code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def _lowerCAmelCase ( lowercase_ ): def decorator(lowercase_ ): UpperCAmelCase = getattr(snake_case_ , 'handle_key' , [] ) handle += [key] setattr(snake_case_ , 'handle_key' , snake_case_ ) return func return decorator def _lowerCAmelCase ( *lowercase_ ): def decorator(lowercase_ ): UpperCAmelCase = getattr(snake_case_ , 'handle_key' , [] ) handle += keys setattr(snake_case_ , 'handle_key' , snake_case_ ) return func return decorator class A_ ( _UpperCAmelCase ): """simple docstring""" def __new__( cls :Union[str, Any] , lowercase_ :Union[str, Any] , lowercase_ :Union[str, Any] , lowercase_ :str ) -> Optional[int]: UpperCAmelCase = super().__new__(cls , a__ , a__ , a__ ) if not hasattr(a__ , 'key_handler' ): setattr(a__ , 'key_handler' , {} ) setattr(a__ , 'handle_input' , KeyHandler.handle_input ) for value in attrs.values(): UpperCAmelCase = getattr(a__ , 'handle_key' , [] ) for key in handled_keys: UpperCAmelCase = value return new_cls @staticmethod def UpperCAmelCase__ ( cls :Optional[int] ) -> Dict: UpperCAmelCase = get_character() if char != KEYMAP["undefined"]: UpperCAmelCase = ord(a__ ) UpperCAmelCase = cls.key_handler.get(a__ ) if handler: UpperCAmelCase = char return handler(cls ) else: return None def _lowerCAmelCase ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
78
from math import pi def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
24
0
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _snake_case : '''simple docstring''' def __init__( self: Any ,lowerCamelCase_: str ,lowerCamelCase_: int ,lowerCamelCase_: int ) -> Any: if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) UpperCAmelCase_ : Tuple = img UpperCAmelCase_ : List[Any] = img.shape[1] UpperCAmelCase_ : Any = img.shape[0] UpperCAmelCase_ : Optional[int] = dst_width UpperCAmelCase_ : int = dst_height UpperCAmelCase_ : Any = self.src_w / self.dst_w UpperCAmelCase_ : List[str] = self.src_h / self.dst_h UpperCAmelCase_ : Any = ( np.ones((self.dst_h, self.dst_w, 3) ,np.uinta ) * 255 ) def A__ ( self: List[str] ) -> Optional[Any]: for i in range(self.dst_h ): for j in range(self.dst_w ): UpperCAmelCase_ : int = self.img[self.get_y(a__ )][self.get_x(a__ )] def A__ ( self: Union[str, Any] ,lowerCamelCase_: int ) -> str: return int(self.ratio_x * x ) def A__ ( self: List[Any] ,lowerCamelCase_: int ) -> int: return int(self.ratio_y * y ) if __name__ == "__main__": UpperCamelCase_ ,UpperCamelCase_ = 800, 600 UpperCamelCase_ = imread('''image_data/lena.jpg''', 1) UpperCamelCase_ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}", n.output ) waitKey(0) destroyAllWindows()
345
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = 'vit_msn' def __init__(self : Union[str, Any] , a__ : Optional[Any]=768 , a__ : Optional[Any]=12 , a__ : Optional[int]=12 , a__ : Optional[int]=3072 , a__ : Union[str, Any]="gelu" , a__ : str=0.0 , a__ : int=0.0 , a__ : Optional[Any]=0.0_2 , a__ : List[Any]=1E-06 , a__ : Optional[int]=224 , a__ : str=16 , a__ : Optional[Any]=3 , a__ : int=True , **a__ : List[Any] , ): """simple docstring""" super().__init__(**a__ ) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = qkv_bias
24
0
"""simple docstring""" from __future__ import annotations A : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): '''simple docstring''' __lowerCAmelCase = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case_ ) ) ] # the reference grid __lowerCAmelCase = 1 __lowerCAmelCase = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case_ ) ) ] # the action grid __lowerCAmelCase = init[0] __lowerCAmelCase = init[1] __lowerCAmelCase = 0 __lowerCAmelCase = g + heuristic[x][y] # cost from starting cell to destination cell __lowerCAmelCase = [[f, g, x, y]] __lowerCAmelCase = False # flag that is set when search is complete __lowerCAmelCase = False # flag set if we can't find expand while not found and not resign: if len(snake_case_ ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __lowerCAmelCase = cell.pop() __lowerCAmelCase = next_cell[2] __lowerCAmelCase = next_cell[3] __lowerCAmelCase = next_cell[1] if x == goal[0] and y == goal[1]: __lowerCAmelCase = True else: for i in range(len(snake_case_ ) ): # to try out different valid actions __lowerCAmelCase = x + DIRECTIONS[i][0] __lowerCAmelCase = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __lowerCAmelCase = g + cost __lowerCAmelCase = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __lowerCAmelCase = 1 __lowerCAmelCase = i __lowerCAmelCase = [] __lowerCAmelCase = goal[0] __lowerCAmelCase = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __lowerCAmelCase = x - DIRECTIONS[action[x][y]][0] __lowerCAmelCase = y - DIRECTIONS[action[x][y]][1] __lowerCAmelCase = xa __lowerCAmelCase = ya invpath.append([x, y] ) __lowerCAmelCase = [] for i in range(len(snake_case_ ) ): path.append(invpath[len(snake_case_ ) - 1 - i] ) return path, action if __name__ == "__main__": A : Union[str, Any] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] A : Optional[Any] = [0, 0] # all coordinates are given in format [y,x] A : Tuple = [len(grid) - 1, len(grid[0]) - 1] A : str = 1 # the cost map which pushes the path closer to the goal A : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): A : Optional[Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map A : str = 9_9 A , A : Tuple = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
57
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def a (self : int , a__ : List[Any]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) __snake_case = np.random.RandomState(a__ ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def a (self : List[Any] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) # warmup pass to apply optimizations __snake_case = pipe(**self.get_dummy_inputs() ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Any ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def a (self : List[str] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a (self : Optional[Any] ): """simple docstring""" __snake_case = ort.SessionOptions() __snake_case = False return options def a (self : Optional[Any] ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) # using the PNDM scheduler by default __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def a (self : Dict ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) __snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=a__ , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
24
0
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __a = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def a ( snake_case__: Dict , snake_case__: List[str] , snake_case__: str=None ): '''simple docstring''' if rng is None: lowercase_ = random.Random() lowercase_ = 1 for dim in shape: total_dims *= dim lowercase_ = [] for _ in range(snake_case_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowercase_ = np.array(snake_case_ , dtype=jnp.intaa ).reshape(snake_case_ ) return output def a ( snake_case__: int , snake_case__: List[str]=None ): '''simple docstring''' lowercase_ = ids_tensor(snake_case_ , vocab_size=2 , rng=snake_case_ ) # make sure that at least one token is attended to for each batch lowercase_ = 1 return attn_mask @require_flax class lowercase__: """simple docstring""" a :Optional[int] = None a :Union[str, Any] = () def _lowercase ( self : int ) -> Dict: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowercase_ = 2 lowercase_ = inputs['''input_ids'''].shape[-1] // 2 lowercase_ = inputs['''input_ids'''][:max_batch_size, :sequence_length] lowercase_ = jnp.ones_like(a__ ) lowercase_ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowercase_ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowercase_ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowercase ( self : Optional[int] ) -> Any: lowercase_ , lowercase_ , lowercase_ , lowercase_ = self._get_input_ids_and_config() lowercase_ = False lowercase_ = max_length lowercase_ = 0 for model_class in self.all_generative_model_classes: lowercase_ = model_class(a__ ) lowercase_ = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase_ = getattr(a__ , a__ ) lowercase_ = pt_model_class(a__ ).eval() lowercase_ = load_flax_weights_in_pytorch_model(a__ , flax_model.params ) lowercase_ = flax_model.generate(a__ ).sequences lowercase_ = pt_model.generate(torch.tensor(a__ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowercase_ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def _lowercase ( self : Optional[int] ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ = self._get_input_ids_and_config() lowercase_ = False lowercase_ = max_length for model_class in self.all_generative_model_classes: lowercase_ = model_class(a__ ) lowercase_ = model.generate(a__ ).sequences self.assertEqual(generation_outputs.shape[-1] , a__ ) lowercase_ = jit(model.generate ) lowercase_ = jit_generate(a__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase ( self : List[Any] ) -> List[str]: lowercase_ , lowercase_ , lowercase_ , lowercase_ = self._get_input_ids_and_config() lowercase_ = True lowercase_ = max_length for model_class in self.all_generative_model_classes: lowercase_ = model_class(a__ ) lowercase_ = model.generate(a__ ).sequences self.assertEqual(generation_outputs.shape[-1] , a__ ) lowercase_ = jit(model.generate ) lowercase_ = jit_generate(a__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase ( self : int ) -> Dict: lowercase_ , lowercase_ , lowercase_ , lowercase_ = self._get_input_ids_and_config() lowercase_ = False lowercase_ = max_length lowercase_ = 2 for model_class in self.all_generative_model_classes: lowercase_ = model_class(a__ ) lowercase_ = model.generate(a__ ).sequences self.assertEqual(generation_outputs.shape[-1] , a__ ) lowercase_ = jit(model.generate ) lowercase_ = jit_generate(a__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase ( self : Optional[int] ) -> Optional[int]: lowercase_ , lowercase_ , lowercase_ , lowercase_ = self._get_input_ids_and_config() lowercase_ = False lowercase_ = max_length lowercase_ = 2 lowercase_ = 2 for model_class in self.all_generative_model_classes: lowercase_ = model_class(a__ ) lowercase_ = model.generate(a__ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def _lowercase ( self : List[str] ) -> Any: lowercase_ , lowercase_ , lowercase_ , lowercase_ = self._get_input_ids_and_config() lowercase_ = True lowercase_ = max_length lowercase_ = 0.8 lowercase_ = 1_0 lowercase_ = 0.3 lowercase_ = 1 lowercase_ = 8 lowercase_ = 9 for model_class in self.all_generative_model_classes: lowercase_ = model_class(a__ ) lowercase_ = model.generate(a__ ).sequences self.assertEqual(generation_outputs.shape[-1] , a__ ) lowercase_ = jit(model.generate ) lowercase_ = jit_generate(a__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase ( self : str ) -> Optional[Any]: lowercase_ , lowercase_ , lowercase_ , lowercase_ = self._get_input_ids_and_config() lowercase_ = max_length lowercase_ = 1 lowercase_ = 8 lowercase_ = 9 for model_class in self.all_generative_model_classes: lowercase_ = model_class(a__ ) lowercase_ = model.generate(a__ ).sequences self.assertEqual(generation_outputs.shape[-1] , a__ ) lowercase_ = jit(model.generate ) lowercase_ = jit_generate(a__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase ( self : Dict ) -> Tuple: lowercase_ , lowercase_ , lowercase_ , lowercase_ = self._get_input_ids_and_config() lowercase_ = max_length lowercase_ = 2 lowercase_ = 1 lowercase_ = 8 lowercase_ = 9 for model_class in self.all_generative_model_classes: lowercase_ = model_class(a__ ) lowercase_ = model.generate(a__ ).sequences self.assertEqual(generation_outputs.shape[-1] , a__ ) lowercase_ = jit(model.generate ) lowercase_ = jit_generate(a__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase ( self : Optional[Any] ) -> Dict: lowercase_ , lowercase_ , lowercase_ , lowercase_ = self._get_input_ids_and_config() # pad attention mask on the left lowercase_ = attention_mask.at[(0, 0)].set(0 ) lowercase_ = False lowercase_ = max_length for model_class in self.all_generative_model_classes: lowercase_ = model_class(a__ ) lowercase_ = model.generate(a__ , attention_mask=a__ ).sequences self.assertEqual(generation_outputs.shape[-1] , a__ ) lowercase_ = jit(model.generate ) lowercase_ = jit_generate(a__ , attention_mask=a__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase ( self : Any ) -> List[Any]: lowercase_ , lowercase_ , lowercase_ , lowercase_ = self._get_input_ids_and_config() # pad attention mask on the left lowercase_ = attention_mask.at[(0, 0)].set(0 ) lowercase_ = True lowercase_ = max_length for model_class in self.all_generative_model_classes: lowercase_ = model_class(a__ ) lowercase_ = model.generate(a__ , attention_mask=a__ ).sequences self.assertEqual(generation_outputs.shape[-1] , a__ ) lowercase_ = jit(model.generate ) lowercase_ = jit_generate(a__ , attention_mask=a__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _lowercase ( self : str ) -> List[Any]: lowercase_ , lowercase_ , lowercase_ , lowercase_ = self._get_input_ids_and_config() # pad attention mask on the left lowercase_ = attention_mask.at[(0, 0)].set(0 ) lowercase_ = 2 lowercase_ = max_length for model_class in self.all_generative_model_classes: lowercase_ = model_class(a__ ) lowercase_ = model.generate(a__ , attention_mask=a__ ).sequences self.assertEqual(generation_outputs.shape[-1] , a__ ) lowercase_ = jit(model.generate ) lowercase_ = jit_generate(a__ , attention_mask=a__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Any ) -> str: lowercase_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) lowercase_ = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) lowercase_ = '''Hello world''' lowercase_ = tokenizer(a__ , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(a__ , '''do_samples''' ): model.generate(a__ , do_samples=a__ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(a__ , '''foo''' ): lowercase_ = {'''foo''': '''bar'''} model.generate(a__ , **a__ )
30
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case_ = logging.getLogger(__name__) @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : str A_ : str A_ : Optional[str] = None A_ : Optional[str] = None A_ : Optional[str] = None @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : List[int] A_ : Optional[List[int]] = None A_ : Optional[List[int]] = None A_ : Optional[Union[int, float]] = None A_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[InputFeatures] def __init__(self : int , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = None , a__ : List[Any]=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = os.path.join( a__ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a__ ) , a__ , ) , ) __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case = cached_features_file + '''.lock''' with FileLock(a__ ): if os.path.exists(a__ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case = torch.load(a__ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case = ( processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) ) logger.info('''Training examples: %s''' , len(a__ ) ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) logger.info('''Saving features into cached file %s''' , a__ ) torch.save(self.features , a__ ) def __len__(self : int ): """simple docstring""" return len(self.features ) def __getitem__(self : Dict , a__ : List[Any] ): """simple docstring""" return self.features[i] def a (self : List[Any] ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ : A_ : List[InputFeatures] def __init__(self : Tuple , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = 128 , a__ : Any=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list __snake_case = processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case = tf.data.Dataset.from_generator( a__ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def a (self : Union[str, Any] ): """simple docstring""" return self.dataset def __len__(self : Dict ): """simple docstring""" return len(self.features ) def __getitem__(self : Any , a__ : Dict ): """simple docstring""" return self.features[i] def a (self : str ): """simple docstring""" return self.label_list class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : Dict , a__ : Dict ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def a (self : Optional[int] , a__ : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def a (self : int ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def a (self : Any , a__ : Optional[int] , a__ : List[Any] ): """simple docstring""" __snake_case = [] for i, line in enumerate(a__ ): if i == 0: continue __snake_case = '''%s-%s''' % (set_type, line[0]) __snake_case = line[5] __snake_case = line[6] __snake_case = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case = line[0] examples.append(InputExample(guid=a__ , text_a=a__ , text_b=a__ , label=a__ , pairID=a__ ) ) return examples def lowerCamelCase__ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> List[str]: __snake_case = {label: i for i, label in enumerate(snake_case_ )} __snake_case = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding='''max_length''' , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) __snake_case = label_map[example.label] if example.label in label_map else 0 __snake_case = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features snake_case_ = { 'hans': 3, } snake_case_ = { 'hans': HansProcessor, }
24
0
from collections import deque class __SCREAMING_SNAKE_CASE: def __init__( self: Any , UpperCamelCase: str , UpperCamelCase: int , UpperCamelCase: int ) -> str: snake_case__ = process_name # process name snake_case__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time snake_case__ = arrival_time snake_case__ = burst_time # remaining burst time snake_case__ = 0 # total time of the process wait in ready queue snake_case__ = 0 # time from arrival time to completion time class __SCREAMING_SNAKE_CASE: def __init__( self: List[str] , UpperCamelCase: int , UpperCamelCase: list[int] , UpperCamelCase: deque[Process] , UpperCamelCase: int , ) -> List[Any]: snake_case__ = number_of_queues # time slice of queues that round robin algorithm applied snake_case__ = time_slices # unfinished process is in this ready_queue snake_case__ = queue # current time snake_case__ = current_time # finished process is in this sequence queue snake_case__ = deque() def lowerCAmelCase_ ( self: Optional[int] ) -> str: snake_case__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: list[Process] ) -> int: snake_case__ = [] for i in range(len(a__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCAmelCase_ ( self: Any , UpperCamelCase: list[Process] ) -> Union[str, Any]: snake_case__ = [] for i in range(len(a__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCAmelCase_ ( self: str , UpperCamelCase: list[Process] ) -> Union[str, Any]: snake_case__ = [] for i in range(len(a__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: deque[Process] ) -> Union[str, Any]: return [q.burst_time for q in queue] def lowerCAmelCase_ ( self: int , UpperCamelCase: Process ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: deque[Process] ) -> Tuple: snake_case__ = deque() # sequence deque of finished process while len(a__ ) != 0: snake_case__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(a__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 snake_case__ = 0 # set the process's turnaround time because it is finished snake_case__ = self.current_time - cp.arrival_time # set the completion time snake_case__ = self.current_time # add the process to queue that has finished queue finished.append(a__ ) self.finish_queue.extend(a__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: deque[Process] , UpperCamelCase: int ) -> Optional[Any]: snake_case__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(a__ ) ): snake_case__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(a__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time snake_case__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(a__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished snake_case__ = 0 # set the finish time snake_case__ = self.current_time # update the process' turnaround time because it is finished snake_case__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(a__ ) self.finish_queue.extend(a__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCAmelCase_ ( self: List[Any] ) -> int: for i in range(self.number_of_queues - 1 ): snake_case__ , snake_case__ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __UpperCamelCase : str = Process("""P1""", 0, 53) __UpperCamelCase : Tuple = Process("""P2""", 0, 17) __UpperCamelCase : int = Process("""P3""", 0, 68) __UpperCamelCase : Tuple = Process("""P4""", 0, 24) __UpperCamelCase : Any = 3 __UpperCamelCase : Union[str, Any] = [17, 25] __UpperCamelCase : Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) __UpperCamelCase : Tuple = Process("""P1""", 0, 53) __UpperCamelCase : Union[str, Any] = Process("""P2""", 0, 17) __UpperCamelCase : int = Process("""P3""", 0, 68) __UpperCamelCase : Any = Process("""P4""", 0, 24) __UpperCamelCase : Union[str, Any] = 3 __UpperCamelCase : str = [17, 25] __UpperCamelCase : str = deque([Pa, Pa, Pa, Pa]) __UpperCamelCase : Optional[int] = MLFQ(number_of_queues, time_slices, queue, 0) __UpperCamelCase : Dict = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
307
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = ['image_processor', 'tokenizer'] A_ : Optional[Any] = 'CLIPImageProcessor' A_ : Any = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self : int , a__ : int=None , a__ : Dict=None , **a__ : List[str] ): """simple docstring""" __snake_case = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) __snake_case = kwargs.pop('''feature_extractor''' ) __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__(self : Any , a__ : Dict=None , a__ : List[str]=None , a__ : Dict=None , **a__ : Tuple ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: __snake_case = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: __snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def a (self : Union[str, Any] , *a__ : int , **a__ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*a__ , **a__ ) def a (self : Any , *a__ : List[Any] , **a__ : List[str] ): """simple docstring""" return self.tokenizer.decode(*a__ , **a__ ) @property def a (self : int ): """simple docstring""" __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _A : _UpperCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) _UpperCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(_UpperCAmelCase )} , ) _UpperCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) _UpperCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field( default=_UpperCAmelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _UpperCamelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _UpperCamelCase : bool = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def __a ( self : Tuple ) -> List[Any]: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class _A : _UpperCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) _UpperCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _UpperCamelCase : Optional[str] = field(default=_UpperCAmelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) _UpperCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _UpperCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) _UpperCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) _UpperCamelCase : bool = field( default=_UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _UpperCamelCase : Optional[int] = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) _UpperCamelCase : Optional[int] = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=_UpperCAmelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _UpperCamelCase : float = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) _UpperCamelCase : bool = field( default=_UpperCAmelCase , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def __a ( self : int ) -> str: """simple docstring""" if self.train_file is not None: lowercase : Optional[int] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowercase : Dict = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def snake_case( __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' with open(snake_case_ , '''r''' , encoding='''utf-8''' ) as f: lowercase : int = [json.loads(snake_case_ ) for line in f.read().splitlines() if (len(snake_case_ ) > 0 and not line.isspace())] assert len(snake_case_ ) == len(snake_case_ ) lowercase : Tuple = {c: dataset[c] for c in dataset.column_names} lowercase : Union[str, Any] = refs return Dataset.from_dict(snake_case_ ) def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase : Optional[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowercase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , snake_case_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase : List[str] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowercase : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) lowercase : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: lowercase : Any = {} if data_args.train_file is not None: lowercase : Optional[Any] = data_args.train_file if data_args.validation_file is not None: lowercase : List[str] = data_args.validation_file lowercase : List[str] = data_args.train_file.split('''.''' )[-1] if extension == "txt": lowercase : Optional[int] = '''text''' lowercase : Dict = load_dataset(snake_case_ , data_files=snake_case_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : Tuple = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowercase : Dict = AutoConfig.from_pretrained(model_args.config_name , **snake_case_ ) elif model_args.model_name_or_path: lowercase : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: lowercase : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) lowercase : Optional[Any] = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowercase : List[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **snake_case_ ) elif model_args.model_name_or_path: lowercase : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: lowercase : Union[str, Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase : Optional[int] = AutoModelForMaskedLM.from_config(snake_case_ ) model.resize_token_embeddings(len(snake_case_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowercase : Optional[Any] = datasets['''train'''].column_names else: lowercase : Optional[int] = datasets['''validation'''].column_names lowercase : int = '''text''' if '''text''' in column_names else column_names[0] lowercase : Optional[Any] = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__magic_name__ ): # Remove empty lines lowercase : str = [line for line in examples['''text'''] if len(snake_case_ ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=snake_case_ , truncation=snake_case_ , max_length=data_args.max_seq_length ) lowercase : Any = datasets.map( snake_case_ , batched=snake_case_ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowercase : List[Any] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowercase : Optional[int] = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowercase : List[str] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowercase : Union[str, Any] = False # Data collator # This one will take care of randomly masking the tokens. lowercase : int = DataCollatorForWholeWordMask(tokenizer=snake_case_ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowercase : Any = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowercase : Tuple = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowercase : Dict = model_args.model_name_or_path else: lowercase : Union[str, Any] = None lowercase : int = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase : Optional[Any] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(snake_case_ , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation lowercase : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase : Optional[Any] = trainer.evaluate() lowercase : List[str] = math.exp(eval_output['''eval_loss'''] ) lowercase : Tuple = perplexity lowercase : List[str] = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(snake_case_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def snake_case( __magic_name__ ) -> Optional[int]: '''simple docstring''' main() if __name__ == "__main__": main()
308
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Dict ): """simple docstring""" __snake_case = logging.get_logger() # the current default level is logging.WARNING __snake_case = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(a__ ) def a (self : Dict ): """simple docstring""" __snake_case = logging.get_verbosity() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(a__ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def a (self : Dict ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = os.getenv('''TRANSFORMERS_VERBOSITY''' , a__ ) __snake_case = logging.log_levels[env_level_str] __snake_case = logging.get_verbosity() self.assertEqual( a__ , a__ , f"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level __snake_case = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def a (self : List[Any] ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.logging.getLogger() with CaptureLogger(a__ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def a (self : Any ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) def lowerCamelCase__ ( ) -> str: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
24
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class A__ : """simple docstring""" @staticmethod def _lowerCAmelCase ( *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : List[str] ) -> Optional[int]: """simple docstring""" pass def __UpperCAmelCase ( a_: int ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __a = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = pipeline( "document-question-answering" , model=a__ , tokenizer=a__ , image_processor=a__ ) _UpperCAmelCase : int = INVOICE_URL _UpperCAmelCase : Optional[int] = list(zip(*apply_tesseract(load_image(a__ ) , a__ , "" ) ) ) _UpperCAmelCase : Union[str, Any] = "What is the placebo?" _UpperCAmelCase : Union[str, Any] = [ { "image": load_image(a__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = dqa_pipeline(a__ , top_k=2 ) self.assertEqual( a__ , [ [ {"score": ANY(a__ ), "answer": ANY(a__ ), "start": ANY(a__ ), "end": ANY(a__ )}, {"score": ANY(a__ ), "answer": ANY(a__ ), "start": ANY(a__ ), "end": ANY(a__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) _UpperCAmelCase : str = INVOICE_URL _UpperCAmelCase : List[str] = "How many cats are there?" _UpperCAmelCase : Union[str, Any] = [ {"score": 0.0001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9}, {"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0}, ] _UpperCAmelCase : List[str] = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) _UpperCAmelCase : List[Any] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably _UpperCAmelCase : Optional[Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" _UpperCAmelCase : Dict = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(a__ , [] ) # We can optionnally pass directly the words and bounding boxes _UpperCAmelCase : Dict = "./tests/fixtures/tests_samples/COCO/000000039769.png" _UpperCAmelCase : str = [] _UpperCAmelCase : str = [] _UpperCAmelCase : Union[str, Any] = dqa_pipeline(image=a__ , question=a__ , words=a__ , boxes=a__ , top_k=2 ) self.assertEqual(a__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) _UpperCAmelCase : List[str] = INVOICE_URL _UpperCAmelCase : Any = "What is the invoice number?" _UpperCAmelCase : List[str] = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0009, "answer": "us-001", "start": 1_6, "end": 1_6}, ] , ) _UpperCAmelCase : Any = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0009, "answer": "us-001", "start": 1_6, "end": 1_6}, ] , ) _UpperCAmelCase : Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {"score": 0.9944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase : int = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=5_0 , ) _UpperCAmelCase : Any = INVOICE_URL _UpperCAmelCase : Tuple = "What is the invoice number?" _UpperCAmelCase : Optional[Any] = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] , ) _UpperCAmelCase : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] , ) _UpperCAmelCase : Union[str, Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {"score": 0.9974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=a__ ) _UpperCAmelCase : Any = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=a__ , revision="3dc6de3" , ) _UpperCAmelCase : Any = INVOICE_URL _UpperCAmelCase : Optional[int] = "What is the invoice number?" _UpperCAmelCase : Union[str, Any] = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] , ) _UpperCAmelCase : int = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] , ) _UpperCAmelCase : Optional[Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {"score": 0.4251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] ] * 2 , ) _UpperCAmelCase : Any = list(zip(*apply_tesseract(load_image(a__ ) , a__ , "" ) ) ) # This model should also work if `image` is set to None _UpperCAmelCase : Union[str, Any] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=a__ ) _UpperCAmelCase : List[str] = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=a__ , revision="3dc6de3" , max_seq_len=5_0 , ) _UpperCAmelCase : Tuple = INVOICE_URL _UpperCAmelCase : int = "What is the invoice number?" _UpperCAmelCase : List[str] = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] , ) _UpperCAmelCase : List[Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {"score": 0.9999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2 , ) _UpperCAmelCase : Dict = list(zip(*apply_tesseract(load_image(a__ ) , a__ , "" ) ) ) # This model should also work if `image` is set to None _UpperCAmelCase : Tuple = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] , ) @slow @require_torch def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) _UpperCAmelCase : Union[str, Any] = INVOICE_URL _UpperCAmelCase : Dict = "What is the invoice number?" _UpperCAmelCase : int = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass
145
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[str] = CpmAntTokenizer A_ : Optional[int] = False def a (self : Optional[int] ): """simple docstring""" super().setUp() __snake_case = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def a (self : Dict ): """simple docstring""" __snake_case = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __snake_case = '''今天天气真好!''' __snake_case = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = '''今天天气真好!''' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) __snake_case = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
24
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _snake_case = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class UpperCAmelCase_ ( _UpperCAmelCase): lowerCamelCase__ = 'albert' def __init__( self, __a=3_0000, __a=128, __a=4096, __a=12, __a=1, __a=64, __a=1_6384, __a=1, __a="gelu_new", __a=0, __a=0, __a=512, __a=2, __a=0.02, __a=1E-12, __a=0.1, __a="absolute", __a=0, __a=2, __a=3, **__a, ): '''simple docstring''' super().__init__(pad_token_id=a__, bos_token_id=a__, eos_token_id=a__, **a__) _lowerCAmelCase : str = vocab_size _lowerCAmelCase : str = embedding_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : str = num_hidden_groups _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : Union[str, Any] = inner_group_num _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : str = max_position_embeddings _lowerCAmelCase : str = type_vocab_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : List[Any] = classifier_dropout_prob _lowerCAmelCase : Any = position_embedding_type class UpperCAmelCase_ ( _UpperCAmelCase): @property def snake_case__ ( self): '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCAmelCase : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ])
36
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : def __init__(self : str , a__ : Dict , a__ : Tuple=None , a__ : List[Any]=None , a__ : Dict=None , a__ : Union[str, Any]="resnet50" , a__ : Dict=3 , a__ : str=32 , a__ : int=3 , a__ : Dict=True , a__ : Any=True , ): """simple docstring""" __snake_case = parent __snake_case = out_indices if out_indices is not None else [4] __snake_case = stage_names __snake_case = out_features __snake_case = backbone __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = use_pretrained_backbone __snake_case = is_training def a (self : Union[str, Any] ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = self.get_config() return config, pixel_values def a (self : Any ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def a (self : List[Any] , a__ : int , a__ : int ): """simple docstring""" __snake_case = TimmBackbone(config=a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(a__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def a (self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () A_ : Optional[Any] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} A_ : List[Any] = False A_ : Dict = False A_ : Any = False A_ : List[Any] = False def a (self : Tuple ): """simple docstring""" __snake_case = TimmBackboneModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def a (self : Any ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : int ): """simple docstring""" __snake_case = '''resnet18''' __snake_case = '''microsoft/resnet-18''' __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ ) __snake_case = AutoBackbone.from_pretrained(a__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ , out_indices=[1, 2, 3] ) __snake_case = AutoBackbone.from_pretrained(a__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def a (self : str ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : Optional[int] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a (self : Tuple ): """simple docstring""" pass def a (self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True __snake_case = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case = self.all_model_classes[0] __snake_case = model_class(a__ ) model.to(a__ ) __snake_case = self._prepare_for_class(a__ , a__ ) __snake_case = model(**a__ ) __snake_case = outputs[0][-1] # Encoder-/Decoder-only models __snake_case = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def a (self : Optional[int] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case = copy.deepcopy(a__ ) __snake_case = None __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case = copy.deepcopy(a__ ) __snake_case = False __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ )
24
0
'''simple docstring''' def a_ ( __snake_case : int = 6008_5147_5143 ) -> int: """simple docstring""" try: lowerCamelCase_ =int(snake_case_ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowerCamelCase_ =1 lowerCamelCase_ =2 while i * i <= n: while n % i == 0: lowerCamelCase_ =i n //= i i += 1 if n > 1: lowerCamelCase_ =n return int(snake_case_ ) if __name__ == "__main__": print(F"""{solution() = }""")
75
import os import pytest from transformers.dynamic_module_utils import get_imports snake_case_ = '\nimport os\n' snake_case_ = '\ndef foo():\n import os\n return False\n' snake_case_ = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' snake_case_ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case_ ) def lowerCamelCase__ ( snake_case_ : str , snake_case_ : Optional[int] ) -> Dict: __snake_case = os.path.join(snake_case_ , '''test_file.py''' ) with open(snake_case_ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case_ ) __snake_case = get_imports(snake_case_ ) assert parsed_imports == ["os"]
24
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __A : Optional[int] = logging.getLogger(__name__) torch.set_grad_enabled(False) __A : Optional[int] = "cuda" if torch.cuda.is_available() else "cpu" def UpperCamelCase_ ( A__ : str , A__ : Tuple=1_00 , A__ : int=" " ): '''simple docstring''' lowerCAmelCase_ : Tuple = text.split(snake_case_ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(snake_case_ ) , snake_case_ )] def UpperCamelCase_ ( A__ : dict ): '''simple docstring''' lowerCAmelCase_, lowerCAmelCase_ : List[str] = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(snake_case_ ): titles.append(title if title is not None else """""" ) texts.append(snake_case_ ) return {"title": titles, "text": texts} def UpperCamelCase_ ( A__ : dict , A__ : DPRContextEncoder , A__ : DPRContextEncoderTokenizerFast ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=snake_case_ , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] lowerCAmelCase_ : Dict = ctx_encoder(input_ids.to(device=snake_case_ ) , return_dict=snake_case_ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCamelCase_ ( A__ : "RagExampleArguments" , A__ : "ProcessingArguments" , A__ : "IndexHnswArguments" , ): '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowerCAmelCase_ : List[Any] = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowerCAmelCase_ : Any = dataset.map(snake_case_ , batched=snake_case_ , num_proc=processing_args.num_proc ) # And compute the embeddings lowerCAmelCase_ : Any = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=snake_case_ ) lowerCAmelCase_ : Optional[Any] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowerCAmelCase_ : Optional[int] = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space lowerCAmelCase_ : Union[str, Any] = dataset.map( partial(snake_case_ , ctx_encoder=snake_case_ , ctx_tokenizer=snake_case_ ) , batched=snake_case_ , batch_size=processing_args.batch_size , features=snake_case_ , ) # And finally save your dataset lowerCAmelCase_ : Any = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(snake_case_ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowerCAmelCase_ : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=snake_case_ ) # And save the index lowerCAmelCase_ : Dict = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(snake_case_ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __snake_case : """simple docstring""" lowercase = field( default=str(Path(_UpperCAmelCase).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv') ,metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} ,) lowercase = field( default=_UpperCAmelCase ,metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} ,) lowercase = field( default='facebook/rag-sequence-nq' ,metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} ,) lowercase = field( default='facebook/dpr-ctx_encoder-multiset-base' ,metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } ,) lowercase = field( default=str(Path(_UpperCAmelCase).parent / 'test_run' / 'dummy-kb') ,metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} ,) @dataclass class __snake_case : """simple docstring""" lowercase = field( default=_UpperCAmelCase ,metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } ,) lowercase = field( default=16 ,metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } ,) @dataclass class __snake_case : """simple docstring""" lowercase = field( default=7_68 ,metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} ,) lowercase = field( default=1_28 ,metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __A : Union[str, Any] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __A , __A , __A : Optional[int] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __A : str = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
120
import socket def lowerCamelCase__ ( ) -> Any: __snake_case = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __snake_case = socket.gethostname() __snake_case = 1_2312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: __snake_case = sock.recv(1024 ) if not data: break out_file.write(snake_case_ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
24
0
from math import loga def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(snake_case_ , snake_case_ ): raise TypeError("""Input value must be a \'int\' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
147
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] ) -> list[int]: # This function is recursive __snake_case = len(snake_case_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __snake_case = array[0] __snake_case = False __snake_case = 1 __snake_case = [] while not is_found and i < array_length: if array[i] < pivot: __snake_case = True __snake_case = [element for element in array[i:] if element >= array[i]] __snake_case = longest_subsequence(snake_case_ ) if len(snake_case_ ) > len(snake_case_ ): __snake_case = temp_array else: i += 1 __snake_case = [element for element in array[1:] if element >= pivot] __snake_case = [pivot, *longest_subsequence(snake_case_ )] if len(snake_case_ ) > len(snake_case_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
24
0
