowerCAmelCase ): SCREAMING_SNAKE_CASE__ = num_up_blocks - 1 - i SCREAMING_SNAKE_CASE__ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: SCREAMING_SNAKE_CASE__ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] SCREAMING_SNAKE_CASE__ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] SCREAMING_SNAKE_CASE__ = renew_vae_resnet_paths(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = {'''old''': f"""up.{block_id}.block""", '''new''': f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = [key for key in vae_state_dict if '''decoder.mid.block''' in key] SCREAMING_SNAKE_CASE__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE__ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] SCREAMING_SNAKE_CASE__ = renew_vae_resnet_paths(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = {'''old''': f"""mid.block_{i}""", '''new''': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] SCREAMING_SNAKE_CASE__ = renew_vae_attention_paths(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , additional_replacements=[meta_path] , config=_lowerCAmelCase ) conv_attn_to_linear(_lowerCAmelCase ) return new_checkpoint def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) SCREAMING_SNAKE_CASE__ = io.BytesIO(r.content ) SCREAMING_SNAKE_CASE__ = OmegaConf.load(_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = 5_12 SCREAMING_SNAKE_CASE__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open SCREAMING_SNAKE_CASE__ = {} with safe_open(_lowerCAmelCase , framework="""pt""" , device="""cpu""" ) as f: for key in f.keys(): SCREAMING_SNAKE_CASE__ = f.get_tensor(_lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ = torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase )['''state_dict'''] # Convert the VAE model. SCREAMING_SNAKE_CASE__ = create_vae_diffusers_config(_lowerCAmelCase , image_size=_lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = custom_convert_ldm_vae_checkpoint(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = AutoencoderKL(**_lowerCAmelCase ) vae.load_state_dict(_lowerCAmelCase ) vae.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') __lowerCamelCase : str = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
219
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Tuple = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} UpperCamelCase__: Optional[int] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } UpperCamelCase__: Dict = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } UpperCamelCase__: Tuple = "▁" class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="</s>" , __snake_case : Any="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Dict , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase : Optional[int] = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) UpperCAmelCase : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCAmelCase : Optional[Any] = len(self.sp_model ) - 1 UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] UpperCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Tuple = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : Dict ) -> Optional[int]: return len(self.sp_model ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Optional[Any] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def A ( self : int , __snake_case : int ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(__snake_case ) return spm_id if spm_id else self.unk_token_id def A ( self : int , __snake_case : Any ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__snake_case ) def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : int = '''''' UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token UpperCAmelCase : str = True UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(__snake_case ) UpperCAmelCase : Optional[int] = False out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.__dict__.copy() UpperCAmelCase : Any = None return state def __setstate__( self : Optional[int] , __snake_case : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
23
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __snake_case :Union[str, Any] = logging.get_logger(__name__) class _A : def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = question_encoder __a = generator __a = self.question_encoder def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' if os.path.isfile(__snake_case): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file') os.makedirs(__snake_case , exist_ok=__snake_case) __a = os.path.join(__snake_case , '''question_encoder_tokenizer''') __a = os.path.join(__snake_case , '''generator_tokenizer''') self.question_encoder.save_pretrained(__snake_case) self.generator.save_pretrained(__snake_case) @classmethod def _lowerCamelCase ( cls : List[str] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : str): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer __a = kwargs.pop('''config''' , __snake_case) if config is None: __a = RagConfig.from_pretrained(__snake_case) __a = AutoTokenizer.from_pretrained( __snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') __a = AutoTokenizer.from_pretrained( __snake_case , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=__snake_case , generator=__snake_case) def __call__( self : int , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' return self.current_tokenizer(*__snake_case , **__snake_case) def _lowerCamelCase ( self : Tuple , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : int): '''simple docstring''' return self.generator.batch_decode(*__snake_case , **__snake_case) def _lowerCamelCase ( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' return self.generator.decode(*__snake_case , **__snake_case) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = self.question_encoder def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.generator def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : str = "longest" , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = True , **__SCREAMING_SNAKE_CASE : List[str] , ): '''simple docstring''' warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , __snake_case , ) if max_length is None: __a = self.current_tokenizer.model_max_length __a = self( __snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , max_length=__snake_case , padding=__snake_case , truncation=__snake_case , **__snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __a = self.current_tokenizer.model_max_length __a = self( text_target=__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case , **__snake_case , ) __a = labels['''input_ids'''] return model_inputs
49
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @classmethod def A ( cls : Union[str, Any] ) -> int: UpperCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(__snake_case ) @classmethod def A ( cls : List[str] ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : int ) -> Tuple: UpperCAmelCase : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]: UpperCAmelCase : str = True UpperCAmelCase : int = flatten_dict(modela.params ) UpperCAmelCase : Dict = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase : Dict = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : int = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) ) with self.assertRaises(__snake_case ): UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : Optional[int] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(__snake_case ): UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : Optional[int] ) -> str: UpperCAmelCase : Dict = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case ) def A ( self : Dict ) -> List[Any]: UpperCAmelCase : Optional[int] = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case )
23
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ :int = logging.get_logger(__name__) class lowercase ( A__ ): lowercase_ : Tuple =['''pixel_values'''] def __init__( self ,A__ = True ,A__ = None ,A__ = PIL.Image.BICUBIC ,A__ = True ,A__ = None ,A__ = 1 / 2_5_5 ,A__ = True ,A__ = True ,A__ = None ,A__ = None ,**A__ ,): super().__init__(**__snake_case) lowercase = size if size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} lowercase = get_size_dict(__snake_case) lowercase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowercase = get_size_dict(__snake_case ,param_name='''crop_size''') lowercase = do_resize lowercase = size lowercase = resample lowercase = do_center_crop lowercase = crop_size lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self ,A__ ,A__ ,A__ = PIL.Image.BICUBIC ,A__ = None ,**A__ ,): lowercase = get_size_dict(__snake_case) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}') return resize( __snake_case ,size=(size['''height'''], size['''width''']) ,resample=__snake_case ,data_format=__snake_case ,**__snake_case) def A__ ( self ,A__ ,A__ ,A__ = None ,**A__ ,): lowercase = get_size_dict(__snake_case) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}') return center_crop(__snake_case ,size=(size['''height'''], size['''width''']) ,data_format=__snake_case ,**__snake_case) def A__ ( self ,A__ ,A__ ,A__ = None ,**A__ ,): return rescale(__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case) def A__ ( self ,A__ ,A__ ,A__ ,A__ = None ,**A__ ,): return normalize(__snake_case ,mean=__snake_case ,std=__snake_case ,data_format=__snake_case ,**__snake_case) def A__ ( self ,A__ ,A__ = None ,A__ = None ,A__=None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = ChannelDimension.FIRST ,**A__ ,): lowercase = do_resize if do_resize is not None else self.do_resize lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = size if size is not None else self.size lowercase = get_size_dict(__snake_case) lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(__snake_case ,param_name='''crop_size''') lowercase = make_list_of_images(__snake_case) if not valid_images(__snake_case): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. lowercase = [to_numpy_array(__snake_case) for image in images] if do_resize: lowercase = [self.resize(image=__snake_case ,size=__snake_case ,resample=__snake_case) for image in images] if do_center_crop: lowercase = [self.center_crop(image=__snake_case ,size=__snake_case) for image in images] if do_rescale: lowercase = [self.rescale(image=__snake_case ,scale=__snake_case) for image in images] if do_normalize: lowercase = [self.normalize(image=__snake_case ,mean=__snake_case ,std=__snake_case) for image in images] lowercase = [to_channel_dimension_format(__snake_case ,__snake_case) for image in images] lowercase = {'''pixel_values''': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case)
101
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Optional[int] , __snake_case : str , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=8 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : int=True , __snake_case : List[Any]=99 , __snake_case : str=16 , __snake_case : Tuple=5 , __snake_case : Tuple=2 , __snake_case : str=36 , __snake_case : Dict="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=512 , __snake_case : Optional[Any]=16 , __snake_case : int=2 , __snake_case : int=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : str=None , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : int = use_input_mask UpperCAmelCase : Any = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : Optional[int] = num_choices UpperCAmelCase : Any = scope def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : str = None UpperCAmelCase : Tuple = None UpperCAmelCase : int = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : int ) -> Tuple: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[Any] = self.get_config() UpperCAmelCase : int = 300 return config def A ( self : Optional[Any] ) -> Any: ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = self.prepare_config_and_inputs() UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[Any] ) -> List[str]: UpperCAmelCase : int = MraModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Optional[int] = model(__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Dict = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[Any] , ) -> Tuple: UpperCAmelCase : str = True UpperCAmelCase : Tuple = MraModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) UpperCAmelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , ) UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int ) -> Any: UpperCAmelCase : Dict = MraForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Dict , __snake_case : Any , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = MraForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int: UpperCAmelCase : int = self.num_labels UpperCAmelCase : Union[str, Any] = MraForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> int: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : List[str] = MraForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : str , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.num_choices UpperCAmelCase : int = MraForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str ) -> Dict: UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = () def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = MraModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A ( self : Optional[Any] ) -> str: self.config_tester.run_common_tests() def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__snake_case ) def A ( self : Tuple ) -> Dict: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def A ( self : Tuple ) -> List[str]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def A ( self : Dict ) -> Optional[int]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def A ( self : Any ) -> Optional[int]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def A ( self : Dict ) -> Any: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = MraModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''MRA does not output attentions''' ) def A ( self : str ) -> Optional[Any]: return @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @slow def A ( self : Tuple ) -> List[Any]: UpperCAmelCase : int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Optional[Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Any = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[int] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : int = 50265 UpperCAmelCase : int = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : str ) -> List[Any]: UpperCAmelCase : List[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) UpperCAmelCase : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : Tuple = model(__snake_case )[0] UpperCAmelCase : Optional[int] = 50265 UpperCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Optional[int] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
23
0
def lowercase( UpperCamelCase_ ) -> list: '''simple docstring''' UpperCamelCase = [0] * len(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): # use last results for better performance - dynamic programming UpperCamelCase = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCamelCase = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCamelCase = j return prefix_result def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' return max(prefix_function(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
343
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Any ) -> str: UpperCAmelCase : Any = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } UpperCAmelCase : int = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(__snake_case ) , __snake_case ) def A ( self : int ) -> str: UpperCAmelCase : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__snake_case ) , x.transpose() ) ) UpperCAmelCase : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A ( self : str ) -> Union[str, Any]: UpperCAmelCase : Any = np.random.randn(3 , 4 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Tuple = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Any = torch.tensor(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Optional[Any]: UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , transpose(__snake_case ).numpy() ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : str = tf.constant(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , transpose(__snake_case , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A ( self : Tuple ) -> Any: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case ) , np.asarray(transpose(__snake_case ) ) ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(transpose(__snake_case , axes=(1, 2, 0) ) , np.asarray(transpose(__snake_case , axes=(1, 2, 0) ) ) ) ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.reshape(__snake_case , (4, 3) ) ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.reshape(__snake_case , (12, 5) ) ) ) @require_torch def A ( self : Union[str, Any] ) -> int: UpperCAmelCase : Dict = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_tf def A ( self : int ) -> List[str]: UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , reshape(__snake_case , (4, 3) ).numpy() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = tf.constant(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , reshape(__snake_case , (12, 5) ).numpy() ) ) @require_flax def A ( self : Any ) -> Dict: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (4, 3) ) , np.asarray(reshape(__snake_case , (4, 3) ) ) ) ) UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Optional[Any] = jnp.array(__snake_case ) self.assertTrue(np.allclose(reshape(__snake_case , (12, 5) ) , np.asarray(reshape(__snake_case , (12, 5) ) ) ) ) def A ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.squeeze(__snake_case ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.squeeze(__snake_case , axis=2 ) ) ) @require_torch def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : List[str] = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : Any = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : str = torch.tensor(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_tf def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , squeeze(__snake_case ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Optional[int] = tf.constant(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , squeeze(__snake_case , axis=2 ).numpy() ) ) @require_flax def A ( self : List[Any] ) -> Dict: UpperCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case ) , np.asarray(squeeze(__snake_case ) ) ) ) UpperCAmelCase : str = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : int = jnp.array(__snake_case ) self.assertTrue(np.allclose(squeeze(__snake_case , axis=2 ) , np.asarray(squeeze(__snake_case , axis=2 ) ) ) ) def A ( self : Optional[Any] ) -> int: UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.expand_dims(__snake_case , axis=1 ) ) ) @require_torch def A ( self : List[str] ) -> Tuple: UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : Tuple = torch.tensor(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_tf def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Any = tf.constant(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , expand_dims(__snake_case , axis=1 ).numpy() ) ) @require_flax def A ( self : Any ) -> List[Any]: UpperCAmelCase : List[str] = np.random.randn(3 , 4 ) UpperCAmelCase : str = jnp.array(__snake_case ) self.assertTrue(np.allclose(expand_dims(__snake_case , axis=1 ) , np.asarray(expand_dims(__snake_case , axis=1 ) ) ) )
23
0
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip __a = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __snake_case( _lowerCAmelCase ) -> Optional[int]: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: return max(metric_fn(_lowerCAmelCase , _lowerCAmelCase ) for gt in ground_truths ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: snake_case__ : str = [line.strip() for line in open(_lowerCAmelCase , """r""" ).readlines()] snake_case__ : Optional[Any] = [] if args.gold_data_mode == "qa": snake_case__ : Optional[int] = pd.read_csv(_lowerCAmelCase , sep="""\t""" , header=_lowerCAmelCase ) for answer_list in data[1]: snake_case__ : int = ast.literal_eval(_lowerCAmelCase ) answers.append(_lowerCAmelCase ) else: snake_case__ : int = [line.strip() for line in open(_lowerCAmelCase , """r""" ).readlines()] snake_case__ : Optional[Any] = [[reference] for reference in references] snake_case__ : Optional[int] = 0 for prediction, ground_truths in zip(_lowerCAmelCase , _lowerCAmelCase ): total += 1 em += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) fa += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Union[str, Any] = 100.0 * em / total snake_case__ : Any = 100.0 * fa / total logger.info(f"F1: {fa:.2f}" ) logger.info(f"EM: {em:.2f}" ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: snake_case__ : Union[str, Any] = args.k snake_case__ : Tuple = [line.strip() for line in open(_lowerCAmelCase , """r""" ).readlines()] snake_case__ : Tuple = [line.strip() for line in open(_lowerCAmelCase , """r""" ).readlines()] snake_case__ : Any = 0 for hypo, reference in zip(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Dict = set(hypo.split("""\t""" )[:k] ) snake_case__ : Optional[Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k snake_case__ : str = 100.0 * em / total logger.info(f"Precision@{k}: {em: .2f}" ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: def strip_title(_lowerCAmelCase ): if title.startswith("""\"""" ): snake_case__ : Tuple = title[1:] if title.endswith("""\"""" ): snake_case__ : Optional[Any] = title[:-1] return title snake_case__ : Union[str, Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCAmelCase , return_tensors="""pt""" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , )['''input_ids'''].to(args.device ) snake_case__ : str = rag_model.rag.question_encoder(_lowerCAmelCase ) snake_case__ : Union[str, Any] = question_enc_outputs[0] snake_case__ : Any = rag_model.retriever( _lowerCAmelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) snake_case__ : int = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) snake_case__ : int = [] for docs in all_docs: snake_case__ : Optional[int] = [strip_title(_lowerCAmelCase ) for title in docs['''title''']] provenance_strings.append("""\t""".join(_lowerCAmelCase ) ) return provenance_strings def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: with torch.no_grad(): snake_case__ : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCAmelCase , return_tensors="""pt""" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase ) snake_case__ : Union[str, Any] = inputs_dict.input_ids.to(args.device ) snake_case__ : Union[str, Any] = inputs_dict.attention_mask.to(args.device ) snake_case__ : Optional[int] = rag_model.generate( # rag_model overwrites generate _lowerCAmelCase , attention_mask=_lowerCAmelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_lowerCAmelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) snake_case__ : str = rag_model.retriever.generator_tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) if args.print_predictions: for q, a in zip(_lowerCAmelCase , _lowerCAmelCase ): logger.info("""Q: {} - A: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) ) return answers def __snake_case( ) -> List[Any]: snake_case__ : Any = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=_lowerCAmelCase , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=_lowerCAmelCase , choices=["""exact""", """compressed""", """legacy"""] , type=_lowerCAmelCase , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=_lowerCAmelCase , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=_lowerCAmelCase , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=_lowerCAmelCase , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=_lowerCAmelCase , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=_lowerCAmelCase , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=_lowerCAmelCase , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=_lowerCAmelCase , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=_lowerCAmelCase , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=_lowerCAmelCase , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) snake_case__ : Any = parser.parse_args() snake_case__ : str = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : int = {} if args.model_type is None: snake_case__ : Union[str, Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): snake_case__ : Optional[Any] = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration snake_case__ : Dict = args.n_docs if args.index_name is not None: snake_case__ : Dict = args.index_name if args.index_path is not None: snake_case__ : str = args.index_path else: snake_case__ : int = BartForConditionalGeneration snake_case__ : Optional[Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , _lowerCAmelCase ) snake_case__ : str = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k snake_case__ : Any = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(_lowerCAmelCase ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): snake_case__ : int = RagRetriever.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) snake_case__ : Optional[Any] = model_class.from_pretrained(_lowerCAmelCase , retriever=_lowerCAmelCase , **_lowerCAmelCase ) model.retriever.init_retrieval() else: snake_case__ : Union[str, Any] = model_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: snake_case__ : List[str] = [] for line in tqdm(_lowerCAmelCase ): questions.append(line.strip() ) if len(_lowerCAmelCase ) == args.eval_batch_size: snake_case__ : Any = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) preds_file.write("""\n""".join(_lowerCAmelCase ) + """\n""" ) preds_file.flush() snake_case__ : str = [] if len(_lowerCAmelCase ) > 0: snake_case__ : Optional[int] = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) preds_file.write("""\n""".join(_lowerCAmelCase ) ) preds_file.flush() score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": __a = get_args() main(args)
35
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase__: Union[str, Any] = "examples/" UpperCamelCase__: Optional[Any] = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } UpperCamelCase__: Optional[int] = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } UpperCamelCase__: List[Any] = "README.md" def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> Optional[int]: with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[int] = f.read() UpperCAmelCase , UpperCAmelCase : List[Any] = REPLACE_PATTERNS[pattern] UpperCAmelCase : List[Any] = replace.replace('''VERSION''' , _lowerCAmelCase ) UpperCAmelCase : Optional[Any] = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Any ) -> Optional[int]: for folder, directories, fnames in os.walk(_lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern='''examples''' ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str=False ) -> List[str]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not patch: update_version_in_examples(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: UpperCAmelCase : Optional[int] = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase : Optional[int] = '''1. Want to contribute a new model?''' with open(_lowerCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Optional[Any] = f.readlines() # Find the start of the list. UpperCAmelCase : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase : Optional[int] = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_lowerCAmelCase ) def snake_case_ ( ) -> Optional[Any]: with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase : Union[str, Any] = f.read() UpperCAmelCase : int = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0] return packaging.version.parse(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase : Optional[int] = default_version.base_version elif patch: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase : Union[str, Any] = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase : Dict = input(f"""Which version are you releasing? [{default_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Tuple = default_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase ) def snake_case_ ( ) -> Any: UpperCAmelCase : List[Any] = get_version() UpperCAmelCase : List[str] = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase : List[Any] = current_version.base_version # Check with the user we got that right. UpperCAmelCase : Optional[int] = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(_lowerCAmelCase ) == 0: UpperCAmelCase : Dict = dev_version print(f"""Updating version to {version}.""" ) global_version_update(_lowerCAmelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") UpperCamelCase__: Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
23
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCamelCase__ ( a__ : Dict , a__ : Optional[Any] , a__ : Tuple , a__ : str=5 ) -> Any: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count("""<mask>""" ) == 1 UpperCamelCase_ = torch.tensor(tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ).unsqueeze(0 ) # Batch size 1 UpperCamelCase_ = model(_lowerCAmelCase )[0] # The last hidden-state is the first element of the output tuple UpperCamelCase_ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() UpperCamelCase_ = logits[0, masked_index, :] UpperCamelCase_ = logits.softmax(dim=0 ) UpperCamelCase_ = prob.topk(k=_lowerCAmelCase , dim=0 ) UpperCamelCase_ = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_lowerCAmelCase ) )] ) UpperCamelCase_ = tokenizer.mask_token UpperCamelCase_ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): UpperCamelCase_ = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(_lowerCAmelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(_lowerCAmelCase ) , _lowerCAmelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_lowerCAmelCase , _lowerCAmelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _A = CamembertTokenizer.from_pretrained('''camembert-base''') _A = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() _A = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
122
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCamelCase__: Tuple = numpy.array([0, 0]) UpperCamelCase__: Union[str, Any] = numpy.array([0.5, 0.8660254]) UpperCamelCase__: Dict = numpy.array([1, 0]) UpperCamelCase__: int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] , _lowerCAmelCase : int ) -> list[numpy.ndarray]: UpperCAmelCase : Union[str, Any] = initial_vectors for _ in range(_lowerCAmelCase ): UpperCAmelCase : Union[str, Any] = iteration_step(_lowerCAmelCase ) return vectors def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> list[numpy.ndarray]: UpperCAmelCase : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase : List[str] = vectors[i + 1] new_vectors.append(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def snake_case_ ( _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : float ) -> numpy.ndarray: UpperCAmelCase : List[str] = numpy.radians(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Tuple = numpy.cos(_lowerCAmelCase ), numpy.sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> None: UpperCAmelCase : List[Any] = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase , UpperCAmelCase : str = zip(*_lowerCAmelCase ) plt.plot(_lowerCAmelCase , _lowerCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__: List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
23
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase ={ "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase : Dict = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Optional[Any] = Text('''CPU''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''GPU''' , font_size=24 ) UpperCAmelCase : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''Model''' , font_size=24 ) UpperCAmelCase : Tuple = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) UpperCAmelCase : Any = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = Text('''Loaded Checkpoint''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) UpperCAmelCase : Tuple = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase : List[Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) UpperCAmelCase : Tuple = [] UpperCAmelCase : int = [] for i, rect in enumerate(__snake_case ): UpperCAmelCase : Any = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) UpperCAmelCase : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
23
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) _lowerCAmelCase : Any = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) _lowerCAmelCase : Dict = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) _lowerCAmelCase : int = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) _lowerCAmelCase : int = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) _lowerCAmelCase : Tuple = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) _lowerCAmelCase : Union[str, Any] = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) _lowerCAmelCase : Optional[Any] = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) _lowerCAmelCase : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) _lowerCAmelCase : List[Any] = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) _lowerCAmelCase : Tuple = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) _lowerCAmelCase : Dict = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) _lowerCAmelCase : str = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) _lowerCAmelCase : Any = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) _lowerCAmelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowerCAmelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowerCAmelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowerCAmelCase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowerCAmelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowerCAmelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowerCAmelCase : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowerCAmelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowerCAmelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowerCAmelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowerCAmelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowerCAmelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowerCAmelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowerCAmelCase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __magic_name__ ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE = FLAX_MODEL_MAPPING _lowerCAmelCase : List[str] = auto_class_update(FlaxAutoModel) class __magic_name__ ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowerCAmelCase : str = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class __magic_name__ ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowerCAmelCase : Dict = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class __magic_name__ ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowerCAmelCase : List[str] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class __magic_name__ ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowerCAmelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class __magic_name__ ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCAmelCase : str = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class __magic_name__ ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowerCAmelCase : Tuple = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class __magic_name__ ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowerCAmelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class __magic_name__ ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowerCAmelCase : List[str] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class __magic_name__ ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowerCAmelCase : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class __magic_name__ ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCAmelCase : Tuple = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class __magic_name__ ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowerCAmelCase : int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class __magic_name__ ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowerCAmelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
218
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) UpperCamelCase__: str = None UpperCamelCase__: int = { "7B": 11008, "13B": 13824, "30B": 17920, "65B": 22016, "70B": 28672, } UpperCamelCase__: List[Any] = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : List[Any]=256 ) -> Optional[Any]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def snake_case_ ( _lowerCAmelCase : List[str] ) -> str: with open(_lowerCAmelCase , '''r''' ) as f: return json.load(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ) -> Optional[Any]: with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=True ) -> List[Any]: os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''tmp''' ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[str] = read_json(os.path.join(_lowerCAmelCase , '''params.json''' ) ) UpperCAmelCase : str = NUM_SHARDS[model_size] UpperCAmelCase : Any = params['''n_layers'''] UpperCAmelCase : str = params['''n_heads'''] UpperCAmelCase : Any = n_heads // num_shards UpperCAmelCase : List[str] = params['''dim'''] UpperCAmelCase : Optional[Any] = dim // n_heads UpperCAmelCase : str = 1_0_0_0_0.0 UpperCAmelCase : Optional[int] = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase : Tuple = params['''n_kv_heads'''] # for GQA / MQA UpperCAmelCase : Optional[int] = n_heads_per_shard // num_key_value_heads UpperCAmelCase : Optional[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase : List[str] = n_heads UpperCAmelCase : Optional[int] = n_heads_per_shard UpperCAmelCase : List[str] = dim # permute for sliced rotary def permute(_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=n_heads , _lowerCAmelCase : int=dim , _lowerCAmelCase : Dict=dim ): return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase ).transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase : int = torch.load(os.path.join(_lowerCAmelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded UpperCAmelCase : Optional[Any] = [ torch.load(os.path.join(_lowerCAmelCase , f"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' ) for i in range(_lowerCAmelCase ) ] UpperCAmelCase : Any = 0 UpperCAmelCase : str = {'''weight_map''': {}} for layer_i in range(_lowerCAmelCase ): UpperCAmelCase : Optional[Any] = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : Optional[int] = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase : List[str] = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } UpperCAmelCase : Union[str, Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[Any] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) UpperCAmelCase : str = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Any = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : str = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) UpperCAmelCase : Tuple = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) UpperCAmelCase : Any = inv_freq for k, v in state_dict.items(): UpperCAmelCase : List[Any] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) UpperCAmelCase : Optional[int] = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCAmelCase : str = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: UpperCAmelCase : Any = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(_lowerCAmelCase )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_lowerCAmelCase )] , dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase : Optional[int] = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) # Write configs UpperCAmelCase : Union[str, Any] = {'''total_size''': param_count * 2} write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , '''pytorch_model.bin.index.json''' ) ) UpperCAmelCase : int = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 UpperCAmelCase : Tuple = params['''multiple_of'''] if '''multiple_of''' in params else 256 UpperCAmelCase : Any = LlamaConfig( hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_lowerCAmelCase , ) config.save_pretrained(_lowerCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> List[str]: # Initialize the tokenizer based on the `spm` model UpperCAmelCase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) UpperCAmelCase : List[Any] = tokenizer_class(_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) def snake_case_ ( ) -> List[Any]: UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=_lowerCAmelCase , help='''Whether or not to save using `safetensors`.''' ) UpperCAmelCase : List[Any] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCAmelCase : Optional[int] = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , _lowerCAmelCase ) if __name__ == "__main__": main()
23
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : int = logging.get_logger(__name__) _A : Tuple = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class _lowercase ( A__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[int] = """funnel""" _SCREAMING_SNAKE_CASE : Tuple = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : List[str]=[4, 4, 4] , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_68 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : Any=64 , SCREAMING_SNAKE_CASE__ : Any=30_72 , SCREAMING_SNAKE_CASE__ : Any="gelu_new" , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=1e-9 , SCREAMING_SNAKE_CASE__ : Tuple="mean" , SCREAMING_SNAKE_CASE__ : List[str]="relative_shift" , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[int]: __lowerCAmelCase = vocab_size __lowerCAmelCase = block_sizes __lowerCAmelCase = [1] * len(__snake_case ) if block_repeats is None else block_repeats assert len(__snake_case ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __lowerCAmelCase = num_decoder_layers __lowerCAmelCase = d_model __lowerCAmelCase = n_head __lowerCAmelCase = d_head __lowerCAmelCase = d_inner __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = initializer_range __lowerCAmelCase = initializer_std __lowerCAmelCase = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" __lowerCAmelCase = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" __lowerCAmelCase = attention_type __lowerCAmelCase = separate_cls __lowerCAmelCase = truncate_seq __lowerCAmelCase = pool_q_only super().__init__(**__snake_case ) @property def a ( self : int ) -> Optional[int]: return sum(self.block_sizes ) @num_hidden_layers.setter def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]: raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def a ( self : Dict ) -> int: return len(self.block_sizes ) @num_blocks.setter def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
229
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : List[Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = cos(_lowerCAmelCase ) UpperCAmelCase : int = _sin / (2 * q_factor) UpperCAmelCase : Any = (1 - _cos) / 2 UpperCAmelCase : List[Any] = 1 - _cos UpperCAmelCase : Union[str, Any] = 1 + alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Dict = 1 - alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Tuple = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : int = (1 + _cos) / 2 UpperCAmelCase : List[Any] = -1 - _cos UpperCAmelCase : Tuple = 1 + alpha UpperCAmelCase : List[str] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : Optional[int] = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Tuple = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase : Union[str, Any] = _sin / 2 UpperCAmelCase : Any = 0 UpperCAmelCase : int = -ba UpperCAmelCase : Optional[Any] = 1 + alpha UpperCAmelCase : List[Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 / sqrt(2 ) ) -> IIRFilter: UpperCAmelCase : List[str] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : str = cos(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 1 - alpha UpperCAmelCase : Any = -2 * _cos UpperCAmelCase : Optional[int] = 1 + alpha UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Optional[Any] = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = cos(_lowerCAmelCase ) UpperCAmelCase : Dict = _sin / (2 * q_factor) UpperCAmelCase : str = 10 ** (gain_db / 40) UpperCAmelCase : int = 1 + alpha * big_a UpperCAmelCase : Union[str, Any] = -2 * _cos UpperCAmelCase : Optional[Any] = 1 - alpha * big_a UpperCAmelCase : Union[str, Any] = 1 + alpha / big_a UpperCAmelCase : Tuple = -2 * _cos UpperCAmelCase : Any = 1 - alpha / big_a UpperCAmelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : Any = tau * frequency / samplerate UpperCAmelCase : Optional[int] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : str = _sin / (2 * q_factor) UpperCAmelCase : List[str] = 10 ** (gain_db / 40) UpperCAmelCase : Optional[int] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : int = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : int = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : str = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Dict = big_a * (pmc + aaa) UpperCAmelCase : Any = 2 * big_a * mpc UpperCAmelCase : Union[str, Any] = big_a * (pmc - aaa) UpperCAmelCase : Optional[int] = ppmc + aaa UpperCAmelCase : Optional[Any] = -2 * pmpc UpperCAmelCase : Optional[Any] = ppmc - aaa UpperCAmelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : float = 1 / sqrt(2 ) , ) -> IIRFilter: UpperCAmelCase : int = tau * frequency / samplerate UpperCAmelCase : Union[str, Any] = sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = cos(_lowerCAmelCase ) UpperCAmelCase : Any = _sin / (2 * q_factor) UpperCAmelCase : int = 10 ** (gain_db / 40) UpperCAmelCase : List[str] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[str] = 2 * sqrt(_lowerCAmelCase ) * alpha UpperCAmelCase : Any = big_a * (ppmc + aaa) UpperCAmelCase : str = -2 * big_a * pmpc UpperCAmelCase : List[Any] = big_a * (ppmc - aaa) UpperCAmelCase : Optional[Any] = pmc + aaa UpperCAmelCase : Any = 2 * mpc UpperCAmelCase : str = pmc - aaa UpperCAmelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
23
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCAmelCase__(__snake_case ,__snake_case=False ) -> str: '''simple docstring''' lowerCamelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowerCamelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase__ = '''''' else: lowerCamelCase__ = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCamelCase__ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__ = in_proj_bias[: config.hidden_size] lowerCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ = in_proj_bias[-config.hidden_size :] def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ = dct.pop(_lowerCAmelCase ) lowerCamelCase__ = val def lowerCAmelCase__() -> str: '''simple docstring''' lowerCamelCase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase__ = Image.open(requests.get(_lowerCAmelCase ,stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase__(__snake_case ,__snake_case ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = DeiTConfig() # all deit models have fine-tuned heads lowerCamelCase__ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowerCamelCase__ = 1000 lowerCamelCase__ = '''huggingface/label-files''' lowerCamelCase__ = '''imagenet-1k-id2label.json''' lowerCamelCase__ = json.load(open(hf_hub_download(_lowerCAmelCase ,_lowerCAmelCase ,repo_type='''dataset''' ) ,'''r''' ) ) lowerCamelCase__ = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} lowerCamelCase__ = int(deit_name[-6:-4] ) lowerCamelCase__ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): lowerCamelCase__ = 192 lowerCamelCase__ = 768 lowerCamelCase__ = 12 lowerCamelCase__ = 3 elif deit_name[9:].startswith('''small''' ): lowerCamelCase__ = 384 lowerCamelCase__ = 1536 lowerCamelCase__ = 12 lowerCamelCase__ = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): lowerCamelCase__ = 1024 lowerCamelCase__ = 4096 lowerCamelCase__ = 24 lowerCamelCase__ = 16 # load original model from timm lowerCamelCase__ = timm.create_model(_lowerCAmelCase ,pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase__ = timm_model.state_dict() lowerCamelCase__ = create_rename_keys(_lowerCAmelCase ,_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # load HuggingFace model lowerCamelCase__ = DeiTForImageClassificationWithTeacher(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor lowerCamelCase__ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowerCamelCase__ = DeiTImageProcessor(size=_lowerCAmelCase ,crop_size=config.image_size ) lowerCamelCase__ = image_processor(images=prepare_img() ,return_tensors='''pt''' ) lowerCamelCase__ = encoding['''pixel_values'''] lowerCamelCase__ = model(_lowerCAmelCase ) lowerCamelCase__ = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase ,outputs.logits ,atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
209
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: UpperCAmelCase : str = get_failure_array(_lowerCAmelCase ) # 2) Step through text searching for pattern UpperCAmelCase , UpperCAmelCase : Optional[Any] = 0, 0 # index into text, pattern while i < len(_lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(_lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCAmelCase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( _lowerCAmelCase : str ) -> list[int]: UpperCAmelCase : Optional[Any] = [0] UpperCAmelCase : str = 0 UpperCAmelCase : List[str] = 1 while j < len(_lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCAmelCase : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(_lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) UpperCamelCase__: str = "abc1abc12" UpperCamelCase__: str = "alskfjaldsabc1abc1abc12k23adsfabcabc" UpperCamelCase__: Any = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCamelCase__: Tuple = "ABABX" UpperCamelCase__: Union[str, Any] = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) UpperCamelCase__: Any = "AAAB" UpperCamelCase__: str = "ABAAAAAB" assert kmp(pattern, text) # Test 4) UpperCamelCase__: int = "abcdabcy" UpperCamelCase__: Any = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) UpperCamelCase__: List[str] = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
23
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _UpperCAmelCase ( __lowerCamelCase : Optional[int] ) -> Optional[int]: _snake_case = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: _snake_case = 10_24 _snake_case = 40_96 _snake_case = 24 _snake_case = 16 _snake_case = [5, 11, 17, 23] _snake_case = [2_56, 5_12, 10_24, 10_24] _snake_case = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: _snake_case = 7_68 _snake_case = [1, 1, 1, 0.5] _snake_case = [2_56, 5_12, 7_68, 7_68] _snake_case = 1_50 _snake_case = 16 _snake_case = (1, 3_84, 3_84) _snake_case = False _snake_case = '''project''' if "ade" in checkpoint_url: _snake_case = True _snake_case = 7_68 _snake_case = [1, 1, 1, 0.5] _snake_case = 1_50 _snake_case = 16 _snake_case = '''huggingface/label-files''' _snake_case = '''ade20k-id2label.json''' _snake_case = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) _snake_case = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} _snake_case = [1, 1_50, 4_80, 4_80] return config, expected_shape def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] ) -> int: _snake_case = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Any: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _snake_case = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: _snake_case = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: _snake_case = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: _snake_case = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: _snake_case = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: _snake_case = name.replace('''proj''' , '''projection''' ) if "blocks" in name: _snake_case = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: _snake_case = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _snake_case = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: _snake_case = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: _snake_case = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: _snake_case = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: _snake_case = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: _snake_case = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: _snake_case = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: _snake_case = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: _snake_case = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: _snake_case = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _snake_case = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: _snake_case = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: _snake_case = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: _snake_case = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: _snake_case = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: _snake_case = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _snake_case = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: _snake_case = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: _snake_case = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: _snake_case = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _snake_case = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: _snake_case = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: _snake_case = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: _snake_case = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: _snake_case = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: _snake_case = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: _snake_case = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: _snake_case = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: _snake_case = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: _snake_case = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: _snake_case = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: _snake_case = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: _snake_case = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: _snake_case = name.replace('''..''' , '''.''' ) if "stem.conv" in name: _snake_case = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: _snake_case = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: _snake_case = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: _snake_case = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: _snake_case = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: _snake_case = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: _snake_case = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) _snake_case = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[: config.hidden_size, :] _snake_case = in_proj_bias[: config.hidden_size] _snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case = in_proj_weight[ -config.hidden_size :, : ] _snake_case = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( ) -> List[str]: _snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _snake_case = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ) -> Any: _snake_case = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _snake_case = torch.load(_lowerCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): _snake_case = state_dict.pop(_lowerCAmelCase ) _snake_case = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model _snake_case = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image _snake_case = 4_80 if '''ade''' in checkpoint_url else 3_84 _snake_case = DPTImageProcessor(size=_lowerCAmelCase ) _snake_case = prepare_img() _snake_case = image_processor(_lowerCAmelCase , return_tensors='''pt''' ) # forward pass _snake_case = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth if show_prediction: _snake_case = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCAmelCase__ = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