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract snake_case_ = logging.get_logger(__name__) def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ = None ): UpperCAmelCase = tesseract_config if tesseract_config is not None else '' # apply OCR UpperCAmelCase = to_pil_image(snake_case_ ) UpperCAmelCase , UpperCAmelCase = pil_image.size UpperCAmelCase = pytesseract.image_to_data(snake_case_ , lang=snake_case_ , output_type='dict' , config=snake_case_ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates UpperCAmelCase = [idx for idx, word in enumerate(snake_case_ ) if not word.strip()] UpperCAmelCase = [word for idx, word in enumerate(snake_case_ ) if idx not in irrelevant_indices] UpperCAmelCase = [coord for idx, coord in enumerate(snake_case_ ) if idx not in irrelevant_indices] UpperCAmelCase = [coord for idx, coord in enumerate(snake_case_ ) if idx not in irrelevant_indices] UpperCAmelCase = [coord for idx, coord in enumerate(snake_case_ ) if idx not in irrelevant_indices] UpperCAmelCase = [coord for idx, coord in enumerate(snake_case_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCAmelCase = [] for x, y, w, h in zip(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): UpperCAmelCase = [x, y, x + w, y + h] actual_boxes.append(snake_case_ ) # finally, normalize the bounding boxes UpperCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(snake_case_ , snake_case_ , snake_case_ ) ) assert len(snake_case_ ) == len(snake_case_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A_ ( _UpperCAmelCase ): """simple docstring""" __UpperCamelCase = ['pixel_values'] def __init__( self :str , lowercase_ :bool = True , lowercase_ :Dict[str, int] = None , lowercase_ :PILImageResampling = PILImageResampling.BILINEAR , lowercase_ :bool = True , lowercase_ :Optional[str] = None , lowercase_ :Optional[str] = "" , **lowercase_ :int , ) -> List[Any]: super().__init__(**a__ ) UpperCAmelCase = size if size is not None else {'height': 2_24, 'width': 2_24} UpperCAmelCase = get_size_dict(a__ ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = apply_ocr UpperCAmelCase = ocr_lang UpperCAmelCase = tesseract_config def UpperCAmelCase__ ( self :List[Any] , lowercase_ :np.ndarray , lowercase_ :Dict[str, int] , lowercase_ :PILImageResampling = PILImageResampling.BILINEAR , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :List[str] , ) -> Any: UpperCAmelCase = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) UpperCAmelCase = (size['height'], size['width']) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def UpperCAmelCase__ ( self :Dict , lowercase_ :ImageInput , lowercase_ :bool = None , lowercase_ :Dict[str, int] = None , lowercase_ :PILImageResampling = None , lowercase_ :bool = None , lowercase_ :Optional[str] = None , lowercase_ :Optional[str] = None , lowercase_ :Optional[Union[str, TensorType]] = None , lowercase_ :ChannelDimension = ChannelDimension.FIRST , **lowercase_ :List[str] , ) -> Union[str, Any]: UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(a__ ) UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCAmelCase = make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(a__ ) for image in images] if apply_ocr: requires_backends(self , 'pytesseract' ) UpperCAmelCase = [] UpperCAmelCase = [] for image in images: UpperCAmelCase , UpperCAmelCase = apply_tesseract(a__ , a__ , a__ ) words_batch.append(a__ ) boxes_batch.append(a__ ) if do_resize: UpperCAmelCase = [self.resize(image=a__ , size=a__ , resample=a__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) UpperCAmelCase = [flip_channel_order(a__ ) for image in images] UpperCAmelCase = [to_channel_dimension_format(a__ , a__ ) for image in images] UpperCAmelCase = BatchFeature(data={'pixel_values': images} , tensor_type=a__ ) if apply_ocr: UpperCAmelCase = words_batch UpperCAmelCase = boxes_batch return data
78
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : Union[str, Any] , a__ : int=13 , a__ : int=7 , a__ : Optional[Any]=True , a__ : Optional[int]=True , a__ : Any=True , a__ : str=True , a__ : List[Any]=99 , a__ : Any=24 , a__ : List[str]=2 , a__ : Optional[int]=6 , a__ : int=37 , a__ : List[str]="gelu" , a__ : List[Any]=0.1 , a__ : Optional[int]=0.1 , a__ : Union[str, Any]=512 , a__ : List[str]=16 , a__ : Optional[int]=2 , a__ : Union[str, Any]=0.0_2 , a__ : str=3 , a__ : Optional[Any]=None , a__ : Any=1000 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = scope __snake_case = range_bbox def a (self : Optional[int] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = None if self.use_input_mask: __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def a (self : List[str] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a (self : List[Any] , a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : int , a__ : Optional[int] , a__ : str , a__ : Optional[int] , ): """simple docstring""" __snake_case = LiltModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a (self : Any , a__ : Tuple , a__ : Dict , a__ : Optional[int] , a__ : Dict , a__ : Union[str, Any] , a__ : str , a__ : Tuple , ): """simple docstring""" __snake_case = self.num_labels __snake_case = LiltForTokenClassification(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a (self : int , a__ : Optional[Any] , a__ : int , a__ : int , a__ : Optional[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : str , ): """simple docstring""" __snake_case = LiltForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A_ : Any = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) A_ : Optional[int] = False A_ : List[Any] = False def a (self : Dict , a__ : Tuple , a__ : Tuple , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" return True def a (self : Union[str, Any] ): """simple docstring""" __snake_case = LiltModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def a (self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def a (self : Optional[int] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = LiltModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Tuple ): """simple docstring""" __snake_case = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a__ ) __snake_case = torch.tensor([[1, 2]] , device=a__ ) __snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a__ ) # forward pass with torch.no_grad(): __snake_case = model(input_ids=a__ , bbox=a__ ) __snake_case = torch.Size([1, 2, 768] ) __snake_case = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=a__ , ) self.assertTrue(outputs.last_hidden_state.shape , a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a__ , atol=1E-3 ) )
24
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _snake_case ( _UpperCAmelCase ): '''simple docstring''' def A__ ( self: Union[str, Any] ) -> List[Any]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A__ ( self: int ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(a__ ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : Any = self._create_example_records() UpperCAmelCase_ : int = Dataset.from_list(a__ ) self.assertListEqual(dset.column_names ,["""col_1""", """col_2"""] ) for i, r in enumerate(a__ ): self.assertDictEqual(a__ ,example_records[i] ) def A__ ( self: str ) -> Dict: UpperCAmelCase_ : List[Any] = self._create_example_records() UpperCAmelCase_ : List[Any] = Dataset.from_list(a__ ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info ,dset_from_dict.info ) def A__ ( self: str ) -> str: # checks what happens with missing columns UpperCAmelCase_ : str = [{"""col_1""": 1}, {"""col_2""": """x"""}] UpperCAmelCase_ : Optional[Any] = Dataset.from_list(a__ ) self.assertDictEqual(dset[0] ,{"""col_1""": 1} ) self.assertDictEqual(dset[1] ,{"""col_1""": None} ) # NB: first record is used for columns def A__ ( self: Union[str, Any] ) -> Any: # checks if the type can be inferred from the second record UpperCAmelCase_ : Optional[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] UpperCAmelCase_ : Optional[int] = Dataset.from_list(a__ ) self.assertEqual(dset.info.features["""col_1"""] ,Sequence(Value("""int64""" ) ) ) def A__ ( self: List[str] ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = Dataset.from_list([] ) self.assertEqual(len(a__ ) ,0 ) self.assertListEqual(dset.column_names ,[] )
345
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def a (*a__ : List[str] , **a__ : List[str] ): """simple docstring""" pass def lowerCamelCase__ ( snake_case_ : int ) -> Optional[int]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. snake_case_ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : Optional[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def a (self : List[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model=a__ , tokenizer=a__ , image_processor=a__ ) __snake_case = INVOICE_URL __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) __snake_case = '''What is the placebo?''' __snake_case = [ { '''image''': load_image(a__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def a (self : Union[str, Any] , a__ : Optional[int] , a__ : Dict ): """simple docstring""" __snake_case = dqa_pipeline(a__ , top_k=2 ) self.assertEqual( a__ , [ [ {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def a (self : Dict ): """simple docstring""" __snake_case = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __snake_case = INVOICE_URL __snake_case = '''How many cats are there?''' __snake_case = [ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(a__ , [] ) # We can optionnally pass directly the words and bounding boxes __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = [] __snake_case = [] __snake_case = dqa_pipeline(image=a__ , question=a__ , words=a__ , boxes=a__ , top_k=2 ) self.assertEqual(a__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : str ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : List[Any] ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Tuple ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Dict ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def a (self : Tuple ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def a (self : List[str] ): """simple docstring""" pass
24
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case ( self ): __lowerCAmelCase = 1 __lowerCAmelCase = 3 __lowerCAmelCase = (32, 32) __lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a__ ) return image @property def snake_case ( self ): torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=a__ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def snake_case ( self ): torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def snake_case ( self ): torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) return CLIPTextModel(a__ ) def snake_case ( self ): __lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.dummy_cond_unet_upscale __lowerCAmelCase = DDPMScheduler() __lowerCAmelCase = DDIMScheduler(prediction_type="v_prediction" ) __lowerCAmelCase = self.dummy_vae __lowerCAmelCase = self.dummy_text_encoder __lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __lowerCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(a__ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __lowerCAmelCase = StableDiffusionUpscalePipeline( unet=a__ , low_res_scheduler=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , max_noise_level=3_50 , ) __lowerCAmelCase = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) __lowerCAmelCase = "A painting of a squirrel eating a burger" __lowerCAmelCase = torch.Generator(device=a__ ).manual_seed(0 ) __lowerCAmelCase = sd_pipe( [prompt] , image=a__ , generator=a__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase = output.images __lowerCAmelCase = torch.Generator(device=a__ ).manual_seed(0 ) __lowerCAmelCase = sd_pipe( [prompt] , image=a__ , generator=a__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=a__ , )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] __lowerCAmelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __lowerCAmelCase = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case ( self ): __lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.dummy_cond_unet_upscale __lowerCAmelCase = DDPMScheduler() __lowerCAmelCase = DDIMScheduler(prediction_type="v_prediction" ) __lowerCAmelCase = self.dummy_vae __lowerCAmelCase = self.dummy_text_encoder __lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __lowerCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(a__ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __lowerCAmelCase = StableDiffusionUpscalePipeline( unet=a__ , low_res_scheduler=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , max_noise_level=3_50 , ) __lowerCAmelCase = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) __lowerCAmelCase = "A painting of a squirrel eating a burger" __lowerCAmelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase = output.images assert image.shape[0] == 2 __lowerCAmelCase = torch.Generator(device=a__ ).manual_seed(0 ) __lowerCAmelCase = sd_pipe( [prompt] , image=a__ , generator=a__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def snake_case ( self ): __lowerCAmelCase = self.dummy_cond_unet_upscale __lowerCAmelCase = DDPMScheduler() __lowerCAmelCase = DDIMScheduler(prediction_type="v_prediction" ) __lowerCAmelCase = self.dummy_vae __lowerCAmelCase = self.dummy_text_encoder __lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __lowerCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(a__ ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __lowerCAmelCase = unet.half() __lowerCAmelCase = text_encoder.half() # make sure here that pndm scheduler skips prk __lowerCAmelCase = StableDiffusionUpscalePipeline( unet=a__ , low_res_scheduler=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , max_noise_level=3_50 , ) __lowerCAmelCase = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) __lowerCAmelCase = "A painting of a squirrel eating a burger" __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sd_pipe( [prompt] , image=a__ , generator=a__ , num_inference_steps=2 , output_type="np" , ).images __lowerCAmelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): __lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) __lowerCAmelCase = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase = StableDiffusionUpscalePipeline.from_pretrained(a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() __lowerCAmelCase = "a cat sitting on a park bench" __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=a__ , image=a__ , generator=a__ , output_type="np" , ) __lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def snake_case ( self ): __lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) __lowerCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) __lowerCAmelCase = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase = StableDiffusionUpscalePipeline.from_pretrained( a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() __lowerCAmelCase = "a cat sitting on a park bench" __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=a__ , image=a__ , generator=a__ , output_type="np" , ) __lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def snake_case ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) __lowerCAmelCase = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase = StableDiffusionUpscalePipeline.from_pretrained( a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCAmelCase = "a cat sitting on a park bench" __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=a__ , image=a__ , generator=a__ , num_inference_steps=5 , output_type="np" , ) __lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
57
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int ) -> list[list[int]]: __snake_case = [] __snake_case = [] __snake_case = 0 __snake_case = sum(snake_case_ ) create_state_space_tree(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return result def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int , snake_case_ : list[int] , snake_case_ : list[list[int]] , snake_case_ : int , ) -> None: if sum(snake_case_ ) > max_sum or (remaining_nums_sum + sum(snake_case_ )) < max_sum: return if sum(snake_case_ ) == max_sum: result.append(snake_case_ ) return for index in range(snake_case_ , len(snake_case_ ) ): create_state_space_tree( snake_case_ , snake_case_ , index + 1 , [*path, nums[index]] , snake_case_ , remaining_nums_sum - nums[index] , ) snake_case_ = [3, 34, 4, 12, 5, 2] snake_case_ = 9 snake_case_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
24
0
def a ( snake_case__: int = 200 ): '''simple docstring''' lowercase_ = [1, 2, 5, 10, 20, 50, 100, 200] lowercase_ = [0] * (pence + 1) lowercase_ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(snake_case_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_0_0) == 7_3_6_8_2
30
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : List[Any] , a__ : Dict=13 , a__ : str=32 , a__ : Tuple=3 , a__ : Optional[Any]=4 , a__ : Optional[int]=[10, 20, 30, 40] , a__ : List[Any]=[2, 2, 3, 2] , a__ : List[Any]=True , a__ : int=True , a__ : List[Any]=37 , a__ : Any="gelu" , a__ : int=10 , a__ : Dict=0.0_2 , a__ : Dict=["stage2", "stage3", "stage4"] , a__ : Tuple=[2, 3, 4] , a__ : List[str]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = num_stages __snake_case = hidden_sizes __snake_case = depths __snake_case = is_training __snake_case = use_labels __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_labels __snake_case = initializer_range __snake_case = out_features __snake_case = out_indices __snake_case = scope def a (self : Dict ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def a (self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a (self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a (self : Optional[Any] , a__ : List[Any] , a__ : str , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a (self : Tuple , a__ : List[Any] , a__ : List[str] , a__ : List[str] ): """simple docstring""" __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case = None __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Dict = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) A_ : Optional[Any] = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) A_ : Dict = True A_ : Optional[Any] = False A_ : int = False A_ : int = False A_ : List[str] = False def a (self : List[str] ): """simple docstring""" __snake_case = ConvNextModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def a (self : Tuple ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : str ): """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def a (self : List[Any] ): """simple docstring""" pass def a (self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def a (self : Dict ): """simple docstring""" def check_hidden_states_output(a__ : List[str] , a__ : str , a__ : Tuple ): __snake_case = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a__ , a__ ) ) __snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def a (self : Any ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ConvNextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ) -> List[str]: __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def a (self : Tuple ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def a (self : Optional[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(a__ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): __snake_case = model(**a__ ) # verify the logits __snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) __snake_case = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , _UpperCAmelCase ): A_ : Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () A_ : List[Any] = ConvNextConfig A_ : Optional[Any] = False def a (self : Optional[int] ): """simple docstring""" __snake_case = ConvNextModelTester(self )
24
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : List[str] = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
def lowerCamelCase__ ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(snake_case_ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def snake_case( ) -> Dict: '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class _A ( nn.Module ): def __init__( self : List[Any] ) -> str: """simple docstring""" super().__init__() lowercase : Union[str, Any] = nn.Linear(3 , 4 ) lowercase : str = nn.BatchNormad(4 ) lowercase : Optional[int] = nn.Linear(4 , 5 ) def __a ( self : Optional[Any] , _A : List[str] ) -> int: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(a__ ) ) ) class _A ( unittest.TestCase ): def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Optional[Any] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_A : Any ): nonlocal batch_sizes batch_sizes.append(a__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(a__ , [128, 64, 32, 16, 8] ) def __a ( self : Tuple ) -> Optional[int]: """simple docstring""" lowercase : Optional[int] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_A : str , _A : Tuple ): nonlocal batch_sizes batch_sizes.append(a__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase , lowercase : Tuple = mock_training_loop_function('''hello''' ) self.assertListEqual(a__ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def __a ( self : List[Any] ) -> Any: """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_A : Optional[int] ): pass with self.assertRaises(a__ ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def __a ( self : Tuple ) -> Dict: """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_A : str ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(a__ ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def __a ( self : int ) -> Tuple: """simple docstring""" @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_A : int , _A : Tuple , _A : int ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(a__ ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def __a ( self : Optional[Any] ) -> int: """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_A : Optional[Any] ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(a__ ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def __a ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase : Union[str, Any] = torch.cuda.memory_allocated() lowercase : Union[str, Any] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , a__ ) lowercase : Any = release_memory(a__ ) self.assertEqual(torch.cuda.memory_allocated() , a__ )
308
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = BartphoTokenizer A_ : List[str] = False A_ : Optional[Any] = True def a (self : Tuple ): """simple docstring""" super().setUp() __snake_case = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def a (self : str , **a__ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a (self : str , a__ : Any ): """simple docstring""" __snake_case = '''This is a là test''' __snake_case = '''This is a<unk><unk> test''' return input_text, output_text def a (self : Dict ): """simple docstring""" __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case = '''This is a là test''' __snake_case = '''▁This ▁is ▁a ▁l à ▁t est'''.split() __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
24
0
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __UpperCAmelCase ( a_: dict ): return (data["data"], data["target"]) def __UpperCAmelCase ( a_: np.ndarray, a_: np.ndarray, a_: np.ndarray ): _UpperCAmelCase : Tuple = XGBRegressor(verbosity=0, random_state=42 ) xgb.fit(snake_case_, snake_case_ ) # Predict target for test data _UpperCAmelCase : str = xgb.predict(snake_case_ ) _UpperCAmelCase : Dict = predictions.reshape(len(snake_case_ ), 1 ) return predictions def __UpperCAmelCase ( ): _UpperCAmelCase : Any = fetch_california_housing() _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = data_handling(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = train_test_split( snake_case_, snake_case_, test_size=0.25, random_state=1 ) _UpperCAmelCase : List[Any] = xgboost(snake_case_, snake_case_, snake_case_ ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(snake_case_, snake_case_ )}""" ) print(f"""Mean Square Error : {mean_squared_error(snake_case_, snake_case_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
145
def lowerCamelCase__ ( snake_case_ : int ) -> int: if not isinstance(snake_case_ , snake_case_ ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) __snake_case = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
24
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def A ( _lowerCamelCase = 3 ): '''simple docstring''' if isinstance(snake_case_ , snake_case_ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(snake_case_ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) _lowerCAmelCase : int = QuantumRegister(snake_case_ , "qr" ) _lowerCAmelCase : Union[str, Any] = ClassicalRegister(snake_case_ , "cr" ) _lowerCAmelCase : int = QuantumCircuit(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = number_of_qubits for i in range(snake_case_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(snake_case_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , snake_case_ , snake_case_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(snake_case_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(snake_case_ , snake_case_ ) # simulate with 10000 shots _lowerCAmelCase : str = Aer.get_backend("qasm_simulator" ) _lowerCAmelCase : int = execute(snake_case_ , snake_case_ , shots=10_000 ) return job.result().get_counts(snake_case_ ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
36
from math import loga def lowerCamelCase__ ( snake_case_ : int ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(snake_case_ , snake_case_ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
24
0
'''simple docstring''' def a_ ( __snake_case : list ) -> list: """simple docstring""" if len(snake_case_ ) <= 1: return lst lowerCamelCase_ =1 while i < len(snake_case_ ): if lst[i - 1] <= lst[i]: i += 1 else: lowerCamelCase_, lowerCamelCase_ =lst[i], lst[i - 1] i -= 1 if i == 0: lowerCamelCase_ =1 return lst if __name__ == "__main__": a_ : Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() a_ : Dict = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
75
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[int] , *a__ : Any , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[int] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : Tuple ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : Dict , **a__ : Any ): """simple docstring""" return {}, {}, {} def a (self : List[str] , a__ : Any ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : int , a__ : List[Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
24
0
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __snake_case ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase): """simple docstring""" lowercase = IFPipeline lowercase = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase = TEXT_TO_IMAGE_BATCH_PARAMS lowercase = PipelineTesterMixin.required_optional_params - {'latents'} def __lowercase ( self : List[Any] ) -> Tuple: return self._get_dummy_components() def __lowercase ( self : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : str=0 ) -> Optional[int]: if str(a__ ).startswith("""mps""" ): lowerCAmelCase_ : Optional[int] = torch.manual_seed(a__ ) else: lowerCAmelCase_ : Optional[int] = torch.Generator(device=a__ ).manual_seed(a__ ) lowerCAmelCase_ : int = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __lowercase ( self : Tuple ) -> str: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __lowercase ( self : Union[str, Any] ) -> Tuple: super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowercase ( self : List[str] ) -> List[str]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowercase ( self : Union[str, Any] ) -> Union[str, Any]: self._test_save_load_local() def __lowercase ( self : Any ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __lowercase ( self : Any ) -> str: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : Union[str, Any] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : int ) -> Optional[Any]: lowerCAmelCase_ : List[str] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) lowerCAmelCase_ : int = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=a__ , tokenizer=a__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) lowerCAmelCase_, lowerCAmelCase_ : Optional[int] = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowerCAmelCase_ : str = None lowerCAmelCase_ : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(a__ , a__ , a__ , a__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowerCAmelCase_ : int = IFImgaImgPipeline(**pipe_a.components ) lowerCAmelCase_ : int = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(a__ , a__ , a__ , a__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowerCAmelCase_ : Optional[Any] = IFInpaintingPipeline(**pipe_a.components ) lowerCAmelCase_ : List[Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(a__ , a__ , a__ , a__ ) def __lowercase ( self : str , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] ) -> Optional[int]: _start_torch_memory_measurement() lowerCAmelCase_ : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase_ : str = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , num_inference_steps=2 , generator=a__ , output_type="""np""" , ) lowerCAmelCase_ : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase_ : int = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 lowerCAmelCase_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(a__ , a__ ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase_ : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase_ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) lowerCAmelCase_ : List[Any] = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , generator=a__ , num_inference_steps=2 , output_type="""np""" , ) lowerCAmelCase_ : Any = output.images[0] assert image.shape == (2_56, 2_56, 3) lowerCAmelCase_ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase_ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(a__ , a__ ) def __lowercase ( self : str , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : str ) -> Union[str, Any]: _start_torch_memory_measurement() lowerCAmelCase_ : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) lowerCAmelCase_ : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase_ : List[str] = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , num_inference_steps=2 , generator=a__ , output_type="""np""" , ) lowerCAmelCase_ : str = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase_ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowerCAmelCase_ : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(a__ , a__ ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase_ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase_ : Tuple = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(a__ ) lowerCAmelCase_ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) lowerCAmelCase_ : int = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , original_image=a__ , generator=a__ , num_inference_steps=2 , output_type="""np""" , ) lowerCAmelCase_ : Tuple = output.images[0] assert image.shape == (2_56, 2_56, 3) lowerCAmelCase_ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase_ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(a__ , a__ ) def __lowercase ( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : int ) -> Optional[Any]: _start_torch_memory_measurement() lowerCAmelCase_ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) lowerCAmelCase_ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(a__ ) lowerCAmelCase_ : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase_ : Tuple = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , mask_image=a__ , num_inference_steps=2 , generator=a__ , output_type="""np""" , ) lowerCAmelCase_ : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase_ : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowerCAmelCase_ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(a__ , a__ ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase_ : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase_ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a__ ) lowerCAmelCase_ : str = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(a__ ) lowerCAmelCase_ : Tuple = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(a__ ) lowerCAmelCase_ : Union[str, Any] = pipe_a( prompt_embeds=a__ , negative_prompt_embeds=a__ , image=a__ , mask_image=a__ , original_image=a__ , generator=a__ , num_inference_steps=2 , output_type="""np""" , ) lowerCAmelCase_ : Optional[Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) lowerCAmelCase_ : int = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase_ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(a__ , a__ ) def UpperCamelCase_ ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
120
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> Any: assert _test_patching.open is open __snake_case = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , snake_case_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> List[str]: # pandas.read_csv is not present in _test_patching __snake_case = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , snake_case_ ): pass def lowerCamelCase__ ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , snake_case_ ) is None with patch_submodule(_test_patching , '''len''' , snake_case_ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = '''__test_patch_submodule_start_and_stop_mock__''' __snake_case = patch_submodule(_test_patching , '''open''' , snake_case_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case = '''__test_patch_submodule_successive_join__''' __snake_case = '''__test_patch_submodule_successive_dirname__''' __snake_case = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> Tuple: __snake_case = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , snake_case_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , snake_case_ ): pass
24
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _a ( _UpperCAmelCase ): def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> Optional[Any]: UpperCAmelCase_: str = parent UpperCAmelCase_: str = batch_size UpperCAmelCase_: str = seq_length UpperCAmelCase_: Optional[Any] = is_training UpperCAmelCase_: Optional[Any] = use_input_mask UpperCAmelCase_: Union[str, Any] = use_token_type_ids UpperCAmelCase_: Any = use_labels UpperCAmelCase_: int = vocab_size UpperCAmelCase_: Optional[Any] = hidden_size UpperCAmelCase_: List[Any] = num_hidden_layers UpperCAmelCase_: List[str] = num_attention_heads UpperCAmelCase_: List[str] = intermediate_size UpperCAmelCase_: Union[str, Any] = hidden_act UpperCAmelCase_: Optional[Any] = hidden_dropout_prob UpperCAmelCase_: List[str] = attention_probs_dropout_prob UpperCAmelCase_: Union[str, Any] = max_position_embeddings UpperCAmelCase_: int = type_vocab_size UpperCAmelCase_: Union[str, Any] = type_sequence_label_size UpperCAmelCase_: List[Any] = initializer_range UpperCAmelCase_: Optional[Any] = num_labels UpperCAmelCase_: List[Any] = num_choices UpperCAmelCase_: Any = scope def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase_: Tuple = None if self.use_input_mask: UpperCAmelCase_: List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_: Dict = None UpperCAmelCase_: List[str] = None UpperCAmelCase_: Optional[int] = None if self.use_labels: UpperCAmelCase_: Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase_: int = ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase_: Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case (self ) -> int: return DistilBertConfig( vocab_size=self.vocab_size, dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, hidden_dim=self.intermediate_size, hidden_act=self.hidden_act, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCAmelCase_: Any = DistilBertModel(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase_: Optional[Any] = model(a__, a__ ) UpperCAmelCase_: List[str] = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: Optional[int] = DistilBertForMaskedLM(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase_: Optional[Any] = model(a__, attention_mask=a__, labels=a__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_: Union[str, Any] = DistilBertForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase_: Optional[Any] = model( a__, attention_mask=a__, start_positions=a__, end_positions=a__ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: UpperCAmelCase_: Tuple = self.num_labels UpperCAmelCase_: Tuple = DistilBertForSequenceClassification(a__ ) model.to(a__ ) model.eval() UpperCAmelCase_: Optional[int] = model(a__, attention_mask=a__, labels=a__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: List[Any] = self.num_labels UpperCAmelCase_: List[str] = DistilBertForTokenClassification(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase_: int = model(a__, attention_mask=a__, labels=a__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: Tuple = self.num_choices UpperCAmelCase_: str = DistilBertForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase_: List[Any] = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase_: Dict = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase_: Union[str, Any] = model( a__, attention_mask=a__, labels=a__, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: Optional[Any] = self.prepare_config_and_inputs() ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)): Optional[Any] = config_and_inputs UpperCAmelCase_: Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) A = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) A = True A = True A = True A = True def __snake_case (self ) -> int: UpperCAmelCase_: int = DistilBertModelTester(self ) UpperCAmelCase_: int = ConfigTester(self, config_class=a__, dim=37 ) def __snake_case (self ) -> Optional[Any]: self.config_tester.run_common_tests() def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a__ ) def __snake_case (self ) -> str: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a__ ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a__ ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a__ ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a__ ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a__ ) @slow def __snake_case (self ) -> Any: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_: Dict = DistilBertModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @slow @require_torch_gpu def __snake_case (self ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return UpperCAmelCase_: str = True UpperCAmelCase_: Optional[int] = model_class(config=a__ ) UpperCAmelCase_: List[Any] = self._prepare_for_class(a__, a__ ) UpperCAmelCase_: Union[str, Any] = torch.jit.trace( a__, (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a__, os.path.join(a__, """traced_model.pt""" ) ) UpperCAmelCase_: str = torch.jit.load(os.path.join(a__, """traced_model.pt""" ), map_location=a__ ) loaded(inputs_dict["""input_ids"""].to(a__ ), inputs_dict["""attention_mask"""].to(a__ ) ) @require_torch class _a ( unittest.TestCase ): @slow def __snake_case (self ) -> str: UpperCAmelCase_: Optional[int] = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase_: int = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) UpperCAmelCase_: Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase_: Tuple = model(a__, attention_mask=a__ )[0] UpperCAmelCase_: Union[str, Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape, a__ ) UpperCAmelCase_: List[Any] = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], a__, atol=1E-4 ) )
147
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) snake_case_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) A_ : Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) A_ : Optional[int] = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Source language id for translation.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Target language id for translation.'} ) A_ : Optional[int] = field(default=_UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} ) A_ : bool = field( default=_UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Dict ) -> str: logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , f"""{split}_results.json""" ) ) def lowerCamelCase__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) __snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __snake_case = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): __snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __snake_case = SeqaSeqDataset # Get datasets __snake_case = ( dataset_class( snake_case_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __snake_case = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) __snake_case = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) __snake_case = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __snake_case = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __snake_case = train_result.metrics __snake_case = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __snake_case = trainer.evaluate(metric_key_prefix='''val''' ) __snake_case = data_args.n_val __snake_case = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __snake_case = trainer.predict(test_dataset=snake_case_ , metric_key_prefix='''test''' ) __snake_case = test_output.metrics __snake_case = data_args.n_test if trainer.is_world_process_zero(): __snake_case = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: __snake_case = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) __snake_case = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def lowerCamelCase__ ( snake_case_ : Optional[Any] ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
24
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin snake_case_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class A_ : """simple docstring""" def __init__( self :Union[str, Any] , lowercase_ :Union[str, Any] , lowercase_ :Optional[Any]=16 , lowercase_ :str=13 , lowercase_ :str=7 , lowercase_ :Optional[int]=14 , lowercase_ :Tuple=10 , lowercase_ :Dict=19 , lowercase_ :Optional[Any]=5 , lowercase_ :Any=4 , lowercase_ :int=True , lowercase_ :List[str]=16 , lowercase_ :Tuple=2 , lowercase_ :Any=4 , lowercase_ :Dict=4 , lowercase_ :Optional[Any]="gelu" , lowercase_ :Tuple=0.1 , lowercase_ :Any=0.1 , lowercase_ :Optional[int]=[1, 2, 3, 4, 5] , lowercase_ :str=25 , lowercase_ :Optional[Any]=5 , ) -> Dict: UpperCAmelCase = d_model UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = prediction_length UpperCAmelCase = context_length UpperCAmelCase = cardinality UpperCAmelCase = num_time_features UpperCAmelCase = lags_sequence UpperCAmelCase = embedding_dimension UpperCAmelCase = is_training UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = context_length UpperCAmelCase = prediction_length + label_length UpperCAmelCase = label_length UpperCAmelCase = moving_average UpperCAmelCase = autocorrelation_factor def UpperCAmelCase__ ( self :str ) -> Dict: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def UpperCAmelCase__ ( self :Any , lowercase_ :Union[str, Any] ) -> Any: UpperCAmelCase = config.context_length + max(config.lags_sequence ) UpperCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) UpperCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) UpperCAmelCase = floats_tensor([self.batch_size, _past_length] ) UpperCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs UpperCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) UpperCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) UpperCAmelCase = { 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def UpperCAmelCase__ ( self :Tuple ) -> Dict: UpperCAmelCase = self.get_config() UpperCAmelCase = self.prepare_autoformer_inputs_dict(a__ ) return config, inputs_dict def UpperCAmelCase__ ( self :Optional[int] ) -> Any: UpperCAmelCase , UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self :Dict , lowercase_ :int , lowercase_ :List[str] ) -> Any: UpperCAmelCase = AutoformerModel(config=a__ ).to(a__ ).eval() UpperCAmelCase = model(**a__ ) UpperCAmelCase = outputs.encoder_last_hidden_state UpperCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase = model.get_encoder() encoder.save_pretrained(a__ ) UpperCAmelCase = AutoformerEncoder.from_pretrained(a__ ).to(a__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = model.create_network_inputs(**a__ ) UpperCAmelCase , UpperCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) UpperCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) UpperCAmelCase = encoder(inputs_embeds=a__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) UpperCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) UpperCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) UpperCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) UpperCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase = model.get_decoder() decoder.save_pretrained(a__ ) UpperCAmelCase = AutoformerDecoder.from_pretrained(a__ ).to(a__ ) UpperCAmelCase = decoder( trend=a__ , inputs_embeds=a__ , encoder_hidden_states=a__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class A_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __UpperCamelCase = (AutoformerForPrediction,) if is_torch_available() else () __UpperCamelCase = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def UpperCAmelCase__ ( self :Optional[Any] ) -> List[Any]: UpperCAmelCase = AutoformerModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def UpperCAmelCase__ ( self :Optional[int] ) -> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :int ) -> str: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCAmelCase = model_class(a__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__ ) UpperCAmelCase , UpperCAmelCase = model_class.from_pretrained(a__ , output_loading_info=a__ ) self.assertEqual(info['missing_keys'] , [] ) def UpperCAmelCase__ ( self :Optional[int] ) -> Union[str, Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*a__ ) @unittest.skip(reason='Model has no tokens embeddings' ) def UpperCAmelCase__ ( self :str ) -> Dict: pass def UpperCAmelCase__ ( self :Dict ) -> str: UpperCAmelCase = inspect.signature(getattr(a__ , 'forward' ) ) # The main input is the name of the argument after `self` UpperCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , a__ ) def UpperCAmelCase__ ( self :Any ) -> Dict: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = [ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(a__ )] , a__ ) def UpperCAmelCase__ ( self :str ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True UpperCAmelCase = getattr(self.model_tester , 'seq_length' , a__ ) UpperCAmelCase = getattr(self.model_tester , 'decoder_seq_length' , a__ ) UpperCAmelCase = getattr(self.model_tester , 'encoder_seq_length' , a__ ) UpperCAmelCase = getattr(self.model_tester , 'd_model' , a__ ) UpperCAmelCase = getattr(self.model_tester , 'num_attention_heads' , a__ ) UpperCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = outputs.encoder_attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) UpperCAmelCase = len(a__ ) UpperCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(a__ , a__ ) # decoder attentions UpperCAmelCase = outputs.decoder_attentions self.assertIsInstance(a__ , (list, tuple) ) self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions UpperCAmelCase = outputs.cross_attentions self.assertIsInstance(a__ , (list, tuple) ) self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + 2 , len(a__ ) ) UpperCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def UpperCAmelCase__ ( self :str ) -> Dict: super().test_retain_grad_hidden_states_attentions() def _lowerCAmelCase ( lowercase_="train-batch.pt" ): UpperCAmelCase = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=snake_case_ , repo_type='dataset' ) UpperCAmelCase = torch.load(snake_case_ , map_location=snake_case_ ) return batch @require_torch @slow class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :Dict ) -> Optional[int]: UpperCAmelCase = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(a__ ) UpperCAmelCase = prepare_batch() with torch.no_grad(): UpperCAmelCase = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0] UpperCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , a__ ) UpperCAmelCase = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=a__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , a__ , atol=a__ ) ) def UpperCAmelCase__ ( self :List[Any] ) -> Any: UpperCAmelCase = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(a__ ) UpperCAmelCase = prepare_batch('val-batch.pt' ) with torch.no_grad(): UpperCAmelCase = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state UpperCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , a__ ) UpperCAmelCase = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=a__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , a__ , atol=a__ ) ) def UpperCAmelCase__ ( self :List[Any] ) -> Optional[int]: UpperCAmelCase = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(a__ ) UpperCAmelCase = prepare_batch('val-batch.pt' ) with torch.no_grad(): UpperCAmelCase = model.generate( static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , ) UpperCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , a__ ) UpperCAmelCase = torch.tensor([31_30.67_63, 40_56.52_93, 70_53.07_86] , device=a__ ) UpperCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , a__ , rtol=1E-1 ) )