288
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCamelCase__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = {} with open(_lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(_lowerCAmelCase ): UpperCAmelCase : List[str] = line.strip() if line: UpperCAmelCase : str = line.split() UpperCAmelCase : Union[str, Any] = line_number UpperCAmelCase : List[Any] = words[0] UpperCAmelCase : Union[str, Any] = value return result def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Dict = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : int = shape_pointer.shape # let's reduce dimension UpperCAmelCase : Union[str, Any] = value[0] else: UpperCAmelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : int = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = value else: UpperCAmelCase : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]: UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Any = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase : List[Any] = key UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0] UpperCamelCase__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int: UpperCAmelCase : List[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase : str = '''weight_g''' elif "weight_v" in name: UpperCAmelCase : int = '''weight_v''' elif "bias" in name: UpperCAmelCase : int = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : List[str] = '''weight''' else: UpperCAmelCase : Dict = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : Dict = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : Any = True else: UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : Optional[int] = name.split('''.''' ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict: if config_path is not None: UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = idalabel UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase ) UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : Optional[int] = target_dict.eos_index UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , ) UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase ) else: UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCamelCase__: Any = parser.parse_args() UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
23
0
__lowerCamelCase : List[str] = [0, 2, 4, 6, 8] __lowerCamelCase : Any = [1, 3, 5, 7, 9] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : list[int] , __UpperCamelCase : int ) -> int: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 SCREAMING_SNAKE_CASE__ = 0 for digit in range(10 ): SCREAMING_SNAKE_CASE__ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _lowerCAmelCase , _lowerCAmelCase ) return result SCREAMING_SNAKE_CASE__ = 0 for digita in range(10 ): SCREAMING_SNAKE_CASE__ = digita if (remainder + digita) % 2 == 0: SCREAMING_SNAKE_CASE__ = ODD_DIGITS else: SCREAMING_SNAKE_CASE__ = EVEN_DIGITS for digita in other_parity_digits: SCREAMING_SNAKE_CASE__ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _lowerCAmelCase , _lowerCAmelCase , ) return result def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 9 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(_lowerCAmelCase , 0 , [0] * length , _lowerCAmelCase ) return result if __name__ == "__main__": print(F"""{solution() = }""")
219
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case ) UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )] UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case ) UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Tuple = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def A ( self : List[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : int = num_samples * [prompt] UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Tuple = shard(__snake_case ) UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : List[str] = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[int] = jax.device_count() UpperCAmelCase : List[str] = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : str = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) UpperCAmelCase : Tuple = scheduler.create_state() UpperCAmelCase : Dict = scheduler_state UpperCAmelCase : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : int = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Any = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : str = replicate(__snake_case ) UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def A ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , ) UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[str] = shard(__snake_case ) UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) UpperCAmelCase : int = replicate(__snake_case ) UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[Any] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : int = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
import argparse import copy def __snake_case ( _UpperCAmelCase ): __a = {} with open(_lowerCAmelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __a = [] _list.append([line.split()[1], line.split()[2]] ) __a = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __a = [] _list.append([line.split()[0], line.split()[2]] ) __a = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): with open(_lowerCAmelCase ) as f: __a = f.read(1 ) __a = start_node __a = [] __a = start_node __a = 0 while visiting not in first_solution: __a = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_lowerCAmelCase ) and k[0] not in first_solution: __a = k[1] __a = k[0] first_solution.append(_lowerCAmelCase ) __a = distance_of_first_solution + int(_lowerCAmelCase ) __a = best_node first_solution.append(_lowerCAmelCase ) __a = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __a = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = [] for n in solution[1:-1]: __a = solution.index(_lowerCAmelCase ) for kn in solution[1:-1]: __a = solution.index(_lowerCAmelCase ) if n == kn: continue __a = copy.deepcopy(_lowerCAmelCase ) __a = kn __a = n __a = 0 for k in _tmp[:-1]: __a = _tmp[_tmp.index(_lowerCAmelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __a = distance + int(i[1] ) _tmp.append(_lowerCAmelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __a = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _UpperCAmelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = 1 __a = first_solution __a = [] __a = distance_of_first_solution __a = solution while count <= iters: __a = find_neighborhood(_lowerCAmelCase , _lowerCAmelCase ) __a = 0 __a = neighborhood[index_of_best_solution] __a = len(_lowerCAmelCase ) - 1 __a = False while not found: __a = 0 while i < len(_lowerCAmelCase ): if best_solution[i] != solution[i]: __a = best_solution[i] __a = solution[i] break __a = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __a = True __a = best_solution[:-1] __a = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __a = cost __a = solution else: __a = index_of_best_solution + 1 __a = neighborhood[index_of_best_solution] if len(_lowerCAmelCase ) >= size: tabu_list.pop(0 ) __a = count + 1 return best_solution_ever, best_cost def __snake_case ( _UpperCAmelCase=None ): __a = generate_neighbours(args.File ) __a = generate_first_solution( args.File , _lowerCAmelCase ) __a = tabu_search( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": __snake_case :List[Any] = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
49
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase : str = n - 1 UpperCAmelCase : List[Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase : List[str] = 0 while count < prec: UpperCAmelCase : int = random.randint(2 , n - 1 ) UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if b != 1: UpperCAmelCase : int = True for _ in range(_lowerCAmelCase ): if b == n - 1: UpperCAmelCase : Dict = False break UpperCAmelCase : str = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
23
0
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowercase ( unittest.TestCase ): def A__ ( self): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowercase = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' ,safety_checker=__snake_case ,cache_dir=__snake_case) lowercase = [t[-1] for t in os.walk(os.path.join(__snake_case ,os.listdir(__snake_case)[0] ,'''snapshots'''))] lowercase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''') for f in files) @slow @require_flax class lowercase ( unittest.TestCase ): def A__ ( self): lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' ,safety_checker=__snake_case) lowercase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase = jax.random.PRNGKey(0) lowercase = 4 lowercase = jax.device_count() lowercase = num_samples * [prompt] lowercase = pipeline.prepare_inputs(__snake_case) # shard inputs and rng lowercase = replicate(__snake_case) lowercase = jax.random.split(__snake_case ,__snake_case) lowercase = shard(__snake_case) lowercase = pipeline(__snake_case ,__snake_case ,__snake_case ,__snake_case ,jit=__snake_case).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa).sum() - 4.1514745) < 1E-3 assert np.abs(np.abs(__snake_case ,dtype=np.floataa).sum() - 4_9_9_4_7.8_7_5) < 5E-1 lowercase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(__snake_case) == num_samples def A__ ( self): lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''flax''' ,safety_checker=__snake_case) lowercase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase = jax.random.PRNGKey(0) lowercase = 5_0 lowercase = jax.device_count() lowercase = num_samples * [prompt] lowercase = pipeline.prepare_inputs(__snake_case) # shard inputs and rng lowercase = replicate(__snake_case) lowercase = jax.random.split(__snake_case ,__snake_case) lowercase = shard(__snake_case) lowercase = pipeline(__snake_case ,__snake_case ,__snake_case ,__snake_case ,jit=__snake_case).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa).sum() - 0.05652401)) < 1E-3 assert np.abs((np.abs(__snake_case ,dtype=np.floataa).sum() - 2_3_8_3_8_0_8.2)) < 5E-1 def A__ ( self): lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=__snake_case) lowercase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase = jax.random.PRNGKey(0) lowercase = 5_0 lowercase = jax.device_count() lowercase = num_samples * [prompt] lowercase = pipeline.prepare_inputs(__snake_case) # shard inputs and rng lowercase = replicate(__snake_case) lowercase = jax.random.split(__snake_case ,__snake_case) lowercase = shard(__snake_case) lowercase = pipeline(__snake_case ,__snake_case ,__snake_case ,__snake_case ,jit=__snake_case).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa).sum() - 0.04003906)) < 1E-3 assert np.abs((np.abs(__snake_case ,dtype=np.floataa).sum() - 2_3_7_3_5_1_6.7_5)) < 5E-1 def A__ ( self): lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa) lowercase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase = jax.random.PRNGKey(0) lowercase = 5_0 lowercase = jax.device_count() lowercase = num_samples * [prompt] lowercase = pipeline.prepare_inputs(__snake_case) # shard inputs and rng lowercase = replicate(__snake_case) lowercase = jax.random.split(__snake_case ,__snake_case) lowercase = shard(__snake_case) lowercase = pipeline(__snake_case ,__snake_case ,__snake_case ,__snake_case ,jit=__snake_case).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa).sum() - 0.04003906)) < 1E-3 assert np.abs((np.abs(__snake_case ,dtype=np.floataa).sum() - 2_3_7_3_5_1_6.7_5)) < 5E-1 def A__ ( self): lowercase = FlaxDDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,set_alpha_to_one=__snake_case ,steps_offset=1 ,) lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,scheduler=__snake_case ,safety_checker=__snake_case ,) lowercase = scheduler.create_state() lowercase = scheduler_state lowercase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase = jax.random.PRNGKey(0) lowercase = 5_0 lowercase = jax.device_count() lowercase = num_samples * [prompt] lowercase = pipeline.prepare_inputs(__snake_case) # shard inputs and rng lowercase = replicate(__snake_case) lowercase = jax.random.split(__snake_case ,__snake_case) lowercase = shard(__snake_case) lowercase = pipeline(__snake_case ,__snake_case ,__snake_case ,__snake_case ,jit=__snake_case).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa).sum() - 0.045043945)) < 1E-3 assert np.abs((np.abs(__snake_case ,dtype=np.floataa).sum() - 2_3_4_7_6_9_3.5)) < 5E-1 def A__ ( self): lowercase = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) lowercase = jax.device_count() lowercase = num_samples * [prompt] lowercase = jax.random.split(jax.random.PRNGKey(0) ,__snake_case) lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=__snake_case ,) lowercase = replicate(__snake_case) lowercase = pipeline.prepare_inputs(__snake_case) lowercase = shard(__snake_case) lowercase = pipeline(__snake_case ,__snake_case ,__snake_case ,jit=__snake_case).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowercase = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=__snake_case ,use_memory_efficient_attention=__snake_case ,) lowercase = replicate(__snake_case) lowercase = pipeline.prepare_inputs(__snake_case) lowercase = shard(__snake_case) lowercase = pipeline(__snake_case ,__snake_case ,__snake_case ,jit=__snake_case).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowercase = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1E-2
101
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__: Optional[int] = logging.get_logger(__name__) def snake_case_ ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: UpperCAmelCase : Tuple = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: UpperCAmelCase : Tuple = 1024 UpperCAmelCase : List[Any] = 4096 UpperCAmelCase : str = 24 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = [5, 11, 17, 23] UpperCAmelCase : List[Any] = [256, 512, 1024, 1024] UpperCAmelCase : Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase : Optional[Any] = 768 UpperCAmelCase : Tuple = [1, 1, 1, 0.5] UpperCAmelCase : int = [256, 512, 768, 768] UpperCAmelCase : Any = 150 UpperCAmelCase : Tuple = 16 UpperCAmelCase : Any = (1, 384, 384) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = '''project''' if "ade" in checkpoint_url: UpperCAmelCase : Any = True UpperCAmelCase : str = 768 UpperCAmelCase : Optional[int] = [1, 1, 1, 0.5] UpperCAmelCase : List[Any] = 150 UpperCAmelCase : List[Any] = 16 UpperCAmelCase : str = '''huggingface/label-files''' UpperCAmelCase : Tuple = '''ade20k-id2label.json''' UpperCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : List[Any] = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( _lowerCAmelCase : Union[str, Any] ) -> int: UpperCAmelCase : List[str] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple ) -> Any: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase : Tuple = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase : Union[str, Any] = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase : int = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: UpperCAmelCase : Tuple = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase : str = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase : Any = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase : Optional[int] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: UpperCAmelCase : Dict = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: UpperCAmelCase : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase : Tuple = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase : str = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase : Dict = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase : int = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase : Tuple = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase : int = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase : List[str] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase : str = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase : Union[str, Any] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase : Any = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase : Optional[int] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase : Tuple = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase : Dict = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase : List[Any] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase : str = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase : List[str] = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase : Tuple = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase : int = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase : Optional[int] = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase : Dict = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase : Any = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase : Optional[int] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase : Union[str, Any] = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: UpperCAmelCase : Optional[int] = name.replace('''..''' , '''.''' ) if "stem.conv" in name: UpperCAmelCase : Optional[Any] = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: UpperCAmelCase : List[Any] = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: UpperCAmelCase : List[str] = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase : List[Any] = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: UpperCAmelCase : List[Any] = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase : Tuple = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[int] = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase : Tuple = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Tuple = in_proj_weight[: config.hidden_size, :] UpperCAmelCase : int = in_proj_bias[: config.hidden_size] UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def snake_case_ ( ) -> List[str]: UpperCAmelCase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ) -> Any: UpperCAmelCase , UpperCAmelCase : int = get_dpt_config(_lowerCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase : List[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase : Any = state_dict.pop(_lowerCAmelCase ) UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model UpperCAmelCase : Optional[Any] = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Check outputs on an image UpperCAmelCase : int = 480 if '''ade''' in checkpoint_url else 384 UpperCAmelCase : List[Any] = DPTImageProcessor(size=_lowerCAmelCase ) UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : Optional[int] = image_processor(_lowerCAmelCase , return_tensors='''pt''' ) # forward pass UpperCAmelCase : Any = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth if show_prediction: UpperCAmelCase : Dict = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=_lowerCAmelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) UpperCamelCase__: Tuple = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
23
0
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _SCREAMING_SNAKE_CASE = "\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n" _SCREAMING_SNAKE_CASE = "\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n" _SCREAMING_SNAKE_CASE = "\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for 'cvit-mkb-clsr' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"precision\": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'precision@10': 1.0}\n\n" def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' return float((preds == labels).mean() ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = simple_accuracy(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase = float(fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' UpperCamelCase = np.array(_lowerCAmelCase ) UpperCamelCase = np.array(_lowerCAmelCase ) UpperCamelCase = en_sentvecs.shape[0] # mean centering UpperCamelCase = en_sentvecs - np.mean(_lowerCAmelCase , axis=0 ) UpperCamelCase = in_sentvecs - np.mean(_lowerCAmelCase , axis=0 ) UpperCamelCase = cdist(_lowerCAmelCase , _lowerCAmelCase , """cosine""" ) UpperCamelCase = np.array(range(_lowerCAmelCase ) ) UpperCamelCase = sim.argsort(axis=1 )[:, :10] UpperCamelCase = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """ """\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """ """\"wiki-ner\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" ) if self.config_name != """cvit-mkb-clsr""" else datasets.Sequence(datasets.Value("""float32""" ) ), """references""": datasets.Value("""int64""" ) if self.config_name != """cvit-mkb-clsr""" else datasets.Sequence(datasets.Value("""float32""" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if self.config_name != """cvit-mkb-clsr""" else None , ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Any ): """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__snake_case , __snake_case )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__snake_case , __snake_case ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__snake_case , __snake_case )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """ """\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """ """\"wiki-ner\"]""" )
343
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase__: Optional[int] = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
23
0
'''simple docstring''' import sys from collections import defaultdict class UpperCAmelCase_ : """simple docstring""" def __init__( self : Any ): snake_case__ : Union[str, Any] = [] def lowerCamelCase ( self : str , snake_case_ : Any ): return self.node_position[vertex] def lowerCamelCase ( self : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[Any] ): snake_case__ : Optional[Any] = pos def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Dict , snake_case_ : str ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case__ : Union[str, Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case__ : Tuple = 2 * start + 1 else: snake_case__ : List[str] = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case__ : str = heap[smallest_child], positions[smallest_child] snake_case__ : str = ( heap[start], positions[start], ) snake_case__ : Any = temp, tempa snake_case__ : Union[str, Any] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __snake_case ) self.top_to_bottom(__snake_case , __snake_case , __snake_case , __snake_case ) def lowerCamelCase ( self : Tuple , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : str ): snake_case__ : Union[str, Any] = position[index] while index != 0: snake_case__ : List[str] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: snake_case__ : List[Any] = heap[parent] snake_case__ : str = position[parent] self.set_position(position[parent] , __snake_case ) else: snake_case__ : Optional[Any] = val snake_case__ : Dict = temp self.set_position(__snake_case , __snake_case ) break snake_case__ : Optional[int] = parent else: snake_case__ : Any = val snake_case__ : Optional[int] = temp self.set_position(__snake_case , 0 ) def lowerCamelCase ( self : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] ): snake_case__ : Tuple = len(__snake_case ) // 2 - 1 for i in range(__snake_case , -1 , -1 ): self.top_to_bottom(__snake_case , __snake_case , len(__snake_case ) , __snake_case ) def lowerCamelCase ( self : Dict , snake_case_ : Optional[Any] , snake_case_ : int ): snake_case__ : List[Any] = positions[0] snake_case__ : Optional[int] = sys.maxsize self.top_to_bottom(__snake_case , 0 , len(__snake_case ) , __snake_case ) return temp def __snake_case( _lowerCAmelCase ) -> str: snake_case__ : Union[str, Any] = Heap() snake_case__ : str = [0] * len(_lowerCAmelCase ) snake_case__ : str = [-1] * len(_lowerCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case__ : Optional[int] = [] # Heap of Distance of vertices from their neighboring vertex snake_case__ : List[str] = [] for vertex in range(len(_lowerCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowerCAmelCase ) heap.node_position.append(_lowerCAmelCase ) snake_case__ : List[str] = [] snake_case__ : Tuple = 1 snake_case__ : Union[str, Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case__ : List[Any] = 0 snake_case__ : Tuple = distance heap.heapify(_lowerCAmelCase , _lowerCAmelCase ) for _ in range(1 , len(_lowerCAmelCase ) ): snake_case__ : str = heap.delete_minimum(_lowerCAmelCase , _lowerCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case__ : Optional[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowerCAmelCase )] ): snake_case__ : Tuple = distance heap.bottom_to_top( _lowerCAmelCase , heap.get_position(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Optional[Any] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __a = int(input("Enter number of edges: ").strip()) __a = defaultdict(list) for _ in range(edges_number): __a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
35
'''simple docstring''' from __future__ import annotations def snake_case_ ( _lowerCAmelCase : list[int | float] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int | float: if len(_lowerCAmelCase ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(_lowerCAmelCase ) or left < -len(_lowerCAmelCase ) or right >= len(_lowerCAmelCase ) or right < -len(_lowerCAmelCase ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] UpperCAmelCase : List[Any] = (left + right) >> 1 # the middle UpperCAmelCase : Optional[Any] = find_max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # find max in range[left, mid] UpperCAmelCase : Dict = find_max(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
23
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable snake_case_ = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['DPTFeatureExtractor'] snake_case_ = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
24