78
from math import pi def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
24
0
from math import factorial def lowerCamelCase_ ( _a : int , _a : int ): '''simple docstring''' if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(snake_case_ ) // (factorial(snake_case_ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', F"fifty-two card deck is: {combinations(52, 5)}\n", ) print( '''If a class of 40 students must be arranged into groups of''', F"4 for group projects, there are {combinations(40, 4)} ways", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', F"are {combinations(10, 3)} ways that first, second and", '''third place can be awarded.''', )
345
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = 'vit_msn' def __init__(self : Union[str, Any] , a__ : Optional[Any]=768 , a__ : Optional[Any]=12 , a__ : Optional[int]=12 , a__ : Optional[int]=3072 , a__ : Union[str, Any]="gelu" , a__ : str=0.0 , a__ : int=0.0 , a__ : Optional[Any]=0.0_2 , a__ : List[Any]=1E-06 , a__ : Optional[int]=224 , a__ : str=16 , a__ : Optional[Any]=3 , a__ : int=True , **a__ : List[Any] , ): """simple docstring""" super().__init__(**a__ ) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = qkv_bias
24
0
"""simple docstring""" import re def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' try: __lowerCAmelCase = split_input(snake_case_ ) if upper: __lowerCAmelCase = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __lowerCAmelCase = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return to_simple_case(snake_case_ ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' try: __lowerCAmelCase = to_simple_case(snake_case_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return to_complex_case(snake_case_ , snake_case_ , "_" ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return to_complex_case(snake_case_ , snake_case_ , "-" ) if __name__ == "__main__": __import__("doctest").testmod()
57
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def a (self : int , a__ : List[Any]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) __snake_case = np.random.RandomState(a__ ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def a (self : List[Any] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) # warmup pass to apply optimizations __snake_case = pipe(**self.get_dummy_inputs() ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Any ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def a (self : List[str] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a (self : Optional[Any] ): """simple docstring""" __snake_case = ort.SessionOptions() __snake_case = False return options def a (self : Optional[Any] ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) # using the PNDM scheduler by default __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def a (self : Dict ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) __snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=a__ , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
24
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase__( _UpperCAmelCase ): """simple docstring""" a :Optional[Any] = 'canine' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE_ : List[str]=1_2 , SCREAMING_SNAKE_CASE_ : Dict=1_2 , SCREAMING_SNAKE_CASE_ : Dict=3_0_7_2 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : Any=1_6_3_8_4 , SCREAMING_SNAKE_CASE_ : Dict=1_6 , SCREAMING_SNAKE_CASE_ : Any=0.02 , SCREAMING_SNAKE_CASE_ : Any=1e-12 , SCREAMING_SNAKE_CASE_ : Tuple=0 , SCREAMING_SNAKE_CASE_ : List[Any]=0xe_0_0_0 , SCREAMING_SNAKE_CASE_ : List[str]=0xe_0_0_1 , SCREAMING_SNAKE_CASE_ : List[Any]=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE_ : Dict=8 , SCREAMING_SNAKE_CASE_ : Dict=1_6_3_8_4 , SCREAMING_SNAKE_CASE_ : str=1_2_8 , **SCREAMING_SNAKE_CASE_ : Optional[Any] , ) -> List[Any]: super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) lowercase_ = max_position_embeddings lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = type_vocab_size lowercase_ = layer_norm_eps # Character config: lowercase_ = downsampling_rate lowercase_ = upsampling_kernel_size lowercase_ = num_hash_functions lowercase_ = num_hash_buckets lowercase_ = local_transformer_stride
30
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case_ = logging.getLogger(__name__) @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : str A_ : str A_ : Optional[str] = None A_ : Optional[str] = None A_ : Optional[str] = None @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : List[int] A_ : Optional[List[int]] = None A_ : Optional[List[int]] = None A_ : Optional[Union[int, float]] = None A_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[InputFeatures] def __init__(self : int , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = None , a__ : List[Any]=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = os.path.join( a__ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a__ ) , a__ , ) , ) __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case = cached_features_file + '''.lock''' with FileLock(a__ ): if os.path.exists(a__ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case = torch.load(a__ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case = ( processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) ) logger.info('''Training examples: %s''' , len(a__ ) ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) logger.info('''Saving features into cached file %s''' , a__ ) torch.save(self.features , a__ ) def __len__(self : int ): """simple docstring""" return len(self.features ) def __getitem__(self : Dict , a__ : List[Any] ): """simple docstring""" return self.features[i] def a (self : List[Any] ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ : A_ : List[InputFeatures] def __init__(self : Tuple , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = 128 , a__ : Any=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list __snake_case = processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case = tf.data.Dataset.from_generator( a__ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def a (self : Union[str, Any] ): """simple docstring""" return self.dataset def __len__(self : Dict ): """simple docstring""" return len(self.features ) def __getitem__(self : Any , a__ : Dict ): """simple docstring""" return self.features[i] def a (self : str ): """simple docstring""" return self.label_list class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : Dict , a__ : Dict ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def a (self : Optional[int] , a__ : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def a (self : int ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def a (self : Any , a__ : Optional[int] , a__ : List[Any] ): """simple docstring""" __snake_case = [] for i, line in enumerate(a__ ): if i == 0: continue __snake_case = '''%s-%s''' % (set_type, line[0]) __snake_case = line[5] __snake_case = line[6] __snake_case = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case = line[0] examples.append(InputExample(guid=a__ , text_a=a__ , text_b=a__ , label=a__ , pairID=a__ ) ) return examples def lowerCamelCase__ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> List[str]: __snake_case = {label: i for i, label in enumerate(snake_case_ )} __snake_case = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding='''max_length''' , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) __snake_case = label_map[example.label] if example.label in label_map else 0 __snake_case = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features snake_case_ = { 'hans': 3, } snake_case_ = { 'hans': HansProcessor, }
24
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __SCREAMING_SNAKE_CASE( _UpperCAmelCase ): _UpperCAmelCase = 'vit_msn' def __init__( self: Union[str, Any] , UpperCamelCase: Optional[Any]=7_68 , UpperCamelCase: Optional[Any]=12 , UpperCamelCase: Optional[int]=12 , UpperCamelCase: Optional[int]=30_72 , UpperCamelCase: Union[str, Any]="gelu" , UpperCamelCase: str=0.0 , UpperCamelCase: int=0.0 , UpperCamelCase: Optional[Any]=0.02 , UpperCamelCase: List[Any]=1e-06 , UpperCamelCase: Optional[int]=2_24 , UpperCamelCase: str=16 , UpperCamelCase: Optional[Any]=3 , UpperCamelCase: int=True , **UpperCamelCase: List[Any] , ) -> int: super().__init__(**a__ ) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = qkv_bias
307
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = ['image_processor', 'tokenizer'] A_ : Optional[Any] = 'CLIPImageProcessor' A_ : Any = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self : int , a__ : int=None , a__ : Dict=None , **a__ : List[str] ): """simple docstring""" __snake_case = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) __snake_case = kwargs.pop('''feature_extractor''' ) __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__(self : Any , a__ : Dict=None , a__ : List[str]=None , a__ : Dict=None , **a__ : Tuple ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: __snake_case = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: __snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def a (self : Union[str, Any] , *a__ : int , **a__ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*a__ , **a__ ) def a (self : Any , *a__ : List[Any] , **a__ : List[str] ): """simple docstring""" return self.tokenizer.decode(*a__ , **a__ ) @property def a (self : int ): """simple docstring""" __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
0
def snake_case( __magic_name__ ) -> bool: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ): lowercase : int = F"""Input value of [number={number}] must be an integer""" raise TypeError(snake_case_ ) if number < 0: return False lowercase : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
308
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Dict ): """simple docstring""" __snake_case = logging.get_logger() # the current default level is logging.WARNING __snake_case = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(a__ ) def a (self : Dict ): """simple docstring""" __snake_case = logging.get_verbosity() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(a__ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def a (self : Dict ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = os.getenv('''TRANSFORMERS_VERBOSITY''' , a__ ) __snake_case = logging.log_levels[env_level_str] __snake_case = logging.get_verbosity() self.assertEqual( a__ , a__ , f"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level __snake_case = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def a (self : List[Any] ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.logging.getLogger() with CaptureLogger(a__ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def a (self : Any ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) def lowerCamelCase__ ( ) -> str: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
24
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class A__ : """simple docstring""" def __init__( self : Any ) -> Any: """simple docstring""" _UpperCAmelCase : List[Any] = {} def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int]=1 ) -> Optional[int]: """simple docstring""" if self.graph.get(a__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _UpperCAmelCase : Optional[int] = [[w, v]] if not self.graph.get(a__ ): _UpperCAmelCase : int = [] def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return list(self.graph ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> int: """simple docstring""" if self.graph.get(a__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(a__ ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[Any]=-2 , lowerCAmelCase__ : Optional[int]=-1 ) -> int: """simple docstring""" if s == d: return [] _UpperCAmelCase : Any = [] _UpperCAmelCase : List[Any] = [] if s == -2: _UpperCAmelCase : Dict = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase : int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(a__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(a__ ) != 0: _UpperCAmelCase : Tuple = stack[len(a__ ) - 1] else: _UpperCAmelCase : Union[str, Any] = ss # check if se have reached the starting point if len(a__ ) == 0: return visited def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Dict=-1 ) -> Dict: """simple docstring""" if c == -1: _UpperCAmelCase : Union[str, Any] = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(a__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(a__ , a__ , 1 ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[Any]=-2 ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = deque() _UpperCAmelCase : int = [] if s == -2: _UpperCAmelCase : List[Any] = list(self.graph )[0] d.append(a__ ) visited.append(a__ ) while d: _UpperCAmelCase : Optional[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Tuple ) -> int: """simple docstring""" return len(self.graph[u] ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Dict=-2 ) -> Tuple: """simple docstring""" _UpperCAmelCase : Dict = [] _UpperCAmelCase : List[Any] = [] if s == -2: _UpperCAmelCase : Tuple = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase : Dict = s _UpperCAmelCase : List[Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : int = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(a__ ) != 0: _UpperCAmelCase : List[str] = stack[len(a__ ) - 1] else: _UpperCAmelCase : Union[str, Any] = ss # check if se have reached the starting point if len(a__ ) == 0: return sorted_nodes def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Optional[int] = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase : List[Any] = -2 _UpperCAmelCase : Dict = [] _UpperCAmelCase : Optional[int] = s _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Any = len(a__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Tuple = True if len(a__ ) != 0: _UpperCAmelCase : Any = stack[len(a__ ) - 1] else: _UpperCAmelCase : List[str] = False indirect_parents.append(a__ ) _UpperCAmelCase : Tuple = s _UpperCAmelCase : List[Any] = ss # check if se have reached the starting point if len(a__ ) == 0: return list(a__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Dict = [] _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase : Optional[Any] = -2 _UpperCAmelCase : Any = [] _UpperCAmelCase : Union[str, Any] = s _UpperCAmelCase : List[Any] = False _UpperCAmelCase : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : int = len(a__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : str = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Union[str, Any] = True if len(a__ ) != 0: _UpperCAmelCase : int = stack[len(a__ ) - 1] else: _UpperCAmelCase : Union[str, Any] = False indirect_parents.append(a__ ) _UpperCAmelCase : Tuple = s _UpperCAmelCase : Tuple = ss # check if se have reached the starting point if len(a__ ) == 0: return False def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Tuple=-2 , lowerCAmelCase__ : List[Any]=-1 ) -> int: """simple docstring""" _UpperCAmelCase : Dict = time() self.dfs(a__ , a__ ) _UpperCAmelCase : List[str] = time() return end - begin def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Union[str, Any]=-2 ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = time() self.bfs(a__ ) _UpperCAmelCase : int = time() return end - begin class A__ : """simple docstring""" def __init__( self : List[str] ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = {} def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict=1 ) -> Optional[Any]: """simple docstring""" if self.graph.get(a__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _UpperCAmelCase : Any = [[w, v]] # add the other way if self.graph.get(a__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _UpperCAmelCase : Union[str, Any] = [[w, u]] def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" if self.graph.get(a__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(a__ ) # the other way round if self.graph.get(a__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(a__ ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : int=-2 , lowerCAmelCase__ : Union[str, Any]=-1 ) -> List[Any]: """simple docstring""" if s == d: return [] _UpperCAmelCase : Dict = [] _UpperCAmelCase : int = [] if s == -2: _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase : Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(a__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(a__ ) != 0: _UpperCAmelCase : Optional[Any] = stack[len(a__ ) - 1] else: _UpperCAmelCase : Tuple = ss # check if se have reached the starting point if len(a__ ) == 0: return visited def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Tuple=-1 ) -> Dict: """simple docstring""" if c == -1: _UpperCAmelCase : int = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(a__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase : Dict = floor(random() * c ) + 1 if n != i: self.add_pair(a__ , a__ , 1 ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Union[str, Any]=-2 ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = deque() _UpperCAmelCase : List[str] = [] if s == -2: _UpperCAmelCase : Optional[int] = list(self.graph )[0] d.append(a__ ) visited.append(a__ ) while d: _UpperCAmelCase : List[str] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Dict ) -> str: """simple docstring""" return len(self.graph[u] ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : str = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase : Tuple = -2 _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Optional[Any] = s _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Dict = len(a__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Any = True if len(a__ ) != 0: _UpperCAmelCase : int = stack[len(a__ ) - 1] else: _UpperCAmelCase : Union[str, Any] = False indirect_parents.append(a__ ) _UpperCAmelCase : str = s _UpperCAmelCase : Tuple = ss # check if se have reached the starting point if len(a__ ) == 0: return list(a__ ) def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(a__ ) visited.append(a__ ) _UpperCAmelCase : Any = -2 _UpperCAmelCase : List[str] = [] _UpperCAmelCase : str = s _UpperCAmelCase : int = False _UpperCAmelCase : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Optional[int] = len(a__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Dict = True if len(a__ ) != 0: _UpperCAmelCase : Tuple = stack[len(a__ ) - 1] else: _UpperCAmelCase : Dict = False indirect_parents.append(a__ ) _UpperCAmelCase : Any = s _UpperCAmelCase : List[str] = ss # check if se have reached the starting point if len(a__ ) == 0: return False def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" return list(self.graph ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[str]=-2 , lowerCAmelCase__ : List[str]=-1 ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = time() self.dfs(a__ , a__ ) _UpperCAmelCase : Dict = time() return end - begin def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : int=-2 ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = time() self.bfs(a__ ) _UpperCAmelCase : Optional[Any] = time() return end - begin
145
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[str] = CpmAntTokenizer A_ : Optional[int] = False def a (self : Optional[int] ): """simple docstring""" super().setUp() __snake_case = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def a (self : Dict ): """simple docstring""" __snake_case = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __snake_case = '''今天天气真好!''' __snake_case = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = '''今天天气真好!''' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) __snake_case = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
24
0
from __future__ import annotations def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if len(snake_case_ ) == 0: return False _lowerCAmelCase : Dict = len(snake_case_ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , snake_case_ ) else: return binary_search(a_list[midpoint + 1 :] , snake_case_ ) if __name__ == "__main__": _snake_case = input("Enter numbers separated by comma:\n").strip() _snake_case = [int(item.strip()) for item in user_input.split(",")] _snake_case = int(input("Enter the number to be found in the list:\n").strip()) _snake_case = "" if binary_search(sequence, target) else "not " print(f'''{target} was {not_str}found in {sequence}''')
36
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : def __init__(self : str , a__ : Dict , a__ : Tuple=None , a__ : List[Any]=None , a__ : Dict=None , a__ : Union[str, Any]="resnet50" , a__ : Dict=3 , a__ : str=32 , a__ : int=3 , a__ : Dict=True , a__ : Any=True , ): """simple docstring""" __snake_case = parent __snake_case = out_indices if out_indices is not None else [4] __snake_case = stage_names __snake_case = out_features __snake_case = backbone __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = use_pretrained_backbone __snake_case = is_training def a (self : Union[str, Any] ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = self.get_config() return config, pixel_values def a (self : Any ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def a (self : List[Any] , a__ : int , a__ : int ): """simple docstring""" __snake_case = TimmBackbone(config=a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(a__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def a (self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () A_ : Optional[Any] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} A_ : List[Any] = False A_ : Dict = False A_ : Any = False A_ : List[Any] = False def a (self : Tuple ): """simple docstring""" __snake_case = TimmBackboneModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def a (self : Any ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : int ): """simple docstring""" __snake_case = '''resnet18''' __snake_case = '''microsoft/resnet-18''' __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ ) __snake_case = AutoBackbone.from_pretrained(a__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ , out_indices=[1, 2, 3] ) __snake_case = AutoBackbone.from_pretrained(a__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def a (self : str ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : Optional[int] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a (self : Tuple ): """simple docstring""" pass def a (self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True __snake_case = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case = self.all_model_classes[0] __snake_case = model_class(a__ ) model.to(a__ ) __snake_case = self._prepare_for_class(a__ , a__ ) __snake_case = model(**a__ ) __snake_case = outputs[0][-1] # Encoder-/Decoder-only models __snake_case = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def a (self : Optional[int] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case = copy.deepcopy(a__ ) __snake_case = None __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case = copy.deepcopy(a__ ) __snake_case = False __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ )
24
0
'''simple docstring''' a_ : Union[str, Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a_ : Any = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a_ : Tuple = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def a_ ( __snake_case : int , __snake_case : int , __snake_case : int ) -> str: """simple docstring""" assert len(str(snake_case_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: lowerCamelCase_ =year // 100 lowerCamelCase_ =(5 * (century % 4) + 2) % 7 lowerCamelCase_ =year % 100 lowerCamelCase_ =centurian % 12 lowerCamelCase_ =( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 lowerCamelCase_ =( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) lowerCamelCase_ =(dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
75
import os import pytest from transformers.dynamic_module_utils import get_imports snake_case_ = '\nimport os\n' snake_case_ = '\ndef foo():\n import os\n return False\n' snake_case_ = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' snake_case_ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case_ ) def lowerCamelCase__ ( snake_case_ : str , snake_case_ : Optional[int] ) -> Dict: __snake_case = os.path.join(snake_case_ , '''test_file.py''' ) with open(snake_case_ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case_ ) __snake_case = get_imports(snake_case_ ) assert parsed_imports == ["os"]
24
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[int] = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( _UpperCAmelCase): """simple docstring""" lowercase = 'poolformer' def __init__( self : Optional[Any] , lowerCamelCase : int=3 , lowerCamelCase : Union[str, Any]=16 , lowerCamelCase : Tuple=16 , lowerCamelCase : List[Any]=3 , lowerCamelCase : List[str]=4.0 , lowerCamelCase : Optional[int]=[2, 2, 6, 2] , lowerCamelCase : str=[64, 1_28, 3_20, 5_12] , lowerCamelCase : int=[7, 3, 3, 3] , lowerCamelCase : Optional[int]=[4, 2, 2, 2] , lowerCamelCase : Optional[int]=[2, 1, 1, 1] , lowerCamelCase : List[Any]=4 , lowerCamelCase : Any=0.0 , lowerCamelCase : Dict="gelu" , lowerCamelCase : Tuple=True , lowerCamelCase : Optional[Any]=1E-5 , lowerCamelCase : str=0.02 , **lowerCamelCase : Dict , ) -> str: lowerCAmelCase_ : Optional[int] = num_channels lowerCAmelCase_ : List[str] = patch_size lowerCAmelCase_ : List[str] = stride lowerCAmelCase_ : Any = padding lowerCAmelCase_ : int = pool_size lowerCAmelCase_ : Tuple = hidden_sizes lowerCAmelCase_ : List[str] = mlp_ratio lowerCAmelCase_ : Optional[int] = depths lowerCAmelCase_ : List[Any] = patch_sizes lowerCAmelCase_ : Any = strides lowerCAmelCase_ : str = num_encoder_blocks lowerCAmelCase_ : List[str] = drop_path_rate lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : List[Any] = use_layer_scale lowerCAmelCase_ : Optional[int] = layer_scale_init_value lowerCAmelCase_ : str = initializer_range super().__init__(**a__ ) class __snake_case ( _UpperCAmelCase): """simple docstring""" lowercase = version.parse('1.11') @property def __lowercase ( self : Union[str, Any] ) -> List[Any]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __lowercase ( self : int ) -> Union[str, Any]: return 2E-3
120
import socket def lowerCamelCase__ ( ) -> Any: __snake_case = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __snake_case = socket.gethostname() __snake_case = 1_2312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: __snake_case = sock.recv(1024 ) if not data: break out_file.write(snake_case_ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
24
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : List[str] = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
147
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] ) -> list[int]: # This function is recursive __snake_case = len(snake_case_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __snake_case = array[0] __snake_case = False __snake_case = 1 __snake_case = [] while not is_found and i < array_length: if array[i] < pivot: __snake_case = True __snake_case = [element for element in array[i:] if element >= array[i]] __snake_case = longest_subsequence(snake_case_ ) if len(snake_case_ ) > len(snake_case_ ): __snake_case = temp_array else: i += 1 __snake_case = [element for element in array[1:] if element >= pivot] __snake_case = [pivot, *longest_subsequence(snake_case_ )] if len(snake_case_ ) > len(snake_case_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
24
0
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class A_ ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCamelCase = BartphoTokenizer __UpperCamelCase = False __UpperCamelCase = True def UpperCAmelCase__ ( self :Tuple ) -> Any: super().setUp() UpperCAmelCase = ['▁This', '▁is', '▁a', '▁t', 'est'] UpperCAmelCase = dict(zip(a__ , range(len(a__ ) ) ) ) UpperCAmelCase = {'unk_token': '<unk>'} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) UpperCAmelCase = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self :str , **lowercase_ :str ) -> str: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **a__ ) def UpperCAmelCase__ ( self :str , lowercase_ :Any ) -> int: UpperCAmelCase = 'This is a là test' UpperCAmelCase = 'This is a<unk><unk> test' return input_text, output_text def UpperCAmelCase__ ( self :Dict ) -> List[Any]: UpperCAmelCase = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) UpperCAmelCase = 'This is a là test' UpperCAmelCase = '▁This ▁is ▁a ▁l à ▁t est'.split() UpperCAmelCase = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) UpperCAmelCase = tokens + [tokenizer.unk_token] UpperCAmelCase = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
78
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : Union[str, Any] , a__ : int=13 , a__ : int=7 , a__ : Optional[Any]=True , a__ : Optional[int]=True , a__ : Any=True , a__ : str=True , a__ : List[Any]=99 , a__ : Any=24 , a__ : List[str]=2 , a__ : Optional[int]=6 , a__ : int=37 , a__ : List[str]="gelu" , a__ : List[Any]=0.1 , a__ : Optional[int]=0.1 , a__ : Union[str, Any]=512 , a__ : List[str]=16 , a__ : Optional[int]=2 , a__ : Union[str, Any]=0.0_2 , a__ : str=3 , a__ : Optional[Any]=None , a__ : Any=1000 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = scope __snake_case = range_bbox def a (self : Optional[int] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = None if self.use_input_mask: __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def a (self : List[str] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a (self : List[Any] , a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : int , a__ : Optional[int] , a__ : str , a__ : Optional[int] , ): """simple docstring""" __snake_case = LiltModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a (self : Any , a__ : Tuple , a__ : Dict , a__ : Optional[int] , a__ : Dict , a__ : Union[str, Any] , a__ : str , a__ : Tuple , ): """simple docstring""" __snake_case = self.num_labels __snake_case = LiltForTokenClassification(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a (self : int , a__ : Optional[Any] , a__ : int , a__ : int , a__ : Optional[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : str , ): """simple docstring""" __snake_case = LiltForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A_ : Any = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) A_ : Optional[int] = False A_ : List[Any] = False def a (self : Dict , a__ : Tuple , a__ : Tuple , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" return True def a (self : Union[str, Any] ): """simple docstring""" __snake_case = LiltModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def a (self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def a (self : Optional[int] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = LiltModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Tuple ): """simple docstring""" __snake_case = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a__ ) __snake_case = torch.tensor([[1, 2]] , device=a__ ) __snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a__ ) # forward pass with torch.no_grad(): __snake_case = model(input_ids=a__ , bbox=a__ ) __snake_case = torch.Size([1, 2, 768] ) __snake_case = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=a__ , ) self.assertTrue(outputs.last_hidden_state.shape , a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a__ , atol=1E-3 ) )
24
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase_ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase_ = [0, 25, 50] UpperCamelCase_ = [25, 50, 75] UpperCamelCase_ = fuzz.membership.trimf(X, abca) UpperCamelCase_ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase_ = np.ones(75) UpperCamelCase_ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase_ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase_ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase_ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase_ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase_ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase_ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase_ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase_ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
345
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def a (*a__ : List[str] , **a__ : List[str] ): """simple docstring""" pass def lowerCamelCase__ ( snake_case_ : int ) -> Optional[int]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. snake_case_ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : Optional[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def a (self : List[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model=a__ , tokenizer=a__ , image_processor=a__ ) __snake_case = INVOICE_URL __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) __snake_case = '''What is the placebo?''' __snake_case = [ { '''image''': load_image(a__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def a (self : Union[str, Any] , a__ : Optional[int] , a__ : Dict ): """simple docstring""" __snake_case = dqa_pipeline(a__ , top_k=2 ) self.assertEqual( a__ , [ [ {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def a (self : Dict ): """simple docstring""" __snake_case = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __snake_case = INVOICE_URL __snake_case = '''How many cats are there?''' __snake_case = [ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(a__ , [] ) # We can optionnally pass directly the words and bounding boxes __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = [] __snake_case = [] __snake_case = dqa_pipeline(image=a__ , question=a__ , words=a__ , boxes=a__ , top_k=2 ) self.assertEqual(a__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : str ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : List[Any] ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Tuple ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Dict ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def a (self : Tuple ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def a (self : List[str] ): """simple docstring""" pass
24
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor A : Tuple = logging.get_logger(__name__) class _UpperCamelCase ( _UpperCAmelCase ): '''simple docstring''' def __init__( self , *__a , **__a ): warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , a__ , ) super().__init__(*a__ , **a__ )
57
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int ) -> list[list[int]]: __snake_case = [] __snake_case = [] __snake_case = 0 __snake_case = sum(snake_case_ ) create_state_space_tree(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return result def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int , snake_case_ : list[int] , snake_case_ : list[list[int]] , snake_case_ : int , ) -> None: if sum(snake_case_ ) > max_sum or (remaining_nums_sum + sum(snake_case_ )) < max_sum: return if sum(snake_case_ ) == max_sum: result.append(snake_case_ ) return for index in range(snake_case_ , len(snake_case_ ) ): create_state_space_tree( snake_case_ , snake_case_ , index + 1 , [*path, nums[index]] , snake_case_ , remaining_nums_sum - nums[index] , ) snake_case_ = [3, 34, 4, 12, 5, 2] snake_case_ = 9 snake_case_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
24
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a ( ): '''simple docstring''' lowercase_ = [randint(-1_000 , 1_000 ) for i in range(10 )] lowercase_ = randint(-5_000 , 5_000 ) return (arr, r) __a = make_dataset() def a ( snake_case__: list[int] , snake_case__: int ): '''simple docstring''' for triplet in permutations(snake_case_ , 3 ): if sum(snake_case_ ) == target: return tuple(sorted(snake_case_ ) ) return (0, 0, 0) def a ( snake_case__: list[int] , snake_case__: int ): '''simple docstring''' arr.sort() lowercase_ = len(snake_case_ ) for i in range(n - 1 ): lowercase_ , lowercase_ = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a ( ): '''simple docstring''' lowercase_ = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' lowercase_ = ''' triplet_sum1(*dataset) ''' lowercase_ = ''' triplet_sum2(*dataset) ''' lowercase_ = repeat(setup=snake_case_ , stmt=snake_case_ , repeat=5 , number=10_000 ) lowercase_ = repeat(setup=snake_case_ , stmt=snake_case_ , repeat=5 , number=10_000 ) return (min(snake_case_ ), min(snake_case_ )) if __name__ == "__main__": from doctest import testmod testmod() __a = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
30
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : List[Any] , a__ : Dict=13 , a__ : str=32 , a__ : Tuple=3 , a__ : Optional[Any]=4 , a__ : Optional[int]=[10, 20, 30, 40] , a__ : List[Any]=[2, 2, 3, 2] , a__ : List[Any]=True , a__ : int=True , a__ : List[Any]=37 , a__ : Any="gelu" , a__ : int=10 , a__ : Dict=0.0_2 , a__ : Dict=["stage2", "stage3", "stage4"] , a__ : Tuple=[2, 3, 4] , a__ : List[str]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = num_stages __snake_case = hidden_sizes __snake_case = depths __snake_case = is_training __snake_case = use_labels __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_labels __snake_case = initializer_range __snake_case = out_features __snake_case = out_indices __snake_case = scope def a (self : Dict ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def a (self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a (self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a (self : Optional[Any] , a__ : List[Any] , a__ : str , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a (self : Tuple , a__ : List[Any] , a__ : List[str] , a__ : List[str] ): """simple docstring""" __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case = None __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Dict = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) A_ : Optional[Any] = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) A_ : Dict = True A_ : Optional[Any] = False A_ : int = False A_ : int = False A_ : List[str] = False def a (self : List[str] ): """simple docstring""" __snake_case = ConvNextModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def a (self : Tuple ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : str ): """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def a (self : List[Any] ): """simple docstring""" pass def a (self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def a (self : Dict ): """simple docstring""" def check_hidden_states_output(a__ : List[str] , a__ : str , a__ : Tuple ): __snake_case = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a__ , a__ ) ) __snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def a (self : Any ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ConvNextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ) -> List[str]: __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def a (self : Tuple ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def a (self : Optional[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(a__ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): __snake_case = model(**a__ ) # verify the logits __snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) __snake_case = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , _UpperCAmelCase ): A_ : Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () A_ : List[Any] = ConvNextConfig A_ : Optional[Any] = False def a (self : Optional[int] ): """simple docstring""" __snake_case = ConvNextModelTester(self )
24
0
def a_ ( _A = 100 ) -> int: """simple docstring""" snake_case__ = n * (n + 1) * (2 * n + 1) / 6 snake_case__ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
307
def lowerCamelCase__ ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(snake_case_ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
0