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def a (*a__ : List[str] , **a__ : List[str] ): """simple docstring""" pass def lowerCamelCase__ ( snake_case_ : int ) -> Optional[int]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. snake_case_ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : Optional[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def a (self : List[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model=a__ , tokenizer=a__ , image_processor=a__ ) __snake_case = INVOICE_URL __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) __snake_case = '''What is the placebo?''' __snake_case = [ { '''image''': load_image(a__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def a (self : Union[str, Any] , a__ : Optional[int] , a__ : Dict ): """simple docstring""" __snake_case = dqa_pipeline(a__ , top_k=2 ) self.assertEqual( a__ , [ [ {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def a (self : Dict ): """simple docstring""" __snake_case = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __snake_case = INVOICE_URL __snake_case = '''How many cats are there?''' __snake_case = [ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(a__ , [] ) # We can optionnally pass directly the words and bounding boxes __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = [] __snake_case = [] __snake_case = dqa_pipeline(image=a__ , question=a__ , words=a__ , boxes=a__ , top_k=2 ) self.assertEqual(a__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : str ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : List[Any] ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Tuple ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Dict ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def a (self : Tuple ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def a (self : List[str] ): """simple docstring""" pass
24
1
from __future__ import annotations snake_case_ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowerCamelCase__ ( snake_case_ : list[list[int]] , snake_case_ : list[int] , snake_case_ : list[int] , snake_case_ : int , snake_case_ : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case_ ) ) ] # the reference grid __snake_case = 1 __snake_case = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case_ ) ) ] # the action grid __snake_case = init[0] __snake_case = init[1] __snake_case = 0 __snake_case = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case = [[f, g, x, y]] __snake_case = False # flag that is set when search is complete __snake_case = False # flag set if we can't find expand while not found and not resign: if len(snake_case_ ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case = cell.pop() __snake_case = next_cell[2] __snake_case = next_cell[3] __snake_case = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case = True else: for i in range(len(snake_case_ ) ): # to try out different valid actions __snake_case = x + DIRECTIONS[i][0] __snake_case = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case = g + cost __snake_case = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case = 1 __snake_case = i __snake_case = [] __snake_case = goal[0] __snake_case = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case = x - DIRECTIONS[action[x][y]][0] __snake_case = y - DIRECTIONS[action[x][y]][1] __snake_case = xa __snake_case = ya invpath.append([x, y] ) __snake_case = [] for i in range(len(snake_case_ ) ): path.append(invpath[len(snake_case_ ) - 1 - i] ) return path, action if __name__ == "__main__": snake_case_ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] snake_case_ = [0, 0] # all coordinates are given in format [y,x] snake_case_ = [len(grid) - 1, len(grid[0]) - 1] snake_case_ = 1 # the cost map which pushes the path closer to the goal snake_case_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): snake_case_ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map snake_case_ = 99 snake_case_ , snake_case_ = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
24
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int ) -> list[list[int]]: __snake_case = [] __snake_case = [] __snake_case = 0 __snake_case = sum(snake_case_ ) create_state_space_tree(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return result def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int , snake_case_ : list[int] , snake_case_ : list[list[int]] , snake_case_ : int , ) -> None: if sum(snake_case_ ) > max_sum or (remaining_nums_sum + sum(snake_case_ )) < max_sum: return if sum(snake_case_ ) == max_sum: result.append(snake_case_ ) return for index in range(snake_case_ , len(snake_case_ ) ): create_state_space_tree( snake_case_ , snake_case_ , index + 1 , [*path, nums[index]] , snake_case_ , remaining_nums_sum - nums[index] , ) snake_case_ = [3, 34, 4, 12, 5, 2] snake_case_ = 9 snake_case_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
24
1
import json import sys def lowerCamelCase__ ( snake_case_ : Tuple , snake_case_ : List[Any] ) -> Optional[int]: with open(snake_case_ , encoding='''utf-8''' ) as f: __snake_case = json.load(snake_case_ ) __snake_case = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(snake_case_ ): __snake_case = results[benchmark_name] __snake_case = benchmark_name.split('''/''' )[-1] output_md.append(f"""### Benchmark: {benchmark_file_name}""" ) __snake_case = '''| metric |''' __snake_case = '''|--------|''' __snake_case = '''| new / old (diff) |''' for metric_name in sorted(snake_case_ ): __snake_case = benchmark_res[metric_name] __snake_case = metric_vals['''new'''] __snake_case = metric_vals.get('''old''' , snake_case_ ) __snake_case = metric_vals.get('''diff''' , snake_case_ ) __snake_case = f""" {new_val:f}""" if isinstance(snake_case_ , (int, float) ) else '''None''' if old_val is not None: val_str += f""" / {old_val:f}""" if isinstance(snake_case_ , (int, float) ) else "None" if dif_val is not None: val_str += f""" ({dif_val:f})""" if isinstance(snake_case_ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(snake_case_ ) ) if __name__ == "__main__": snake_case_ = sys.argv[1] snake_case_ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
24
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : List[Any] , a__ : Dict=13 , a__ : str=32 , a__ : Tuple=3 , a__ : Optional[Any]=4 , a__ : Optional[int]=[10, 20, 30, 40] , a__ : List[Any]=[2, 2, 3, 2] , a__ : List[Any]=True , a__ : int=True , a__ : List[Any]=37 , a__ : Any="gelu" , a__ : int=10 , a__ : Dict=0.0_2 , a__ : Dict=["stage2", "stage3", "stage4"] , a__ : Tuple=[2, 3, 4] , a__ : List[str]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = num_stages __snake_case = hidden_sizes __snake_case = depths __snake_case = is_training __snake_case = use_labels __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_labels __snake_case = initializer_range __snake_case = out_features __snake_case = out_indices __snake_case = scope def a (self : Dict ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def a (self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a (self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a (self : Optional[Any] , a__ : List[Any] , a__ : str , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a (self : Tuple , a__ : List[Any] , a__ : List[str] , a__ : List[str] ): """simple docstring""" __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case = None __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Dict = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) A_ : Optional[Any] = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) A_ : Dict = True A_ : Optional[Any] = False A_ : int = False A_ : int = False A_ : List[str] = False def a (self : List[str] ): """simple docstring""" __snake_case = ConvNextModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def a (self : Tuple ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : str ): """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def a (self : List[Any] ): """simple docstring""" pass def a (self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def a (self : Dict ): """simple docstring""" def check_hidden_states_output(a__ : List[str] , a__ : str , a__ : Tuple ): __snake_case = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a__ , a__ ) ) __snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def a (self : Any ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ConvNextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ) -> List[str]: __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def a (self : Tuple ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def a (self : Optional[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(a__ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): __snake_case = model(**a__ ) # verify the logits __snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) __snake_case = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , _UpperCAmelCase ): A_ : Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () A_ : List[Any] = ConvNextConfig A_ : Optional[Any] = False def a (self : Optional[int] ): """simple docstring""" __snake_case = ConvNextModelTester(self )
24
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def a (self : int , a__ : List[Any]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) __snake_case = np.random.RandomState(a__ ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def a (self : List[Any] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) # warmup pass to apply optimizations __snake_case = pipe(**self.get_dummy_inputs() ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Any ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def a (self : List[str] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a (self : Optional[Any] ): """simple docstring""" __snake_case = ort.SessionOptions() __snake_case = False return options def a (self : Optional[Any] ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) # using the PNDM scheduler by default __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def a (self : Dict ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) __snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=a__ , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
24
def lowerCamelCase__ ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(snake_case_ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
1
from __future__ import annotations snake_case_ = list[list[int]] # assigning initial values to the grid snake_case_ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution snake_case_ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase__ ( snake_case_ : Matrix , snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase__ ( snake_case_ : Matrix ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase__ ( snake_case_ : Matrix ) -> Matrix | None: if location := find_empty_location(snake_case_ ): __snake_case , __snake_case = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): __snake_case = digit if sudoku(snake_case_ ) is not None: return grid __snake_case = 0 return None def lowerCamelCase__ ( snake_case_ : Matrix ) -> None: for row in grid: for cell in row: print(snake_case_ , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') snake_case_ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
24
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = BartphoTokenizer A_ : List[str] = False A_ : Optional[Any] = True def a (self : Tuple ): """simple docstring""" super().setUp() __snake_case = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def a (self : str , **a__ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a (self : str , a__ : Any ): """simple docstring""" __snake_case = '''This is a là test''' __snake_case = '''This is a<unk><unk> test''' return input_text, output_text def a (self : Dict ): """simple docstring""" __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case = '''This is a là test''' __snake_case = '''▁This ▁is ▁a ▁l à ▁t est'''.split() __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
24
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : List[Any] , a__ : Dict=13 , a__ : str=32 , a__ : Tuple=3 , a__ : Optional[Any]=4 , a__ : Optional[int]=[10, 20, 30, 40] , a__ : List[Any]=[2, 2, 3, 2] , a__ : List[Any]=True , a__ : int=True , a__ : List[Any]=37 , a__ : Any="gelu" , a__ : int=10 , a__ : Dict=0.0_2 , a__ : Dict=["stage2", "stage3", "stage4"] , a__ : Tuple=[2, 3, 4] , a__ : List[str]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = num_stages __snake_case = hidden_sizes __snake_case = depths __snake_case = is_training __snake_case = use_labels __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_labels __snake_case = initializer_range __snake_case = out_features __snake_case = out_indices __snake_case = scope def a (self : Dict ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def a (self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a (self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a (self : Optional[Any] , a__ : List[Any] , a__ : str , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a (self : Tuple , a__ : List[Any] , a__ : List[str] , a__ : List[str] ): """simple docstring""" __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case = None __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Dict = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) A_ : Optional[Any] = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) A_ : Dict = True A_ : Optional[Any] = False A_ : int = False A_ : int = False A_ : List[str] = False def a (self : List[str] ): """simple docstring""" __snake_case = ConvNextModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def a (self : Tuple ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : str ): """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def a (self : List[Any] ): """simple docstring""" pass def a (self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def a (self : Dict ): """simple docstring""" def check_hidden_states_output(a__ : List[str] , a__ : str , a__ : Tuple ): __snake_case = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a__ , a__ ) ) __snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def a (self : Any ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ConvNextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ) -> List[str]: __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def a (self : Tuple ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def a (self : Optional[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(a__ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): __snake_case = model(**a__ ) # verify the logits __snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) __snake_case = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , _UpperCAmelCase ): A_ : Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () A_ : List[Any] = ConvNextConfig A_ : Optional[Any] = False def a (self : Optional[int] ): """simple docstring""" __snake_case = ConvNextModelTester(self )
24
def lowerCamelCase__ ( snake_case_ : int ) -> int: if not isinstance(snake_case_ , snake_case_ ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) __snake_case = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
24
1
def lowerCamelCase__ ( snake_case_ : int = 200 ) -> int: __snake_case = [1, 2, 5, 10, 20, 50, 100, 200] __snake_case = [0] * (pence + 1) __snake_case = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(snake_case_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
24
from math import loga def lowerCamelCase__ ( snake_case_ : int ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(snake_case_ , snake_case_ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
24
1
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. snake_case_ = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` snake_case_ = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') snake_case_ = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def lowerCamelCase__ ( snake_case_ : Optional[Any] ) -> str: __snake_case = None # source code of `config_class` __snake_case = inspect.getsource(snake_case_ ) __snake_case = _re_checkpoint.findall(snake_case_ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): __snake_case = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link __snake_case = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: __snake_case = ckpt_name break return checkpoint def lowerCamelCase__ ( ) -> List[Any]: __snake_case = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue __snake_case = get_checkpoint_from_config_class(snake_case_ ) __snake_case = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(snake_case_ ) if len(snake_case_ ) > 0: __snake_case = '''\n'''.join(sorted(snake_case_ ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
24
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[int] , *a__ : Any , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[int] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : Tuple ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : Dict , **a__ : Any ): """simple docstring""" return {}, {}, {} def a (self : List[str] , a__ : Any ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : int , a__ : List[Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
24
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() snake_case_ = logging.get_logger(__name__) def lowerCamelCase__ ( snake_case_ : Tuple ) -> str: print('''Loading config file...''' ) def flatten_yaml_as_dict(snake_case_ : Optional[int] , snake_case_ : Optional[int]="" , snake_case_ : Tuple="." ): __snake_case = [] for k, v in d.items(): __snake_case = parent_key + sep + k if parent_key else k if isinstance(snake_case_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case_ , snake_case_ , sep=snake_case_ ).items() ) else: items.append((new_key, v) ) return dict(snake_case_ ) __snake_case = argparse.Namespace() with open(snake_case_ , '''r''' ) as yaml_file: try: __snake_case = yaml.load(snake_case_ , Loader=yaml.FullLoader ) __snake_case = flatten_yaml_as_dict(snake_case_ ) for k, v in flat_cfg.items(): setattr(snake_case_ , snake_case_ , snake_case_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(snake_case_ , str(snake_case_ ) ) ) return config def lowerCamelCase__ ( snake_case_ : str , snake_case_ : Tuple ) -> Dict: __snake_case = MobileViTVaConfig() __snake_case = False # dataset if task_name.startswith('''imagenet1k_''' ): __snake_case = 1000 if int(task_name.strip().split('''_''' )[-1] ) == 384: __snake_case = 384 else: __snake_case = 256 __snake_case = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): __snake_case = 2_1000 if int(task_name.strip().split('''_''' )[-1] ) == 384: __snake_case = 384 else: __snake_case = 256 __snake_case = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): __snake_case = 151 __snake_case = 512 __snake_case = '''ade20k-id2label.json''' __snake_case = True elif task_name.startswith('''voc_''' ): __snake_case = 21 __snake_case = 512 __snake_case = '''pascal-voc-id2label.json''' __snake_case = True # orig_config __snake_case = load_orig_config_file(snake_case_ ) assert getattr(snake_case_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" __snake_case = getattr(snake_case_ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(snake_case_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __snake_case = getattr(snake_case_ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __snake_case = getattr(snake_case_ , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: __snake_case = getattr(snake_case_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) __snake_case = getattr(snake_case_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) __snake_case = getattr(snake_case_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label __snake_case = '''huggingface/label-files''' __snake_case = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) ) __snake_case = {int(snake_case_ ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : List[Any] ) -> Optional[int]: __snake_case = dct.pop(snake_case_ ) __snake_case = val def lowerCamelCase__ ( snake_case_ : Optional[int] , snake_case_ : Tuple=False ) -> int: if base_model: __snake_case = '''''' else: __snake_case = '''mobilevitv2.''' __snake_case = [] for k in state_dict.keys(): if k[:8] == "encoder.": __snake_case = k[8:] else: __snake_case = k if ".block." in k: __snake_case = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: __snake_case = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: __snake_case = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: __snake_case = k_new.replace('''conv_1.''' , f"""{model_prefix}conv_stem.""" ) for i in [1, 2]: if f"""layer_{i}.""" in k: __snake_case = k_new.replace(f"""layer_{i}.""" , f"""{model_prefix}encoder.layer.{i-1}.layer.""" ) if ".exp_1x1." in k: __snake_case = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: __snake_case = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"""layer_{i}.0.""" in k: __snake_case = k_new.replace(f"""layer_{i}.0.""" , f"""{model_prefix}encoder.layer.{i-1}.downsampling_layer.""" ) if f"""layer_{i}.1.local_rep.0.""" in k: __snake_case = k_new.replace(f"""layer_{i}.1.local_rep.0.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_kxk.""" ) if f"""layer_{i}.1.local_rep.1.""" in k: __snake_case = k_new.replace(f"""layer_{i}.1.local_rep.1.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_1x1.""" ) for i in [3, 4, 5]: if i == 3: __snake_case = [0, 1] elif i == 4: __snake_case = [0, 1, 2, 3] elif i == 5: __snake_case = [0, 1, 2] for j in j_in: if f"""layer_{i}.1.global_rep.{j}.""" in k: __snake_case = k_new.replace( f"""layer_{i}.1.global_rep.{j}.""" , f"""{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.""" ) if f"""layer_{i}.1.global_rep.{j+1}.""" in k: __snake_case = k_new.replace( f"""layer_{i}.1.global_rep.{j+1}.""" , f"""{model_prefix}encoder.layer.{i-1}.layernorm.""" ) if f"""layer_{i}.1.conv_proj.""" in k: __snake_case = k_new.replace(f"""layer_{i}.1.conv_proj.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_projection.""" ) if "pre_norm_attn.0." in k: __snake_case = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: __snake_case = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: __snake_case = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: __snake_case = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: __snake_case = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: __snake_case = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: __snake_case = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: __snake_case = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: __snake_case = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def lowerCamelCase__ ( snake_case_ : Tuple ) -> List[str]: __snake_case = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(snake_case_ ) for k in keys_to_ignore: state_dict.pop(snake_case_ , snake_case_ ) def lowerCamelCase__ ( ) -> str: __snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __snake_case = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : int ) -> int: __snake_case = get_mobilevitva_config(snake_case_ , snake_case_ ) # load original state_dict __snake_case = torch.load(snake_case_ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): __snake_case = MobileViTVaForSemanticSegmentation(snake_case_ ).eval() __snake_case = False else: __snake_case = MobileViTVaForImageClassification(snake_case_ ).eval() __snake_case = False # remove and rename some keys of load the original model __snake_case = checkpoint remove_unused_keys(snake_case_ ) __snake_case = create_rename_keys(snake_case_ , base_model=snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) # load modified state_dict model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by MobileViTImageProcessor __snake_case = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) __snake_case = image_processor(images=prepare_img() , return_tensors='''pt''' ) __snake_case = model(**snake_case_ ) # verify classification model if task_name.startswith('''imagenet''' ): __snake_case = outputs.logits __snake_case = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant __snake_case = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ) assert torch.allclose(logits[0, :3] , snake_case_ , atol=1e-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f"""Saving model {task_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) snake_case_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
24
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> Any: assert _test_patching.open is open __snake_case = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , snake_case_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> List[str]: # pandas.read_csv is not present in _test_patching __snake_case = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , snake_case_ ): pass def lowerCamelCase__ ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , snake_case_ ) is None with patch_submodule(_test_patching , '''len''' , snake_case_ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = '''__test_patch_submodule_start_and_stop_mock__''' __snake_case = patch_submodule(_test_patching , '''open''' , snake_case_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case = '''__test_patch_submodule_successive_join__''' __snake_case = '''__test_patch_submodule_successive_dirname__''' __snake_case = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> Tuple: __snake_case = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , snake_case_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , snake_case_ ): pass
24
1
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : int = 4 ) -> list[list[int]]: __snake_case = abs(snake_case_ ) or 4 return [[1 + x + y * row_size for x in range(snake_case_ )] for y in range(snake_case_ )] def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: return reverse_row(transpose(snake_case_ ) ) # OR.. transpose(reverse_column(matrix)) def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: return reverse_row(reverse_column(snake_case_ ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: return reverse_column(transpose(snake_case_ ) ) # OR.. transpose(reverse_row(matrix)) def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: __snake_case = [list(snake_case_ ) for x in zip(*snake_case_ )] return matrix def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: __snake_case = matrix[::-1] return matrix def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: __snake_case = [x[::-1] for x in matrix] return matrix def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> None: for i in matrix: print(*snake_case_ ) if __name__ == "__main__": snake_case_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) snake_case_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) snake_case_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
24
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) snake_case_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) A_ : Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) A_ : Optional[int] = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Source language id for translation.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Target language id for translation.'} ) A_ : Optional[int] = field(default=_UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} ) A_ : bool = field( default=_UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Dict ) -> str: logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , f"""{split}_results.json""" ) ) def lowerCamelCase__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) __snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __snake_case = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): __snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __snake_case = SeqaSeqDataset # Get datasets __snake_case = ( dataset_class( snake_case_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __snake_case = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) __snake_case = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) __snake_case = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __snake_case = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __snake_case = train_result.metrics __snake_case = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __snake_case = trainer.evaluate(metric_key_prefix='''val''' ) __snake_case = data_args.n_val __snake_case = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __snake_case = trainer.predict(test_dataset=snake_case_ , metric_key_prefix='''test''' ) __snake_case = test_output.metrics __snake_case = data_args.n_test if trainer.is_world_process_zero(): __snake_case = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: __snake_case = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) __snake_case = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def lowerCamelCase__ ( snake_case_ : Optional[Any] ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
24
1
from __future__ import annotations from random import random class SCREAMING_SNAKE_CASE__ : def __init__(self : int , a__ : int | None = None ): """simple docstring""" __snake_case = value __snake_case = random() __snake_case = None __snake_case = None def __repr__(self : List[Any] ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__(self : int ): """simple docstring""" __snake_case = str(self.value ) + ''' ''' __snake_case = str(self.left or '''''' ) __snake_case = str(self.right or '''''' ) return value + left + right def lowerCamelCase__ ( snake_case_ : Node | None , snake_case_ : int ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __snake_case , __snake_case = split(root.left , snake_case_ ) return left, root else: __snake_case , __snake_case = split(root.right , snake_case_ ) return root, right def lowerCamelCase__ ( snake_case_ : Node | None , snake_case_ : Node | None ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __snake_case = merge(left.right , snake_case_ ) return left else: __snake_case = merge(snake_case_ , right.left ) return right def lowerCamelCase__ ( snake_case_ : Node | None , snake_case_ : int ) -> Node | None: __snake_case = Node(snake_case_ ) __snake_case , __snake_case = split(snake_case_ , snake_case_ ) return merge(merge(snake_case_ , snake_case_ ) , snake_case_ ) def lowerCamelCase__ ( snake_case_ : Node | None , snake_case_ : int ) -> Node | None: __snake_case , __snake_case = split(snake_case_ , value - 1 ) __snake_case , __snake_case = split(snake_case_ , snake_case_ ) return merge(snake_case_ , snake_case_ ) def lowerCamelCase__ ( snake_case_ : Node | None ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def lowerCamelCase__ ( snake_case_ : Node | None , snake_case_ : str ) -> Node | None: for arg in args.split(): if arg[0] == "+": __snake_case = insert(snake_case_ , int(arg[1:] ) ) elif arg[0] == "-": __snake_case = erase(snake_case_ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def lowerCamelCase__ ( ) -> None: __snake_case = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) __snake_case = input() while args != "q": __snake_case = interact_treap(snake_case_ , snake_case_ ) print(snake_case_ ) __snake_case = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
24
from math import pi def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
24
1
def lowerCamelCase__ ( snake_case_ : int = 100 ) -> int: __snake_case = n * (n + 1) * (2 * n + 1) / 6 __snake_case = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
24
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = 'vit_msn' def __init__(self : Union[str, Any] , a__ : Optional[Any]=768 , a__ : Optional[Any]=12 , a__ : Optional[int]=12 , a__ : Optional[int]=3072 , a__ : Union[str, Any]="gelu" , a__ : str=0.0 , a__ : int=0.0 , a__ : Optional[Any]=0.0_2 , a__ : List[Any]=1E-06 , a__ : Optional[int]=224 , a__ : str=16 , a__ : Optional[Any]=3 , a__ : int=True , **a__ : List[Any] , ): """simple docstring""" super().__init__(**a__ ) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = qkv_bias
24
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case_ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
24
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def a (self : int , a__ : List[Any]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) __snake_case = np.random.RandomState(a__ ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def a (self : List[Any] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) # warmup pass to apply optimizations __snake_case = pipe(**self.get_dummy_inputs() ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Any ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def a (self : List[str] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a (self : Optional[Any] ): """simple docstring""" __snake_case = ort.SessionOptions() __snake_case = False return options def a (self : Optional[Any] ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) # using the PNDM scheduler by default __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def a (self : Dict ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) __snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=a__ , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
24
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__(self : List[Any] , a__ : Optional[int] , a__ : Optional[int]=13 , a__ : List[Any]=7 , a__ : Dict=True , a__ : Optional[Any]=True , a__ : List[Any]=True , a__ : Optional[Any]=True , a__ : Optional[int]=99 , a__ : Optional[Any]=32 , a__ : List[str]=5 , a__ : Any=4 , a__ : str=37 , a__ : Optional[int]="gelu" , a__ : Optional[Any]=0.1 , a__ : Dict=0.1 , a__ : Any=512 , a__ : Union[str, Any]=16 , a__ : Any=2 , a__ : Optional[int]=0.0_2 , a__ : Optional[int]=4 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_attention_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_choices def a (self : Union[str, Any] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_attention_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a (self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def a (self : Dict ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = True __snake_case = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Any = True A_ : Optional[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def a (self : Dict ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormModelTester(self ) @slow def a (self : List[Any] ): """simple docstring""" for model_class_name in self.all_model_classes: __snake_case = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(a__ ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def a (self : str ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __snake_case = model(a__ )[0] __snake_case = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , a__ ) # compare the actual values for a slice. __snake_case = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) ) @slow def a (self : Any ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __snake_case = model(a__ )[0] # compare the actual values for a slice. __snake_case = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) )
24
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case_ = logging.getLogger(__name__) @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : str A_ : str A_ : Optional[str] = None A_ : Optional[str] = None A_ : Optional[str] = None @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : List[int] A_ : Optional[List[int]] = None A_ : Optional[List[int]] = None A_ : Optional[Union[int, float]] = None A_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[InputFeatures] def __init__(self : int , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = None , a__ : List[Any]=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = os.path.join( a__ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a__ ) , a__ , ) , ) __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case = cached_features_file + '''.lock''' with FileLock(a__ ): if os.path.exists(a__ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case = torch.load(a__ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case = ( processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) ) logger.info('''Training examples: %s''' , len(a__ ) ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) logger.info('''Saving features into cached file %s''' , a__ ) torch.save(self.features , a__ ) def __len__(self : int ): """simple docstring""" return len(self.features ) def __getitem__(self : Dict , a__ : List[Any] ): """simple docstring""" return self.features[i] def a (self : List[Any] ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ : A_ : List[InputFeatures] def __init__(self : Tuple , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = 128 , a__ : Any=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list __snake_case = processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case = tf.data.Dataset.from_generator( a__ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def a (self : Union[str, Any] ): """simple docstring""" return self.dataset def __len__(self : Dict ): """simple docstring""" return len(self.features ) def __getitem__(self : Any , a__ : Dict ): """simple docstring""" return self.features[i] def a (self : str ): """simple docstring""" return self.label_list class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : Dict , a__ : Dict ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def a (self : Optional[int] , a__ : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def a (self : int ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def a (self : Any , a__ : Optional[int] , a__ : List[Any] ): """simple docstring""" __snake_case = [] for i, line in enumerate(a__ ): if i == 0: continue __snake_case = '''%s-%s''' % (set_type, line[0]) __snake_case = line[5] __snake_case = line[6] __snake_case = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case = line[0] examples.append(InputExample(guid=a__ , text_a=a__ , text_b=a__ , label=a__ , pairID=a__ ) ) return examples def lowerCamelCase__ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> List[str]: __snake_case = {label: i for i, label in enumerate(snake_case_ )} __snake_case = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding='''max_length''' , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) __snake_case = label_map[example.label] if example.label in label_map else 0 __snake_case = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features snake_case_ = { 'hans': 3, } snake_case_ = { 'hans': HansProcessor, }
24
1
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = AutoencoderKL A_ : List[Any] = 'sample' A_ : List[Any] = 1e-2 @property def a (self : Dict ): """simple docstring""" __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(a__ ) return {"sample": image} @property def a (self : Any ): """simple docstring""" return (3, 32, 32) @property def a (self : Optional[Any] ): """simple docstring""" return (3, 32, 32) def a (self : int ): """simple docstring""" __snake_case = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a (self : Tuple ): """simple docstring""" pass def a (self : int ): """simple docstring""" pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def a (self : int ): """simple docstring""" __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**a__ ) model.to(a__ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**a__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(a__ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**a__ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(a__ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**a__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def a (self : Tuple ): """simple docstring""" __snake_case , __snake_case = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(a__ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a (self : Union[str, Any] ): """simple docstring""" __snake_case = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __snake_case = model.to(a__ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=a__ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(a__ ) with torch.no_grad(): __snake_case = model(a__ , sample_posterior=a__ , generator=a__ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(a__ , a__ , rtol=1E-2 ) ) @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Tuple , a__ : Optional[Any] , a__ : List[str] ): """simple docstring""" return f"""gaussian_noise_s={seed}_shape={'_'.join([str(a__ ) for s in shape] )}.npy""" def a (self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a (self : Optional[int] , a__ : Optional[Any]=0 , a__ : List[Any]=(4, 3, 512, 512) , a__ : Optional[Any]=False ): """simple docstring""" __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(a__ , a__ ) ) ).to(a__ ).to(a__ ) return image def a (self : Optional[Any] , a__ : Dict="CompVis/stable-diffusion-v1-4" , a__ : List[Any]=False ): """simple docstring""" __snake_case = '''fp16''' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( a__ , subfolder='''vae''' , torch_dtype=a__ , revision=a__ , ) model.to(a__ ).eval() return model def a (self : Union[str, Any] , a__ : int=0 ): """simple docstring""" if torch_device == "mps": return torch.manual_seed(a__ ) return torch.Generator(device=a__ ).manual_seed(a__ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a (self : Optional[int] , a__ : int , a__ : Union[str, Any] , a__ : Optional[int] ): """simple docstring""" __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(a__ ) __snake_case = self.get_generator(a__ ) with torch.no_grad(): __snake_case = model(a__ , generator=a__ , sample_posterior=a__ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(a__ , a__ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a (self : Union[str, Any] , a__ : Union[str, Any] , a__ : str ): """simple docstring""" __snake_case = self.get_sd_vae_model(fpaa=a__ ) __snake_case = self.get_sd_image(a__ , fpaa=a__ ) __snake_case = self.get_generator(a__ ) with torch.no_grad(): __snake_case = model(a__ , generator=a__ , sample_posterior=a__ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(a__ ) assert torch_all_close(a__ , a__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a (self : Optional[Any] , a__ : str , a__ : Tuple , a__ : List[Any] ): """simple docstring""" __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(a__ ) with torch.no_grad(): __snake_case = model(a__ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(a__ , a__ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a (self : str , a__ : Optional[int] , a__ : Any ): """simple docstring""" __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(a__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(a__ ) assert torch_all_close(a__ , a__ , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a (self : List[Any] , a__ : Any , a__ : Optional[int] ): """simple docstring""" __snake_case = self.get_sd_vae_model(fpaa=a__ ) __snake_case = self.get_sd_image(a__ , shape=(3, 4, 64, 64) , fpaa=a__ ) with torch.no_grad(): __snake_case = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(a__ ) assert torch_all_close(a__ , a__ , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def a (self : Tuple , a__ : Any ): """simple docstring""" __snake_case = self.get_sd_vae_model(fpaa=a__ ) __snake_case = self.get_sd_image(a__ , shape=(3, 4, 64, 64) , fpaa=a__ ) with torch.no_grad(): __snake_case = model.decode(a__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(a__ , a__ , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def a (self : int , a__ : Optional[int] ): """simple docstring""" __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(a__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(a__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(a__ , a__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a (self : str , a__ : Optional[Any] , a__ : List[str] ): """simple docstring""" __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(a__ ) __snake_case = self.get_generator(a__ ) with torch.no_grad(): __snake_case = model.encode(a__ ).latent_dist __snake_case = dist.sample(generator=a__ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(a__ ) __snake_case = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(a__ , a__ , atol=a__ )
24
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = ['image_processor', 'tokenizer'] A_ : Optional[Any] = 'CLIPImageProcessor' A_ : Any = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self : int , a__ : int=None , a__ : Dict=None , **a__ : List[str] ): """simple docstring""" __snake_case = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) __snake_case = kwargs.pop('''feature_extractor''' ) __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__(self : Any , a__ : Dict=None , a__ : List[str]=None , a__ : Dict=None , **a__ : Tuple ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: __snake_case = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: __snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def a (self : Union[str, Any] , *a__ : int , **a__ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*a__ , **a__ ) def a (self : Any , *a__ : List[Any] , **a__ : List[str] ): """simple docstring""" return self.tokenizer.decode(*a__ , **a__ ) @property def a (self : int ): """simple docstring""" __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
1
from __future__ import annotations import numpy as np def lowerCamelCase__ ( snake_case_ : np.ndarray ) -> tuple[np.ndarray, np.ndarray]: __snake_case , __snake_case = np.shape(snake_case_ ) if rows != columns: __snake_case = ( '''\'table\' has to be of square shaped array but got a ''' f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(snake_case_ ) __snake_case = np.zeros((rows, columns) ) __snake_case = np.zeros((rows, columns) ) for i in range(snake_case_ ): for j in range(snake_case_ ): __snake_case = sum(lower[i][k] * upper[k][j] for k in range(snake_case_ ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) __snake_case = (table[i][j] - total) / upper[j][j] __snake_case = 1 for j in range(snake_case_ , snake_case_ ): __snake_case = sum(lower[i][k] * upper[k][j] for k in range(snake_case_ ) ) __snake_case = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
24
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Dict ): """simple docstring""" __snake_case = logging.get_logger() # the current default level is logging.WARNING __snake_case = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(a__ ) def a (self : Dict ): """simple docstring""" __snake_case = logging.get_verbosity() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(a__ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def a (self : Dict ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = os.getenv('''TRANSFORMERS_VERBOSITY''' , a__ ) __snake_case = logging.log_levels[env_level_str] __snake_case = logging.get_verbosity() self.assertEqual( a__ , a__ , f"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level __snake_case = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def a (self : List[Any] ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.logging.getLogger() with CaptureLogger(a__ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def a (self : Any ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) def lowerCamelCase__ ( ) -> str: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
24
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast snake_case_ = datasets.utils.logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): A_ : int = 10_000 A_ : Optional[List[str]] = None A_ : Optional[datasets.Features] = None class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): A_ : Optional[Any] = ParquetConfig def a (self : Optional[int] ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def a (self : List[str] , a__ : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a__ , (str, list, tuple) ): __snake_case = data_files if isinstance(a__ , a__ ): __snake_case = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case = [dl_manager.iter_files(a__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case = [] for split_name, files in data_files.items(): if isinstance(a__ , a__ ): __snake_case = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case = [dl_manager.iter_files(a__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a__ ): with open(a__ , '''rb''' ) as f: __snake_case = datasets.Features.from_arrow_schema(pq.read_schema(a__ ) ) break splits.append(datasets.SplitGenerator(name=a__ , gen_kwargs={'''files''': files} ) ) return splits def a (self : str , a__ : pa.Table ): """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case = table_cast(a__ , self.info.features.arrow_schema ) return pa_table def a (self : Any , a__ : Dict ): """simple docstring""" __snake_case = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a__ ) ): with open(a__ , '''rb''' ) as f: __snake_case = pq.ParquetFile(a__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a__ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a__ )}: {e}""" ) raise
24
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[str] = CpmAntTokenizer A_ : Optional[int] = False def a (self : Optional[int] ): """simple docstring""" super().setUp() __snake_case = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def a (self : Dict ): """simple docstring""" __snake_case = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __snake_case = '''今天天气真好!''' __snake_case = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = '''今天天气真好!''' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) __snake_case = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
24
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml snake_case_ = NewType('DataClass', Any) snake_case_ = NewType('DataClassType', Any) def lowerCamelCase__ ( snake_case_ : str ) -> Optional[int]: if isinstance(snake_case_ , snake_case_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def lowerCamelCase__ ( snake_case_ : list ) -> Callable[[str], Any]: __snake_case = {str(snake_case_ ): choice for choice in choices} return lambda snake_case_ : str_to_choice.get(snake_case_ , snake_case_ ) def lowerCamelCase__ ( *, snake_case_ : Union[str, List[str]] = None , snake_case_ : str = None , snake_case_ : Any = dataclasses.MISSING , snake_case_ : Callable[[], Any] = dataclasses.MISSING , snake_case_ : dict = None , **snake_case_ : int , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __snake_case = {} if aliases is not None: __snake_case = aliases if help is not None: __snake_case = help return dataclasses.field(metadata=snake_case_ , default=snake_case_ , default_factory=snake_case_ , **snake_case_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Iterable[DataClassType] def __init__(self : Tuple , a__ : Union[DataClassType, Iterable[DataClassType]] , **a__ : Optional[Any] ): """simple docstring""" if "formatter_class" not in kwargs: __snake_case = ArgumentDefaultsHelpFormatter super().__init__(**a__ ) if dataclasses.is_dataclass(a__ ): __snake_case = [dataclass_types] __snake_case = list(a__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(a__ ) @staticmethod def a (a__ : ArgumentParser , a__ : dataclasses.Field ): """simple docstring""" __snake_case = f"""--{field.name}""" __snake_case = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , a__ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __snake_case = kwargs.pop('''aliases''' , [] ) if isinstance(a__ , a__ ): __snake_case = [aliases] __snake_case = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(a__ , '''UnionType''' ) and isinstance(a__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(a__ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f""" Problem encountered in field '{field.name}'.""" ) if type(a__ ) not in field.type.__args__: # filter `str` in Union __snake_case = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __snake_case = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __snake_case = ( field.type.__args__[0] if isinstance(a__ , field.type.__args__[1] ) else field.type.__args__[1] ) __snake_case = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __snake_case = {} if origin_type is Literal or (isinstance(field.type , a__ ) and issubclass(field.type , a__ )): if origin_type is Literal: __snake_case = field.type.__args__ else: __snake_case = [x.value for x in field.type] __snake_case = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __snake_case = field.default else: __snake_case = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __snake_case = copy(a__ ) # Hack because type=bool in argparse does not behave as we want. __snake_case = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __snake_case = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __snake_case = default # This tells argparse we accept 0 or 1 value after --field_name __snake_case = '''?''' # This is the value that will get picked if we do --field_name (without value) __snake_case = True elif isclass(a__ ) and issubclass(a__ , a__ ): __snake_case = field.type.__args__[0] __snake_case = '''+''' if field.default_factory is not dataclasses.MISSING: __snake_case = field.default_factory() elif field.default is dataclasses.MISSING: __snake_case = True else: __snake_case = field.type if field.default is not dataclasses.MISSING: __snake_case = field.default elif field.default_factory is not dataclasses.MISSING: __snake_case = field.default_factory() else: __snake_case = True parser.add_argument(a__ , *a__ , **a__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __snake_case = False parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **a__ ) def a (self : int , a__ : DataClassType ): """simple docstring""" if hasattr(a__ , '''_argument_group_name''' ): __snake_case = self.add_argument_group(dtype._argument_group_name ) else: __snake_case = self try: __snake_case = get_type_hints(a__ ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(a__ ): __snake_case = '''.'''.join(map(a__ , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(a__ ): if not field.init: continue __snake_case = type_hints[field.name] self._parse_dataclass_field(a__ , a__ ) def a (self : Union[str, Any] , a__ : List[Any]=None , a__ : List[Any]=False , a__ : str=True , a__ : List[Any]=None , a__ : Tuple=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __snake_case = [] if args_filename: args_files.append(Path(a__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __snake_case = ArgumentParser() args_file_parser.add_argument(a__ , type=a__ , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __snake_case , __snake_case = args_file_parser.parse_known_args(args=a__ ) __snake_case = vars(a__ ).get(args_file_flag.lstrip('''-''' ) , a__ ) if cmd_args_file_paths: args_files.extend([Path(a__ ) for p in cmd_args_file_paths] ) __snake_case = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __snake_case = file_args + args if args is not None else file_args + sys.argv[1:] __snake_case , __snake_case = self.parse_known_args(args=a__ ) __snake_case = [] for dtype in self.dataclass_types: __snake_case = {f.name for f in dataclasses.fields(a__ ) if f.init} __snake_case = {k: v for k, v in vars(a__ ).items() if k in keys} for k in keys: delattr(a__ , a__ ) __snake_case = dtype(**a__ ) outputs.append(a__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(a__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def a (self : Dict , a__ : Dict[str, Any] , a__ : bool = False ): """simple docstring""" __snake_case = set(args.keys() ) __snake_case = [] for dtype in self.dataclass_types: __snake_case = {f.name for f in dataclasses.fields(a__ ) if f.init} __snake_case = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __snake_case = dtype(**a__ ) outputs.append(a__ ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(a__ )}""" ) return tuple(a__ ) def a (self : Union[str, Any] , a__ : str , a__ : bool = False ): """simple docstring""" with open(Path(a__ ) , encoding='''utf-8''' ) as open_json_file: __snake_case = json.loads(open_json_file.read() ) __snake_case = self.parse_dict(a__ , allow_extra_keys=a__ ) return tuple(a__ ) def a (self : Union[str, Any] , a__ : str , a__ : bool = False ): """simple docstring""" __snake_case = self.parse_dict(yaml.safe_load(Path(a__ ).read_text() ) , allow_extra_keys=a__ ) return tuple(a__ )