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = AutoencoderKL _UpperCamelCase : List[Any] = 'sample' _UpperCamelCase : List[Any] = 1E-2 @property def __a ( self : Dict ) -> Dict: """simple docstring""" lowercase : Tuple = 4 lowercase : str = 3 lowercase : Optional[Any] = (32, 32) lowercase : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(a__ ) return {"sample": image} @property def __a ( self : Any ) -> Union[str, Any]: """simple docstring""" return (3, 32, 32) @property def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return (3, 32, 32) def __a ( self : int ) -> List[str]: """simple docstring""" lowercase : List[str] = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } lowercase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __a ( self : Tuple ) -> int: """simple docstring""" pass def __a ( self : int ) -> Optional[Any]: """simple docstring""" pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def __a ( self : int ) -> Dict: """simple docstring""" lowercase , lowercase : List[Any] = self.prepare_init_args_and_inputs_for_common() lowercase : Union[str, Any] = self.model_class(**a__ ) model.to(a__ ) assert not model.is_gradient_checkpointing and model.training lowercase : List[Any] = model(**a__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() lowercase : Tuple = torch.randn_like(a__ ) lowercase : List[Any] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing lowercase : str = self.model_class(**a__ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(a__ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training lowercase : Tuple = model_a(**a__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() lowercase : Any = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) lowercase : Union[str, Any] = dict(model.named_parameters() ) lowercase : int = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def __a ( self : Tuple ) -> List[str]: """simple docstring""" lowercase , lowercase : str = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(a__ ) lowercase : List[Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __a ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase : Any = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) lowercase : List[Any] = model.to(a__ ) model.eval() if torch_device == "mps": lowercase : Union[str, Any] = torch.manual_seed(0 ) else: lowercase : List[str] = torch.Generator(device=a__ ).manual_seed(0 ) lowercase : List[str] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowercase : Union[str, Any] = image.to(a__ ) with torch.no_grad(): lowercase : Union[str, Any] = model(a__ , sample_posterior=a__ , generator=a__ ).sample lowercase : Dict = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": lowercase : str = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": lowercase : int = torch.tensor( [-0.1_352, 0.0_878, 0.0_419, -0.0_818, -0.1_069, 0.0_688, -0.1_458, -0.4_446, -0.0_026] ) else: lowercase : int = torch.tensor( [-0.2_421, 0.4_642, 0.2_507, -0.0_438, 0.0_682, 0.3_160, -0.2_018, -0.0_727, 0.2_485] ) self.assertTrue(torch_all_close(a__ , a__ , rtol=1E-2 ) ) @slow class _A ( unittest.TestCase ): def __a ( self : Tuple , _A : Optional[Any] , _A : List[str] ) -> List[str]: """simple docstring""" return f"""gaussian_noise_s={seed}_shape={'_'.join([str(a__ ) for s in shape] )}.npy""" def __a ( self : List[Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Optional[int] , _A : Optional[Any]=0 , _A : List[Any]=(4, 3, 512, 512) , _A : Optional[Any]=False ) -> List[str]: """simple docstring""" lowercase : Tuple = torch.floataa if fpaa else torch.floataa lowercase : int = torch.from_numpy(load_hf_numpy(self.get_file_format(a__ , a__ ) ) ).to(a__ ).to(a__ ) return image def __a ( self : Optional[Any] , _A : Dict="CompVis/stable-diffusion-v1-4" , _A : List[Any]=False ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = '''fp16''' if fpaa else None lowercase : Tuple = torch.floataa if fpaa else torch.floataa lowercase : Union[str, Any] = AutoencoderKL.from_pretrained( a__ , subfolder='''vae''' , torch_dtype=a__ , revision=a__ , ) model.to(a__ ).eval() return model def __a ( self : Union[str, Any] , _A : int=0 ) -> Dict: """simple docstring""" if torch_device == "mps": return torch.manual_seed(a__ ) return torch.Generator(device=a__ ).manual_seed(a__ ) @parameterized.expand( [ # fmt: off [33, [-0.1_603, 0.9_878, -0.0_495, -0.0_790, -0.2_709, 0.8_375, -0.2_060, -0.0_824], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_376, 0.1_168, 0.1_332, -0.4_840, -0.2_508, -0.0_791, -0.0_493, -0.4_089], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def __a ( self : Optional[int] , _A : int , _A : Union[str, Any] , _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase : List[str] = self.get_sd_vae_model() lowercase : List[str] = self.get_sd_image(a__ ) lowercase : str = self.get_generator(a__ ) with torch.no_grad(): lowercase : str = model(a__ , generator=a__ , sample_posterior=a__ ).sample assert sample.shape == image.shape lowercase : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowercase : List[Any] = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(a__ , a__ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_513, 0.0_289, 1.3_799, 0.2_166, -0.2_573, -0.0_871, 0.5_103, -0.0_999]], [47, [-0.4_128, -0.1_320, -0.3_704, 0.1_965, -0.4_116, -0.2_332, -0.3_340, 0.2_247]], # fmt: on ] ) @require_torch_gpu def __a ( self : Union[str, Any] , _A : Union[str, Any] , _A : str ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.get_sd_vae_model(fpaa=a__ ) lowercase : Any = self.get_sd_image(a__ , fpaa=a__ ) lowercase : List[Any] = self.get_generator(a__ ) with torch.no_grad(): lowercase : Optional[int] = model(a__ , generator=a__ , sample_posterior=a__ ).sample assert sample.shape == image.shape lowercase : Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowercase : Optional[Any] = torch.tensor(a__ ) assert torch_all_close(a__ , a__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_609, 0.9_866, -0.0_487, -0.0_777, -0.2_716, 0.8_368, -0.2_055, -0.0_814], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_377, 0.1_147, 0.1_333, -0.4_841, -0.2_506, -0.0_805, -0.0_491, -0.4_085], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def __a ( self : Optional[Any] , _A : str , _A : Tuple , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Tuple = self.get_sd_vae_model() lowercase : List[Any] = self.get_sd_image(a__ ) with torch.no_grad(): lowercase : Dict = model(a__ ).sample assert sample.shape == image.shape lowercase : Dict = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowercase : str = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(a__ , a__ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_051, -0.1_803, -0.2_311, -0.2_114, -0.3_292, -0.3_574, -0.2_953, -0.3_323]], [37, [-0.2_632, -0.2_625, -0.2_199, -0.2_741, -0.4_539, -0.4_990, -0.3_720, -0.4_925]], # fmt: on ] ) @require_torch_gpu def __a ( self : str , _A : Optional[int] , _A : Any ) -> int: """simple docstring""" lowercase : Dict = self.get_sd_vae_model() lowercase : Union[str, Any] = self.get_sd_image(a__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): lowercase : List[str] = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] lowercase : List[str] = sample[-1, -2:, :2, -2:].flatten().cpu() lowercase : int = torch.tensor(a__ ) assert torch_all_close(a__ , a__ , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_369, 0.0_207, -0.0_776, -0.0_682, -0.1_747, -0.1_930, -0.1_465, -0.2_039]], [16, [-0.1_628, -0.2_134, -0.2_747, -0.2_642, -0.3_774, -0.4_404, -0.3_687, -0.4_277]], # fmt: on ] ) @require_torch_gpu def __a ( self : List[Any] , _A : Any , _A : Optional[int] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self.get_sd_vae_model(fpaa=a__ ) lowercase : Tuple = self.get_sd_image(a__ , shape=(3, 4, 64, 64) , fpaa=a__ ) with torch.no_grad(): lowercase : Union[str, Any] = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] lowercase : Any = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowercase : Dict = torch.tensor(a__ ) assert torch_all_close(a__ , a__ , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def __a ( self : Tuple , _A : Any ) -> int: """simple docstring""" lowercase : Tuple = self.get_sd_vae_model(fpaa=a__ ) lowercase : Optional[int] = self.get_sd_image(a__ , shape=(3, 4, 64, 64) , fpaa=a__ ) with torch.no_grad(): lowercase : List[Any] = model.decode(a__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowercase : str = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(a__ , a__ , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def __a ( self : int , _A : Optional[int] ) -> str: """simple docstring""" lowercase : List[str] = self.get_sd_vae_model() lowercase : str = self.get_sd_image(a__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): lowercase : List[Any] = model.decode(a__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowercase : List[Any] = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(a__ , a__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_001, 0.0_918, -2.6_984, -3.9_720, -3.2_099, -5.0_353, 1.7_338, -0.2_065, 3.4_267]], [47, [-1.5_030, -4.3_871, -6.0_355, -9.1_157, -1.6_661, -2.7_853, 2.1_607, -5.0_823, 2.5_633]], # fmt: on ] ) def __a ( self : str , _A : Optional[Any] , _A : List[str] ) -> List[str]: """simple docstring""" lowercase : Optional[Any] = self.get_sd_vae_model() lowercase : str = self.get_sd_image(a__ ) lowercase : Dict = self.get_generator(a__ ) with torch.no_grad(): lowercase : int = model.encode(a__ ).latent_dist lowercase : Dict = dist.sample(generator=a__ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] lowercase : List[Any] = sample[0, -1, -3:, -3:].flatten().cpu() lowercase : Optional[Any] = torch.tensor(a__ ) lowercase : List[str] = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(a__ , a__ , atol=a__ )
308
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = BartphoTokenizer A_ : List[str] = False A_ : Optional[Any] = True def a (self : Tuple ): """simple docstring""" super().setUp() __snake_case = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def a (self : str , **a__ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a (self : str , a__ : Any ): """simple docstring""" __snake_case = '''This is a là test''' __snake_case = '''This is a<unk><unk> test''' return input_text, output_text def a (self : Dict ): """simple docstring""" __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case = '''This is a là test''' __snake_case = '''▁This ▁is ▁a ▁l à ▁t est'''.split() __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
24
0
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict", [ SplitDict(), SplitDict({"train": SplitInfo(name="train", num_bytes=1_337, num_examples=42, dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train", num_bytes=1_337, num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ], ) def __UpperCAmelCase ( a_: SplitDict ): _UpperCAmelCase : Union[str, Any] = split_dict._to_yaml_list() assert len(snake_case_ ) == len(snake_case_ ) _UpperCAmelCase : Dict = SplitDict._from_yaml_list(snake_case_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _UpperCAmelCase : str = None # the split name of split_dict takes over the name of the split info object _UpperCAmelCase : Dict = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info", [SplitInfo(), SplitInfo(dataset_name=snake_case_ ), SplitInfo(dataset_name="my_dataset" )] ) def __UpperCAmelCase ( a_: int ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files _UpperCAmelCase : Optional[Any] = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
145
def lowerCamelCase__ ( snake_case_ : int ) -> int: if not isinstance(snake_case_ , snake_case_ ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) __snake_case = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
24
0
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [0] * len(snake_case_ ) _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case_ ) ): if indegree[i] == 0: queue.append(snake_case_ ) while queue: _lowerCAmelCase : int = queue.pop(0 ) cnt += 1 topo.append(snake_case_ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(snake_case_ ) if cnt != len(snake_case_ ): print("Cycle exists" ) else: print(snake_case_ ) # Adjacency List of Graph _snake_case = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
36
from math import loga def lowerCamelCase__ ( snake_case_ : int ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(snake_case_ , snake_case_ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
24
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=32, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase=[10, 20, 30, 40], lowerCAmelCase=[2, 2, 3, 2], lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=10, lowerCAmelCase=0.0_2, lowerCAmelCase=["stage2", "stage3", "stage4"], lowerCAmelCase=[2, 3, 4], lowerCAmelCase=None, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =image_size lowerCamelCase_ =num_channels lowerCamelCase_ =num_stages lowerCamelCase_ =hidden_sizes lowerCamelCase_ =depths lowerCamelCase_ =is_training lowerCamelCase_ =use_labels lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =num_labels lowerCamelCase_ =initializer_range lowerCamelCase_ =out_features lowerCamelCase_ =out_indices lowerCamelCase_ =scope def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size], self.num_labels ) lowerCamelCase_ =self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=a__, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =ConvNextModel(config=a__ ) model.to(a__ ) model.eval() lowerCamelCase_ =model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =ConvNextForImageClassification(a__ ) model.to(a__ ) model.eval() lowerCamelCase_ =model(a__, labels=a__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() lowerCamelCase_ =model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase_ =None lowerCamelCase_ =ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() lowerCamelCase_ =model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =config_and_inputs lowerCamelCase_ ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowercase : Dict =( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowercase : Optional[Any] =( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) lowercase : Dict =True lowercase : Optional[Any] =False lowercase : int =False lowercase : int =False lowercase : List[str] =False def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ConvNextModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=a__, has_text_modality=a__, hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =model_class(a__ ) lowerCamelCase_ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ =[*signature.parameters.keys()] lowerCamelCase_ =['''pixel_values'''] self.assertListEqual(arg_names[:1], a__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): lowerCamelCase_ =model(**self._prepare_for_class(a__, a__ ) ) lowerCamelCase_ =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ =self.model_tester.num_stages self.assertEqual(len(a__ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ =True check_hidden_states_output(a__, a__, a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ =True check_hidden_states_output(a__, a__, a__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =ConvNextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def a_ ( ) -> List[str]: """simple docstring""" lowerCamelCase_ =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(a__ ) lowerCamelCase_ =self.default_image_processor lowerCamelCase_ =prepare_img() lowerCamelCase_ =image_processor(images=a__, return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): lowerCamelCase_ =model(**a__ ) # verify the logits lowerCamelCase_ =torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, a__ ) lowerCamelCase_ =torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], a__, atol=1e-4 ) ) @require_torch class __UpperCamelCase ( unittest.TestCase , _UpperCAmelCase ): lowercase : Union[str, Any] =(ConvNextBackbone,) if is_torch_available() else () lowercase : List[Any] =ConvNextConfig lowercase : Optional[Any] =False def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ConvNextModelTester(self )
75
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[int] , *a__ : Any , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[int] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : Tuple ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : Dict , **a__ : Any ): """simple docstring""" return {}, {}, {} def a (self : List[str] , a__ : Any ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : int , a__ : List[Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
24
0
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
120
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> Any: assert _test_patching.open is open __snake_case = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , snake_case_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> List[str]: # pandas.read_csv is not present in _test_patching __snake_case = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , snake_case_ ): pass def lowerCamelCase__ ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , snake_case_ ) is None with patch_submodule(_test_patching , '''len''' , snake_case_ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = '''__test_patch_submodule_start_and_stop_mock__''' __snake_case = patch_submodule(_test_patching , '''open''' , snake_case_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case = '''__test_patch_submodule_successive_join__''' __snake_case = '''__test_patch_submodule_successive_dirname__''' __snake_case = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> Tuple: __snake_case = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , snake_case_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , snake_case_ ): pass
24
0
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _a ( _UpperCAmelCase , unittest.TestCase ): A = CpmAntTokenizer A = False def __snake_case (self ) -> Tuple: super().setUp() UpperCAmelCase_: Dict = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] UpperCAmelCase_: int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __snake_case (self ) -> int: UpperCAmelCase_: List[Any] = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) UpperCAmelCase_: Dict = """今天天气真好!""" UpperCAmelCase_: Tuple = ["""今天""", """天气""", """真""", """好""", """!"""] UpperCAmelCase_: Optional[int] = tokenizer.tokenize(a__ ) self.assertListEqual(a__, a__ ) UpperCAmelCase_: str = """今天天气真好!""" UpperCAmelCase_: List[Any] = [tokenizer.bos_token] + tokens UpperCAmelCase_: Tuple = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ), a__ ) UpperCAmelCase_: Any = tokenizer.decode(a__ ) self.assertEqual(a__, a__ )
147
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) snake_case_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) A_ : Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) A_ : Optional[int] = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Source language id for translation.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Target language id for translation.'} ) A_ : Optional[int] = field(default=_UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} ) A_ : bool = field( default=_UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Dict ) -> str: logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , f"""{split}_results.json""" ) ) def lowerCamelCase__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) __snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __snake_case = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): __snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __snake_case = SeqaSeqDataset # Get datasets __snake_case = ( dataset_class( snake_case_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __snake_case = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) __snake_case = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) __snake_case = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __snake_case = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __snake_case = train_result.metrics __snake_case = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __snake_case = trainer.evaluate(metric_key_prefix='''val''' ) __snake_case = data_args.n_val __snake_case = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __snake_case = trainer.predict(test_dataset=snake_case_ , metric_key_prefix='''test''' ) __snake_case = test_output.metrics __snake_case = data_args.n_test if trainer.is_world_process_zero(): __snake_case = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: __snake_case = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) __snake_case = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def lowerCamelCase__ ( snake_case_ : Optional[Any] ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
24
0
"""simple docstring""" import requests def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = {'Content-Type': 'application/json'} UpperCAmelCase = requests.post(snake_case_ , json={'text': message_body} , headers=snake_case_ ) if response.status_code != 200: UpperCAmelCase = ( 'Request to slack returned an error ' F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(snake_case_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
78
from math import pi def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
24
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['''DPTFeatureExtractor'''] UpperCamelCase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
345
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = 'vit_msn' def __init__(self : Union[str, Any] , a__ : Optional[Any]=768 , a__ : Optional[Any]=12 , a__ : Optional[int]=12 , a__ : Optional[int]=3072 , a__ : Union[str, Any]="gelu" , a__ : str=0.0 , a__ : int=0.0 , a__ : Optional[Any]=0.0_2 , a__ : List[Any]=1E-06 , a__ : Optional[int]=224 , a__ : str=16 , a__ : Optional[Any]=3 , a__ : int=True , **a__ : List[Any] , ): """simple docstring""" super().__init__(**a__ ) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = qkv_bias
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : Optional[Any] = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = ["MobileViTFeatureExtractor"] A : Union[str, Any] = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def a (self : int , a__ : List[Any]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) __snake_case = np.random.RandomState(a__ ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def a (self : List[Any] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) # warmup pass to apply optimizations __snake_case = pipe(**self.get_dummy_inputs() ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Any ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def a (self : List[str] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a (self : Optional[Any] ): """simple docstring""" __snake_case = ort.SessionOptions() __snake_case = False return options def a (self : Optional[Any] ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) # using the PNDM scheduler by default __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def a (self : Dict ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) __snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=a__ , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
24
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowercase__: """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any]=1_3 , SCREAMING_SNAKE_CASE_ : Dict=7 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=9_9 , SCREAMING_SNAKE_CASE_ : Optional[int]=3_2 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 , SCREAMING_SNAKE_CASE_ : Optional[Any]=4 , SCREAMING_SNAKE_CASE_ : str=3_7 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Dict=5_1_2 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_6 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : str=0.02 , SCREAMING_SNAKE_CASE_ : int=3 , SCREAMING_SNAKE_CASE_ : Tuple=4 , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , ) -> List[str]: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def _lowercase ( self : List[Any] ) -> Optional[int]: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : str ) -> List[str]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> int: lowercase_ = LlamaModel(config=a__ ) model.to(a__ ) model.eval() lowercase_ = model(a__ , attention_mask=a__ ) lowercase_ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , ) -> Union[str, Any]: lowercase_ = True lowercase_ = LlamaModel(a__ ) model.to(a__ ) model.eval() lowercase_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) lowercase_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , ) lowercase_ = model(a__ , attention_mask=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , ) -> List[str]: lowercase_ = LlamaForCausalLM(config=a__ ) model.to(a__ ) model.eval() lowercase_ = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , ) -> Tuple: lowercase_ = True lowercase_ = True lowercase_ = LlamaForCausalLM(config=a__ ) model.to(a__ ) model.eval() # first forward pass lowercase_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , use_cache=a__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , output_hidden_states=a__ , )['''hidden_states'''][0] lowercase_ = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , past_key_values=a__ , output_hidden_states=a__ , )['''hidden_states'''][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1e-3 ) ) def _lowercase ( self : Dict ) -> List[str]: lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase__( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :List[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () a :List[str] = (LlamaForCausalLM,) if is_torch_available() else () a :Dict = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) a :Any = False a :Union[str, Any] = False def _lowercase ( self : Optional[Any] ) -> Dict: lowercase_ = LlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=a__ , hidden_size=3_7 ) def _lowercase ( self : Optional[Any] ) -> Dict: self.config_tester.run_common_tests() def _lowercase ( self : List[str] ) -> Union[str, Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*a__ ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict['''input_ids'''] lowercase_ = input_ids.ne(1 ).to(a__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() lowercase_ = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self : Union[str, Any] ) -> Dict: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = '''single_label_classification''' lowercase_ = input_dict['''input_ids'''] lowercase_ = input_ids.ne(1 ).to(a__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() lowercase_ = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self : List[Any] ) -> Optional[int]: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = '''multi_label_classification''' lowercase_ = input_dict['''input_ids'''] lowercase_ = input_ids.ne(1 ).to(a__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() lowercase_ = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def _lowercase ( self : Union[str, Any] ) -> Any: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 1_0] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = LlamaModel(a__ ) original_model.to(a__ ) original_model.eval() lowercase_ = original_model(a__ ).last_hidden_state lowercase_ = original_model(a__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {'''type''': scaling_type, '''factor''': 1_0.0} lowercase_ = LlamaModel(a__ ) scaled_model.to(a__ ) scaled_model.eval() lowercase_ = scaled_model(a__ ).last_hidden_state lowercase_ = scaled_model(a__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a__ , a__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(a__ , a__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a__ , a__ , atol=1e-5 ) ) @require_torch class lowercase__( unittest.TestCase ): """simple docstring""" @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _lowercase ( self : Tuple ) -> str: lowercase_ = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowercase_ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) lowercase_ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowercase_ = torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase_ = torch.tensor([-1_2.8_2_8_1, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -1_2.8_2_8_1, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , a__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _lowercase ( self : str ) -> List[Any]: lowercase_ = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowercase_ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) lowercase_ = model(torch.tensor(a__ ) ) # Expected mean on dim = -1 lowercase_ = torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase_ = torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , a__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def _lowercase ( self : Any ) -> Optional[int]: lowercase_ = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowercase_ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) lowercase_ = model(torch.tensor(a__ ) ) # Expected mean on dim = -1 lowercase_ = torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowercase_ = torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def _lowercase ( self : Optional[int] ) -> Dict: lowercase_ = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowercase_ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) lowercase_ = model(torch.tensor(a__ ) ) lowercase_ = torch.tensor( [[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1e-2 , rtol=1e-2 ) # fmt: off lowercase_ = torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , a__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Model is curently gated''' ) @slow def _lowercase ( self : List[str] ) -> int: lowercase_ = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' lowercase_ = '''Simply put, the theory of relativity states that ''' lowercase_ = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowercase_ = tokenizer.encode(a__ , return_tensors='''pt''' ) lowercase_ = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=a__ ) # greedy generation outputs lowercase_ = model.generate(a__ , max_new_tokens=6_4 , top_p=a__ , temperature=1 , do_sample=a__ ) lowercase_ = tokenizer.decode(generated_ids[0] , skip_special_tokens=a__ ) self.assertEqual(a__ , a__ )
30
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case_ = logging.getLogger(__name__) @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : str A_ : str A_ : Optional[str] = None A_ : Optional[str] = None A_ : Optional[str] = None @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : List[int] A_ : Optional[List[int]] = None A_ : Optional[List[int]] = None A_ : Optional[Union[int, float]] = None A_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[InputFeatures] def __init__(self : int , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = None , a__ : List[Any]=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = os.path.join( a__ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a__ ) , a__ , ) , ) __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case = cached_features_file + '''.lock''' with FileLock(a__ ): if os.path.exists(a__ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case = torch.load(a__ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case = ( processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) ) logger.info('''Training examples: %s''' , len(a__ ) ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) logger.info('''Saving features into cached file %s''' , a__ ) torch.save(self.features , a__ ) def __len__(self : int ): """simple docstring""" return len(self.features ) def __getitem__(self : Dict , a__ : List[Any] ): """simple docstring""" return self.features[i] def a (self : List[Any] ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ : A_ : List[InputFeatures] def __init__(self : Tuple , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = 128 , a__ : Any=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list __snake_case = processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case = tf.data.Dataset.from_generator( a__ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def a (self : Union[str, Any] ): """simple docstring""" return self.dataset def __len__(self : Dict ): """simple docstring""" return len(self.features ) def __getitem__(self : Any , a__ : Dict ): """simple docstring""" return self.features[i] def a (self : str ): """simple docstring""" return self.label_list class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : Dict , a__ : Dict ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def a (self : Optional[int] , a__ : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def a (self : int ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def a (self : Any , a__ : Optional[int] , a__ : List[Any] ): """simple docstring""" __snake_case = [] for i, line in enumerate(a__ ): if i == 0: continue __snake_case = '''%s-%s''' % (set_type, line[0]) __snake_case = line[5] __snake_case = line[6] __snake_case = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case = line[0] examples.append(InputExample(guid=a__ , text_a=a__ , text_b=a__ , label=a__ , pairID=a__ ) ) return examples def lowerCamelCase__ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> List[str]: __snake_case = {label: i for i, label in enumerate(snake_case_ )} __snake_case = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding='''max_length''' , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) __snake_case = label_map[example.label] if example.label in label_map else 0 __snake_case = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features snake_case_ = { 'hans': 3, } snake_case_ = { 'hans': HansProcessor, }
24
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Any = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __SCREAMING_SNAKE_CASE( _UpperCAmelCase ): _UpperCAmelCase = 'beit' def __init__( self: Tuple , UpperCamelCase: int=81_92 , UpperCamelCase: Any=7_68 , UpperCamelCase: List[Any]=12 , UpperCamelCase: List[Any]=12 , UpperCamelCase: Optional[Any]=30_72 , UpperCamelCase: Optional[Any]="gelu" , UpperCamelCase: List[str]=0.0 , UpperCamelCase: Union[str, Any]=0.0 , UpperCamelCase: Union[str, Any]=0.02 , UpperCamelCase: Tuple=1e-12 , UpperCamelCase: Union[str, Any]=2_24 , UpperCamelCase: str=16 , UpperCamelCase: Any=3 , UpperCamelCase: Union[str, Any]=False , UpperCamelCase: Dict=False , UpperCamelCase: Union[str, Any]=False , UpperCamelCase: List[Any]=False , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Any=0.1 , UpperCamelCase: List[str]=True , UpperCamelCase: int=[3, 5, 7, 11] , UpperCamelCase: str=[1, 2, 3, 6] , UpperCamelCase: Tuple=True , UpperCamelCase: Any=0.4 , UpperCamelCase: Optional[int]=2_56 , UpperCamelCase: str=1 , UpperCamelCase: Tuple=False , UpperCamelCase: Tuple=2_55 , **UpperCamelCase: Dict , ) -> List[Any]: super().__init__(**a__ ) snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = use_mask_token snake_case__ = use_absolute_position_embeddings snake_case__ = use_relative_position_bias snake_case__ = use_shared_relative_position_bias snake_case__ = layer_scale_init_value snake_case__ = drop_path_rate snake_case__ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ = out_indices snake_case__ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ = use_auxiliary_head snake_case__ = auxiliary_loss_weight snake_case__ = auxiliary_channels snake_case__ = auxiliary_num_convs snake_case__ = auxiliary_concat_input snake_case__ = semantic_loss_ignore_index class __SCREAMING_SNAKE_CASE( _UpperCAmelCase ): _UpperCAmelCase = version.parse("1.11" ) @property def lowerCAmelCase_ ( self: Optional[Any] ) -> str: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase_ ( self: int ) -> int: return 1e-4
307
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = ['image_processor', 'tokenizer'] A_ : Optional[Any] = 'CLIPImageProcessor' A_ : Any = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self : int , a__ : int=None , a__ : Dict=None , **a__ : List[str] ): """simple docstring""" __snake_case = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) __snake_case = kwargs.pop('''feature_extractor''' ) __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__(self : Any , a__ : Dict=None , a__ : List[str]=None , a__ : Dict=None , **a__ : Tuple ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: __snake_case = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: __snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def a (self : Union[str, Any] , *a__ : int , **a__ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*a__ , **a__ ) def a (self : Any , *a__ : List[Any] , **a__ : List[str] ): """simple docstring""" return self.tokenizer.decode(*a__ , **a__ ) @property def a (self : int ): """simple docstring""" __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
0
from itertools import permutations def snake_case( __magic_name__ ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowercase : int = [7, 11, 13, 17] for i, test in enumerate(snake_case_ ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def snake_case( __magic_name__ = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(snake_case_ , snake_case_ ) ) ) for num in permutations(range(snake_case_ ) ) if is_substring_divisible(snake_case_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
308
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Dict ): """simple docstring""" __snake_case = logging.get_logger() # the current default level is logging.WARNING __snake_case = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(a__ ) def a (self : Dict ): """simple docstring""" __snake_case = logging.get_verbosity() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(a__ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def a (self : Dict ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = os.getenv('''TRANSFORMERS_VERBOSITY''' , a__ ) __snake_case = logging.log_levels[env_level_str] __snake_case = logging.get_verbosity() self.assertEqual( a__ , a__ , f"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level __snake_case = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def a (self : List[Any] ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.logging.getLogger() with CaptureLogger(a__ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def a (self : Any ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) def lowerCamelCase__ ( ) -> str: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
24
0
'''simple docstring''' import math __a = 10 __a = 7 __a = BALLS_PER_COLOUR * NUM_COLOURS def __UpperCAmelCase ( a_: int = 20 ): _UpperCAmelCase : Any = math.comb(snake_case_, snake_case_ ) _UpperCAmelCase : Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case_ ) _UpperCAmelCase : Optional[int] = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
145
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[str] = CpmAntTokenizer A_ : Optional[int] = False def a (self : Optional[int] ): """simple docstring""" super().setUp() __snake_case = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def a (self : Dict ): """simple docstring""" __snake_case = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __snake_case = '''今天天气真好!''' __snake_case = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = '''今天天气真好!''' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) __snake_case = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
24
0
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _snake_case = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) _snake_case = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = list(s_dict.keys() ) for key in keys: _lowerCAmelCase : Any = key for k, v in WHISPER_MAPPING.items(): if k in key: _lowerCAmelCase : Any = new_key.replace(snake_case_ , snake_case_ ) print(F"{key} -> {new_key}" ) _lowerCAmelCase : Optional[Any] = s_dict.pop(snake_case_ ) return s_dict def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : str = emb.weight.shape _lowerCAmelCase : Any = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) _lowerCAmelCase : Union[str, Any] = emb.weight.data return lin_layer def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' os.makedirs(snake_case_ , exist_ok=snake_case_ ) _lowerCAmelCase : Dict = os.path.basename(snake_case_ ) _lowerCAmelCase : str = url.split("/" )[-2] _lowerCAmelCase : str = os.path.join(snake_case_ , snake_case_ ) if os.path.exists(snake_case_ ) and not os.path.isfile(snake_case_ ): raise RuntimeError(F"{download_target} exists and is not a regular file" ) if os.path.isfile(snake_case_ ): _lowerCAmelCase : Tuple = open(snake_case_ , "rb" ).read() if hashlib.shaaaa(snake_case_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(snake_case_ ) as source, open(snake_case_ , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=snake_case_ , unit_divisor=1_024 ) as loop: while True: _lowerCAmelCase : Optional[Any] = source.read(8_192 ) if not buffer: break output.write(snake_case_ ) loop.update(len(snake_case_ ) ) _lowerCAmelCase : Any = open(snake_case_ , "rb" ).read() if hashlib.shaaaa(snake_case_ ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if ".pt" not in checkpoint_path: _lowerCAmelCase : Union[str, Any] = _download(_MODELS[checkpoint_path] ) else: _lowerCAmelCase : Tuple = torch.load(snake_case_ , map_location="cpu" ) _lowerCAmelCase : List[str] = original_checkpoint["dims"] _lowerCAmelCase : int = original_checkpoint["model_state_dict"] _lowerCAmelCase : Union[str, Any] = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(snake_case_ ) rename_keys(snake_case_ ) _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : int = state_dict["decoder.layers.0.fc1.weight"].shape[0] _lowerCAmelCase : Optional[Any] = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=snake_case_ , decoder_ffn_dim=snake_case_ , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) _lowerCAmelCase : List[Any] = WhisperForConditionalGeneration(snake_case_ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = model.model.load_state_dict(snake_case_ , strict=snake_case_ ) if len(snake_case_ ) > 0 and not set(snake_case_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F" but all the following weights are missing {missing}" ) if tie_embeds: _lowerCAmelCase : Optional[Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _lowerCAmelCase : Dict = proj_out_weights model.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _snake_case = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
36
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : def __init__(self : str , a__ : Dict , a__ : Tuple=None , a__ : List[Any]=None , a__ : Dict=None , a__ : Union[str, Any]="resnet50" , a__ : Dict=3 , a__ : str=32 , a__ : int=3 , a__ : Dict=True , a__ : Any=True , ): """simple docstring""" __snake_case = parent __snake_case = out_indices if out_indices is not None else [4] __snake_case = stage_names __snake_case = out_features __snake_case = backbone __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = use_pretrained_backbone __snake_case = is_training def a (self : Union[str, Any] ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = self.get_config() return config, pixel_values def a (self : Any ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def a (self : List[Any] , a__ : int , a__ : int ): """simple docstring""" __snake_case = TimmBackbone(config=a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(a__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def a (self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () A_ : Optional[Any] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} A_ : List[Any] = False A_ : Dict = False A_ : Any = False A_ : List[Any] = False def a (self : Tuple ): """simple docstring""" __snake_case = TimmBackboneModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def a (self : Any ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : int ): """simple docstring""" __snake_case = '''resnet18''' __snake_case = '''microsoft/resnet-18''' __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ ) __snake_case = AutoBackbone.from_pretrained(a__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ , out_indices=[1, 2, 3] ) __snake_case = AutoBackbone.from_pretrained(a__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def a (self : str ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : Optional[int] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a (self : Tuple ): """simple docstring""" pass def a (self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True __snake_case = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case = self.all_model_classes[0] __snake_case = model_class(a__ ) model.to(a__ ) __snake_case = self._prepare_for_class(a__ , a__ ) __snake_case = model(**a__ ) __snake_case = outputs[0][-1] # Encoder-/Decoder-only models __snake_case = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def a (self : Optional[int] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case = copy.deepcopy(a__ ) __snake_case = None __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case = copy.deepcopy(a__ ) __snake_case = False __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ )
24
0
'''simple docstring''' from __future__ import annotations a_ : Optional[int] = list[list[int]] # assigning initial values to the grid a_ : List[str] = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution a_ : List[Any] = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a_ ( __snake_case : Matrix , __snake_case : int , __snake_case : int , __snake_case : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a_ ( __snake_case : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a_ ( __snake_case : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(snake_case_ ): lowerCamelCase_, lowerCamelCase_ =location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): lowerCamelCase_ =digit if sudoku(snake_case_ ) is not None: return grid lowerCamelCase_ =0 return None def a_ ( __snake_case : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(snake_case_ , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") a_ : str = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
75
import os import pytest from transformers.dynamic_module_utils import get_imports snake_case_ = '\nimport os\n' snake_case_ = '\ndef foo():\n import os\n return False\n' snake_case_ = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' snake_case_ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case_ ) def lowerCamelCase__ ( snake_case_ : str , snake_case_ : Optional[int] ) -> Dict: __snake_case = os.path.join(snake_case_ , '''test_file.py''' ) with open(snake_case_ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case_ ) __snake_case = get_imports(snake_case_ ) assert parsed_imports == ["os"]
24
0
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __A : Any = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __A : Optional[Any] = BASE_URL + "/user" # https://github.com/settings/tokens __A : Union[str, Any] = os.environ.get("USER_TOKEN", "") def UpperCamelCase_ ( A__ : str ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = { """Authorization""": f'token {auth_token}', """Accept""": """application/vnd.github.v3+json""", } return requests.get(snake_case_ , headers=snake_case_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError("\'USER_TOKEN\' field cannot be empty.")
120
import socket def lowerCamelCase__ ( ) -> Any: __snake_case = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __snake_case = socket.gethostname() __snake_case = 1_2312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: __snake_case = sock.recv(1024 ) if not data: break out_file.write(snake_case_ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
24
0
import qiskit def lowerCAmelCase_ (lowerCAmelCase__: int , lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: Optional[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register UpperCAmelCase_: Dict = qiskit.QuantumCircuit(snake_case_ , snake_case_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator UpperCAmelCase_: int = qiskit.execute(snake_case_ , snake_case_ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(snake_case_ ) if __name__ == "__main__": a : int = single_qubit_measure(2, 2) print(F'''Total count for various states are: {counts}''')
147
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] ) -> list[int]: # This function is recursive __snake_case = len(snake_case_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __snake_case = array[0] __snake_case = False __snake_case = 1 __snake_case = [] while not is_found and i < array_length: if array[i] < pivot: __snake_case = True __snake_case = [element for element in array[i:] if element >= array[i]] __snake_case = longest_subsequence(snake_case_ ) if len(snake_case_ ) > len(snake_case_ ): __snake_case = temp_array else: i += 1 __snake_case = [element for element in array[1:] if element >= pivot] __snake_case = [pivot, *longest_subsequence(snake_case_ )] if len(snake_case_ ) > len(snake_case_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
24
0
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case_ = logging.getLogger(__name__) @dataclass(frozen=_UpperCAmelCase ) class A_ : """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None @dataclass(frozen=_UpperCAmelCase ) class A_ : """simple docstring""" __UpperCamelCase = 42 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( _UpperCAmelCase ): """simple docstring""" __UpperCamelCase = 42 def __init__( self :int , lowercase_ :str , lowercase_ :PreTrainedTokenizer , lowercase_ :str , lowercase_ :Optional[int] = None , lowercase_ :List[Any]=False , lowercase_ :bool = False , ) -> int: UpperCAmelCase = hans_processors[task]() UpperCAmelCase = os.path.join( a__ , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(a__ ) , a__ , ) , ) UpperCAmelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase = label_list[2], label_list[1] UpperCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase = cached_features_file + '.lock' with FileLock(a__ ): if os.path.exists(a__ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase = torch.load(a__ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase = ( processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) ) logger.info('Training examples: %s' , len(a__ ) ) UpperCAmelCase = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) logger.info('Saving features into cached file %s' , a__ ) torch.save(self.features , a__ ) def __len__( self :int ) -> Dict: return len(self.features ) def __getitem__( self :Dict , lowercase_ :List[Any] ) -> Dict: return self.features[i] def UpperCAmelCase__ ( self :List[Any] ) -> List[str]: return self.label_list if is_tf_available(): import tensorflow as tf class A_ : """simple docstring""" __UpperCamelCase = 42 def __init__( self :Tuple , lowercase_ :str , lowercase_ :PreTrainedTokenizer , lowercase_ :str , lowercase_ :Optional[int] = 1_28 , lowercase_ :Any=False , lowercase_ :bool = False , ) -> Optional[int]: UpperCAmelCase = hans_processors[task]() UpperCAmelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase = label_list[2], label_list[1] UpperCAmelCase = label_list UpperCAmelCase = processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) UpperCAmelCase = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d of %d' % (ex_index, len(a__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase = tf.data.Dataset.from_generator( a__ , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> str: return self.dataset def __len__( self :Dict ) -> List[Any]: return len(self.features ) def __getitem__( self :Any , lowercase_ :Dict ) -> int: return self.features[i] def UpperCAmelCase__ ( self :str ) -> Optional[Any]: return self.label_list class A_ ( _UpperCAmelCase ): """simple docstring""" def UpperCAmelCase__ ( self :Dict , lowercase_ :Dict ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(a__ , 'heuristics_train_set.txt' ) ) , 'train' ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Tuple ) -> Optional[int]: return self._create_examples(self._read_tsv(os.path.join(a__ , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def UpperCAmelCase__ ( self :int ) -> Optional[Any]: return ["contradiction", "entailment", "neutral"] def UpperCAmelCase__ ( self :Any , lowercase_ :Optional[int] , lowercase_ :List[Any] ) -> List[Any]: UpperCAmelCase = [] for i, line in enumerate(a__ ): if i == 0: continue UpperCAmelCase = '%s-%s' % (set_type, line[0]) UpperCAmelCase = line[5] UpperCAmelCase = line[6] UpperCAmelCase = line[7][2:] if line[7].startswith('ex' ) else line[7] UpperCAmelCase = line[0] examples.append(InputExample(guid=a__ , text_a=a__ , text_b=a__ , label=a__ , pairID=a__ ) ) return examples def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): UpperCAmelCase = {label: i for i, label in enumerate(snake_case_ )} UpperCAmelCase = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d' % (ex_index) ) UpperCAmelCase = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding='max_length' , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) UpperCAmelCase = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features snake_case_ = { """hans""": 3, } snake_case_ = { """hans""": HansProcessor, }
78
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : Union[str, Any] , a__ : int=13 , a__ : int=7 , a__ : Optional[Any]=True , a__ : Optional[int]=True , a__ : Any=True , a__ : str=True , a__ : List[Any]=99 , a__ : Any=24 , a__ : List[str]=2 , a__ : Optional[int]=6 , a__ : int=37 , a__ : List[str]="gelu" , a__ : List[Any]=0.1 , a__ : Optional[int]=0.1 , a__ : Union[str, Any]=512 , a__ : List[str]=16 , a__ : Optional[int]=2 , a__ : Union[str, Any]=0.0_2 , a__ : str=3 , a__ : Optional[Any]=None , a__ : Any=1000 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = scope __snake_case = range_bbox def a (self : Optional[int] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = None if self.use_input_mask: __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def a (self : List[str] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a (self : List[Any] , a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : int , a__ : Optional[int] , a__ : str , a__ : Optional[int] , ): """simple docstring""" __snake_case = LiltModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a (self : Any , a__ : Tuple , a__ : Dict , a__ : Optional[int] , a__ : Dict , a__ : Union[str, Any] , a__ : str , a__ : Tuple , ): """simple docstring""" __snake_case = self.num_labels __snake_case = LiltForTokenClassification(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a (self : int , a__ : Optional[Any] , a__ : int , a__ : int , a__ : Optional[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : str , ): """simple docstring""" __snake_case = LiltForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A_ : Any = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) A_ : Optional[int] = False A_ : List[Any] = False def a (self : Dict , a__ : Tuple , a__ : Tuple , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" return True def a (self : Union[str, Any] ): """simple docstring""" __snake_case = LiltModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def a (self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def a (self : Optional[int] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = LiltModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Tuple ): """simple docstring""" __snake_case = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a__ ) __snake_case = torch.tensor([[1, 2]] , device=a__ ) __snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a__ ) # forward pass with torch.no_grad(): __snake_case = model(input_ids=a__ , bbox=a__ ) __snake_case = torch.Size([1, 2, 768] ) __snake_case = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=a__ , ) self.assertTrue(outputs.last_hidden_state.shape , a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a__ , atol=1E-3 ) )
24
0
def lowerCamelCase_ ( _a : list , _a : int = 0 ): '''simple docstring''' UpperCAmelCase_ : Any = length or len(snake_case_ ) UpperCAmelCase_ : List[str] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: UpperCAmelCase_ , UpperCAmelCase_ : Any = list_data[i + 1], list_data[i] UpperCAmelCase_ : Optional[int] = True return list_data if not swapped else bubble_sort(snake_case_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
345
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def a (*a__ : List[str] , **a__ : List[str] ): """simple docstring""" pass def lowerCamelCase__ ( snake_case_ : int ) -> Optional[int]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. snake_case_ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : Optional[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def a (self : List[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model=a__ , tokenizer=a__ , image_processor=a__ ) __snake_case = INVOICE_URL __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) __snake_case = '''What is the placebo?''' __snake_case = [ { '''image''': load_image(a__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def a (self : Union[str, Any] , a__ : Optional[int] , a__ : Dict ): """simple docstring""" __snake_case = dqa_pipeline(a__ , top_k=2 ) self.assertEqual( a__ , [ [ {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def a (self : Dict ): """simple docstring""" __snake_case = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __snake_case = INVOICE_URL __snake_case = '''How many cats are there?''' __snake_case = [ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(a__ , [] ) # We can optionnally pass directly the words and bounding boxes __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = [] __snake_case = [] __snake_case = dqa_pipeline(image=a__ , question=a__ , words=a__ , boxes=a__ , top_k=2 ) self.assertEqual(a__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : str ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : List[Any] ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Tuple ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Dict ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def a (self : Tuple ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def a (self : List[str] ): """simple docstring""" pass
24
0
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() A : Union[str, Any] = logging.get_logger(__name__) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' print("Loading config file..." ) def flatten_yaml_as_dict(_UpperCamelCase , _UpperCamelCase="" , _UpperCamelCase="." ): __lowerCAmelCase = [] for k, v in d.items(): __lowerCAmelCase = parent_key + sep + k if parent_key else k if isinstance(snake_case_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case_ , snake_case_ , sep=snake_case_ ).items() ) else: items.append((new_key, v) ) return dict(snake_case_ ) __lowerCAmelCase = argparse.Namespace() with open(snake_case_ , "r" ) as yaml_file: try: __lowerCAmelCase = yaml.load(snake_case_ , Loader=yaml.FullLoader ) __lowerCAmelCase = flatten_yaml_as_dict(snake_case_ ) for k, v in flat_cfg.items(): setattr(snake_case_ , snake_case_ , snake_case_ ) except yaml.YAMLError as exc: logger.error("Error while loading config file: {}. Error message: {}".format(snake_case_ , str(snake_case_ ) ) ) return config def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = MobileViTVaConfig() __lowerCAmelCase = False # dataset if task_name.startswith("imagenet1k_" ): __lowerCAmelCase = 1000 if int(task_name.strip().split("_" )[-1] ) == 384: __lowerCAmelCase = 384 else: __lowerCAmelCase = 256 __lowerCAmelCase = "imagenet-1k-id2label.json" elif task_name.startswith("imagenet21k_to_1k_" ): __lowerCAmelCase = 2_1000 if int(task_name.strip().split("_" )[-1] ) == 384: __lowerCAmelCase = 384 else: __lowerCAmelCase = 256 __lowerCAmelCase = "imagenet-22k-id2label.json" elif task_name.startswith("ade20k_" ): __lowerCAmelCase = 151 __lowerCAmelCase = 512 __lowerCAmelCase = "ade20k-id2label.json" __lowerCAmelCase = True elif task_name.startswith("voc_" ): __lowerCAmelCase = 21 __lowerCAmelCase = 512 __lowerCAmelCase = "pascal-voc-id2label.json" __lowerCAmelCase = True # orig_config __lowerCAmelCase = load_orig_config_file(snake_case_ ) assert getattr(snake_case_ , "model.classification.name" , -1 ) == "mobilevit_v2", "Invalid model" __lowerCAmelCase = getattr(snake_case_ , "model.classification.mitv2.width_multiplier" , 1.0 ) assert ( getattr(snake_case_ , "model.classification.mitv2.attn_norm_layer" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __lowerCAmelCase = getattr(snake_case_ , "model.classification.activation.name" , "swish" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __lowerCAmelCase = getattr(snake_case_ , "model.segmentation.output_stride" , 16 ) if "_deeplabv3" in task_name: __lowerCAmelCase = getattr(snake_case_ , "model.segmentation.deeplabv3.aspp_rates" , [12, 24, 36] ) __lowerCAmelCase = getattr(snake_case_ , "model.segmentation.deeplabv3.aspp_out_channels" , 512 ) __lowerCAmelCase = getattr(snake_case_ , "model.segmentation.deeplabv3.aspp_dropout" , 0.1 ) # id2label __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = dct.pop(snake_case_ ) __lowerCAmelCase = val def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=False ): '''simple docstring''' if base_model: __lowerCAmelCase = "" else: __lowerCAmelCase = "mobilevitv2." __lowerCAmelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": __lowerCAmelCase = k[8:] else: __lowerCAmelCase = k if ".block." in k: __lowerCAmelCase = k_new.replace(".block." , "." ) if ".conv." in k: __lowerCAmelCase = k_new.replace(".conv." , ".convolution." ) if ".norm." in k: __lowerCAmelCase = k_new.replace(".norm." , ".normalization." ) if "conv_1." in k: __lowerCAmelCase = k_new.replace("conv_1." , f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: __lowerCAmelCase = k_new.replace(f"layer_{i}." , f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: __lowerCAmelCase = k_new.replace(".exp_1x1." , ".expand_1x1." ) if ".red_1x1." in k: __lowerCAmelCase = k_new.replace(".red_1x1." , ".reduce_1x1." ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: __lowerCAmelCase = k_new.replace(f"layer_{i}.0." , f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: __lowerCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.0." , f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: __lowerCAmelCase = k_new.replace(f"layer_{i}.1.local_rep.1." , f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: __lowerCAmelCase = [0, 1] elif i == 4: __lowerCAmelCase = [0, 1, 2, 3] elif i == 5: __lowerCAmelCase = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: __lowerCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j}." , f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: __lowerCAmelCase = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." , f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: __lowerCAmelCase = k_new.replace(f"layer_{i}.1.conv_proj." , f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: __lowerCAmelCase = k_new.replace("pre_norm_attn.0." , "layernorm_before." ) if "pre_norm_attn.1." in k: __lowerCAmelCase = k_new.replace("pre_norm_attn.1." , "attention." ) if "pre_norm_ffn.0." in k: __lowerCAmelCase = k_new.replace("pre_norm_ffn.0." , "layernorm_after." ) if "pre_norm_ffn.1." in k: __lowerCAmelCase = k_new.replace("pre_norm_ffn.1." , "ffn.conv1." ) if "pre_norm_ffn.3." in k: __lowerCAmelCase = k_new.replace("pre_norm_ffn.3." , "ffn.conv2." ) if "classifier.1." in k: __lowerCAmelCase = k_new.replace("classifier.1." , "classifier." ) if "seg_head." in k: __lowerCAmelCase = k_new.replace("seg_head." , "segmentation_head." ) if ".aspp_layer." in k: __lowerCAmelCase = k_new.replace(".aspp_layer." , "." ) if ".aspp_pool." in k: __lowerCAmelCase = k_new.replace(".aspp_pool." , "." ) rename_keys.append((k, k_new) ) return rename_keys def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] for k in state_dict.keys(): if k.startswith("seg_head.aux_head." ): keys_to_ignore.append(snake_case_ ) for k in keys_to_ignore: state_dict.pop(snake_case_ , snake_case_ ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __lowerCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = get_mobilevitva_config(snake_case_ , snake_case_ ) # load original state_dict __lowerCAmelCase = torch.load(snake_case_ , map_location="cpu" ) # load huggingface model if task_name.startswith("ade20k_" ) or task_name.startswith("voc_" ): __lowerCAmelCase = MobileViTVaForSemanticSegmentation(snake_case_ ).eval() __lowerCAmelCase = False else: __lowerCAmelCase = MobileViTVaForImageClassification(snake_case_ ).eval() __lowerCAmelCase = False # remove and rename some keys of load the original model __lowerCAmelCase = checkpoint remove_unused_keys(snake_case_ ) __lowerCAmelCase = create_rename_keys(snake_case_ , base_model=snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) # load modified state_dict model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by MobileViTImageProcessor __lowerCAmelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) __lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowerCAmelCase = model(**snake_case_ ) # verify classification model if task_name.startswith("imagenet" ): __lowerCAmelCase = outputs.logits __lowerCAmelCase = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("imagenet1k_256" ) and config.width_multiplier == 1.0: # expected_logits for base variant __lowerCAmelCase = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ) assert torch.allclose(logits[0, :3] , snake_case_ , atol=1e-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) A : Optional[Any] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
57
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int ) -> list[list[int]]: __snake_case = [] __snake_case = [] __snake_case = 0 __snake_case = sum(snake_case_ ) create_state_space_tree(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return result def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int , snake_case_ : list[int] , snake_case_ : list[list[int]] , snake_case_ : int , ) -> None: if sum(snake_case_ ) > max_sum or (remaining_nums_sum + sum(snake_case_ )) < max_sum: return if sum(snake_case_ ) == max_sum: result.append(snake_case_ ) return for index in range(snake_case_ , len(snake_case_ ) ): create_state_space_tree( snake_case_ , snake_case_ , index + 1 , [*path, nums[index]] , snake_case_ , remaining_nums_sum - nums[index] , ) snake_case_ = [3, 34, 4, 12, 5, 2] snake_case_ = 9 snake_case_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
24
0
class lowercase__: """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: lowercase_ = n lowercase_ = [None] * self.n lowercase_ = 0 # index of the first element lowercase_ = 0 lowercase_ = 0 def __len__( self : List[str] ) -> List[Any]: return self.size def _lowercase ( self : str ) -> Tuple: return self.size == 0 def _lowercase ( self : Dict ) -> List[str]: return False if self.is_empty() else self.array[self.front] def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Dict: if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) lowercase_ = data lowercase_ = (self.rear + 1) % self.n self.size += 1 return self def _lowercase ( self : str ) -> Union[str, Any]: if self.size == 0: raise Exception('''UNDERFLOW''' ) lowercase_ = self.array[self.front] lowercase_ = None lowercase_ = (self.front + 1) % self.n self.size -= 1 return temp
30
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : List[Any] , a__ : Dict=13 , a__ : str=32 , a__ : Tuple=3 , a__ : Optional[Any]=4 , a__ : Optional[int]=[10, 20, 30, 40] , a__ : List[Any]=[2, 2, 3, 2] , a__ : List[Any]=True , a__ : int=True , a__ : List[Any]=37 , a__ : Any="gelu" , a__ : int=10 , a__ : Dict=0.0_2 , a__ : Dict=["stage2", "stage3", "stage4"] , a__ : Tuple=[2, 3, 4] , a__ : List[str]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = num_stages __snake_case = hidden_sizes __snake_case = depths __snake_case = is_training __snake_case = use_labels __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_labels __snake_case = initializer_range __snake_case = out_features __snake_case = out_indices __snake_case = scope def a (self : Dict ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def a (self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a (self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a (self : Optional[Any] , a__ : List[Any] , a__ : str , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a (self : Tuple , a__ : List[Any] , a__ : List[str] , a__ : List[str] ): """simple docstring""" __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case = None __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Dict = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) A_ : Optional[Any] = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) A_ : Dict = True A_ : Optional[Any] = False A_ : int = False A_ : int = False A_ : List[str] = False def a (self : List[str] ): """simple docstring""" __snake_case = ConvNextModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def a (self : Tuple ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : str ): """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def a (self : List[Any] ): """simple docstring""" pass def a (self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def a (self : Dict ): """simple docstring""" def check_hidden_states_output(a__ : List[str] , a__ : str , a__ : Tuple ): __snake_case = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a__ , a__ ) ) __snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def a (self : Any ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ConvNextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ) -> List[str]: __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def a (self : Tuple ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def a (self : Optional[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(a__ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): __snake_case = model(**a__ ) # verify the logits __snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) __snake_case = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , _UpperCAmelCase ): A_ : Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () A_ : List[Any] = ConvNextConfig A_ : Optional[Any] = False def a (self : Optional[int] ): """simple docstring""" __snake_case = ConvNextModelTester(self )
24
0
from __future__ import annotations def a_ ( _A , _A , _A ) -> dict[str, float]: """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
307
def lowerCamelCase__ ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(snake_case_ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _A ( unittest.TestCase ): def __a ( self : List[Any] ) -> str: """simple docstring""" lowercase : List[str] = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } lowercase : List[str] = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(a__ ) , a__ ) def __a ( self : Dict ) -> Dict: """simple docstring""" lowercase : str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a__ ) , x.transpose() ) ) lowercase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __a ( self : Optional[Any] ) -> int: """simple docstring""" lowercase : List[str] = np.random.randn(3 , 4 ) lowercase : Dict = torch.tensor(a__ ) self.assertTrue(np.allclose(transpose(a__ ) , transpose(a__ ).numpy() ) ) lowercase : int = np.random.randn(3 , 4 , 5 ) lowercase : Union[str, Any] = torch.tensor(a__ ) self.assertTrue(np.allclose(transpose(a__ , axes=(1, 2, 0) ) , transpose(a__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __a ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase : List[Any] = np.random.randn(3 , 4 ) lowercase : List[str] = tf.constant(a__ ) self.assertTrue(np.allclose(transpose(a__ ) , transpose(a__ ).numpy() ) ) lowercase : Dict = np.random.randn(3 , 4 , 5 ) lowercase : Dict = tf.constant(a__ ) self.assertTrue(np.allclose(transpose(a__ , axes=(1, 2, 0) ) , transpose(a__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : str = np.random.randn(3 , 4 ) lowercase : List[str] = jnp.array(a__ ) self.assertTrue(np.allclose(transpose(a__ ) , np.asarray(transpose(a__ ) ) ) ) lowercase : Optional[Any] = np.random.randn(3 , 4 , 5 ) lowercase : str = jnp.array(a__ ) self.assertTrue(np.allclose(transpose(a__ , axes=(1, 2, 0) ) , np.asarray(transpose(a__ , axes=(1, 2, 0) ) ) ) ) def __a ( self : List[str] ) -> str: """simple docstring""" lowercase : Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a__ , (4, 3) ) , np.reshape(a__ , (4, 3) ) ) ) lowercase : List[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a__ , (12, 5) ) , np.reshape(a__ , (12, 5) ) ) ) @require_torch def __a ( self : Dict ) -> Tuple: """simple docstring""" lowercase : Any = np.random.randn(3 , 4 ) lowercase : Any = torch.tensor(a__ ) self.assertTrue(np.allclose(reshape(a__ , (4, 3) ) , reshape(a__ , (4, 3) ).numpy() ) ) lowercase : int = np.random.randn(3 , 4 , 5 ) lowercase : int = torch.tensor(a__ ) self.assertTrue(np.allclose(reshape(a__ , (12, 5) ) , reshape(a__ , (12, 5) ).numpy() ) ) @require_tf def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase : List[Any] = np.random.randn(3 , 4 ) lowercase : int = tf.constant(a__ ) self.assertTrue(np.allclose(reshape(a__ , (4, 3) ) , reshape(a__ , (4, 3) ).numpy() ) ) lowercase : int = np.random.randn(3 , 4 , 5 ) lowercase : Dict = tf.constant(a__ ) self.assertTrue(np.allclose(reshape(a__ , (12, 5) ) , reshape(a__ , (12, 5) ).numpy() ) ) @require_flax def __a ( self : Optional[int] ) -> int: """simple docstring""" lowercase : Union[str, Any] = np.random.randn(3 , 4 ) lowercase : Tuple = jnp.array(a__ ) self.assertTrue(np.allclose(reshape(a__ , (4, 3) ) , np.asarray(reshape(a__ , (4, 3) ) ) ) ) lowercase : List[Any] = np.random.randn(3 , 4 , 5 ) lowercase : Dict = jnp.array(a__ ) self.assertTrue(np.allclose(reshape(a__ , (12, 5) ) , np.asarray(reshape(a__ , (12, 5) ) ) ) ) def __a ( self : Any ) -> Optional[int]: """simple docstring""" lowercase : int = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a__ ) , np.squeeze(a__ ) ) ) lowercase : List[Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a__ , axis=2 ) , np.squeeze(a__ , axis=2 ) ) ) @require_torch def __a ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase : Dict = np.random.randn(1 , 3 , 4 ) lowercase : Any = torch.tensor(a__ ) self.assertTrue(np.allclose(squeeze(a__ ) , squeeze(a__ ).numpy() ) ) lowercase : List[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowercase : List[Any] = torch.tensor(a__ ) self.assertTrue(np.allclose(squeeze(a__ , axis=2 ) , squeeze(a__ , axis=2 ).numpy() ) ) @require_tf def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Tuple = np.random.randn(1 , 3 , 4 ) lowercase : Optional[Any] = tf.constant(a__ ) self.assertTrue(np.allclose(squeeze(a__ ) , squeeze(a__ ).numpy() ) ) lowercase : List[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowercase : int = tf.constant(a__ ) self.assertTrue(np.allclose(squeeze(a__ , axis=2 ) , squeeze(a__ , axis=2 ).numpy() ) ) @require_flax def __a ( self : List[str] ) -> List[str]: """simple docstring""" lowercase : List[Any] = np.random.randn(1 , 3 , 4 ) lowercase : Optional[Any] = jnp.array(a__ ) self.assertTrue(np.allclose(squeeze(a__ ) , np.asarray(squeeze(a__ ) ) ) ) lowercase : List[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowercase : Dict = jnp.array(a__ ) self.assertTrue(np.allclose(squeeze(a__ , axis=2 ) , np.asarray(squeeze(a__ , axis=2 ) ) ) ) def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a__ , axis=1 ) , np.expand_dims(a__ , axis=1 ) ) ) @require_torch def __a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase : Any = np.random.randn(3 , 4 ) lowercase : Union[str, Any] = torch.tensor(a__ ) self.assertTrue(np.allclose(expand_dims(a__ , axis=1 ) , expand_dims(a__ , axis=1 ).numpy() ) ) @require_tf def __a ( self : Any ) -> Any: """simple docstring""" lowercase : Optional[Any] = np.random.randn(3 , 4 ) lowercase : Optional[int] = tf.constant(a__ ) self.assertTrue(np.allclose(expand_dims(a__ , axis=1 ) , expand_dims(a__ , axis=1 ).numpy() ) ) @require_flax def __a ( self : int ) -> Any: """simple docstring""" lowercase : str = np.random.randn(3 , 4 ) lowercase : Optional[Any] = jnp.array(a__ ) self.assertTrue(np.allclose(expand_dims(a__ , axis=1 ) , np.asarray(expand_dims(a__ , axis=1 ) ) ) )
308
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = BartphoTokenizer A_ : List[str] = False A_ : Optional[Any] = True def a (self : Tuple ): """simple docstring""" super().setUp() __snake_case = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def a (self : str , **a__ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a (self : str , a__ : Any ): """simple docstring""" __snake_case = '''This is a là test''' __snake_case = '''This is a<unk><unk> test''' return input_text, output_text def a (self : Dict ): """simple docstring""" __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case = '''This is a là test''' __snake_case = '''▁This ▁is ▁a ▁l à ▁t est'''.split() __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
24
0
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __UpperCAmelCase ( ): import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _UpperCAmelCase : str = "__test_patch_submodule_mock__" with patch_submodule(_test_patching, "os.path.join", snake_case_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __UpperCAmelCase ( ): assert _test_patching.open is open _UpperCAmelCase : Union[str, Any] = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, "open", snake_case_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __UpperCAmelCase ( ): # pandas.read_csv is not present in _test_patching _UpperCAmelCase : str = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching, "pandas.read_csv", snake_case_ ): pass def __UpperCAmelCase ( ): # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point _UpperCAmelCase : Union[str, Any] = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, "len", snake_case_ ) is None with patch_submodule(_test_patching, "len", snake_case_ ): assert _test_patching.len is mock assert _test_patching.len is len def __UpperCAmelCase ( ): _UpperCAmelCase : str = "__test_patch_submodule_start_and_stop_mock__" _UpperCAmelCase : int = patch_submodule(_test_patching, "open", snake_case_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __UpperCAmelCase ( ): from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _UpperCAmelCase : List[Any] = "__test_patch_submodule_successive_join__" _UpperCAmelCase : List[Any] = "__test_patch_submodule_successive_dirname__" _UpperCAmelCase : Union[str, Any] = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, "os.path.join", snake_case_ ): with patch_submodule(_test_patching, "os.rename", snake_case_ ): with patch_submodule(_test_patching, "os.path.dirname", snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, "os.rename", snake_case_ ): with patch_submodule(_test_patching, "os.path.join", snake_case_ ): with patch_submodule(_test_patching, "os.path.dirname", snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __UpperCAmelCase ( ): _UpperCAmelCase : List[str] = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching, "__module_that_doesn_exist__.__attribute_that_doesn_exist__", snake_case_ ): pass with patch_submodule(_test_patching, "os.__attribute_that_doesn_exist__", snake_case_ ): pass
145
def lowerCamelCase__ ( snake_case_ : int ) -> int: if not isinstance(snake_case_ , snake_case_ ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) __snake_case = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
24
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=7, __a=3, __a=18, __a=30, __a=400, __a=True, __a=None, __a=True, __a=None, __a=True, __a=[0.5, 0.5, 0.5], __a=[0.5, 0.5, 0.5], __a=False, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = size if size is not None else {"height": 20, "width": 20} _lowerCAmelCase : int = crop_size if crop_size is not None else {"height": 18, "width": 18} _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : int = min_resolution _lowerCAmelCase : int = max_resolution _lowerCAmelCase : str = do_resize _lowerCAmelCase : str = size _lowerCAmelCase : Tuple = do_center_crop _lowerCAmelCase : Union[str, Any] = crop_size _lowerCAmelCase : Union[str, Any] = do_normalize _lowerCAmelCase : Union[str, Any] = image_mean _lowerCAmelCase : List[Any] = image_std _lowerCAmelCase : Union[str, Any] = do_reduce_labels def snake_case__ ( self): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def A ( ): '''simple docstring''' _lowerCAmelCase : int = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) _lowerCAmelCase : Optional[int] = Image.open(dataset[0]["file"] ) _lowerCAmelCase : Dict = Image.open(dataset[1]["file"] ) return image, map def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) _lowerCAmelCase : List[str] = Image.open(ds[0]["file"] ) _lowerCAmelCase : str = Image.open(ds[1]["file"] ) _lowerCAmelCase : Tuple = Image.open(ds[2]["file"] ) _lowerCAmelCase : Tuple = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase_ ( _UpperCAmelCase , unittest.TestCase): lowerCamelCase__ = BeitImageProcessor if is_vision_available() else None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = BeitImageProcessingTester(self) @property def snake_case__ ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(a__, "do_resize")) self.assertTrue(hasattr(a__, "size")) self.assertTrue(hasattr(a__, "do_center_crop")) self.assertTrue(hasattr(a__, "center_crop")) self.assertTrue(hasattr(a__, "do_normalize")) self.assertTrue(hasattr(a__, "image_mean")) self.assertTrue(hasattr(a__, "image_std")) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 20, "width": 20}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) self.assertEqual(image_processor.do_reduce_labels, a__) _lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict, size=42, crop_size=84, reduce_labels=a__) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84}) self.assertEqual(image_processor.do_reduce_labels, a__) def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=a__) for image in image_inputs: self.assertIsInstance(a__, Image.Image) # Test not batched input _lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched _lowerCAmelCase : str = image_processing(a__, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=a__, numpify=a__) for image in image_inputs: self.assertIsInstance(a__, np.ndarray) # Test not batched input _lowerCAmelCase : str = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched _lowerCAmelCase : int = image_processing(a__, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester, equal_resolution=a__, torchify=a__) for image in image_inputs: self.assertIsInstance(a__, torch.Tensor) # Test not batched input _lowerCAmelCase : Dict = image_processing(image_inputs[0], return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched _lowerCAmelCase : Optional[int] = image_processing(a__, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=a__, torchify=a__) _lowerCAmelCase : List[Any] = [] for image in image_inputs: self.assertIsInstance(a__, torch.Tensor) maps.append(torch.zeros(image.shape[-2:]).long()) # Test not batched input _lowerCAmelCase : str = image_processing(image_inputs[0], maps[0], return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) # Test batched _lowerCAmelCase : Optional[Any] = image_processing(a__, a__, return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) # Test not batched input (PIL images) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = prepare_semantic_single_inputs() _lowerCAmelCase : List[Any] = image_processing(a__, a__, return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) # Test batched input (PIL images) _lowerCAmelCase , _lowerCAmelCase : Tuple = prepare_semantic_batch_inputs() _lowerCAmelCase : List[Any] = image_processing(a__, a__, return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _lowerCAmelCase , _lowerCAmelCase : str = prepare_semantic_single_inputs() _lowerCAmelCase : List[str] = image_processing(a__, a__, return_tensors="pt") self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 150) _lowerCAmelCase : str = True _lowerCAmelCase : str = image_processing(a__, a__, return_tensors="pt") self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255)
36
from math import loga def lowerCamelCase__ ( snake_case_ : int ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(snake_case_ , snake_case_ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
24
0
'''simple docstring''' from __future__ import annotations from typing import Any class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = 0 ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =row, column lowerCamelCase_ =[[default_value for c in range(a__ )] for r in range(a__ )] def __str__( self ): """simple docstring""" lowerCamelCase_ =f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCamelCase_ =0 for row_vector in self.array: for obj in row_vector: lowerCamelCase_ =max(a__, len(str(a__ ) ) ) lowerCamelCase_ =f'''%{max_element_length}s''' # Make string and return def single_line(lowerCAmelCase ) -> str: nonlocal string_format_identifier lowerCamelCase_ ='''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(a__ ) for row_vector in self.array ) return s def __repr__( self ): """simple docstring""" return str(self ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if not (isinstance(a__, (list, tuple) ) and len(a__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, lowerCAmelCase ): """simple docstring""" assert self.validate_indicies(a__ ) return self.array[loc[0]][loc[1]] def __setitem__( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" assert self.validate_indicies(a__ ) lowerCamelCase_ =value def __add__( self, lowerCAmelCase ): """simple docstring""" assert isinstance(a__, a__ ) assert self.row == another.row and self.column == another.column # Add lowerCamelCase_ =Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase_ =self[r, c] + another[r, c] return result def __neg__( self ): """simple docstring""" lowerCamelCase_ =Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase_ =-self[r, c] return result def __sub__( self, lowerCAmelCase ): """simple docstring""" return self + (-another) def __mul__( self, lowerCAmelCase ): """simple docstring""" if isinstance(a__, (int, float) ): # Scalar multiplication lowerCamelCase_ =Matrix(self.row, self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase_ =self[r, c] * another return result elif isinstance(a__, a__ ): # Matrix multiplication assert self.column == another.row lowerCamelCase_ =Matrix(self.row, another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCamelCase_ =f'''Unsupported type given for another ({type(a__ )})''' raise TypeError(a__ ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =Matrix(self.column, self.row ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase_ =self[r, c] return result def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" assert isinstance(a__, a__ ) and isinstance(a__, a__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCamelCase_ =v.transpose() lowerCamelCase_ =(v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ) -> None: """simple docstring""" # a^(-1) lowerCamelCase_ =Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCamelCase_ =1 print(F'''a^(-1) is {ainv}''' ) # u, v lowerCamelCase_ =Matrix(3 , 1 , 0 ) lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =1, 2, -3 lowerCamelCase_ =Matrix(3 , 1 , 0 ) lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(snake_case_ , snake_case_ )}''' ) def a_ ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