24
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : def __init__(self : str , a__ : Dict , a__ : Tuple=None , a__ : List[Any]=None , a__ : Dict=None , a__ : Union[str, Any]="resnet50" , a__ : Dict=3 , a__ : str=32 , a__ : int=3 , a__ : Dict=True , a__ : Any=True , ): """simple docstring""" __snake_case = parent __snake_case = out_indices if out_indices is not None else [4] __snake_case = stage_names __snake_case = out_features __snake_case = backbone __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = use_pretrained_backbone __snake_case = is_training def a (self : Union[str, Any] ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = self.get_config() return config, pixel_values def a (self : Any ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def a (self : List[Any] , a__ : int , a__ : int ): """simple docstring""" __snake_case = TimmBackbone(config=a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(a__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def a (self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () A_ : Optional[Any] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} A_ : List[Any] = False A_ : Dict = False A_ : Any = False A_ : List[Any] = False def a (self : Tuple ): """simple docstring""" __snake_case = TimmBackboneModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def a (self : Any ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : int ): """simple docstring""" __snake_case = '''resnet18''' __snake_case = '''microsoft/resnet-18''' __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ ) __snake_case = AutoBackbone.from_pretrained(a__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ , out_indices=[1, 2, 3] ) __snake_case = AutoBackbone.from_pretrained(a__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def a (self : str ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : Optional[int] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a (self : Tuple ): """simple docstring""" pass def a (self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True __snake_case = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case = self.all_model_classes[0] __snake_case = model_class(a__ ) model.to(a__ ) __snake_case = self._prepare_for_class(a__ , a__ ) __snake_case = model(**a__ ) __snake_case = outputs[0][-1] # Encoder-/Decoder-only models __snake_case = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def a (self : Optional[int] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case = copy.deepcopy(a__ ) __snake_case = None __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case = copy.deepcopy(a__ ) __snake_case = False __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ )
24
1
from __future__ import annotations import math def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int , snake_case_ : bool , snake_case_ : list[int] , snake_case_ : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , snake_case_ , snake_case_ , snake_case_ ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case_ , snake_case_ , snake_case_ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , snake_case_ , snake_case_ , snake_case_ ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case_ , snake_case_ , snake_case_ ) , ) ) def lowerCamelCase__ ( ) -> None: __snake_case = [90, 23, 6, 33, 21, 65, 123, 3_4423] __snake_case = math.log(len(snake_case_ ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , snake_case_ , snake_case_ , snake_case_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
24
import os import pytest from transformers.dynamic_module_utils import get_imports snake_case_ = '\nimport os\n' snake_case_ = '\ndef foo():\n import os\n return False\n' snake_case_ = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' snake_case_ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case_ ) def lowerCamelCase__ ( snake_case_ : str , snake_case_ : Optional[int] ) -> Dict: __snake_case = os.path.join(snake_case_ , '''test_file.py''' ) with open(snake_case_ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case_ ) __snake_case = get_imports(snake_case_ ) assert parsed_imports == ["os"]
24
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: snake_case_ = None snake_case_ = logging.get_logger(__name__) snake_case_ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} snake_case_ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } snake_case_ = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off snake_case_ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Dict = VOCAB_FILES_NAMES A_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = PRETRAINED_VOCAB_FILES_MAP A_ : int = ['input_ids', 'attention_mask'] A_ : Tuple = MBartTokenizer A_ : List[int] = [] A_ : List[int] = [] def __init__(self : Optional[int] , a__ : str=None , a__ : int=None , a__ : Any="<s>" , a__ : Any="</s>" , a__ : Any="</s>" , a__ : List[str]="<s>" , a__ : List[str]="<unk>" , a__ : Dict="<pad>" , a__ : List[Any]="<mask>" , a__ : Union[str, Any]=None , a__ : Any=None , a__ : Union[str, Any]=None , **a__ : int , ): """simple docstring""" __snake_case = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( vocab_file=a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , sep_token=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , src_lang=a__ , tgt_lang=a__ , additional_special_tokens=a__ , **a__ , ) __snake_case = vocab_file __snake_case = False if not self.vocab_file else True __snake_case = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case = { lang_code: self.convert_tokens_to_ids(a__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case = src_lang if src_lang is not None else '''en_XX''' __snake_case = self.convert_tokens_to_ids(self._src_lang ) __snake_case = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a (self : Optional[int] ): """simple docstring""" return self._src_lang @src_lang.setter def a (self : Tuple , a__ : str ): """simple docstring""" __snake_case = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a (self : Tuple , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a (self : List[Any] , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a (self : List[Any] , a__ : Optional[Any] , a__ : str , a__ : Optional[str] , a__ : Optional[str] , **a__ : int ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case = src_lang __snake_case = self(a__ , add_special_tokens=a__ , return_tensors=a__ , **a__ ) __snake_case = self.convert_tokens_to_ids(a__ ) __snake_case = tgt_lang_id return inputs def a (self : Tuple , a__ : List[str] , a__ : str = "en_XX" , a__ : Optional[List[str]] = None , a__ : str = "ro_RO" , **a__ : Tuple , ): """simple docstring""" __snake_case = src_lang __snake_case = tgt_lang return super().prepare_seqaseq_batch(a__ , a__ , **a__ ) def a (self : str ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a (self : List[Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a (self : Optional[int] , a__ : str ): """simple docstring""" __snake_case = self.convert_tokens_to_ids(a__ ) __snake_case = [] __snake_case = [self.eos_token_id, self.cur_lang_code] __snake_case = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a (self : Union[str, Any] , a__ : str ): """simple docstring""" __snake_case = self.convert_tokens_to_ids(a__ ) __snake_case = [] __snake_case = [self.eos_token_id, self.cur_lang_code] __snake_case = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a (self : int , a__ : str , a__ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
24
import socket def lowerCamelCase__ ( ) -> Any: __snake_case = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __snake_case = socket.gethostname() __snake_case = 1_2312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: __snake_case = sock.recv(1024 ) if not data: break out_file.write(snake_case_ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
24
1
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy snake_case_ = logging.getLogger(__name__) def lowerCamelCase__ ( snake_case_ : torch.nn.Module , snake_case_ : BnbQuantizationConfig , snake_case_ : Union[str, os.PathLike] = None , snake_case_ : Optional[Dict[str, Union[int, str, torch.device]]] = None , snake_case_ : Optional[List[str]] = None , snake_case_ : Optional[Dict[Union[int, str], Union[int, str]]] = None , snake_case_ : Optional[Union[str, os.PathLike]] = None , snake_case_ : bool = False , ) -> Optional[Any]: __snake_case = bnb_quantization_config.load_in_abit __snake_case = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) __snake_case = [] # custom device map if isinstance(snake_case_ , snake_case_ ) and len(device_map.keys() ) > 1: __snake_case = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: __snake_case = get_keys_to_not_convert(snake_case_ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case_ ) __snake_case = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: __snake_case = [] __snake_case = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case_ ) # compatibility with peft __snake_case = load_in_abit __snake_case = load_in_abit __snake_case = get_parameter_device(snake_case_ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) __snake_case = replace_with_bnb_layers(snake_case_ , snake_case_ , modules_to_not_convert=snake_case_ ) # convert param to the right dtype __snake_case = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: __snake_case = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) __snake_case = getattr(snake_case_ , snake_case_ , snake_case_ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(snake_case_ ): param.to(snake_case_ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): __snake_case = replace_with_bnb_layers( snake_case_ , snake_case_ , modules_to_not_convert=snake_case_ ) __snake_case = get_quantized_model_device_map( snake_case_ , snake_case_ , snake_case_ , max_memory=snake_case_ , no_split_module_classes=snake_case_ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): __snake_case = True __snake_case = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( snake_case_ , snake_case_ , snake_case_ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case_ , offload_state_dict=snake_case_ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case_ , device_map=snake_case_ , offload_dir=snake_case_ ) def lowerCamelCase__ ( snake_case_ : List[str] , snake_case_ : Any , snake_case_ : List[Any]=None , snake_case_ : int=None , snake_case_ : Dict=None ) -> Any: if device_map is None: if torch.cuda.is_available(): __snake_case = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(snake_case_ , snake_case_ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) __snake_case = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) __snake_case = {} __snake_case = special_dtypes __snake_case = no_split_module_classes __snake_case = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": __snake_case = get_balanced_memory( snake_case_ , low_zero=(device_map == '''balanced_low_0''') , max_memory=snake_case_ , **snake_case_ , ) __snake_case = max_memory __snake_case = infer_auto_device_map(snake_case_ , **snake_case_ ) if isinstance(snake_case_ , snake_case_ ): # check if don't have any quantized module on the cpu __snake_case = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules __snake_case = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def lowerCamelCase__ ( snake_case_ : Any , snake_case_ : Any , snake_case_ : Union[str, Any]=None , snake_case_ : Any=None ) -> int: if modules_to_not_convert is None: __snake_case = [] __snake_case , __snake_case = _replace_with_bnb_layers( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def lowerCamelCase__ ( snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : str=None , snake_case_ : int=None , ) -> Any: __snake_case = False for name, module in model.named_children(): if current_key_name is None: __snake_case = [] current_key_name.append(snake_case_ ) if isinstance(snake_case_ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` __snake_case = '''.'''.join(snake_case_ ) __snake_case = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: __snake_case = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: __snake_case = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case_ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: __snake_case = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) __snake_case = module.weight.data if module.bias is not None: __snake_case = module.bias.data bnb_module.requires_grad_(snake_case_ ) setattr(snake_case_ , snake_case_ , snake_case_ ) __snake_case = True if len(list(module.children() ) ) > 0: __snake_case , __snake_case = _replace_with_bnb_layers( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __snake_case = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCamelCase__ ( snake_case_ : int ) -> Dict: # Create a copy of the model with init_empty_weights(): __snake_case = deepcopy(snake_case_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` __snake_case = find_tied_parameters(snake_case_ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case_ , snake_case_ ): __snake_case = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __snake_case = sum(snake_case_ , [] ) __snake_case = len(snake_case_ ) > 0 # Check if it is a base model __snake_case = False if hasattr(snake_case_ , '''base_model_prefix''' ): __snake_case = not hasattr(snake_case_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __snake_case = list(model.named_children() ) __snake_case = [list_modules[-1][0]] # add last module together with tied weights __snake_case = set(snake_case_ ) - set(snake_case_ ) __snake_case = list(set(snake_case_ ) ) + list(snake_case_ ) # remove ".weight" from the keys __snake_case = ['''.weight''', '''.bias'''] __snake_case = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __snake_case = name.replace(snake_case_ , '''''' ) filtered_module_names.append(snake_case_ ) return filtered_module_names def lowerCamelCase__ ( snake_case_ : str ) -> str: for m in model.modules(): if isinstance(snake_case_ , bnb.nn.Linearabit ): return True return False def lowerCamelCase__ ( snake_case_ : nn.Module ) -> Dict: return next(parameter.parameters() ).device def lowerCamelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Dict ) -> List[str]: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case_ , snake_case_ , 0 , dtype=snake_case_ , value=snake_case_ ) __snake_case = param_name __snake_case = model if "." in tensor_name: __snake_case = tensor_name.split('''.''' ) for split in splits[:-1]: __snake_case = getattr(snake_case_ , snake_case_ ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) __snake_case = new_module __snake_case = splits[-1] # offload weights __snake_case = False offload_weight(module._parameters[tensor_name] , snake_case_ , snake_case_ , index=snake_case_ ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , snake_case_ , index=snake_case_ , ) else: offload_weight(snake_case_ , snake_case_ , snake_case_ , index=snake_case_ ) offload_weight(snake_case_ , param_name.replace('''weight''' , '''SCB''' ) , snake_case_ , index=snake_case_ ) set_module_tensor_to_device(snake_case_ , snake_case_ , '''meta''' , dtype=snake_case_ , value=torch.empty(*param.size() ) )
24
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] ) -> list[int]: # This function is recursive __snake_case = len(snake_case_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __snake_case = array[0] __snake_case = False __snake_case = 1 __snake_case = [] while not is_found and i < array_length: if array[i] < pivot: __snake_case = True __snake_case = [element for element in array[i:] if element >= array[i]] __snake_case = longest_subsequence(snake_case_ ) if len(snake_case_ ) > len(snake_case_ ): __snake_case = temp_array else: i += 1 __snake_case = [element for element in array[1:] if element >= pivot] __snake_case = [pivot, *longest_subsequence(snake_case_ )] if len(snake_case_ ) > len(snake_case_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
24
1
import logging import os import threading import time try: import warnings except ImportError: snake_case_ = None try: import msvcrt except ImportError: snake_case_ = None try: import fcntl except ImportError: snake_case_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: snake_case_ = OSError # Data # ------------------------------------------------ snake_case_ = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] snake_case_ = '3.0.12' snake_case_ = None def lowerCamelCase__ ( ) -> Dict: global _logger __snake_case = _logger or logging.getLogger(__name__ ) return _logger class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Union[str, Any] , a__ : int ): """simple docstring""" __snake_case = lock_file return None def __str__(self : List[str] ): """simple docstring""" __snake_case = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class SCREAMING_SNAKE_CASE__ : def __init__(self : Union[str, Any] , a__ : List[str] ): """simple docstring""" __snake_case = lock return None def __enter__(self : Optional[Any] ): """simple docstring""" return self.lock def __exit__(self : List[str] , a__ : Optional[Any] , a__ : Optional[int] , a__ : Optional[int] ): """simple docstring""" self.lock.release() return None class SCREAMING_SNAKE_CASE__ : def __init__(self : Union[str, Any] , a__ : int , a__ : str=-1 , a__ : Tuple=None ): """simple docstring""" __snake_case = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __snake_case = self.hash_filename_if_too_long(a__ , a__ ) # The path to the lock file. __snake_case = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case = None # The default timeout value. __snake_case = timeout # We use this lock primarily for the lock counter. __snake_case = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case = 0 return None @property def a (self : Any ): """simple docstring""" return self._lock_file @property def a (self : Dict ): """simple docstring""" return self._timeout @timeout.setter def a (self : Optional[Any] , a__ : Optional[Any] ): """simple docstring""" __snake_case = float(a__ ) return None def a (self : Optional[int] ): """simple docstring""" raise NotImplementedError() def a (self : Optional[int] ): """simple docstring""" raise NotImplementedError() @property def a (self : List[str] ): """simple docstring""" return self._lock_file_fd is not None def a (self : Dict , a__ : Any=None , a__ : Optional[Any]=0.0_5 ): """simple docstring""" if timeout is None: __snake_case = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case = id(self ) __snake_case = self._lock_file __snake_case = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def a (self : List[Any] , a__ : Union[str, Any]=False ): """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case = id(self ) __snake_case = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self : Union[str, Any] ): """simple docstring""" self.acquire() return self def __exit__(self : List[Any] , a__ : Union[str, Any] , a__ : Union[str, Any] , a__ : Optional[int] ): """simple docstring""" self.release() return None def __del__(self : str ): """simple docstring""" self.release(force=a__ ) return None def a (self : Dict , a__ : str , a__ : int ): """simple docstring""" __snake_case = os.path.basename(a__ ) if len(a__ ) > max_length and max_length > 0: __snake_case = os.path.dirname(a__ ) __snake_case = str(hash(a__ ) ) __snake_case = filename[: max_length - len(a__ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a__ , a__ ) else: return path class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[Any] , a__ : List[str] , a__ : List[Any]=-1 , a__ : Tuple=None ): """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(a__ , timeout=a__ , max_filename_length=a__ ) __snake_case = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def a (self : List[str] ): """simple docstring""" __snake_case = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case = os.open(self._lock_file , a__ ) except OSError: pass else: try: msvcrt.locking(a__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a__ ) else: __snake_case = fd return None def a (self : int ): """simple docstring""" __snake_case = self._lock_file_fd __snake_case = None msvcrt.locking(a__ , msvcrt.LK_UNLCK , 1 ) os.close(a__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Union[str, Any] , a__ : Any , a__ : List[Any]=-1 , a__ : Tuple=None ): """simple docstring""" __snake_case = os.statvfs(os.path.dirname(a__ ) ).f_namemax super().__init__(a__ , timeout=a__ , max_filename_length=a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case = os.open(self._lock_file , a__ ) try: fcntl.flock(a__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a__ ) else: __snake_case = fd return None def a (self : List[Any] ): """simple docstring""" __snake_case = self._lock_file_fd __snake_case = None fcntl.flock(a__ , fcntl.LOCK_UN ) os.close(a__ ) return None class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : Union[str, Any] ): """simple docstring""" __snake_case = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case = os.open(self._lock_file , a__ ) except OSError: pass else: __snake_case = fd return None def a (self : Any ): """simple docstring""" os.close(self._lock_file_fd ) __snake_case = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None snake_case_ = None if msvcrt: snake_case_ = WindowsFileLock elif fcntl: snake_case_ = UnixFileLock else: snake_case_ = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
24
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : Union[str, Any] , a__ : int=13 , a__ : int=7 , a__ : Optional[Any]=True , a__ : Optional[int]=True , a__ : Any=True , a__ : str=True , a__ : List[Any]=99 , a__ : Any=24 , a__ : List[str]=2 , a__ : Optional[int]=6 , a__ : int=37 , a__ : List[str]="gelu" , a__ : List[Any]=0.1 , a__ : Optional[int]=0.1 , a__ : Union[str, Any]=512 , a__ : List[str]=16 , a__ : Optional[int]=2 , a__ : Union[str, Any]=0.0_2 , a__ : str=3 , a__ : Optional[Any]=None , a__ : Any=1000 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = scope __snake_case = range_bbox def a (self : Optional[int] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = None if self.use_input_mask: __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def a (self : List[str] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a (self : List[Any] , a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : int , a__ : Optional[int] , a__ : str , a__ : Optional[int] , ): """simple docstring""" __snake_case = LiltModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a (self : Any , a__ : Tuple , a__ : Dict , a__ : Optional[int] , a__ : Dict , a__ : Union[str, Any] , a__ : str , a__ : Tuple , ): """simple docstring""" __snake_case = self.num_labels __snake_case = LiltForTokenClassification(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a (self : int , a__ : Optional[Any] , a__ : int , a__ : int , a__ : Optional[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : str , ): """simple docstring""" __snake_case = LiltForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A_ : Any = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) A_ : Optional[int] = False A_ : List[Any] = False def a (self : Dict , a__ : Tuple , a__ : Tuple , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" return True def a (self : Union[str, Any] ): """simple docstring""" __snake_case = LiltModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def a (self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def a (self : Optional[int] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = LiltModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Tuple ): """simple docstring""" __snake_case = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a__ ) __snake_case = torch.tensor([[1, 2]] , device=a__ ) __snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a__ ) # forward pass with torch.no_grad(): __snake_case = model(input_ids=a__ , bbox=a__ ) __snake_case = torch.Size([1, 2, 768] ) __snake_case = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=a__ , ) self.assertTrue(outputs.last_hidden_state.shape , a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a__ , atol=1E-3 ) )
24
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Tuple = LongformerTokenizer A_ : Any = True A_ : Tuple = LongformerTokenizerFast A_ : Dict = True def a (self : Optional[int] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a__ ) ) def a (self : Dict , **a__ : Optional[int] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def a (self : Any , **a__ : Optional[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def a (self : Optional[int] , a__ : Dict ): """simple docstring""" __snake_case = '''lower newer''' __snake_case = '''lower newer''' return input_text, output_text def a (self : Optional[int] ): """simple docstring""" __snake_case = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case = '''lower newer''' __snake_case = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __snake_case = tokenizer.tokenize(a__ ) # , add_prefix_space=True) self.assertListEqual(a__ , a__ ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=a__ ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=a__ ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def a (self : Any ): """simple docstring""" __snake_case = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __snake_case = tokenizer.encode('''sequence builders''' , add_special_tokens=a__ ) __snake_case = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a__ ) __snake_case = tokenizer.encode( '''sequence builders''' , add_special_tokens=a__ , add_prefix_space=a__ ) __snake_case = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=a__ , add_prefix_space=a__ ) __snake_case = tokenizer.build_inputs_with_special_tokens(a__ ) __snake_case = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def a (self : Dict ): """simple docstring""" __snake_case = self.get_tokenizer() __snake_case = '''Encode this sequence.''' __snake_case = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __snake_case = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(a__ , a__ ) __snake_case = tokenizer.encode(a__ , add_special_tokens=a__ , add_prefix_space=a__ ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(a__ , a__ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __snake_case = tokenizer.encode(a__ , add_special_tokens=a__ ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(a__ , a__ ) # Testing spaces after special tokens __snake_case = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(a__ , lstrip=a__ , rstrip=a__ )} ) # mask token has a left space __snake_case = tokenizer.convert_tokens_to_ids(a__ ) __snake_case = '''Encode <mask> sequence''' __snake_case = '''Encode <mask>sequence''' __snake_case = tokenizer.encode(a__ ) __snake_case = encoded.index(a__ ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(a__ , a__ ) __snake_case = tokenizer.encode(a__ ) __snake_case = encoded.index(a__ ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(a__ , a__ ) def a (self : Tuple ): """simple docstring""" pass def a (self : str ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) __snake_case = self.tokenizer_class.from_pretrained(a__ , **a__ ) __snake_case = '''A, <mask> AllenNLP sentence.''' __snake_case = tokenizer_r.encode_plus(a__ , add_special_tokens=a__ , return_token_type_ids=a__ ) __snake_case = tokenizer_p.encode_plus(a__ , add_special_tokens=a__ , return_token_type_ids=a__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( a__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( a__ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def a (self : str ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __snake_case = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __snake_case = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , a__ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , a__ ) self.assertEqual(post_processor_state['''trim_offsets'''] , a__ ) def a (self : Optional[int] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __snake_case = f"""{text_of_1_token} {text_of_1_token}""" __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a__ ) + 1, len(a__ ) + 1 + len(a__ )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a__ ) + 1, len(a__ ) + 1 + len(a__ )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a__ ), len(a__ ) + 1 + len(a__ )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a__ ), len(a__ ) + 1 + len(a__ )) , ) __snake_case = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a__ ) + 1, 1 + len(a__ ) + 1 + len(a__ )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a__ ), 1 + len(a__ ) + 1 + len(a__ )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( a__ , use_fast=a__ , add_prefix_space=a__ , trim_offsets=a__ ) __snake_case = tokenizer_r(a__ , return_offsets_mapping=a__ , add_special_tokens=a__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a__ ), 1 + len(a__ ) + 1 + len(a__ )) , )