75
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[int] , *a__ : Any , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[int] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : Tuple ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : Dict , **a__ : Any ): """simple docstring""" return {}, {}, {} def a (self : List[str] , a__ : Any ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : int , a__ : List[Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
24
0
'''simple docstring''' def UpperCamelCase_ ( A__ : int = 4_00_00_00 ): '''simple docstring''' lowerCAmelCase_ : Tuple = [0, 1] lowerCAmelCase_ : Any = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCAmelCase_ : Any = 0 for j in range(len(snake_case_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
120
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> Any: assert _test_patching.open is open __snake_case = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , snake_case_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> List[str]: # pandas.read_csv is not present in _test_patching __snake_case = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , snake_case_ ): pass def lowerCamelCase__ ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , snake_case_ ) is None with patch_submodule(_test_patching , '''len''' , snake_case_ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = '''__test_patch_submodule_start_and_stop_mock__''' __snake_case = patch_submodule(_test_patching , '''open''' , snake_case_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case = '''__test_patch_submodule_successive_join__''' __snake_case = '''__test_patch_submodule_successive_dirname__''' __snake_case = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> Tuple: __snake_case = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , snake_case_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , snake_case_ ): pass
24
0
from __future__ import annotations def lowerCAmelCase_ (lowerCAmelCase__: list[int | str] ): """simple docstring""" create_state_space_tree(snake_case_ , [] , 0 , [0 for i in range(len(snake_case_ ) )] ) def lowerCAmelCase_ (lowerCAmelCase__: list[int | str] , lowerCAmelCase__: list[int | str] , lowerCAmelCase__: int , lowerCAmelCase__: list[int] , ): """simple docstring""" if index == len(snake_case_ ): print(snake_case_ ) return for i in range(len(snake_case_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCAmelCase_: Optional[int] = True create_state_space_tree(snake_case_ , snake_case_ , index + 1 , snake_case_ ) current_sequence.pop() UpperCAmelCase_: int = False a : Union[str, Any] = [3, 1, 2, 4] generate_all_permutations(sequence) a : Optional[int] = ['A', 'B', 'C'] generate_all_permutations(sequence_a)
147
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) snake_case_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) A_ : Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) A_ : Optional[int] = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Source language id for translation.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Target language id for translation.'} ) A_ : Optional[int] = field(default=_UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} ) A_ : bool = field( default=_UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Dict ) -> str: logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , f"""{split}_results.json""" ) ) def lowerCamelCase__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) __snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __snake_case = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): __snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __snake_case = SeqaSeqDataset # Get datasets __snake_case = ( dataset_class( snake_case_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __snake_case = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) __snake_case = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) __snake_case = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __snake_case = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __snake_case = train_result.metrics __snake_case = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __snake_case = trainer.evaluate(metric_key_prefix='''val''' ) __snake_case = data_args.n_val __snake_case = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __snake_case = trainer.predict(test_dataset=snake_case_ , metric_key_prefix='''test''' ) __snake_case = test_output.metrics __snake_case = data_args.n_test if trainer.is_world_process_zero(): __snake_case = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: __snake_case = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) __snake_case = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def lowerCamelCase__ ( snake_case_ : Optional[Any] ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
24
0
"""simple docstring""" snake_case_ = [ (1000, """M"""), (900, """CM"""), (500, """D"""), (400, """CD"""), (100, """C"""), (90, """XC"""), (50, """L"""), (40, """XL"""), (10, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} UpperCAmelCase = 0 UpperCAmelCase = 0 while place < len(snake_case_ ): if (place + 1 < len(snake_case_ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = [] for arabic, roman in ROMAN: ((UpperCAmelCase) , (UpperCAmelCase)) = divmod(snake_case_ , snake_case_ ) result.append(roman * factor ) if number == 0: break return "".join(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
78
from math import pi def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
24
0
import os from collections.abc import Iterator def lowerCamelCase_ ( _a : str = "." ): '''simple docstring''' for dir_path, dir_names, filenames in os.walk(snake_case_ ): UpperCAmelCase_ : Any = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(snake_case_ )[1] in (".py", ".ipynb"): yield os.path.join(snake_case_ , snake_case_ ).lstrip("""./""" ) def lowerCamelCase_ ( _a : Tuple ): '''simple docstring''' return F'''{i * ' '}*''' if i else "\n##" def lowerCamelCase_ ( _a : str , _a : str ): '''simple docstring''' UpperCAmelCase_ : Dict = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(snake_case_ ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(snake_case_ )} {new_part.replace('_' , ' ' ).title()}''' ) return new_path def lowerCamelCase_ ( _a : str = "." ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """""" for filepath in sorted(good_file_paths(snake_case_ ) ): UpperCAmelCase_ , UpperCAmelCase_ : Tuple = os.path.split(snake_case_ ) if filepath != old_path: UpperCAmelCase_ : Tuple = print_path(snake_case_ , snake_case_ ) UpperCAmelCase_ : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 UpperCAmelCase_ : Any = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) UpperCAmelCase_ : List[str] = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(snake_case_ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('''.''')
345
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = 'vit_msn' def __init__(self : Union[str, Any] , a__ : Optional[Any]=768 , a__ : Optional[Any]=12 , a__ : Optional[int]=12 , a__ : Optional[int]=3072 , a__ : Union[str, Any]="gelu" , a__ : str=0.0 , a__ : int=0.0 , a__ : Optional[Any]=0.0_2 , a__ : List[Any]=1E-06 , a__ : Optional[int]=224 , a__ : str=16 , a__ : Optional[Any]=3 , a__ : int=True , **a__ : List[Any] , ): """simple docstring""" super().__init__(**a__ ) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = qkv_bias
24
0
"""simple docstring""" import argparse import os import re A : str = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict A : List[str] = re.compile(R"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings A : List[Any] = re.compile(R"\s*\(\s*\"(\S[^\"]+)\"") def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase = False ): '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase = content.split("\n" ) __lowerCAmelCase = [] __lowerCAmelCase = 0 while line_idx < len(snake_case_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __lowerCAmelCase = len(re.search(R"^(\s*)\S" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 __lowerCAmelCase = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __lowerCAmelCase = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __lowerCAmelCase = sorted(snake_case_ , key=lambda _UpperCamelCase : _re_identifier.search(snake_case_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(snake_case_ , "w" , encoding="utf-8" ) as f: f.write("\n".join(snake_case_ ) ) elif "\n".join(snake_case_ ) != content: return True def _lowerCamelCase ( _UpperCamelCase = False ): '''simple docstring''' __lowerCAmelCase = [os.path.join(snake_case_ , snake_case_ ) for f in os.listdir(snake_case_ ) if f.endswith(".py" )] __lowerCAmelCase = [sort_auto_mapping(snake_case_ , overwrite=snake_case_ ) for fname in fnames] if not overwrite and any(snake_case_ ): __lowerCAmelCase = [f for f, d in zip(snake_case_ , snake_case_ ) if d] raise ValueError( f"The following files have auto mappings that need sorting: {', '.join(snake_case_ )}. Run `make style` to fix" " this." ) if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") A : Dict = parser.parse_args() sort_all_auto_mappings(not args.check_only)
57
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def a (self : int , a__ : List[Any]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) __snake_case = np.random.RandomState(a__ ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def a (self : List[Any] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) # warmup pass to apply optimizations __snake_case = pipe(**self.get_dummy_inputs() ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Any ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def a (self : List[str] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a (self : Optional[Any] ): """simple docstring""" __snake_case = ort.SessionOptions() __snake_case = False return options def a (self : Optional[Any] ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) # using the PNDM scheduler by default __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def a (self : Dict ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) __snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=a__ , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
24
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __a = trt.Logger(trt.Logger.WARNING) __a = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __a = logging.getLogger(__name__) __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=3_8_4, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=1_2_8, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=2_0, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=3_0, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=4_2, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __a = parser.parse_args() if args.tokenizer_name: __a = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __a = args.per_device_eval_batch_size __a = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __a = True __a = 'temp_engine/bert-fp32.engine' if args.fpaa: __a = 'temp_engine/bert-fp16.engine' if args.inta: __a = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __a = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __a = [network.get_input(i) for i in range(network.num_inputs)] __a = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __a = 1 << 5_0 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __a = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __a = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def a ( snake_case__: str , snake_case__: Dict , snake_case__: Tuple , snake_case__: Any , snake_case__: Tuple , snake_case__: Optional[int] , snake_case__: Optional[int] , snake_case__: Optional[Any] ): '''simple docstring''' lowercase_ = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) lowercase_ = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) lowercase_ = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , snake_case_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , snake_case_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , snake_case_ ) # start time lowercase_ = time.time() # Run inference context.execute_async( bindings=[int(snake_case_ ) for d_inp in d_inputs] + [int(snake_case_ ), int(snake_case_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(snake_case_ , snake_case_ , snake_case_ ) cuda.memcpy_dtoh_async(snake_case_ , snake_case_ , snake_case_ ) # Synchronize the stream and take time stream.synchronize() # end time lowercase_ = time.time() lowercase_ = end_time - start_time lowercase_ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __a = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __a = raw_datasets['validation'].column_names __a = 'question' if 'question' in column_names else column_names[0] __a = 'context' if 'context' in column_names else column_names[1] __a = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __a = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) __a = min(args.max_seq_length, tokenizer.model_max_length) def a ( snake_case__: Dict ): '''simple docstring''' # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace lowercase_ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowercase_ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=snake_case_ , stride=args.doc_stride , return_overflowing_tokens=snake_case_ , return_offsets_mapping=snake_case_ , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowercase_ = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowercase_ = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowercase_ = tokenized_examples.sequence_ids(snake_case_ ) lowercase_ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowercase_ = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowercase_ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples __a = raw_datasets['validation'] # Validation Feature Creation __a = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __a = default_data_collator __a = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __a = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def a ( snake_case__: Tuple , snake_case__: Optional[int] , snake_case__: Optional[int] , snake_case__: Optional[Any]="eval" ): '''simple docstring''' # Post-processing: we match the start logits and end logits to answers in the original context. lowercase_ = postprocess_qa_predictions( examples=snake_case_ , features=snake_case_ , predictions=snake_case_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=snake_case_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowercase_ = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: lowercase_ = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] lowercase_ = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=snake_case_ , label_ids=snake_case_ ) __a = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def a ( snake_case__: int ): '''simple docstring''' return trt.volume(engine.get_binding_shape(snake_case_ ) ) * engine.get_binding_dtype(snake_case_ ).itemsize # Allocate device memory for inputs and outputs. __a = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __a = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __a = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __a = cuda.mem_alloc(h_outputa.nbytes) __a = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __a = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f" Num examples = {len(eval_dataset)}") logger.info(f" Batch size = {args.per_device_eval_batch_size}") __a = 0.0 __a = 0 __a = timeit.default_timer() __a = None for step, batch in enumerate(eval_dataloader): __a , __a = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __a , __a = outputs __a = torch.tensor(start_logits) __a = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __a = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0) __a = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0) __a = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __a = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0) if all_preds is not None: __a = nested_truncate(all_preds, len(eval_dataset)) __a = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0)) logger.info('Total Number of Inference = %d', niter) __a = post_processing_function(eval_examples, eval_dataset, all_preds) __a = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"Evaluation metrics: {eval_metric}")
30
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case_ = logging.getLogger(__name__) @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : str A_ : str A_ : Optional[str] = None A_ : Optional[str] = None A_ : Optional[str] = None @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : List[int] A_ : Optional[List[int]] = None A_ : Optional[List[int]] = None A_ : Optional[Union[int, float]] = None A_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[InputFeatures] def __init__(self : int , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = None , a__ : List[Any]=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = os.path.join( a__ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a__ ) , a__ , ) , ) __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case = cached_features_file + '''.lock''' with FileLock(a__ ): if os.path.exists(a__ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case = torch.load(a__ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case = ( processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) ) logger.info('''Training examples: %s''' , len(a__ ) ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) logger.info('''Saving features into cached file %s''' , a__ ) torch.save(self.features , a__ ) def __len__(self : int ): """simple docstring""" return len(self.features ) def __getitem__(self : Dict , a__ : List[Any] ): """simple docstring""" return self.features[i] def a (self : List[Any] ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ : A_ : List[InputFeatures] def __init__(self : Tuple , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = 128 , a__ : Any=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list __snake_case = processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case = tf.data.Dataset.from_generator( a__ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def a (self : Union[str, Any] ): """simple docstring""" return self.dataset def __len__(self : Dict ): """simple docstring""" return len(self.features ) def __getitem__(self : Any , a__ : Dict ): """simple docstring""" return self.features[i] def a (self : str ): """simple docstring""" return self.label_list class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : Dict , a__ : Dict ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def a (self : Optional[int] , a__ : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def a (self : int ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def a (self : Any , a__ : Optional[int] , a__ : List[Any] ): """simple docstring""" __snake_case = [] for i, line in enumerate(a__ ): if i == 0: continue __snake_case = '''%s-%s''' % (set_type, line[0]) __snake_case = line[5] __snake_case = line[6] __snake_case = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case = line[0] examples.append(InputExample(guid=a__ , text_a=a__ , text_b=a__ , label=a__ , pairID=a__ ) ) return examples def lowerCamelCase__ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> List[str]: __snake_case = {label: i for i, label in enumerate(snake_case_ )} __snake_case = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding='''max_length''' , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) __snake_case = label_map[example.label] if example.label in label_map else 0 __snake_case = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features snake_case_ = { 'hans': 3, } snake_case_ = { 'hans': HansProcessor, }
24
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : int = TypeVar("""DatasetType""", Dataset, IterableDataset) def a_ ( _A , _A = None , _A = None , _A = None , _A = None , _A = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ , (Dataset, IterableDataset) ): if isinstance(snake_case_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' 'is an empty dataset dictionary.' ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(snake_case_ )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case_ ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.''' ) if i == 0: snake_case__ , snake_case__ = ( (Dataset, IterableDataset) if isinstance(snake_case_ , snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ , snake_case_ ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( snake_case_ , snake_case_ , snake_case_ , info=snake_case_ , split=snake_case_ , stopping_strategy=snake_case_ ) else: return _interleave_iterable_datasets( snake_case_ , snake_case_ , snake_case_ , info=snake_case_ , split=snake_case_ , stopping_strategy=snake_case_ ) def a_ ( _A , _A = None , _A = None , _A = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ , (Dataset, IterableDataset) ): if isinstance(snake_case_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' 'is an empty dataset dictionary.' ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(snake_case_ )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case_ ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.''' ) if i == 0: snake_case__ , snake_case__ = ( (Dataset, IterableDataset) if isinstance(snake_case_ , snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ , snake_case_ ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(snake_case_ , info=snake_case_ , split=snake_case_ , axis=snake_case_ ) else: return _concatenate_iterable_datasets(snake_case_ , info=snake_case_ , split=snake_case_ , axis=snake_case_ )
307
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = ['image_processor', 'tokenizer'] A_ : Optional[Any] = 'CLIPImageProcessor' A_ : Any = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self : int , a__ : int=None , a__ : Dict=None , **a__ : List[str] ): """simple docstring""" __snake_case = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) __snake_case = kwargs.pop('''feature_extractor''' ) __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__(self : Any , a__ : Dict=None , a__ : List[str]=None , a__ : Dict=None , **a__ : Tuple ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: __snake_case = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: __snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def a (self : Union[str, Any] , *a__ : int , **a__ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*a__ , **a__ ) def a (self : Any , *a__ : List[Any] , **a__ : List[str] ): """simple docstring""" return self.tokenizer.decode(*a__ , **a__ ) @property def a (self : int ): """simple docstring""" __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
0
import logging import os import threading import time try: import warnings except ImportError: lowerCAmelCase_ = None try: import msvcrt except ImportError: lowerCAmelCase_ = None try: import fcntl except ImportError: lowerCAmelCase_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCAmelCase_ = OSError # Data # ------------------------------------------------ lowerCAmelCase_ = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] lowerCAmelCase_ = '3.0.12' lowerCAmelCase_ = None def snake_case( ) -> Dict: '''simple docstring''' global _logger lowercase : str = _logger or logging.getLogger(__name__ ) return _logger class _A ( _UpperCAmelCase ): def __init__( self : Union[str, Any] , _A : int ) -> Union[str, Any]: """simple docstring""" lowercase : Any = lock_file return None def __str__( self : List[str] ) -> int: """simple docstring""" lowercase : Optional[Any] = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _A : def __init__( self : Union[str, Any] , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : List[Any] = lock return None def __enter__( self : Optional[Any] ) -> Any: """simple docstring""" return self.lock def __exit__( self : List[str] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int] ) -> Optional[int]: """simple docstring""" self.lock.release() return None class _A : def __init__( self : Union[str, Any] , _A : int , _A : str=-1 , _A : Tuple=None ) -> Optional[int]: """simple docstring""" lowercase : int = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long lowercase : Optional[Any] = self.hash_filename_if_too_long(a__ , a__ ) # The path to the lock file. lowercase : Any = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowercase : List[Any] = None # The default timeout value. lowercase : List[Any] = timeout # We use this lock primarily for the lock counter. lowercase : Optional[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowercase : Union[str, Any] = 0 return None @property def __a ( self : Any ) -> Optional[Any]: """simple docstring""" return self._lock_file @property def __a ( self : Dict ) -> List[str]: """simple docstring""" return self._timeout @timeout.setter def __a ( self : Optional[Any] , _A : Optional[Any] ) -> Dict: """simple docstring""" lowercase : Dict = float(a__ ) return None def __a ( self : Optional[int] ) -> Dict: """simple docstring""" raise NotImplementedError() def __a ( self : Optional[int] ) -> List[str]: """simple docstring""" raise NotImplementedError() @property def __a ( self : List[str] ) -> Tuple: """simple docstring""" return self._lock_file_fd is not None def __a ( self : Dict , _A : Any=None , _A : Optional[Any]=0.05 ) -> Tuple: """simple docstring""" if timeout is None: lowercase : Tuple = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowercase : Union[str, Any] = id(self ) lowercase : Any = self._lock_file lowercase : Union[str, Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowercase : List[Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __a ( self : List[Any] , _A : Union[str, Any]=False ) -> Union[str, Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowercase : List[Any] = id(self ) lowercase : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() lowercase : Any = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : Union[str, Any] ) -> Dict: """simple docstring""" self.acquire() return self def __exit__( self : List[Any] , _A : Union[str, Any] , _A : Union[str, Any] , _A : Optional[int] ) -> Any: """simple docstring""" self.release() return None def __del__( self : str ) -> Union[str, Any]: """simple docstring""" self.release(force=a__ ) return None def __a ( self : Dict , _A : str , _A : int ) -> Any: """simple docstring""" lowercase : Optional[int] = os.path.basename(a__ ) if len(a__ ) > max_length and max_length > 0: lowercase : Optional[Any] = os.path.dirname(a__ ) lowercase : Any = str(hash(a__ ) ) lowercase : int = filename[: max_length - len(a__ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a__ , a__ ) else: return path class _A ( _UpperCAmelCase ): def __init__( self : Optional[Any] , _A : List[str] , _A : List[Any]=-1 , _A : Tuple=None ) -> Dict: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(a__ , timeout=a__ , max_filename_length=a__ ) lowercase : str = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def __a ( self : List[str] ) -> List[str]: """simple docstring""" lowercase : int = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowercase : int = os.open(self._lock_file , a__ ) except OSError: pass else: try: msvcrt.locking(a__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a__ ) else: lowercase : Any = fd return None def __a ( self : int ) -> Any: """simple docstring""" lowercase : int = self._lock_file_fd lowercase : Dict = None msvcrt.locking(a__ , msvcrt.LK_UNLCK , 1 ) os.close(a__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _A ( _UpperCAmelCase ): def __init__( self : Union[str, Any] , _A : Any , _A : List[Any]=-1 , _A : Tuple=None ) -> int: """simple docstring""" lowercase : Dict = os.statvfs(os.path.dirname(a__ ) ).f_namemax super().__init__(a__ , timeout=a__ , max_filename_length=a__ ) def __a ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase : Optional[int] = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowercase : str = os.open(self._lock_file , a__ ) try: fcntl.flock(a__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a__ ) else: lowercase : str = fd return None def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase : Any = self._lock_file_fd lowercase : List[str] = None fcntl.flock(a__ , fcntl.LOCK_UN ) os.close(a__ ) return None class _A ( _UpperCAmelCase ): def __a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowercase : Any = os.open(self._lock_file , a__ ) except OSError: pass else: lowercase : Dict = fd return None def __a ( self : Any ) -> Union[str, Any]: """simple docstring""" os.close(self._lock_file_fd ) lowercase : Optional[int] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCAmelCase_ = None if msvcrt: lowerCAmelCase_ = WindowsFileLock elif fcntl: lowerCAmelCase_ = UnixFileLock else: lowerCAmelCase_ = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
308
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Dict ): """simple docstring""" __snake_case = logging.get_logger() # the current default level is logging.WARNING __snake_case = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(a__ ) def a (self : Dict ): """simple docstring""" __snake_case = logging.get_verbosity() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(a__ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def a (self : Dict ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = os.getenv('''TRANSFORMERS_VERBOSITY''' , a__ ) __snake_case = logging.log_levels[env_level_str] __snake_case = logging.get_verbosity() self.assertEqual( a__ , a__ , f"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level __snake_case = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def a (self : List[Any] ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.logging.getLogger() with CaptureLogger(a__ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def a (self : Any ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) def lowerCamelCase__ ( ) -> str: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
24
0
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( a_: str, a_: str, a_: str ): def get_masked_lm_array(a_: str ): _UpperCAmelCase : Any = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCAmelCase : List[str] = tf.train.load_variable(snake_case_, snake_case_ ) if "kernel" in name: _UpperCAmelCase : Optional[Any] = array.transpose() return torch.from_numpy(snake_case_ ) def get_encoder_array(a_: str ): _UpperCAmelCase : Union[str, Any] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCAmelCase : int = tf.train.load_variable(snake_case_, snake_case_ ) if "kernel" in name: _UpperCAmelCase : Dict = array.transpose() return torch.from_numpy(snake_case_ ) def get_encoder_layer_array(a_: int, a_: str ): _UpperCAmelCase : Dict = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCAmelCase : List[Any] = tf.train.load_variable(snake_case_, snake_case_ ) if "kernel" in name: _UpperCAmelCase : Optional[int] = array.transpose() return torch.from_numpy(snake_case_ ) def get_encoder_attention_layer_array(a_: int, a_: str, a_: Any ): _UpperCAmelCase : int = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" _UpperCAmelCase : Dict = tf.train.load_variable(snake_case_, snake_case_ ) _UpperCAmelCase : Dict = array.reshape(snake_case_ ) if "kernel" in name: _UpperCAmelCase : Optional[int] = array.transpose() return torch.from_numpy(snake_case_ ) print(f"""Loading model based on config from {config_path}...""" ) _UpperCAmelCase : List[Any] = BertConfig.from_json_file(snake_case_ ) _UpperCAmelCase : Any = BertForMaskedLM(snake_case_ ) # Layers for layer_index in range(0, config.num_hidden_layers ): _UpperCAmelCase : Optional[Any] = model.bert.encoder.layer[layer_index] # Self-attention _UpperCAmelCase : Optional[Any] = layer.attention.self _UpperCAmelCase : List[str] = get_encoder_attention_layer_array( snake_case_, "_query_dense/kernel", self_attn.query.weight.data.shape ) _UpperCAmelCase : Optional[int] = get_encoder_attention_layer_array( snake_case_, "_query_dense/bias", self_attn.query.bias.data.shape ) _UpperCAmelCase : List[str] = get_encoder_attention_layer_array( snake_case_, "_key_dense/kernel", self_attn.key.weight.data.shape ) _UpperCAmelCase : List[Any] = get_encoder_attention_layer_array( snake_case_, "_key_dense/bias", self_attn.key.bias.data.shape ) _UpperCAmelCase : int = get_encoder_attention_layer_array( snake_case_, "_value_dense/kernel", self_attn.value.weight.data.shape ) _UpperCAmelCase : int = get_encoder_attention_layer_array( snake_case_, "_value_dense/bias", self_attn.value.bias.data.shape ) # Self-attention Output _UpperCAmelCase : Union[str, Any] = layer.attention.output _UpperCAmelCase : Dict = get_encoder_attention_layer_array( snake_case_, "_output_dense/kernel", self_output.dense.weight.data.shape ) _UpperCAmelCase : List[str] = get_encoder_attention_layer_array( snake_case_, "_output_dense/bias", self_output.dense.bias.data.shape ) _UpperCAmelCase : Optional[Any] = get_encoder_layer_array(snake_case_, "_attention_layer_norm/gamma" ) _UpperCAmelCase : str = get_encoder_layer_array(snake_case_, "_attention_layer_norm/beta" ) # Intermediate _UpperCAmelCase : Any = layer.intermediate _UpperCAmelCase : str = get_encoder_layer_array(snake_case_, "_intermediate_dense/kernel" ) _UpperCAmelCase : Any = get_encoder_layer_array(snake_case_, "_intermediate_dense/bias" ) # Output _UpperCAmelCase : Optional[int] = layer.output _UpperCAmelCase : Tuple = get_encoder_layer_array(snake_case_, "_output_dense/kernel" ) _UpperCAmelCase : Any = get_encoder_layer_array(snake_case_, "_output_dense/bias" ) _UpperCAmelCase : Union[str, Any] = get_encoder_layer_array(snake_case_, "_output_layer_norm/gamma" ) _UpperCAmelCase : int = get_encoder_layer_array(snake_case_, "_output_layer_norm/beta" ) # Embeddings _UpperCAmelCase : Optional[Any] = get_encoder_array("_position_embedding_layer/embeddings" ) _UpperCAmelCase : Optional[int] = get_encoder_array("_type_embedding_layer/embeddings" ) _UpperCAmelCase : Optional[int] = get_encoder_array("_embedding_norm_layer/gamma" ) _UpperCAmelCase : Tuple = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head _UpperCAmelCase : Tuple = model.cls.predictions.transform _UpperCAmelCase : Optional[int] = get_masked_lm_array("dense/kernel" ) _UpperCAmelCase : Optional[int] = get_masked_lm_array("dense/bias" ) _UpperCAmelCase : int = get_masked_lm_array("layer_norm/gamma" ) _UpperCAmelCase : int = get_masked_lm_array("layer_norm/beta" ) _UpperCAmelCase : Optional[Any] = get_masked_lm_array("embedding_table" ) # Pooling _UpperCAmelCase : Optional[int] = BertPooler(config=snake_case_ ) _UpperCAmelCase : List[str] = get_encoder_array("_pooler_layer/kernel" ) _UpperCAmelCase : str = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(snake_case_ ) # Integration test - should load without any errors ;) _UpperCAmelCase : Optional[Any] = BertForMaskedLM.from_pretrained(snake_case_ ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) __a = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
145
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[str] = CpmAntTokenizer A_ : Optional[int] = False def a (self : Optional[int] ): """simple docstring""" super().setUp() __snake_case = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def a (self : Dict ): """simple docstring""" __snake_case = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __snake_case = '''今天天气真好!''' __snake_case = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = '''今天天气真好!''' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) __snake_case = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
24
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
36
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : def __init__(self : str , a__ : Dict , a__ : Tuple=None , a__ : List[Any]=None , a__ : Dict=None , a__ : Union[str, Any]="resnet50" , a__ : Dict=3 , a__ : str=32 , a__ : int=3 , a__ : Dict=True , a__ : Any=True , ): """simple docstring""" __snake_case = parent __snake_case = out_indices if out_indices is not None else [4] __snake_case = stage_names __snake_case = out_features __snake_case = backbone __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = use_pretrained_backbone __snake_case = is_training def a (self : Union[str, Any] ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = self.get_config() return config, pixel_values def a (self : Any ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def a (self : List[Any] , a__ : int , a__ : int ): """simple docstring""" __snake_case = TimmBackbone(config=a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(a__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def a (self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () A_ : Optional[Any] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} A_ : List[Any] = False A_ : Dict = False A_ : Any = False A_ : List[Any] = False def a (self : Tuple ): """simple docstring""" __snake_case = TimmBackboneModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def a (self : Any ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : int ): """simple docstring""" __snake_case = '''resnet18''' __snake_case = '''microsoft/resnet-18''' __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ ) __snake_case = AutoBackbone.from_pretrained(a__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ , out_indices=[1, 2, 3] ) __snake_case = AutoBackbone.from_pretrained(a__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def a (self : str ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : Optional[int] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a (self : Tuple ): """simple docstring""" pass def a (self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True __snake_case = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case = self.all_model_classes[0] __snake_case = model_class(a__ ) model.to(a__ ) __snake_case = self._prepare_for_class(a__ , a__ ) __snake_case = model(**a__ ) __snake_case = outputs[0][-1] # Encoder-/Decoder-only models __snake_case = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def a (self : Optional[int] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case = copy.deepcopy(a__ ) __snake_case = None __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case = copy.deepcopy(a__ ) __snake_case = False __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ )
24
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __UpperCamelCase ( datasets.BuilderConfig ): lowercase : Optional[datasets.Features] =None class __UpperCamelCase ( datasets.ArrowBasedBuilder ): lowercase : Optional[int] =PandasConfig def lowercase__ ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowerCamelCase_ =dl_manager.download_and_extract(self.config.data_files ) if isinstance(a__, (str, list, tuple) ): lowerCamelCase_ =data_files if isinstance(a__, a__ ): lowerCamelCase_ =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase_ =[dl_manager.iter_files(a__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'''files''': files} )] lowerCamelCase_ =[] for split_name, files in data_files.items(): if isinstance(a__, a__ ): lowerCamelCase_ =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase_ =[dl_manager.iter_files(a__ ) for file in files] splits.append(datasets.SplitGenerator(name=a__, gen_kwargs={'''files''': files} ) ) return splits def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCamelCase_ =table_cast(a__, self.config.features.arrow_schema ) return pa_table def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" for i, file in enumerate(itertools.chain.from_iterable(a__ ) ): with open(a__, '''rb''' ) as f: lowerCamelCase_ =pa.Table.from_pandas(pd.read_pickle(a__ ) ) yield i, self._cast_table(a__ )
75
import os import pytest from transformers.dynamic_module_utils import get_imports snake_case_ = '\nimport os\n' snake_case_ = '\ndef foo():\n import os\n return False\n' snake_case_ = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' snake_case_ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case_ ) def lowerCamelCase__ ( snake_case_ : str , snake_case_ : Optional[int] ) -> Dict: __snake_case = os.path.join(snake_case_ , '''test_file.py''' ) with open(snake_case_ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case_ ) __snake_case = get_imports(snake_case_ ) assert parsed_imports == ["os"]
24
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( A__ : list[int] ): # This function is recursive '''simple docstring''' lowerCAmelCase_ : Optional[Any] = len(snake_case_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCAmelCase_ : Tuple = array[0] lowerCAmelCase_ : int = False lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : int = [] while not is_found and i < array_length: if array[i] < pivot: lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Tuple = [element for element in array[i:] if element >= array[i]] lowerCAmelCase_ : str = longest_subsequence(snake_case_ ) if len(snake_case_ ) > len(snake_case_ ): lowerCAmelCase_ : Any = temp_array else: i += 1 lowerCAmelCase_ : str = [element for element in array[1:] if element >= pivot] lowerCAmelCase_ : Any = [pivot, *longest_subsequence(snake_case_ )] if len(snake_case_ ) > len(snake_case_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
120
import socket def lowerCamelCase__ ( ) -> Any: __snake_case = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __snake_case = socket.gethostname() __snake_case = 1_2312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: __snake_case = sock.recv(1024 ) if not data: break out_file.write(snake_case_ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
24
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _a ( unittest.TestCase ): def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=18, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=400, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, ) -> List[str]: UpperCAmelCase_: List[Any] = size if size is not None else {"""shortest_edge""": 20} UpperCAmelCase_: Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} UpperCAmelCase_: Optional[int] = parent UpperCAmelCase_: Optional[int] = batch_size UpperCAmelCase_: List[str] = num_channels UpperCAmelCase_: Tuple = image_size UpperCAmelCase_: List[str] = min_resolution UpperCAmelCase_: List[str] = max_resolution UpperCAmelCase_: List[str] = do_resize UpperCAmelCase_: Optional[int] = size UpperCAmelCase_: Tuple = do_center_crop UpperCAmelCase_: List[str] = crop_size UpperCAmelCase_: int = do_flip_channel_order def __snake_case (self ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _a ( _UpperCAmelCase , unittest.TestCase ): A = MobileViTImageProcessor if is_vision_available() else None def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Any = MobileViTImageProcessingTester(self ) @property def __snake_case (self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case (self ) -> str: UpperCAmelCase_: Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__, """do_resize""" ) ) self.assertTrue(hasattr(a__, """size""" ) ) self.assertTrue(hasattr(a__, """do_center_crop""" ) ) self.assertTrue(hasattr(a__, """center_crop""" ) ) self.assertTrue(hasattr(a__, """do_flip_channel_order""" ) ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size, {"""height""": 18, """width""": 18} ) UpperCAmelCase_: Tuple = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size, {"""height""": 84, """width""": 84} ) def __snake_case (self ) -> Dict: pass def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_: List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__, Image.Image ) # Test not batched input UpperCAmelCase_: Any = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ), ) # Test batched UpperCAmelCase_: Tuple = image_processing(a__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ), ) def __snake_case (self ) -> Any: UpperCAmelCase_: Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_: Union[str, Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=a__, numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__, np.ndarray ) # Test not batched input UpperCAmelCase_: Union[str, Any] = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ), ) # Test batched UpperCAmelCase_: Union[str, Any] = image_processing(a__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ), ) def __snake_case (self ) -> Dict: UpperCAmelCase_: Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_: List[Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=a__, torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__, torch.Tensor ) # Test not batched input UpperCAmelCase_: Tuple = image_processing(image_inputs[0], return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ), ) # Test batched UpperCAmelCase_: int = image_processing(a__, return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ), )
147
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] ) -> list[int]: # This function is recursive __snake_case = len(snake_case_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __snake_case = array[0] __snake_case = False __snake_case = 1 __snake_case = [] while not is_found and i < array_length: if array[i] < pivot: __snake_case = True __snake_case = [element for element in array[i:] if element >= array[i]] __snake_case = longest_subsequence(snake_case_ ) if len(snake_case_ ) > len(snake_case_ ): __snake_case = temp_array else: i += 1 __snake_case = [element for element in array[1:] if element >= pivot] __snake_case = [pivot, *longest_subsequence(snake_case_ )] if len(snake_case_ ) > len(snake_case_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case_ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : Union[str, Any] , a__ : int=13 , a__ : int=7 , a__ : Optional[Any]=True , a__ : Optional[int]=True , a__ : Any=True , a__ : str=True , a__ : List[Any]=99 , a__ : Any=24 , a__ : List[str]=2 , a__ : Optional[int]=6 , a__ : int=37 , a__ : List[str]="gelu" , a__ : List[Any]=0.1 , a__ : Optional[int]=0.1 , a__ : Union[str, Any]=512 , a__ : List[str]=16 , a__ : Optional[int]=2 , a__ : Union[str, Any]=0.0_2 , a__ : str=3 , a__ : Optional[Any]=None , a__ : Any=1000 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = scope __snake_case = range_bbox def a (self : Optional[int] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = None if self.use_input_mask: __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def a (self : List[str] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a (self : List[Any] , a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : int , a__ : Optional[int] , a__ : str , a__ : Optional[int] , ): """simple docstring""" __snake_case = LiltModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a (self : Any , a__ : Tuple , a__ : Dict , a__ : Optional[int] , a__ : Dict , a__ : Union[str, Any] , a__ : str , a__ : Tuple , ): """simple docstring""" __snake_case = self.num_labels __snake_case = LiltForTokenClassification(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a (self : int , a__ : Optional[Any] , a__ : int , a__ : int , a__ : Optional[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : str , ): """simple docstring""" __snake_case = LiltForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A_ : Any = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) A_ : Optional[int] = False A_ : List[Any] = False def a (self : Dict , a__ : Tuple , a__ : Tuple , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" return True def a (self : Union[str, Any] ): """simple docstring""" __snake_case = LiltModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def a (self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def a (self : Optional[int] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = LiltModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Tuple ): """simple docstring""" __snake_case = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a__ ) __snake_case = torch.tensor([[1, 2]] , device=a__ ) __snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a__ ) # forward pass with torch.no_grad(): __snake_case = model(input_ids=a__ , bbox=a__ ) __snake_case = torch.Size([1, 2, 768] ) __snake_case = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=a__ , ) self.assertTrue(outputs.last_hidden_state.shape , a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a__ , atol=1E-3 ) )
24
0
def lowerCamelCase_ ( _a : int ): '''simple docstring''' if number > 0: raise ValueError("""input must be a negative integer""" ) UpperCAmelCase_ : Dict = len(bin(snake_case_ )[3:] ) UpperCAmelCase_ : Dict = bin(abs(snake_case_ ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ : Dict = ( ( """1""" + """0""" * (binary_number_length - len(snake_case_ )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
345
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def a (*a__ : List[str] , **a__ : List[str] ): """simple docstring""" pass def lowerCamelCase__ ( snake_case_ : int ) -> Optional[int]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. snake_case_ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): A_ : Optional[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def a (self : List[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model=a__ , tokenizer=a__ , image_processor=a__ ) __snake_case = INVOICE_URL __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) __snake_case = '''What is the placebo?''' __snake_case = [ { '''image''': load_image(a__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def a (self : Union[str, Any] , a__ : Optional[int] , a__ : Dict ): """simple docstring""" __snake_case = dqa_pipeline(a__ , top_k=2 ) self.assertEqual( a__ , [ [ {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, {'''score''': ANY(a__ ), '''answer''': ANY(a__ ), '''start''': ANY(a__ ), '''end''': ANY(a__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def a (self : Dict ): """simple docstring""" __snake_case = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __snake_case = INVOICE_URL __snake_case = '''How many cats are there?''' __snake_case = [ {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0_0_0_1, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , a__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(a__ , [] ) # We can optionnally pass directly the words and bounding boxes __snake_case = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __snake_case = [] __snake_case = [] __snake_case = dqa_pipeline(image=a__ , question=a__ , words=a__ , boxes=a__ , top_k=2 ) self.assertEqual(a__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : str ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_4_4, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_0_0_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def a (self : List[Any] ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_7_4, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9_9_4_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Tuple ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.4_2_5_1, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0_8_1_9, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def a (self : Dict ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=a__ ) __snake_case = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=a__ , revision='''3dc6de3''' , max_seq_len=50 , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __snake_case = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __snake_case = list(zip(*apply_tesseract(load_image(a__ ) , a__ , '''''' ) ) ) # This model should also work if `image` is set to None __snake_case = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_9_9_9, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9_9_9_8, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def a (self : Tuple ): """simple docstring""" __snake_case = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __snake_case = INVOICE_URL __snake_case = '''What is the invoice number?''' __snake_case = dqa_pipeline(image=a__ , question=a__ , top_k=2 ) self.assertEqual(nested_simplify(a__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def a (self : List[str] ): """simple docstring""" pass
24
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer A : Optional[Any] = logging.get_logger(__name__) A : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A : List[str] = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } A : List[str] = { "yjernite/retribert-base-uncased": 5_1_2, } A : Tuple = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _UpperCamelCase ( _UpperCAmelCase ): '''simple docstring''' __UpperCAmelCase : Tuple =VOCAB_FILES_NAMES __UpperCAmelCase : Any =PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Any =PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : Optional[int] =RetriBertTokenizer __UpperCAmelCase : Union[str, Any] =['input_ids', 'attention_mask'] def __init__( self , __a=None , __a=None , __a=True , __a="[UNK]" , __a="[SEP]" , __a="[PAD]" , __a="[CLS]" , __a="[MASK]" , __a=True , __a=None , **__a , ): super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , tokenize_chinese_chars=a__ , strip_accents=a__ , **a__ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , a__ ) != do_lower_case or normalizer_state.get("strip_accents" , a__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , a__ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(a__ , normalizer_state.pop("type" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**a__ ) __lowerCAmelCase = do_lower_case def snake_case ( self , __a , __a=None ): __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self , __a , __a = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self , __a , __a = None ): __lowerCAmelCase = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ )
57
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int ) -> list[list[int]]: __snake_case = [] __snake_case = [] __snake_case = 0 __snake_case = sum(snake_case_ ) create_state_space_tree(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return result def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int , snake_case_ : int , snake_case_ : list[int] , snake_case_ : list[list[int]] , snake_case_ : int , ) -> None: if sum(snake_case_ ) > max_sum or (remaining_nums_sum + sum(snake_case_ )) < max_sum: return if sum(snake_case_ ) == max_sum: result.append(snake_case_ ) return for index in range(snake_case_ , len(snake_case_ ) ): create_state_space_tree( snake_case_ , snake_case_ , index + 1 , [*path, nums[index]] , snake_case_ , remaining_nums_sum - nums[index] , ) snake_case_ = [3, 34, 4, 12, 5, 2] snake_case_ = 9 snake_case_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
24
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase__( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : Optional[Any] ) -> Any: torch.manual_seed(0 ) lowercase_ = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _lowercase ( self : Tuple ) -> Optional[int]: lowercase_ = self.dummy_uncond_unet lowercase_ = PNDMScheduler() lowercase_ = PNDMPipeline(unet=a__ , scheduler=a__ ) pndm.to(a__ ) pndm.set_progress_bar_config(disable=a__ ) lowercase_ = torch.manual_seed(0 ) lowercase_ = pndm(generator=a__ , num_inference_steps=2_0 , output_type='''numpy''' ).images lowercase_ = torch.manual_seed(0 ) lowercase_ = pndm(generator=a__ , num_inference_steps=2_0 , output_type='''numpy''' , return_dict=a__ )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowercase_ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Any ) -> Union[str, Any]: lowercase_ = '''google/ddpm-cifar10-32''' lowercase_ = UNetaDModel.from_pretrained(a__ ) lowercase_ = PNDMScheduler() lowercase_ = PNDMPipeline(unet=a__ , scheduler=a__ ) pndm.to(a__ ) pndm.set_progress_bar_config(disable=a__ ) lowercase_ = torch.manual_seed(0 ) lowercase_ = pndm(generator=a__ , output_type='''numpy''' ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowercase_ = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
30
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : List[Any] , a__ : Dict=13 , a__ : str=32 , a__ : Tuple=3 , a__ : Optional[Any]=4 , a__ : Optional[int]=[10, 20, 30, 40] , a__ : List[Any]=[2, 2, 3, 2] , a__ : List[Any]=True , a__ : int=True , a__ : List[Any]=37 , a__ : Any="gelu" , a__ : int=10 , a__ : Dict=0.0_2 , a__ : Dict=["stage2", "stage3", "stage4"] , a__ : Tuple=[2, 3, 4] , a__ : List[str]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = num_stages __snake_case = hidden_sizes __snake_case = depths __snake_case = is_training __snake_case = use_labels __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_labels __snake_case = initializer_range __snake_case = out_features __snake_case = out_indices __snake_case = scope def a (self : Dict ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def a (self : List[str] ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a (self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a (self : Optional[Any] , a__ : List[Any] , a__ : str , a__ : List[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a (self : Tuple , a__ : List[Any] , a__ : List[str] , a__ : List[str] ): """simple docstring""" __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case = None __snake_case = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Dict = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) A_ : Optional[Any] = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) A_ : Dict = True A_ : Optional[Any] = False A_ : int = False A_ : int = False A_ : List[str] = False def a (self : List[str] ): """simple docstring""" __snake_case = ConvNextModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def a (self : Tuple ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : str ): """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def a (self : List[Any] ): """simple docstring""" pass def a (self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def a (self : Dict ): """simple docstring""" def check_hidden_states_output(a__ : List[str] , a__ : str , a__ : Tuple ): __snake_case = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(a__ , a__ ) ) __snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(a__ , a__ , a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def a (self : Any ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = ConvNextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ) -> List[str]: __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def a (self : Tuple ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def a (self : Optional[Any] ): """simple docstring""" __snake_case = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(a__ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): __snake_case = model(**a__ ) # verify the logits __snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) __snake_case = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , _UpperCAmelCase ): A_ : Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () A_ : List[Any] = ConvNextConfig A_ : Optional[Any] = False def a (self : Optional[int] ): """simple docstring""" __snake_case = ConvNextModelTester(self )
24
0
def a_ ( _A=28123 ) -> int: """simple docstring""" snake_case__ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i snake_case__ = set() snake_case__ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(snake_case_ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
307
def lowerCamelCase__ ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(snake_case_ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _A ( _UpperCAmelCase ): _UpperCamelCase : List[Any] = 'pegasus' _UpperCamelCase : Union[str, Any] = ['past_key_values'] _UpperCamelCase : Optional[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Any , _A : Optional[int]=50_265 , _A : int=1_024 , _A : List[str]=12 , _A : List[Any]=4_096 , _A : List[str]=16 , _A : Any=12 , _A : Union[str, Any]=4_096 , _A : Tuple=16 , _A : Optional[Any]=0.0 , _A : Any=0.0 , _A : List[str]=True , _A : Optional[int]=True , _A : Union[str, Any]="gelu" , _A : List[str]=1_024 , _A : int=0.1 , _A : List[str]=0.0 , _A : int=0.0 , _A : Optional[Any]=0.02 , _A : Optional[int]=0 , _A : Tuple=False , _A : List[Any]=0 , _A : Any=1 , _A : List[Any]=1 , **_A : List[Any] , ) -> Tuple: """simple docstring""" lowercase : str = vocab_size lowercase : Optional[Any] = max_position_embeddings lowercase : Optional[Any] = d_model lowercase : Optional[Any] = encoder_ffn_dim lowercase : Optional[int] = encoder_layers lowercase : str = encoder_attention_heads lowercase : Any = decoder_ffn_dim lowercase : str = decoder_layers lowercase : Optional[int] = decoder_attention_heads lowercase : Dict = dropout lowercase : Tuple = attention_dropout lowercase : Union[str, Any] = activation_dropout lowercase : Dict = activation_function lowercase : Any = init_std lowercase : Optional[Any] = encoder_layerdrop lowercase : Any = decoder_layerdrop lowercase : Any = use_cache lowercase : Optional[Any] = encoder_layers lowercase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , forced_eos_token_id=a__ , **a__ , ) @property def __a ( self : Any ) -> Tuple: """simple docstring""" return self.encoder_attention_heads @property def __a ( self : Tuple ) -> Optional[Any]: """simple docstring""" return self.d_model
308
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = BartphoTokenizer A_ : List[str] = False A_ : Optional[Any] = True def a (self : Tuple ): """simple docstring""" super().setUp() __snake_case = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def a (self : str , **a__ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a (self : str , a__ : Any ): """simple docstring""" __snake_case = '''This is a là test''' __snake_case = '''This is a<unk><unk> test''' return input_text, output_text def a (self : Dict ): """simple docstring""" __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case = '''This is a là test''' __snake_case = '''▁This ▁is ▁a ▁l à ▁t est'''.split() __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
24
0
'''simple docstring''' import argparse from collections import defaultdict def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Optional[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Tuple = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(snake_case_, "r" ) as f: _UpperCAmelCase : str = f.readlines() _UpperCAmelCase : Any = f"""class {class_name}(""" _UpperCAmelCase : Any = f"""{4 * ' '}def {test_name}(""" _UpperCAmelCase : Dict = f"""{8 * ' '}{correct_line.split()[0]}""" _UpperCAmelCase : Union[str, Any] = f"""{16 * ' '}{correct_line.split()[0]}""" _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Any = False _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Any = 0 _UpperCAmelCase : Tuple = [] for line in lines: if line.startswith(snake_case_ ): _UpperCAmelCase : Union[str, Any] = True elif in_class and line.startswith(snake_case_ ): _UpperCAmelCase : Optional[int] = True elif in_class and in_func and (line.startswith(snake_case_ ) or line.startswith(snake_case_ )): _UpperCAmelCase : List[Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _UpperCAmelCase : Optional[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: _UpperCAmelCase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * ' '}{correct_line}""" ) _UpperCAmelCase : Dict = False else: new_lines.append(snake_case_ ) with open(snake_case_, "w" ) as f: for line in new_lines: f.write(snake_case_ ) def __UpperCAmelCase ( a_: Dict, a_: List[str]=None ): if fail is not None: with open(snake_case_, "r" ) as f: _UpperCAmelCase : List[Any] = {l.strip() for l in f.readlines()} else: _UpperCAmelCase : List[Any] = None with open(snake_case_, "r" ) as f: _UpperCAmelCase : Any = f.readlines() _UpperCAmelCase : Optional[Any] = defaultdict(snake_case_ ) for line in correct_lines: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __a = parser.parse_args() main(args.correct_filename, args.fail_filename)
145
def lowerCamelCase__ ( snake_case_ : int ) -> int: if not isinstance(snake_case_ , snake_case_ ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) __snake_case = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
24
0
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 0 while b > 0: if b & 1: _lowerCAmelCase : Optional[int] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
36
from math import loga def lowerCamelCase__ ( snake_case_ : int ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(snake_case_ , snake_case_ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
24
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split a_ : Union[str, Any] = datasets.load_iris() a_ : Union[str, Any] = np.array(data["""data"""]) a_ : Any = np.array(data["""target"""]) a_ : List[str] = data["""target_names"""] a_ , a_ , a_ , a_ : str = train_test_split(X, y) def a_ ( __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> Dict: """simple docstring""" return np.linalg.norm(np.array(snake_case_ ) - np.array(snake_case_ ) ) def a_ ( __snake_case : int , __snake_case : str , __snake_case : str , __snake_case : Optional[int] , __snake_case : str=5 ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =zip(snake_case_ , snake_case_ ) # List of distances of all points from the point to be classified lowerCamelCase_ =[] for data_point in data: lowerCamelCase_ =euclidean_distance(data_point[0] , snake_case_ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowerCamelCase_ =[i[1] for i in sorted(snake_case_ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowerCamelCase_ =Counter(snake_case_ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
75
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[int] , *a__ : Any , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[int] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : Tuple ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : Dict , **a__ : Any ): """simple docstring""" return {}, {}, {} def a (self : List[str] , a__ : Any ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : int , a__ : List[Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
24
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def UpperCamelCase_ ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(snake_case_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def UpperCamelCase_ ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def UpperCamelCase_ ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(snake_case_ ): http_head("""https://huggingface.co""" )
120
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> Any: assert _test_patching.open is open __snake_case = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , snake_case_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> List[str]: # pandas.read_csv is not present in _test_patching __snake_case = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , snake_case_ ): pass def lowerCamelCase__ ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , snake_case_ ) is None with patch_submodule(_test_patching , '''len''' , snake_case_ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = '''__test_patch_submodule_start_and_stop_mock__''' __snake_case = patch_submodule(_test_patching , '''open''' , snake_case_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case = '''__test_patch_submodule_successive_join__''' __snake_case = '''__test_patch_submodule_successive_dirname__''' __snake_case = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> Tuple: __snake_case = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , snake_case_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , snake_case_ ): pass
24
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys a : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
147
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) snake_case_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) A_ : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class SCREAMING_SNAKE_CASE__ : A_ : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) A_ : Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) A_ : Optional[int] = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) A_ : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) A_ : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Source language id for translation.'} ) A_ : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Target language id for translation.'} ) A_ : Optional[int] = field(default=_UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} ) A_ : bool = field( default=_UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Dict ) -> str: logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(snake_case_ , os.path.join(snake_case_ , f"""{split}_results.json""" ) ) def lowerCamelCase__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() check_output_dir(snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , snake_case_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): assert hasattr(snake_case_ , snake_case_ ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) __snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __snake_case = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=snake_case_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __snake_case = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case_ , snake_case_ ): __snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __snake_case = SeqaSeqDataset # Get datasets __snake_case = ( dataset_class( snake_case_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __snake_case = ( dataset_class( snake_case_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __snake_case = ( build_compute_metrics_fn(data_args.task , snake_case_ ) if training_args.predict_with_generate else None ) __snake_case = SeqaSeqTrainer( model=snake_case_ , args=snake_case_ , data_args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , data_collator=SeqaSeqDataCollator( snake_case_ , snake_case_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case_ , tokenizer=snake_case_ , ) __snake_case = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __snake_case = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __snake_case = train_result.metrics __snake_case = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __snake_case = trainer.evaluate(metric_key_prefix='''val''' ) __snake_case = data_args.n_val __snake_case = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __snake_case = trainer.predict(test_dataset=snake_case_ , metric_key_prefix='''test''' ) __snake_case = test_output.metrics __snake_case = data_args.n_test if trainer.is_world_process_zero(): __snake_case = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , snake_case_ , training_args.output_dir ) all_metrics.update(snake_case_ ) if training_args.predict_with_generate: __snake_case = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) __snake_case = lmap(str.strip , snake_case_ ) write_txt_file(snake_case_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(snake_case_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def lowerCamelCase__ ( snake_case_ : Optional[Any] ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
24
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _lowerCAmelCase ( ): print('Making key files...' ) make_key_files('rsa' , 1024 ) print('Key files generation successful.' ) def _lowerCAmelCase ( lowercase_ ): print('Generating prime p...' ) UpperCAmelCase = rabinMiller.generate_large_prime(snake_case_ ) print('Generating prime q...' ) UpperCAmelCase = rabinMiller.generate_large_prime(snake_case_ ) UpperCAmelCase = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: UpperCAmelCase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(snake_case_ , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) UpperCAmelCase = cryptoMath.find_mod_inverse(snake_case_ , (p - 1) * (q - 1) ) UpperCAmelCase = (n, e) UpperCAmelCase = (n, d) return (public_key, private_key) def _lowerCAmelCase ( lowercase_ , lowercase_ ): if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() UpperCAmelCase , UpperCAmelCase = generate_key(snake_case_ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
78
from math import pi def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
24
0
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase_ = { '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } UpperCamelCase_ = { '''Salesforce/codegen-350M-mono''': 2048, } class _snake_case ( _UpperCAmelCase ): '''simple docstring''' A__ : Dict = VOCAB_FILES_NAMES A__ : int = PRETRAINED_VOCAB_FILES_MAP A__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] = ['input_ids', 'attention_mask'] A__ : Any = CodeGenTokenizer def __init__( self: Optional[int] ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=None ,lowerCamelCase_: Optional[int]=None ,lowerCamelCase_: Tuple="<|endoftext|>" ,lowerCamelCase_: Tuple="<|endoftext|>" ,lowerCamelCase_: Any="<|endoftext|>" ,lowerCamelCase_: Any=False ,**lowerCamelCase_: Dict ,) -> List[Any]: super().__init__( a__ ,a__ ,tokenizer_file=a__ ,unk_token=a__ ,bos_token=a__ ,eos_token=a__ ,add_prefix_space=a__ ,**a__ ,) if kwargs.pop("""add_bos_token""" ,a__ ): UpperCAmelCase_ : Union[str, Any] = kwargs.pop("""name_or_path""" ,"""""" ) raise ValueError( """Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n""" F'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' F'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) UpperCAmelCase_ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" ,a__ ) != add_prefix_space: UpperCAmelCase_ : Union[str, Any] = getattr(a__ ,pre_tok_state.pop("""type""" ) ) UpperCAmelCase_ : str = add_prefix_space UpperCAmelCase_ : Optional[Any] = pre_tok_class(**a__ ) UpperCAmelCase_ : Optional[Any] = add_prefix_space def A__ ( self: Tuple ,*lowerCamelCase_: Any ,**lowerCamelCase_: Optional[int] ) -> str: UpperCAmelCase_ : int = kwargs.get("""is_split_into_words""" ,a__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a__ ,**a__ ) def A__ ( self: Optional[int] ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[Any] ) -> str: UpperCAmelCase_ : List[Any] = kwargs.get("""is_split_into_words""" ,a__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*a__ ,**a__ ) def A__ ( self: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[str] = None ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(a__ ,name=a__ ) return tuple(a__ ) def A__ ( self: Dict ,lowerCamelCase_: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] ,lowerCamelCase_: bool = False ,lowerCamelCase_: bool = None ,lowerCamelCase_: Optional[List[str]] = None ,**lowerCamelCase_: List[str] ,) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = super().decode( token_ids=a__ ,skip_special_tokens=a__ ,clean_up_tokenization_spaces=a__ ,**a__ ,) if truncate_before_pattern is not None and len(a__ ) > 0: UpperCAmelCase_ : Any = self.truncate(a__ ,a__ ) return decoded_text def A__ ( self: Any ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ) -> List[str]: def find_re(lowerCamelCase_: str ,lowerCamelCase_: Any ,lowerCamelCase_: Any ): UpperCAmelCase_ : Tuple = pattern.search(a__ ,a__ ) return m.start() if m else -1 UpperCAmelCase_ : str = [re.compile(a__ ,re.MULTILINE ) for pattern in truncate_before_pattern] UpperCAmelCase_ : Union[str, Any] = list(re.finditer("""^print""" ,a__ ,re.MULTILINE ) ) if len(a__ ) > 1: UpperCAmelCase_ : List[Any] = completion[: prints[1].start()] UpperCAmelCase_ : Optional[Any] = list(re.finditer("""^def""" ,a__ ,re.MULTILINE ) ) if len(a__ ) > 1: UpperCAmelCase_ : Any = completion[: defs[1].start()] UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : List[Any] = [ pos for pos in [find_re(a__ ,a__ ,a__ ) for terminal in terminals] if pos != -1 ] if len(a__ ) > 0: return completion[: min(a__ )] else: return completion
345
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = 'vit_msn' def __init__(self : Union[str, Any] , a__ : Optional[Any]=768 , a__ : Optional[Any]=12 , a__ : Optional[int]=12 , a__ : Optional[int]=3072 , a__ : Union[str, Any]="gelu" , a__ : str=0.0 , a__ : int=0.0 , a__ : Optional[Any]=0.0_2 , a__ : List[Any]=1E-06 , a__ : Optional[int]=224 , a__ : str=16 , a__ : Optional[Any]=3 , a__ : int=True , **a__ : List[Any] , ): """simple docstring""" super().__init__(**a__ ) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = qkv_bias
24
0