24
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def a (*a__ : List[str] , **a__ : List[str] ): """simple docstring""" pass def lowerCamelCase__ ( snake_case_ : int ) -> Optional[int]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. snake_case_ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : Optional[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def a (self : List[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model=a__ , tokenizer=a__ , image_processor=a__ ) __snake_case = INVOICE_URL __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) __snake_case = '''What is the placebo?''' __snake_case = [ { '''image''': load_image(a__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def a (self : Union[str, Any] , a__ : Optional[int] , a__ : Dict ): """simple docstring""" __snake_case = dqa_pipeline(a__ , top_k=2 ) self.assertEqual( a__ , [ [ {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def a (self : Dict ): """simple docstring""" __snake_case = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __snake_case = INVOICE_URL __snake_case = '''How many cats are there?''' __snake_case = [ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(a__ , [] ) # We can optionnally pass directly the words and bounding boxes __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = [] __snake_case = [] __snake_case = dqa_pipeline(image=a__ , question=a__ , words=a__ , boxes=a__ , top_k=2 ) self.assertEqual(a__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : str ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : List[Any] ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Tuple ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Dict ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def a (self : Tuple ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def a (self : List[str] ): """simple docstring""" pass
24
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase__ ( snake_case_ : Tuple ) -> Union[str, Any]: __snake_case = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] __snake_case = True if '''large''' in model_name or '''huge''' in model_name else False __snake_case = True if '''large''' in model_name or '''huge''' in model_name else False __snake_case = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __snake_case = [3, 3, 3, 3] __snake_case = [5, 5, 5, 5] elif "fl4" in model_name: __snake_case = [4, 4, 4, 4] __snake_case = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __snake_case = [3, 3, 3, 3] if "lrf" in model_name: __snake_case = [3, 3, 3, 3] else: __snake_case = [2, 2, 2, 2] if "tiny" in model_name: __snake_case = 96 elif "small" in model_name: __snake_case = 96 elif "base" in model_name: __snake_case = 128 elif "large" in model_name: __snake_case = 192 elif "xlarge" in model_name: __snake_case = 256 elif "huge" in model_name: __snake_case = 352 # set label information __snake_case = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: __snake_case = '''imagenet-22k-id2label.json''' else: __snake_case = '''imagenet-1k-id2label.json''' __snake_case = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) ) __snake_case = {int(snake_case_ ): v for k, v in idalabel.items()} __snake_case = {v: k for k, v in idalabel.items()} __snake_case = FocalNetConfig( embed_dim=snake_case_ , depths=snake_case_ , focal_levels=snake_case_ , focal_windows=snake_case_ , use_conv_embed=snake_case_ , idalabel=snake_case_ , labelaid=snake_case_ , use_post_layernorm=snake_case_ , use_layerscale=snake_case_ , ) return config def lowerCamelCase__ ( snake_case_ : int ) -> List[str]: if "patch_embed.proj" in name: __snake_case = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __snake_case = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: __snake_case = '''encoder.''' + name if "encoder.layers" in name: __snake_case = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: __snake_case = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: __snake_case = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __snake_case = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __snake_case = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __snake_case = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": __snake_case = '''layernorm.weight''' if name == "norm.bias": __snake_case = '''layernorm.bias''' if "head" in name: __snake_case = name.replace('''head''' , '''classifier''' ) else: __snake_case = '''focalnet.''' + name return name def lowerCamelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any]=False ) -> Dict: # fmt: off __snake_case = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on __snake_case = model_name_to_url[model_name] print('''Checkpoint URL: ''' , snake_case_ ) __snake_case = torch.hub.load_state_dict_from_url(snake_case_ , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): __snake_case = state_dict.pop(snake_case_ ) __snake_case = val __snake_case = get_focalnet_config(snake_case_ ) __snake_case = FocalNetForImageClassification(snake_case_ ) model.eval() # load state dict model.load_state_dict(snake_case_ ) # verify conversion __snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __snake_case = BitImageProcessor( do_resize=snake_case_ , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=snake_case_ , crop_size=224 , do_normalize=snake_case_ , image_mean=snake_case_ , image_std=snake_case_ , ) __snake_case = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) __snake_case = processor(images=snake_case_ , return_tensors='''pt''' ) __snake_case = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case = image_transforms(snake_case_ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , snake_case_ , atol=1e-4 ) __snake_case = model(**snake_case_ ) __snake_case = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __snake_case = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": __snake_case = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": __snake_case = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": __snake_case = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": __snake_case = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": __snake_case = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) snake_case_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
24
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int ) -> list[list[int]]: __snake_case = [] __snake_case = [] __snake_case = 0 __snake_case = sum(snake_case_ ) create_state_space_tree(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return result def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int , snake_case_ : list[int] , snake_case_ : list[list[int]] , snake_case_ : int , ) -> None: if sum(snake_case_ ) > max_sum or (remaining_nums_sum + sum(snake_case_ )) < max_sum: return if sum(snake_case_ ) == max_sum: result.append(snake_case_ ) return for index in range(snake_case_ , len(snake_case_ ) ): create_state_space_tree( snake_case_ , snake_case_ , index + 1 , [*path, nums[index]] , snake_case_ , remaining_nums_sum - nums[index] , ) snake_case_ = [3, 34, 4, 12, 5, 2] snake_case_ = 9 snake_case_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
24
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm snake_case_ = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__(self : List[Any] , **a__ : Dict ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __snake_case = deprecated_arg[3:] setattr(self , a__ , not kwargs.pop(a__ ) ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) __snake_case = kwargs.pop('''torchscript''' , self.torchscript ) __snake_case = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) __snake_case = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**a__ ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Trace the models using torchscript'} ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) A_ : str = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def a (self : Tuple ): """simple docstring""" requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: __snake_case = torch.device('''cpu''' ) __snake_case = 0 elif is_torch_tpu_available(): __snake_case = xm.xla_device() __snake_case = 0 else: __snake_case = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) __snake_case = torch.cuda.device_count() return device, n_gpu @property def a (self : Tuple ): """simple docstring""" return is_torch_tpu_available() and self.tpu @property def a (self : Tuple ): """simple docstring""" requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def a (self : Any ): """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def a (self : Optional[Any] ): """simple docstring""" requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def a (self : List[str] ): """simple docstring""" return self.n_gpu > 0
24
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : List[Any] , a__ : Dict=13 , a__ : str=32 , a__ : Tuple=3 , a__ : Optional[Any]=4 , a__ : Optional[int]=[10, 20, 30, 40] , a__ : List[Any]=[2, 2, 3, 2] , a__ : List[Any]=True , a__ : int=True , a__ : List[Any]=37 , a__ : Any="gelu" , a__ : int=10 , a__ : Dict=0.0_2 , a__ : Dict=["stage2", "stage3", "stage4"] , a__ : Tuple=[2, 3, 4] , a__ : List[str]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = num_stages __snake_case = hidden_sizes __snake_case = depths __snake_case = is_training __snake_case = use_labels __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_labels __snake_case = initializer_range __snake_case = out_features __snake_case = out_indices __snake_case = scope def a (self : Dict ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def a (self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a (self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a (self : Optional[Any] , a__ : List[Any] , a__ : str , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a (self : Tuple , a__ : List[Any] , a__ : List[str] , a__ : List[str] ): """simple docstring""" __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case = None __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Dict = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) A_ : Optional[Any] = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) A_ : Dict = True A_ : Optional[Any] = False A_ : int = False A_ : int = False A_ : List[str] = False def a (self : List[str] ): """simple docstring""" __snake_case = ConvNextModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def a (self : Tuple ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : str ): """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def a (self : List[Any] ): """simple docstring""" pass def a (self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def a (self : Dict ): """simple docstring""" def check_hidden_states_output(a__ : List[str] , a__ : str , a__ : Tuple ): __snake_case = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a__ , a__ ) ) __snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def a (self : Any ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ConvNextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ) -> List[str]: __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def a (self : Tuple ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def a (self : Optional[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(a__ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): __snake_case = model(**a__ ) # verify the logits __snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) __snake_case = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , _UpperCAmelCase ): A_ : Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () A_ : List[Any] = ConvNextConfig A_ : Optional[Any] = False def a (self : Optional[int] ): """simple docstring""" __snake_case = ConvNextModelTester(self )
24
1
snake_case_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] snake_case_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] snake_case_ = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> str: assert len(str(snake_case_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __snake_case = year // 100 __snake_case = (5 * (century % 4) + 2) % 7 __snake_case = year % 100 __snake_case = centurian % 12 __snake_case = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __snake_case = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __snake_case = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
24
def lowerCamelCase__ ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(snake_case_ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
1
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Tuple , *a__ : Union[str, Any] , a__ : Tuple=None , a__ : Optional[int]=None , **a__ : int ): """simple docstring""" super().__init__(*a__ , **a__ ) __snake_case = eval_examples __snake_case = post_process_function def a (self : int , a__ : int=None , a__ : Union[str, Any]=None , a__ : Optional[Any]=None , a__ : str = "eval" ): """simple docstring""" __snake_case = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case = self.get_eval_dataloader(a__ ) __snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __snake_case = time.time() try: __snake_case = eval_loop( a__ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a__ , metric_key_prefix=a__ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( a__ , a__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case = self.post_process_function(a__ , a__ , output.predictions ) __snake_case = self.compute_metrics(a__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __snake_case = metrics.pop(a__ ) metrics.update(output.metrics ) else: __snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(a__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , a__ ) return metrics def a (self : str , a__ : List[Any] , a__ : int , a__ : List[str]=None , a__ : str = "test" ): """simple docstring""" __snake_case = self.get_test_dataloader(a__ ) # Temporarily disable metric computation, we will do it in the loop here. __snake_case = self.compute_metrics __snake_case = None __snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __snake_case = time.time() try: __snake_case = eval_loop( a__ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a__ , metric_key_prefix=a__ , ) finally: __snake_case = compute_metrics __snake_case = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( a__ , a__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case = self.post_process_function(a__ , a__ , output.predictions , '''predict''' ) __snake_case = self.compute_metrics(a__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __snake_case = metrics.pop(a__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a__ )
24
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = BartphoTokenizer A_ : List[str] = False A_ : Optional[Any] = True def a (self : Tuple ): """simple docstring""" super().setUp() __snake_case = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def a (self : str , **a__ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a (self : str , a__ : Any ): """simple docstring""" __snake_case = '''This is a là test''' __snake_case = '''This is a<unk><unk> test''' return input_text, output_text def a (self : Dict ): """simple docstring""" __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case = '''This is a là test''' __snake_case = '''▁This ▁is ▁a ▁l à ▁t est'''.split() __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
24
1
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowerCamelCase__ ( ) -> Tuple: __snake_case = torch.nn.Linear(2 , 4 ) __snake_case = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case = torch.optim.lr_scheduler.OneCycleLR(snake_case_ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowerCamelCase__ ( snake_case_ : Any ) -> Any: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowerCamelCase__ ( snake_case_ : Union[str, Any] ) -> Union[str, Any]: __snake_case = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(snake_case_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): @require_cuda def a (self : Tuple ): """simple docstring""" __snake_case = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a__ ): __snake_case = Accelerator(cpu=a__ ) def a (self : Tuple ): """simple docstring""" __snake_case = Accelerator() __snake_case = GradientState() assert state.num_steps == 1 __snake_case = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case = False assert state.sync_gradients is False GradientState._reset_state() def a (self : List[str] ): """simple docstring""" __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def a (self : Dict ): """simple docstring""" __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def a (self : str ): """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a__ : List[Any] , **a__ : List[Any] ): pass with patch('''torch.cuda.set_device''' , a__ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) __snake_case = get_signature(a__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a__ ) # make sure random weights don't match load_random_weights(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) < 1E-3 ) def a (self : int ): """simple docstring""" __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() accelerator.prepare(a__ , a__ , a__ , a__ , a__ ) __snake_case = get_signature(a__ ) # saving hook def save_config(a__ : Any , a__ : Any , a__ : Optional[int] ): __snake_case = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a__ , '''data.json''' ) , '''w''' ) as f: json.dump(a__ , a__ ) # loading hook def load_config(a__ : str , a__ : Optional[Any] ): with open(os.path.join(a__ , '''data.json''' ) , '''r''' ) as f: __snake_case = json.load(a__ ) __snake_case = config['''class_name'''] __snake_case = accelerator.register_save_state_pre_hook(a__ ) __snake_case = accelerator.register_load_state_pre_hook(a__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a__ ) # make sure random weights don't match with hooks load_random_weights(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a__ ) # make sure random weights don't match with hooks removed load_random_weights(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a__ ) self.assertTrue(abs(model_signature - get_signature(a__ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def a (self : List[str] ): """simple docstring""" __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() __snake_case = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( a__ , a__ , a__ , a__ , a__ , a__ ) self.assertTrue(dummy_obj is None ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() __snake_case = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( a__ , a__ , a__ , a__ , a__ , a__ ) self.assertEqual( getattr(a__ , '''_is_accelerate_prepared''' , a__ ) , a__ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a__ , '''_is_accelerate_prepared''' , a__ ) , a__ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a__ , '''_is_accelerate_prepared''' , a__ ) , a__ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a__ , '''_is_accelerate_prepared''' , a__ ) , a__ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a__ , '''_is_accelerate_prepared''' , a__ ) , a__ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a__ , '''_is_accelerate_prepared''' , a__ ) , a__ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def a (self : Optional[Any] ): """simple docstring""" from transformers import AutoModelForCausalLM __snake_case = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a__ , device_map={'''''': 0} , ) __snake_case = Accelerator() # This should work __snake_case = accelerator.prepare(a__ ) @slow @require_bnb def a (self : Any ): """simple docstring""" from transformers import AutoModelForCausalLM __snake_case = Accelerator() with init_empty_weights(): __snake_case = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case = infer_auto_device_map(a__ ) __snake_case = '''cpu''' __snake_case = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a__ , load_in_abit=a__ , llm_inta_enable_fpaa_cpu_offload=a__ ) # This should not work and get value error with self.assertRaises(a__ ): __snake_case = accelerator.prepare(a__ ) @slow @require_bnb @require_multi_gpu def a (self : int ): """simple docstring""" from transformers import AutoModelForCausalLM __snake_case = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case = infer_auto_device_map(a__ ) __snake_case = 1 __snake_case = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a__ , device_map=a__ , ) __snake_case = Accelerator() # This should not work and get value error with self.assertRaises(a__ ): __snake_case = accelerator.prepare(a__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def a (self : int ): """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case = infer_auto_device_map(a__ ) __snake_case = 1 __snake_case = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a__ , device_map=a__ , ) __snake_case = Accelerator() # This should work __snake_case = accelerator.prepare(a__ ) @require_cuda def a (self : str ): """simple docstring""" __snake_case = torch.nn.Linear(10 , 10 ) __snake_case = torch.optim.SGD(model.parameters() , lr=0.0_1 ) __snake_case = Accelerator(cpu=a__ ) __snake_case = accelerator.prepare(a__ )
24
def lowerCamelCase__ ( snake_case_ : int ) -> int: if not isinstance(snake_case_ , snake_case_ ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) __snake_case = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
24
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class SCREAMING_SNAKE_CASE__ : A_ : List[str] = None def a (self : Tuple ): """simple docstring""" __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , a__ ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = os.path.join(a__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(a__ ) __snake_case = self.feature_extraction_class.from_json_file(a__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def a (self : List[str] ): """simple docstring""" __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = feat_extract_first.save_pretrained(a__ )[0] check_json_file_has_correct_format(a__ ) __snake_case = self.feature_extraction_class.from_pretrained(a__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def a (self : Optional[int] ): """simple docstring""" __snake_case = self.feature_extraction_class() self.assertIsNotNone(a__ )
24
from math import loga def lowerCamelCase__ ( snake_case_ : int ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(snake_case_ , snake_case_ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
24
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
24
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[int] , *a__ : Any , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[int] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : Tuple ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : Dict , **a__ : Any ): """simple docstring""" return {}, {}, {} def a (self : List[str] , a__ : Any ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : int , a__ : List[Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
24
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__(self : Optional[int] , a__ : Optional[int] , a__ : List[str]=12 , a__ : Dict=7 , a__ : Union[str, Any]=True , a__ : List[str]=True , a__ : List[str]=True , a__ : Any=99 , a__ : int=32 , a__ : Optional[int]=32 , a__ : Optional[Any]=2 , a__ : List[Any]=4 , a__ : int=37 , a__ : List[Any]=0.1 , a__ : List[str]=0.1 , a__ : List[str]=512 , a__ : Dict=0.0_2 , a__ : int=0 , a__ : Tuple=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = projection_dim __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = dropout __snake_case = attention_dropout __snake_case = max_position_embeddings __snake_case = initializer_range __snake_case = scope __snake_case = bos_token_id def a (self : int ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __snake_case = input_mask.numpy() __snake_case , __snake_case = input_mask.shape __snake_case = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(a__ ): __snake_case = 1 __snake_case = 0 __snake_case = self.get_config() return config, input_ids, tf.convert_to_tensor(a__ ) def a (self : Any ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def a (self : Any , a__ : Optional[int] , a__ : Tuple , a__ : List[Any] ): """simple docstring""" __snake_case = TFBlipTextModel(config=a__ ) __snake_case = model(a__ , attention_mask=a__ , training=a__ ) __snake_case = model(a__ , training=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a (self : Dict ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Dict = (TFBlipTextModel,) if is_tf_available() else () A_ : List[Any] = False A_ : List[str] = False A_ : Tuple = False def a (self : List[Any] ): """simple docstring""" __snake_case = BlipTextModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : str ): """simple docstring""" self.config_tester.run_common_tests() def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : str ): """simple docstring""" pass def a (self : Any ): """simple docstring""" pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def a (self : Any ): """simple docstring""" pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @slow def a (self : List[Any] ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = TFBlipTextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def a (self : Tuple , a__ : List[str]=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=a__ )
24
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> Any: assert _test_patching.open is open __snake_case = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , snake_case_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> List[str]: # pandas.read_csv is not present in _test_patching __snake_case = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , snake_case_ ): pass def lowerCamelCase__ ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , snake_case_ ) is None with patch_submodule(_test_patching , '''len''' , snake_case_ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = '''__test_patch_submodule_start_and_stop_mock__''' __snake_case = patch_submodule(_test_patching , '''open''' , snake_case_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case = '''__test_patch_submodule_successive_join__''' __snake_case = '''__test_patch_submodule_successive_dirname__''' __snake_case = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> Tuple: __snake_case = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , snake_case_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , snake_case_ ): pass
24
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowerCamelCase__ ( snake_case_ : dict ) -> tuple: return (data["data"], data["target"]) def lowerCamelCase__ ( snake_case_ : np.ndarray , snake_case_ : np.ndarray , snake_case_ : np.ndarray ) -> np.ndarray: __snake_case = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(snake_case_ , snake_case_ ) # Predict target for test data __snake_case = xgb.predict(snake_case_ ) __snake_case = predictions.reshape(len(snake_case_ ) , 1 ) return predictions def lowerCamelCase__ ( ) -> None: __snake_case = fetch_california_housing() __snake_case , __snake_case = data_handling(snake_case_ ) __snake_case , __snake_case , __snake_case , __snake_case = train_test_split( snake_case_ , snake_case_ , test_size=0.25 , random_state=1 ) __snake_case = xgboost(snake_case_ , snake_case_ , snake_case_ ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(snake_case_ , snake_case_ )}""" ) print(f"""Mean Square Error : {mean_squared_error(snake_case_ , snake_case_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
24
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) snake_case_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) A_ : Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) A_ : Optional[int] = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Source language id for translation.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Target language id for translation.'} ) A_ : Optional[int] = field(default=_UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} ) A_ : bool = field( default=_UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Dict ) -> str: logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , f"""{split}_results.json""" ) ) def lowerCamelCase__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) __snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __snake_case = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): __snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __snake_case = SeqaSeqDataset # Get datasets __snake_case = ( dataset_class( snake_case_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __snake_case = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) __snake_case = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) __snake_case = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __snake_case = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __snake_case = train_result.metrics __snake_case = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __snake_case = trainer.evaluate(metric_key_prefix='''val''' ) __snake_case = data_args.n_val __snake_case = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __snake_case = trainer.predict(test_dataset=snake_case_ , metric_key_prefix='''test''' ) __snake_case = test_output.metrics __snake_case = data_args.n_test if trainer.is_world_process_zero(): __snake_case = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: __snake_case = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) __snake_case = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def lowerCamelCase__ ( snake_case_ : Optional[Any] ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
24
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[str] = CpmAntTokenizer A_ : Optional[int] = False def a (self : Optional[int] ): """simple docstring""" super().setUp() __snake_case = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def a (self : Dict ): """simple docstring""" __snake_case = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __snake_case = '''今天天气真好!''' __snake_case = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = '''今天天气真好!''' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) __snake_case = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
24
from math import pi def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
24
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class SCREAMING_SNAKE_CASE__ : def __init__(self : List[str] , a__ : str = "cpu" , a__ : str = "openai/clip-vit-large-patch14" ): """simple docstring""" __snake_case = device __snake_case = CLIPTokenizerFast.from_pretrained(a__ ) __snake_case = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] __snake_case = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] __snake_case = torchvision.transforms.Normalize(self.image_mean , self.image_std ) __snake_case = torchvision.transforms.Resize(224 ) __snake_case = torchvision.transforms.CenterCrop(224 ) def a (self : Optional[Any] , a__ : str ): """simple docstring""" __snake_case = self.resize(a__ ) __snake_case = self.center_crop(a__ ) __snake_case = self.normalize(a__ ) return images def __call__(self : Union[str, Any] , a__ : Tuple=None , a__ : Tuple=None , **a__ : int ): """simple docstring""" __snake_case = self.tokenizer(text=a__ , **a__ ) __snake_case = self.preprocess_img(a__ ) __snake_case = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Optional[int] , a__ : Dict=10 , a__ : Dict=0.0_1 , a__ : Union[str, Any]=None , a__ : Any=None , a__ : Optional[Any]=None , a__ : Dict=None , a__ : Union[str, Any]=None , a__ : List[str]=None , a__ : Union[str, Any]=False , a__ : Dict=True , a__ : Dict="image" , a__ : Optional[Any]=True , a__ : List[str]=False , a__ : Optional[Any]=False , a__ : List[str]=False , ): """simple docstring""" super().__init__() __snake_case = None __snake_case = device if device else get_device() if vqgan: __snake_case = vqgan else: __snake_case = load_vqgan(self.device , conf_path=a__ , ckpt_path=a__ ) self.vqgan.eval() if clip: __snake_case = clip else: __snake_case = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) __snake_case = ProcessorGradientFlow(device=self.device ) __snake_case = iterations __snake_case = lr __snake_case = log __snake_case = make_grid __snake_case = return_val __snake_case = quantize __snake_case = self.vqgan.decoder.z_shape def a (self : str , a__ : Optional[int]=None , a__ : Tuple=None , a__ : str=5 , a__ : int=True ): """simple docstring""" __snake_case = [] if output_path is None: __snake_case = '''./animation.gif''' if input_path is None: __snake_case = self.save_path __snake_case = sorted(glob(input_path + '''/*''' ) ) if not len(a__ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(a__ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) __snake_case = total_duration / len(a__ ) __snake_case = [frame_duration] * len(a__ ) if extend_frames: __snake_case = 1.5 __snake_case = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(a__ ) ) imageio.mimsave(a__ , a__ , duration=a__ ) print(f"""gif saved to {output_path}""" ) def a (self : List[Any] , a__ : List[str]=None , a__ : Optional[int]=None ): """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError __snake_case = preprocess(Image.open(a__ ) , target_image_size=256 ).to(self.device ) __snake_case = preprocess_vqgan(a__ ) __snake_case , *__snake_case = self.vqgan.encode(a__ ) return z def a (self : List[str] , a__ : int ): """simple docstring""" __snake_case = self.latent.detach().requires_grad_() __snake_case = base_latent + transform_vector if self.quantize: __snake_case , *__snake_case = self.vqgan.quantize(a__ ) else: __snake_case = trans_latent return self.vqgan.decode(a__ ) def a (self : int , a__ : Dict , a__ : str , a__ : str=None ): """simple docstring""" __snake_case = self.clip_preprocessor(text=a__ , images=a__ , return_tensors='''pt''' , padding=a__ ) __snake_case = self.clip(**a__ ) __snake_case = clip_outputs.logits_per_image if weights is not None: __snake_case = similarity_logits * weights return similarity_logits.sum() def a (self : Dict , a__ : Union[str, Any] , a__ : Union[str, Any] , a__ : int ): """simple docstring""" __snake_case = self._get_clip_similarity(pos_prompts['''prompts'''] , a__ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: __snake_case = self._get_clip_similarity(neg_prompts['''prompts'''] , a__ , weights=neg_prompts['''weights'''] ) else: __snake_case = torch.tensor([1] , device=self.device ) __snake_case = -torch.log(a__ ) + torch.log(a__ ) return loss def a (self : Any , a__ : Optional[Any] , a__ : List[str] , a__ : Tuple ): """simple docstring""" __snake_case = torch.randn_like(self.latent , requires_grad=a__ , device=self.device ) __snake_case = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __snake_case = self._add_vector(a__ ) __snake_case = loop_post_process(a__ ) __snake_case = self._get_CLIP_loss(a__ , a__ , a__ ) print('''CLIP loss''' , a__ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=a__ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def a (self : int , a__ : Optional[Any] , a__ : Optional[int] , a__ : List[Any] ): """simple docstring""" wandb.init(reinit=a__ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: __snake_case = Image.open(a__ ) __snake_case = image.resize((256, 256) ) wandb.log('''Original Image''' , wandb.Image(a__ ) ) def a (self : Optional[int] , a__ : int ): """simple docstring""" if not prompts: return [] __snake_case = [] __snake_case = [] if isinstance(a__ , a__ ): __snake_case = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(a__ , (tuple, list) ): __snake_case = prompt[0] __snake_case = float(prompt[1] ) elif ":" in prompt: __snake_case , __snake_case = prompt.split(''':''' ) __snake_case = float(a__ ) else: __snake_case = prompt __snake_case = 1.0 processed_prompts.append(a__ ) weights.append(a__ ) return { "prompts": processed_prompts, "weights": torch.tensor(a__ , device=self.device ), } def a (self : Optional[Any] , a__ : Union[str, Any] , a__ : Any=None , a__ : List[Any]=None , a__ : Optional[int]=True , a__ : Any=False , a__ : Any=True , a__ : int=True , a__ : List[str]=None , ): """simple docstring""" if image_path: __snake_case = self._get_latent(a__ ) else: __snake_case = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(a__ , a__ , a__ ) assert pos_prompts, "You must provide at least one positive prompt." __snake_case = self.process_prompts(a__ ) __snake_case = self.process_prompts(a__ ) if save_final and save_path is None: __snake_case = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(a__ ): os.makedirs(a__ ) else: __snake_case = save_path + '''_''' + get_timestamp() os.makedirs(a__ ) __snake_case = save_path __snake_case = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(a__ ) ) __snake_case = loop_post_process(a__ ) for iter, transformed_img in enumerate(self._optimize_CLIP(a__ , a__ , a__ ) ): if show_intermediate: show_pil(a__ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({'''Image''': wandb.Image(a__ )} ) if show_final: show_pil(a__ ) if save_final: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}_final.png""" ) )
24
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = 'vit_msn' def __init__(self : Union[str, Any] , a__ : Optional[Any]=768 , a__ : Optional[Any]=12 , a__ : Optional[int]=12 , a__ : Optional[int]=3072 , a__ : Union[str, Any]="gelu" , a__ : str=0.0 , a__ : int=0.0 , a__ : Optional[Any]=0.0_2 , a__ : List[Any]=1E-06 , a__ : Optional[int]=224 , a__ : str=16 , a__ : Optional[Any]=3 , a__ : int=True , **a__ : List[Any] , ): """simple docstring""" super().__init__(**a__ ) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = qkv_bias
24
1
def lowerCamelCase__ ( snake_case_ : int = 1 , snake_case_ : int = 1000 ) -> int: __snake_case = 1 __snake_case = 0 for divide_by_number in range(snake_case_ , digit + 1 ): __snake_case = [] __snake_case = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(snake_case_ ): __snake_case = len(snake_case_ ) __snake_case = divide_by_number else: has_been_divided.append(snake_case_ ) __snake_case = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
24
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def a (self : int , a__ : List[Any]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) __snake_case = np.random.RandomState(a__ ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def a (self : List[Any] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) # warmup pass to apply optimizations __snake_case = pipe(**self.get_dummy_inputs() ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Any ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def a (self : List[str] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a (self : Optional[Any] ): """simple docstring""" __snake_case = ort.SessionOptions() __snake_case = False return options def a (self : Optional[Any] ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) # using the PNDM scheduler by default __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def a (self : Dict ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) __snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=a__ , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
24
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
24
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case_ = logging.getLogger(__name__) @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : str A_ : str A_ : Optional[str] = None A_ : Optional[str] = None A_ : Optional[str] = None @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : List[int] A_ : Optional[List[int]] = None A_ : Optional[List[int]] = None A_ : Optional[Union[int, float]] = None A_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[InputFeatures] def __init__(self : int , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = None , a__ : List[Any]=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = os.path.join( a__ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a__ ) , a__ , ) , ) __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case = cached_features_file + '''.lock''' with FileLock(a__ ): if os.path.exists(a__ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case = torch.load(a__ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case = ( processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) ) logger.info('''Training examples: %s''' , len(a__ ) ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) logger.info('''Saving features into cached file %s''' , a__ ) torch.save(self.features , a__ ) def __len__(self : int ): """simple docstring""" return len(self.features ) def __getitem__(self : Dict , a__ : List[Any] ): """simple docstring""" return self.features[i] def a (self : List[Any] ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ : A_ : List[InputFeatures] def __init__(self : Tuple , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = 128 , a__ : Any=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list __snake_case = processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case = tf.data.Dataset.from_generator( a__ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def a (self : Union[str, Any] ): """simple docstring""" return self.dataset def __len__(self : Dict ): """simple docstring""" return len(self.features ) def __getitem__(self : Any , a__ : Dict ): """simple docstring""" return self.features[i] def a (self : str ): """simple docstring""" return self.label_list class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : Dict , a__ : Dict ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def a (self : Optional[int] , a__ : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def a (self : int ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def a (self : Any , a__ : Optional[int] , a__ : List[Any] ): """simple docstring""" __snake_case = [] for i, line in enumerate(a__ ): if i == 0: continue __snake_case = '''%s-%s''' % (set_type, line[0]) __snake_case = line[5] __snake_case = line[6] __snake_case = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case = line[0] examples.append(InputExample(guid=a__ , text_a=a__ , text_b=a__ , label=a__ , pairID=a__ ) ) return examples def lowerCamelCase__ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> List[str]: __snake_case = {label: i for i, label in enumerate(snake_case_ )} __snake_case = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding='''max_length''' , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) __snake_case = label_map[example.label] if example.label in label_map else 0 __snake_case = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features snake_case_ = { 'hans': 3, } snake_case_ = { 'hans': HansProcessor, }
24
1
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def a (*a__ : List[str] , **a__ : List[str] ): """simple docstring""" pass def lowerCamelCase__ ( snake_case_ : int ) -> Optional[int]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. snake_case_ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : Optional[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def a (self : List[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model=a__ , tokenizer=a__ , image_processor=a__ ) __snake_case = INVOICE_URL __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) __snake_case = '''What is the placebo?''' __snake_case = [ { '''image''': load_image(a__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def a (self : Union[str, Any] , a__ : Optional[int] , a__ : Dict ): """simple docstring""" __snake_case = dqa_pipeline(a__ , top_k=2 ) self.assertEqual( a__ , [ [ {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def a (self : Dict ): """simple docstring""" __snake_case = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __snake_case = INVOICE_URL __snake_case = '''How many cats are there?''' __snake_case = [ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(a__ , [] ) # We can optionnally pass directly the words and bounding boxes __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = [] __snake_case = [] __snake_case = dqa_pipeline(image=a__ , question=a__ , words=a__ , boxes=a__ , top_k=2 ) self.assertEqual(a__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : str ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : List[Any] ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Tuple ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Dict ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def a (self : Tuple ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def a (self : List[str] ): """simple docstring""" pass
24
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = ['image_processor', 'tokenizer'] A_ : Optional[Any] = 'CLIPImageProcessor' A_ : Any = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self : int , a__ : int=None , a__ : Dict=None , **a__ : List[str] ): """simple docstring""" __snake_case = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) __snake_case = kwargs.pop('''feature_extractor''' ) __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__(self : Any , a__ : Dict=None , a__ : List[str]=None , a__ : Dict=None , **a__ : Tuple ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: __snake_case = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: __snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def a (self : Union[str, Any] , *a__ : int , **a__ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*a__ , **a__ ) def a (self : Any , *a__ : List[Any] , **a__ : List[str] ): """simple docstring""" return self.tokenizer.decode(*a__ , **a__ ) @property def a (self : int ): """simple docstring""" __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
1
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : str , a__ : int , a__ : int ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __snake_case = img __snake_case = img.shape[1] __snake_case = img.shape[0] __snake_case = dst_width __snake_case = dst_height __snake_case = self.src_w / self.dst_w __snake_case = self.src_h / self.dst_h __snake_case = __snake_case = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def a (self : List[str] ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): __snake_case = self.img[self.get_y(a__ )][self.get_x(a__ )] def a (self : Union[str, Any] , a__ : int ): """simple docstring""" return int(self.ratio_x * x ) def a (self : List[Any] , a__ : int ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": snake_case_ , snake_case_ = 800, 600 snake_case_ = imread('image_data/lena.jpg', 1) snake_case_ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
24
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Dict ): """simple docstring""" __snake_case = logging.get_logger() # the current default level is logging.WARNING __snake_case = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(a__ ) def a (self : Dict ): """simple docstring""" __snake_case = logging.get_verbosity() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(a__ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def a (self : Dict ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = os.getenv('''TRANSFORMERS_VERBOSITY''' , a__ ) __snake_case = logging.log_levels[env_level_str] __snake_case = logging.get_verbosity() self.assertEqual( a__ , a__ , f"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level __snake_case = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def a (self : List[Any] ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.logging.getLogger() with CaptureLogger(a__ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def a (self : Any ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) def lowerCamelCase__ ( ) -> str: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
24
1
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int | str] ) -> None: create_state_space_tree(snake_case_ , [] , 0 , [0 for i in range(len(snake_case_ ) )] ) def lowerCamelCase__ ( snake_case_ : list[int | str] , snake_case_ : list[int | str] , snake_case_ : int , snake_case_ : list[int] , ) -> None: if index == len(snake_case_ ): print(snake_case_ ) return for i in range(len(snake_case_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __snake_case = True create_state_space_tree(snake_case_ , snake_case_ , index + 1 , snake_case_ ) current_sequence.pop() __snake_case = False snake_case_ = [3, 1, 2, 4] generate_all_permutations(sequence) snake_case_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
24
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[str] = CpmAntTokenizer A_ : Optional[int] = False def a (self : Optional[int] ): """simple docstring""" super().setUp() __snake_case = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def a (self : Dict ): """simple docstring""" __snake_case = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __snake_case = '''今天天气真好!''' __snake_case = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = '''今天天气真好!''' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) __snake_case = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
24
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: snake_case_ = None snake_case_ = logging.get_logger(__name__) snake_case_ = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} snake_case_ = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } snake_case_ = { 'google/rembert': 256, } snake_case_ = '▁' class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Optional[int] = VOCAB_FILES_NAMES A_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Tuple = RemBertTokenizer def __init__(self : Union[str, Any] , a__ : List[str]=None , a__ : Dict=None , a__ : Union[str, Any]=True , a__ : Tuple=True , a__ : Dict=False , a__ : Tuple="[CLS]" , a__ : Tuple="[SEP]" , a__ : List[str]="<unk>" , a__ : str="[SEP]" , a__ : Any="<pad>" , a__ : List[Any]="[CLS]" , a__ : str="[MASK]" , **a__ : Tuple , ): """simple docstring""" __snake_case = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , remove_space=a__ , keep_accents=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , **a__ , ) __snake_case = do_lower_case __snake_case = remove_space __snake_case = keep_accents __snake_case = vocab_file __snake_case = False if not self.vocab_file else True def a (self : List[Any] , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a (self : Tuple , a__ : List[int] , a__ : Optional[List[int]] = None , a__ : bool = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] def a (self : str , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a (self : Any , a__ : str , a__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(a__ ) ) return __snake_case = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
24
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : def __init__(self : str , a__ : Dict , a__ : Tuple=None , a__ : List[Any]=None , a__ : Dict=None , a__ : Union[str, Any]="resnet50" , a__ : Dict=3 , a__ : str=32 , a__ : int=3 , a__ : Dict=True , a__ : Any=True , ): """simple docstring""" __snake_case = parent __snake_case = out_indices if out_indices is not None else [4] __snake_case = stage_names __snake_case = out_features __snake_case = backbone __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = use_pretrained_backbone __snake_case = is_training def a (self : Union[str, Any] ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = self.get_config() return config, pixel_values def a (self : Any ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def a (self : List[Any] , a__ : int , a__ : int ): """simple docstring""" __snake_case = TimmBackbone(config=a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(a__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def a (self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () A_ : Optional[Any] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} A_ : List[Any] = False A_ : Dict = False A_ : Any = False A_ : List[Any] = False def a (self : Tuple ): """simple docstring""" __snake_case = TimmBackboneModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def a (self : Any ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : int ): """simple docstring""" __snake_case = '''resnet18''' __snake_case = '''microsoft/resnet-18''' __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ ) __snake_case = AutoBackbone.from_pretrained(a__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ , out_indices=[1, 2, 3] ) __snake_case = AutoBackbone.from_pretrained(a__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def a (self : str ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : Optional[int] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a (self : Tuple ): """simple docstring""" pass def a (self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True __snake_case = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case = self.all_model_classes[0] __snake_case = model_class(a__ ) model.to(a__ ) __snake_case = self._prepare_for_class(a__ , a__ ) __snake_case = model(**a__ ) __snake_case = outputs[0][-1] # Encoder-/Decoder-only models __snake_case = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def a (self : Optional[int] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case = copy.deepcopy(a__ ) __snake_case = None __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case = copy.deepcopy(a__ ) __snake_case = False __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ )
24
1