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename A : Optional[Any] = "http://www.mocksite.com/file1.txt" A : Optional[Any] = "\"text\": [\"foo\", \"foo\"]" A : List[str] = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : Optional[Any] =2_0_0 __UpperCAmelCase : List[str] ={'Content-Length': '100'} __UpperCAmelCase : int ={} def snake_case ( self , **__a ): return [bytes(a__ , "utf-8" )] def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): '''simple docstring''' return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' import requests monkeypatch.setattr(snake_case_ , "request" , snake_case_ ) __lowerCAmelCase = URL if issubclass(snake_case_ , snake_case_ ): __lowerCAmelCase = url elif issubclass(snake_case_ , snake_case_ ): __lowerCAmelCase = [url] elif issubclass(snake_case_ , snake_case_ ): __lowerCAmelCase = {"train": url} __lowerCAmelCase = "dummy" __lowerCAmelCase = "downloads" __lowerCAmelCase = tmp_path __lowerCAmelCase = DownloadConfig( cache_dir=os.path.join(snake_case_ , snake_case_ ) , use_etag=snake_case_ , ) __lowerCAmelCase = DownloadManager(dataset_name=snake_case_ , download_config=snake_case_ ) __lowerCAmelCase = dl_manager.download(snake_case_ ) __lowerCAmelCase = urls for downloaded_paths in [downloaded_paths]: if isinstance(snake_case_ , snake_case_ ): __lowerCAmelCase = [downloaded_paths] __lowerCAmelCase = [urls] elif isinstance(snake_case_ , snake_case_ ): assert "train" in downloaded_paths.keys() __lowerCAmelCase = downloaded_paths.values() __lowerCAmelCase = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(snake_case_ , snake_case_ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __lowerCAmelCase = Path(snake_case_ ) __lowerCAmelCase = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __lowerCAmelCase = downloaded_path.read_text() assert content == CONTENT __lowerCAmelCase = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() __lowerCAmelCase = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = str(snake_case_ ) if issubclass(snake_case_ , snake_case_ ): __lowerCAmelCase = filename elif issubclass(snake_case_ , snake_case_ ): __lowerCAmelCase = [filename] elif issubclass(snake_case_ , snake_case_ ): __lowerCAmelCase = {"train": filename} __lowerCAmelCase = "dummy" __lowerCAmelCase = xz_file.parent __lowerCAmelCase = "extracted" __lowerCAmelCase = DownloadConfig( cache_dir=snake_case_ , use_etag=snake_case_ , ) __lowerCAmelCase = DownloadManager(dataset_name=snake_case_ , download_config=snake_case_ ) __lowerCAmelCase = dl_manager.extract(snake_case_ ) __lowerCAmelCase = paths for extracted_paths in [extracted_paths]: if isinstance(snake_case_ , snake_case_ ): __lowerCAmelCase = [extracted_paths] __lowerCAmelCase = [paths] elif isinstance(snake_case_ , snake_case_ ): assert "train" in extracted_paths.keys() __lowerCAmelCase = extracted_paths.values() __lowerCAmelCase = paths.values() assert extracted_paths for extracted_path, input_path in zip(snake_case_ , snake_case_ ): assert extracted_path == dl_manager.extracted_paths[input_path] __lowerCAmelCase = Path(snake_case_ ) __lowerCAmelCase = extracted_path.parts assert parts[-1] == hash_url_to_filename(snake_case_ , etag=snake_case_ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __lowerCAmelCase = extracted_path.read_text() __lowerCAmelCase = text_file.read_text() assert extracted_file_content == expected_file_content def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert path.endswith(".jsonl" ) for num_items, line in enumerate(snake_case_ , start=1 ): __lowerCAmelCase = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = request.getfixturevalue(snake_case_ ) __lowerCAmelCase = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(snake_case_ ) , start=1 ): _test_jsonl(snake_case_ , snake_case_ ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = request.getfixturevalue(snake_case_ ) __lowerCAmelCase = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(snake_case_ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(snake_case_ ) , start=1 ): _test_jsonl(snake_case_ , snake_case_ ) assert num_tar == 1 assert num_jsonl == 2 def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(snake_case_ ) , start=1 ): assert os.path.basename(snake_case_ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
57
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def a (self : int , a__ : List[Any]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) __snake_case = np.random.RandomState(a__ ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def a (self : List[Any] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) # warmup pass to apply optimizations __snake_case = pipe(**self.get_dummy_inputs() ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Any ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : Dict ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def a (self : List[str] ): """simple docstring""" __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = self.get_dummy_inputs() __snake_case = pipe(**a__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def a (self : List[str] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a (self : Optional[Any] ): """simple docstring""" __snake_case = ort.SessionOptions() __snake_case = False return options def a (self : Optional[Any] ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) # using the PNDM scheduler by default __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def a (self : Dict ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) __snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=a__ , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A fantasy landscape, trending on artstation''' __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=a__ , image=a__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type='''np''' , ) __snake_case = output.images __snake_case = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __snake_case = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
24
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def a ( snake_case__: str = "" ): '''simple docstring''' lowercase_ = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' lowercase_ = BeautifulSoup(requests.get(snake_case_ ).text , '''html.parser''' ) lowercase_ = soup.find_all('''td''' , attrs='''titleColumn''' ) lowercase_ = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(snake_case_ , snake_case_ ) } def a ( snake_case__: str = "IMDb_Top_250_Movies.csv" ): '''simple docstring''' lowercase_ = get_imdb_top_aaa_movies() with open(snake_case_ , '''w''' , newline='''''' ) as out_file: lowercase_ = csv.writer(snake_case_ ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
30
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) snake_case_ = logging.getLogger(__name__) @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : str A_ : str A_ : Optional[str] = None A_ : Optional[str] = None A_ : Optional[str] = None @dataclass(frozen=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : A_ : List[int] A_ : Optional[List[int]] = None A_ : Optional[List[int]] = None A_ : Optional[Union[int, float]] = None A_ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[InputFeatures] def __init__(self : int , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = None , a__ : List[Any]=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = os.path.join( a__ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a__ ) , a__ , ) , ) __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case = cached_features_file + '''.lock''' with FileLock(a__ ): if os.path.exists(a__ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case = torch.load(a__ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case = ( processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) ) logger.info('''Training examples: %s''' , len(a__ ) ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) logger.info('''Saving features into cached file %s''' , a__ ) torch.save(self.features , a__ ) def __len__(self : int ): """simple docstring""" return len(self.features ) def __getitem__(self : Dict , a__ : List[Any] ): """simple docstring""" return self.features[i] def a (self : List[Any] ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ : A_ : List[InputFeatures] def __init__(self : Tuple , a__ : str , a__ : PreTrainedTokenizer , a__ : str , a__ : Optional[int] = 128 , a__ : Any=False , a__ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list __snake_case = processor.get_dev_examples(a__ ) if evaluate else processor.get_train_examples(a__ ) __snake_case = hans_convert_examples_to_features(a__ , a__ , a__ , a__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case = tf.data.Dataset.from_generator( a__ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def a (self : Union[str, Any] ): """simple docstring""" return self.dataset def __len__(self : Dict ): """simple docstring""" return len(self.features ) def __getitem__(self : Any , a__ : Dict ): """simple docstring""" return self.features[i] def a (self : str ): """simple docstring""" return self.label_list class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : Dict , a__ : Dict ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def a (self : Optional[int] , a__ : Tuple ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a__ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def a (self : int ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def a (self : Any , a__ : Optional[int] , a__ : List[Any] ): """simple docstring""" __snake_case = [] for i, line in enumerate(a__ ): if i == 0: continue __snake_case = '''%s-%s''' % (set_type, line[0]) __snake_case = line[5] __snake_case = line[6] __snake_case = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case = line[0] examples.append(InputExample(guid=a__ , text_a=a__ , text_b=a__ , label=a__ , pairID=a__ ) ) return examples def lowerCamelCase__ ( snake_case_ : List[InputExample] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : PreTrainedTokenizer , ) -> List[str]: __snake_case = {label: i for i, label in enumerate(snake_case_ )} __snake_case = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case = tokenizer( example.text_a , example.text_b , add_special_tokens=snake_case_ , max_length=snake_case_ , padding='''max_length''' , truncation=snake_case_ , return_overflowing_tokens=snake_case_ , ) __snake_case = label_map[example.label] if example.label in label_map else 0 __snake_case = int(example.pairID ) features.append(InputFeatures(**snake_case_ , label=snake_case_ , pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features snake_case_ = { 'hans': 3, } snake_case_ = { 'hans': HansProcessor, }
24
0
def a_ ( _A , _A ) -> bool: """simple docstring""" snake_case__ = len(snake_case_ ) + 1 snake_case__ = len(snake_case_ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. snake_case__ = [[0 for i in range(snake_case_ )] for j in range(snake_case_ )] # since string of zero length match pattern of zero length snake_case__ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , snake_case_ ): snake_case__ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , snake_case_ ): snake_case__ = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , snake_case_ ): for j in range(1 , snake_case_ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": snake_case__ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: snake_case__ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): snake_case__ = dp[i - 1][j] else: snake_case__ = 0 else: snake_case__ = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __UpperCamelCase : Optional[int] = """aab""" __UpperCamelCase : List[str] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
307
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = ['image_processor', 'tokenizer'] A_ : Optional[Any] = 'CLIPImageProcessor' A_ : Any = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self : int , a__ : int=None , a__ : Dict=None , **a__ : List[str] ): """simple docstring""" __snake_case = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) __snake_case = kwargs.pop('''feature_extractor''' ) __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__(self : Any , a__ : Dict=None , a__ : List[str]=None , a__ : Dict=None , **a__ : Tuple ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: __snake_case = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: __snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def a (self : Union[str, Any] , *a__ : int , **a__ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*a__ , **a__ ) def a (self : Any , *a__ : List[Any] , **a__ : List[str] ): """simple docstring""" return self.tokenizer.decode(*a__ , **a__ ) @property def a (self : int ): """simple docstring""" __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
0
from __future__ import annotations def snake_case( __magic_name__ , __magic_name__ ) -> list[list[int]]: '''simple docstring''' lowercase : Union[str, Any] = [] lowercase : Tuple = [] lowercase : Union[str, Any] = 0 lowercase : List[str] = sum(snake_case_ ) create_state_space_tree(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return result def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> None: '''simple docstring''' if sum(snake_case_ ) > max_sum or (remaining_nums_sum + sum(snake_case_ )) < max_sum: return if sum(snake_case_ ) == max_sum: result.append(snake_case_ ) return for index in range(snake_case_ , len(snake_case_ ) ): create_state_space_tree( snake_case_ , snake_case_ , index + 1 , [*path, nums[index]] , snake_case_ , remaining_nums_sum - nums[index] , ) lowerCAmelCase_ = [3, 34, 4, 12, 5, 2] lowerCAmelCase_ = 9 lowerCAmelCase_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
308
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Dict ): """simple docstring""" __snake_case = logging.get_logger() # the current default level is logging.WARNING __snake_case = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(a__ ) def a (self : Dict ): """simple docstring""" __snake_case = logging.get_verbosity() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(a__ ) as cl: logger.warning(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(a__ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def a (self : Dict ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = os.getenv('''TRANSFORMERS_VERBOSITY''' , a__ ) __snake_case = logging.log_levels[env_level_str] __snake_case = logging.get_verbosity() self.assertEqual( a__ , a__ , f"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level __snake_case = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def a (self : List[Any] ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.logging.getLogger() with CaptureLogger(a__ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def a (self : Any ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(a__ ) as cl: logger.warning_advice(a__ ) self.assertEqual(cl.out , msg + '''\n''' ) def lowerCamelCase__ ( ) -> str: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
24
0
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __a = 'src/transformers' __a = 'docs/source/en/tasks' def __UpperCAmelCase ( a_: Union[str, Any], a_: List[Any], a_: Any ): with open(snake_case_, "r", encoding="utf-8", newline="\n" ) as f: _UpperCAmelCase : int = f.readlines() # Find the start prompt. _UpperCAmelCase : Any = 0 while not lines[start_index].startswith(snake_case_ ): start_index += 1 start_index += 1 _UpperCAmelCase : Optional[Any] = start_index while not lines[end_index].startswith(snake_case_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __a = direct_transformers_import(TRANSFORMERS_PATH) __a = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __a = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[int] = TASK_GUIDE_TO_MODELS[task_guide] _UpperCAmelCase : Optional[Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case_, set() ) _UpperCAmelCase : List[str] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def __UpperCAmelCase ( a_: int, a_: Optional[int]=False ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = _find_text_in_file( filename=os.path.join(snake_case_, snake_case_ ), start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->", end_prompt="<!--End of the generated tip-->", ) _UpperCAmelCase : List[str] = get_model_list_for_task(snake_case_ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case_, snake_case_ ), "w", encoding="utf-8", newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" " to fix this." ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __a = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
145
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[str] = CpmAntTokenizer A_ : Optional[int] = False def a (self : Optional[int] ): """simple docstring""" super().setUp() __snake_case = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def a (self : Dict ): """simple docstring""" __snake_case = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __snake_case = '''今天天气真好!''' __snake_case = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = '''今天天气真好!''' __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) __snake_case = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
24
0
from manim import * class UpperCAmelCase_ ( _UpperCAmelCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = Rectangle(height=0.5, width=0.5) _lowerCAmelCase : Dict = Rectangle(height=0.25, width=0.25) _lowerCAmelCase : Optional[Any] = Rectangle(height=0.46, width=0.46).set_stroke(width=0) _lowerCAmelCase : Optional[int] = [mem.copy() for i in range(6)] _lowerCAmelCase : Optional[Any] = [mem.copy() for i in range(6)] _lowerCAmelCase : str = VGroup(*a__).arrange(a__, buff=0) _lowerCAmelCase : List[Any] = VGroup(*a__).arrange(a__, buff=0) _lowerCAmelCase : Union[str, Any] = VGroup(a__, a__).arrange(a__, buff=0) _lowerCAmelCase : Tuple = Text("CPU", font_size=24) _lowerCAmelCase : Optional[Any] = Group(a__, a__).arrange(a__, buff=0.5, aligned_edge=a__) cpu.move_to([-2.5, -0.5, 0]) self.add(a__) _lowerCAmelCase : Optional[Any] = [mem.copy() for i in range(4)] _lowerCAmelCase : Tuple = VGroup(*a__).arrange(a__, buff=0) _lowerCAmelCase : int = Text("GPU", font_size=24) _lowerCAmelCase : Optional[int] = Group(a__, a__).arrange(a__, buff=0.5, aligned_edge=a__) gpu.move_to([-1, -1, 0]) self.add(a__) _lowerCAmelCase : Optional[Any] = [mem.copy() for i in range(6)] _lowerCAmelCase : str = VGroup(*a__).arrange(a__, buff=0) _lowerCAmelCase : List[str] = Text("Model", font_size=24) _lowerCAmelCase : Optional[Any] = Group(a__, a__).arrange(a__, buff=0.5, aligned_edge=a__) model.move_to([3, -1.0, 0]) self.add(a__) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Tuple = [] for i, rect in enumerate(a__): rect.set_stroke(a__) _lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 / 4, width=0.46 / 3).set_stroke(width=0.0).set_fill(a__, opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT), buff=0.02, direction=a__) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(model_cpu_arr[0], direction=a__, buff=0.0) else: cpu_target.next_to(model_cpu_arr[i - 1], direction=a__, buff=0.0) self.add(a__) model_cpu_arr.append(a__) self.add(*a__, *a__, *a__) _lowerCAmelCase : int = [mem.copy() for i in range(6)] _lowerCAmelCase : Optional[int] = VGroup(*a__).arrange(a__, buff=0) _lowerCAmelCase : str = Text("Loaded Checkpoint", font_size=24) _lowerCAmelCase : Dict = Group(a__, a__).arrange(a__, buff=0.5, aligned_edge=a__) checkpoint.move_to([3, 0.5, 0]) self.add(a__) _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Optional[Any] = [] for i, rect in enumerate(a__): _lowerCAmelCase : Optional[Any] = fill.copy().set_fill(a__, opacity=0.7) target.move_to(a__) ckpt_arr.append(a__) _lowerCAmelCase : Tuple = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.move_to(cpu_right_col_base[i - 5]) ckpt_cpu_arr.append(a__) self.add(*a__, *a__) _lowerCAmelCase : Union[str, Any] = Square(side_length=2.2) key.move_to([-5, 2, 0]) _lowerCAmelCase : Any = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model", font_size=18, ) key_text.move_to([-5, 2.4, 0]) self.add(a__, a__) _lowerCAmelCase : List[Any] = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint", font_size=18, ) blue_text.next_to(a__, DOWN * 2.4, aligned_edge=key_text.get_left()) self.add(a__) _lowerCAmelCase : List[Any] = MarkupText( f"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.", font_size=24, ) step_a.move_to([2, 2, 0]) _lowerCAmelCase : Dict = [meta_mem.copy() for i in range(6)] _lowerCAmelCase : Optional[int] = [meta_mem.copy() for i in range(6)] _lowerCAmelCase : Union[str, Any] = VGroup(*a__).arrange(a__, buff=0) _lowerCAmelCase : Dict = VGroup(*a__).arrange(a__, buff=0) _lowerCAmelCase : Union[str, Any] = VGroup(a__, a__).arrange(a__, buff=0) _lowerCAmelCase : Optional[int] = Text("Disk", font_size=24) _lowerCAmelCase : str = Group(a__, a__).arrange(a__, buff=0.5, aligned_edge=a__) disk.move_to([-4.0, -1.25, 0]) self.play(Write(a__, run_time=3), Write(a__, run_time=1), Create(a__, run_time=1)) _lowerCAmelCase : Optional[int] = [] for i, rect in enumerate(a__): _lowerCAmelCase : Tuple = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i]).scale(0.5) animations.append(MoveToTarget(a__, run_time=1.5)) self.play(*a__) self.play(FadeOut(a__)) _lowerCAmelCase : Dict = MarkupText(f"Then, the checkpoint is removed from memory\nthrough garbage collection.", font_size=24) step_a.move_to([2, 2, 0]) self.play(Write(a__, run_time=3)) self.play( FadeOut(a__, a__, *a__, *a__), ) self.wait()
36
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : def __init__(self : str , a__ : Dict , a__ : Tuple=None , a__ : List[Any]=None , a__ : Dict=None , a__ : Union[str, Any]="resnet50" , a__ : Dict=3 , a__ : str=32 , a__ : int=3 , a__ : Dict=True , a__ : Any=True , ): """simple docstring""" __snake_case = parent __snake_case = out_indices if out_indices is not None else [4] __snake_case = stage_names __snake_case = out_features __snake_case = backbone __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = use_pretrained_backbone __snake_case = is_training def a (self : Union[str, Any] ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = self.get_config() return config, pixel_values def a (self : Any ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def a (self : List[Any] , a__ : int , a__ : int ): """simple docstring""" __snake_case = TimmBackbone(config=a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(a__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def a (self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () A_ : Optional[Any] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} A_ : List[Any] = False A_ : Dict = False A_ : Any = False A_ : List[Any] = False def a (self : Tuple ): """simple docstring""" __snake_case = TimmBackboneModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def a (self : Any ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : int ): """simple docstring""" __snake_case = '''resnet18''' __snake_case = '''microsoft/resnet-18''' __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ ) __snake_case = AutoBackbone.from_pretrained(a__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ , out_indices=[1, 2, 3] ) __snake_case = AutoBackbone.from_pretrained(a__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def a (self : str ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : Optional[int] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a (self : Tuple ): """simple docstring""" pass def a (self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True __snake_case = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case = self.all_model_classes[0] __snake_case = model_class(a__ ) model.to(a__ ) __snake_case = self._prepare_for_class(a__ , a__ ) __snake_case = model(**a__ ) __snake_case = outputs[0][-1] # Encoder-/Decoder-only models __snake_case = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def a (self : Optional[int] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case = copy.deepcopy(a__ ) __snake_case = None __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case = copy.deepcopy(a__ ) __snake_case = False __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ )
24
0
'''simple docstring''' import socket def a_ ( ) -> Any: """simple docstring""" lowerCamelCase_ =socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowerCamelCase_ =socket.gethostname() lowerCamelCase_ =1_2312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: lowerCamelCase_ =sock.recv(1024 ) if not data: break out_file.write(snake_case_ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
75
import os import pytest from transformers.dynamic_module_utils import get_imports snake_case_ = '\nimport os\n' snake_case_ = '\ndef foo():\n import os\n return False\n' snake_case_ = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' snake_case_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' snake_case_ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , snake_case_ ) def lowerCamelCase__ ( snake_case_ : str , snake_case_ : Optional[int] ) -> Dict: __snake_case = os.path.join(snake_case_ , '''test_file.py''' ) with open(snake_case_ , '''w''' ) as _tmp_file: _tmp_file.write(snake_case_ ) __snake_case = get_imports(snake_case_ ) assert parsed_imports == ["os"]
24
0
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __snake_case ( nn.Module): """simple docstring""" def __init__( self : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[int] = None , lowerCamelCase : str = "geglu" , lowerCamelCase : Optional[int] = None , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = True , lowerCamelCase : str = "layer_norm" , lowerCamelCase : bool = False , ) -> Dict: super().__init__() lowerCAmelCase_ : Dict = only_cross_attention lowerCAmelCase_ : Optional[int] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" lowerCAmelCase_ : int = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' F' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: lowerCAmelCase_ : Any = AdaLayerNorm(a__ , a__ ) elif self.use_ada_layer_norm_zero: lowerCAmelCase_ : List[str] = AdaLayerNormZero(a__ , a__ ) else: lowerCAmelCase_ : str = nn.LayerNorm(a__ , elementwise_affine=a__ ) lowerCAmelCase_ : Union[str, Any] = Attention( query_dim=a__ , heads=a__ , dim_head=a__ , dropout=a__ , bias=a__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=a__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. lowerCAmelCase_ : Any = ( AdaLayerNorm(a__ , a__ ) if self.use_ada_layer_norm else nn.LayerNorm(a__ , elementwise_affine=a__ ) ) lowerCAmelCase_ : Dict = Attention( query_dim=a__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=a__ , dim_head=a__ , dropout=a__ , bias=a__ , upcast_attention=a__ , ) # is self-attn if encoder_hidden_states is none else: lowerCAmelCase_ : Dict = None lowerCAmelCase_ : List[Any] = None # 3. Feed-forward lowerCAmelCase_ : Optional[Any] = nn.LayerNorm(a__ , elementwise_affine=a__ ) lowerCAmelCase_ : Union[str, Any] = FeedForward(a__ , dropout=a__ , activation_fn=a__ , final_dropout=a__ ) # let chunk size default to None lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Tuple = 0 def __lowercase ( self : int , lowerCamelCase : Optional[int] , lowerCamelCase : int ) -> List[Any]: lowerCAmelCase_ : Union[str, Any] = chunk_size lowerCAmelCase_ : Optional[Any] = dim def __lowercase ( self : Dict , lowerCamelCase : torch.FloatTensor , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[torch.LongTensor] = None , lowerCamelCase : Dict[str, Any] = None , lowerCamelCase : Optional[torch.LongTensor] = None , ) -> Union[str, Any]: if self.use_ada_layer_norm: lowerCAmelCase_ : Optional[Any] = self.norma(a__ , a__ ) elif self.use_ada_layer_norm_zero: lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = self.norma( a__ , a__ , a__ , hidden_dtype=hidden_states.dtype ) else: lowerCAmelCase_ : List[Any] = self.norma(a__ ) lowerCAmelCase_ : Any = cross_attention_kwargs if cross_attention_kwargs is not None else {} lowerCAmelCase_ : Dict = self.attna( a__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=a__ , **a__ , ) if self.use_ada_layer_norm_zero: lowerCAmelCase_ : int = gate_msa.unsqueeze(1 ) * attn_output lowerCAmelCase_ : int = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: lowerCAmelCase_ : Any = ( self.norma(a__ , a__ ) if self.use_ada_layer_norm else self.norma(a__ ) ) lowerCAmelCase_ : Tuple = self.attna( a__ , encoder_hidden_states=a__ , attention_mask=a__ , **a__ , ) lowerCAmelCase_ : Dict = attn_output + hidden_states # 3. Feed-forward lowerCAmelCase_ : str = self.norma(a__ ) if self.use_ada_layer_norm_zero: lowerCAmelCase_ : Optional[int] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) lowerCAmelCase_ : Tuple = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size lowerCAmelCase_ : int = torch.cat( [self.ff(a__ ) for hid_slice in norm_hidden_states.chunk(a__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: lowerCAmelCase_ : str = self.ff(a__ ) if self.use_ada_layer_norm_zero: lowerCAmelCase_ : Optional[int] = gate_mlp.unsqueeze(1 ) * ff_output lowerCAmelCase_ : Optional[Any] = ff_output + hidden_states return hidden_states class __snake_case ( nn.Module): """simple docstring""" def __init__( self : Any , lowerCamelCase : int , lowerCamelCase : Optional[int] = None , lowerCamelCase : int = 4 , lowerCamelCase : float = 0.0 , lowerCamelCase : str = "geglu" , lowerCamelCase : bool = False , ) -> Tuple: super().__init__() lowerCAmelCase_ : str = int(dim * mult ) lowerCAmelCase_ : Any = dim_out if dim_out is not None else dim if activation_fn == "gelu": lowerCAmelCase_ : Union[str, Any] = GELU(a__ , a__ ) if activation_fn == "gelu-approximate": lowerCAmelCase_ : str = GELU(a__ , a__ , approximate="""tanh""" ) elif activation_fn == "geglu": lowerCAmelCase_ : Optional[int] = GEGLU(a__ , a__ ) elif activation_fn == "geglu-approximate": lowerCAmelCase_ : Tuple = ApproximateGELU(a__ , a__ ) lowerCAmelCase_ : Optional[Any] = nn.ModuleList([] ) # project in self.net.append(a__ ) # project dropout self.net.append(nn.Dropout(a__ ) ) # project out self.net.append(nn.Linear(a__ , a__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(a__ ) ) def __lowercase ( self : Union[str, Any] , lowerCamelCase : Optional[int] ) -> Union[str, Any]: for module in self.net: lowerCAmelCase_ : int = module(a__ ) return hidden_states class __snake_case ( nn.Module): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : str = "none" ) -> Optional[Any]: super().__init__() lowerCAmelCase_ : Optional[Any] = nn.Linear(a__ , a__ ) lowerCAmelCase_ : Optional[Any] = approximate def __lowercase ( self : Any , lowerCamelCase : str ) -> Any: if gate.device.type != "mps": return F.gelu(a__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __lowercase ( self : Any , lowerCamelCase : List[str] ) -> Tuple: lowerCAmelCase_ : Union[str, Any] = self.proj(a__ ) lowerCAmelCase_ : Any = self.gelu(a__ ) return hidden_states class __snake_case ( nn.Module): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : int ) -> List[str]: super().__init__() lowerCAmelCase_ : int = nn.Linear(a__ , dim_out * 2 ) def __lowercase ( self : Dict , lowerCamelCase : Optional[int] ) -> str: if gate.device.type != "mps": return F.gelu(a__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __lowercase ( self : str , lowerCamelCase : List[Any] ) -> Dict: lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = self.proj(a__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(a__ ) class __snake_case ( nn.Module): """simple docstring""" def __init__( self : Dict , lowerCamelCase : int , lowerCamelCase : int ) -> Union[str, Any]: super().__init__() lowerCAmelCase_ : str = nn.Linear(a__ , a__ ) def __lowercase ( self : str , lowerCamelCase : Tuple ) -> Union[str, Any]: lowerCAmelCase_ : Optional[int] = self.proj(a__ ) return x * torch.sigmoid(1.702 * x ) class __snake_case ( nn.Module): """simple docstring""" def __init__( self : Dict , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] ) -> List[str]: super().__init__() lowerCAmelCase_ : List[Any] = nn.Embedding(a__ , a__ ) lowerCAmelCase_ : Any = nn.SiLU() lowerCAmelCase_ : Tuple = nn.Linear(a__ , embedding_dim * 2 ) lowerCAmelCase_ : Tuple = nn.LayerNorm(a__ , elementwise_affine=a__ ) def __lowercase ( self : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] ) -> List[str]: lowerCAmelCase_ : Union[str, Any] = self.linear(self.silu(self.emb(a__ ) ) ) lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = torch.chunk(a__ , 2 ) lowerCAmelCase_ : List[Any] = self.norm(a__ ) * (1 + scale) + shift return x class __snake_case ( nn.Module): """simple docstring""" def __init__( self : Dict , lowerCamelCase : Dict , lowerCamelCase : str ) -> Any: super().__init__() lowerCAmelCase_ : Dict = CombinedTimestepLabelEmbeddings(a__ , a__ ) lowerCAmelCase_ : Any = nn.SiLU() lowerCAmelCase_ : Dict = nn.Linear(a__ , 6 * embedding_dim , bias=a__ ) lowerCAmelCase_ : Optional[Any] = nn.LayerNorm(a__ , elementwise_affine=a__ , eps=1E-6 ) def __lowercase ( self : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=None ) -> Any: lowerCAmelCase_ : Any = self.linear(self.silu(self.emb(a__ , a__ , hidden_dtype=a__ ) ) ) lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : Tuple = emb.chunk(6 , dim=1 ) lowerCAmelCase_ : Optional[int] = self.norm(a__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __snake_case ( nn.Module): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Optional[str] = None , lowerCamelCase : float = 1E-5 ) -> List[str]: super().__init__() lowerCAmelCase_ : Any = num_groups lowerCAmelCase_ : Union[str, Any] = eps if act_fn is None: lowerCAmelCase_ : Dict = None else: lowerCAmelCase_ : Tuple = get_activation(a__ ) lowerCAmelCase_ : Optional[int] = nn.Linear(a__ , out_dim * 2 ) def __lowercase ( self : List[str] , lowerCamelCase : Dict , lowerCamelCase : List[str] ) -> int: if self.act: lowerCAmelCase_ : Tuple = self.act(a__ ) lowerCAmelCase_ : Any = self.linear(a__ ) lowerCAmelCase_ : List[str] = emb[:, :, None, None] lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = emb.chunk(2 , dim=1 ) lowerCAmelCase_ : Any = F.group_norm(a__ , self.num_groups , eps=self.eps ) lowerCAmelCase_ : Any = x * (1 + scale) + shift return x
120
import socket def lowerCamelCase__ ( ) -> Any: __snake_case = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __snake_case = socket.gethostname() __snake_case = 1_2312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: __snake_case = sock.recv(1024 ) if not data: break out_file.write(snake_case_ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
24
0
def lowerCAmelCase_ (lowerCAmelCase__: int = 1 , lowerCAmelCase__: int = 1_0_0_0 ): """simple docstring""" UpperCAmelCase_: Optional[Any] = 1 UpperCAmelCase_: Optional[Any] = 0 for divide_by_number in range(snake_case_ , digit + 1 ): UpperCAmelCase_: Optional[int] = [] UpperCAmelCase_: Union[str, Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(snake_case_ ): UpperCAmelCase_: str = len(snake_case_ ) UpperCAmelCase_: Union[str, Any] = divide_by_number else: has_been_divided.append(snake_case_ ) UpperCAmelCase_: Any = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
147
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] ) -> list[int]: # This function is recursive __snake_case = len(snake_case_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __snake_case = array[0] __snake_case = False __snake_case = 1 __snake_case = [] while not is_found and i < array_length: if array[i] < pivot: __snake_case = True __snake_case = [element for element in array[i:] if element >= array[i]] __snake_case = longest_subsequence(snake_case_ ) if len(snake_case_ ) > len(snake_case_ ): __snake_case = temp_array else: i += 1 __snake_case = [element for element in array[1:] if element >= pivot] __snake_case = [pivot, *longest_subsequence(snake_case_ )] if len(snake_case_ ) > len(snake_case_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
24
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class A_ ( _UpperCAmelCase ): """simple docstring""" __UpperCamelCase = 'lxmert' __UpperCamelCase = {} def __init__( self :int , lowercase_ :Any=3_05_22 , lowercase_ :Optional[int]=7_68 , lowercase_ :Dict=12 , lowercase_ :int=95_00 , lowercase_ :Dict=16_00 , lowercase_ :Any=4_00 , lowercase_ :List[str]=30_72 , lowercase_ :List[str]="gelu" , lowercase_ :int=0.1 , lowercase_ :Dict=0.1 , lowercase_ :str=5_12 , lowercase_ :Any=2 , lowercase_ :Any=0.02 , lowercase_ :Union[str, Any]=1E-12 , lowercase_ :str=9 , lowercase_ :Optional[Any]=5 , lowercase_ :int=5 , lowercase_ :Optional[int]=20_48 , lowercase_ :Union[str, Any]=4 , lowercase_ :Any=6.67 , lowercase_ :List[Any]=True , lowercase_ :str=True , lowercase_ :Optional[Any]=True , lowercase_ :Dict=True , lowercase_ :Dict=True , lowercase_ :int=True , lowercase_ :Union[str, Any]=True , **lowercase_ :List[Any] , ) -> Optional[int]: UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = num_qa_labels UpperCAmelCase = num_object_labels UpperCAmelCase = num_attr_labels UpperCAmelCase = l_layers UpperCAmelCase = x_layers UpperCAmelCase = r_layers UpperCAmelCase = visual_feat_dim UpperCAmelCase = visual_pos_dim UpperCAmelCase = visual_loss_normalizer UpperCAmelCase = task_matched UpperCAmelCase = task_mask_lm UpperCAmelCase = task_obj_predict UpperCAmelCase = task_qa UpperCAmelCase = visual_obj_loss UpperCAmelCase = visual_attr_loss UpperCAmelCase = visual_feat_loss UpperCAmelCase = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**a__ )
78
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : Union[str, Any] , a__ : int=13 , a__ : int=7 , a__ : Optional[Any]=True , a__ : Optional[int]=True , a__ : Any=True , a__ : str=True , a__ : List[Any]=99 , a__ : Any=24 , a__ : List[str]=2 , a__ : Optional[int]=6 , a__ : int=37 , a__ : List[str]="gelu" , a__ : List[Any]=0.1 , a__ : Optional[int]=0.1 , a__ : Union[str, Any]=512 , a__ : List[str]=16 , a__ : Optional[int]=2 , a__ : Union[str, Any]=0.0_2 , a__ : str=3 , a__ : Optional[Any]=None , a__ : Any=1000 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = scope __snake_case = range_bbox def a (self : Optional[int] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = None if self.use_input_mask: __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def a (self : List[str] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a (self : List[Any] , a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : int , a__ : Optional[int] , a__ : str , a__ : Optional[int] , ): """simple docstring""" __snake_case = LiltModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a (self : Any , a__ : Tuple , a__ : Dict , a__ : Optional[int] , a__ : Dict , a__ : Union[str, Any] , a__ : str , a__ : Tuple , ): """simple docstring""" __snake_case = self.num_labels __snake_case = LiltForTokenClassification(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a (self : int , a__ : Optional[Any] , a__ : int , a__ : int , a__ : Optional[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : str , ): """simple docstring""" __snake_case = LiltForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A_ : Any = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) A_ : Optional[int] = False A_ : List[Any] = False def a (self : Dict , a__ : Tuple , a__ : Tuple , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" return True def a (self : Union[str, Any] ): """simple docstring""" __snake_case = LiltModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def a (self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def a (self : Optional[int] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = LiltModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Tuple ): """simple docstring""" __snake_case = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a__ ) __snake_case = torch.tensor([[1, 2]] , device=a__ ) __snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a__ ) # forward pass with torch.no_grad(): __snake_case = model(input_ids=a__ , bbox=a__ ) __snake_case = torch.Size([1, 2, 768] ) __snake_case = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=a__ , ) self.assertTrue(outputs.last_hidden_state.shape , a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a__ , atol=1E-3 ) )
24
0