code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": a__ : Any = pd.read_csv('''sample_data.csv''', header=None) a__ : Any = df.shape[:1][0] # If you're using some other dataset input the target column a__ : Optional[Any] = df.iloc[:, 1:2] a__ : Union[str, Any] = actual_data.values.reshape(len_data, 1) a__ : int = MinMaxScaler().fit_transform(actual_data) a__ : Optional[int] = 10 a__ : Union[str, Any] = 5 a__ : Optional[int] = 20 a__ : Optional[int] = len_data - periods * look_back a__ : int = actual_data[:division] a__ : Optional[int] = actual_data[division - look_back :] a__ , a__ : List[str] = [], [] a__ , a__ : Optional[int] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) a__ : Any = np.array(train_x) a__ : List[Any] = np.array(test_x) a__ : int = np.array([list(i.ravel()) for i in train_y]) a__ : Any = np.array([list(i.ravel()) for i in test_y]) a__ : List[Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') a__ : List[str] = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) a__ : str = model.predict(x_test)
313
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = StableUnCLIPImgaImgPipeline __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : Tuple = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE : int = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL() SCREAMING_SNAKE_CASE : Optional[Any] = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=True ) ->Optional[int]: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if pil_image: SCREAMING_SNAKE_CASE : Any = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : int = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[str] = DiffusionPipeline.numpy_to_pil(_lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableUnCLIPImgaImgPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(_lowerCamelCase ) inputs.update({'''image_embeds''': None} ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : str = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) ->Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : str = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Dict = pipe( _lowerCamelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
313
1
from string import ascii_lowercase, ascii_uppercase def UpperCAmelCase_( a__ ): """simple docstring""" if not sentence: return "" SCREAMING_SNAKE_CASE : int = dict(zip(a__ , a__ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
313
from abc import ABC, abstractmethod from typing import List, Optional class a_ ( a__ ): """simple docstring""" def __init__( self ) ->List[str]: # test for the above condition self.test() def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE : List[Any] = self.advance() if not self.does_advance(_lowerCamelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.update(_lowerCamelCase ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[int]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Union[str, Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Any: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->int: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = token_ids SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.token_ids ) SCREAMING_SNAKE_CASE : Any = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->List[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = False if self.does_advance(_lowerCamelCase ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE : str = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Union[str, Any] = completed else: # failed to make progress. SCREAMING_SNAKE_CASE : Dict = True self.reset() return stepped, completed, reset def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = 0 def __lowerCAmelCase ( self ) ->Any: return self.seqlen - (self.fulfilled_idx + 1) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Dict: SCREAMING_SNAKE_CASE : Any = PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : Dict = self.seqlen SCREAMING_SNAKE_CASE : int = self.fulfilled_idx SCREAMING_SNAKE_CASE : Tuple = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=True ) ->Dict: SCREAMING_SNAKE_CASE : Any = max([len(_lowerCamelCase ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE : List[str] = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE : Optional[Any] = root for tidx, token_id in enumerate(_lowerCamelCase ): if token_id not in level: SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : Tuple = level[token_id] if no_subsets and self.has_subsets(_lowerCamelCase , _lowerCamelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = root def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[Any] = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE : int = start[current_token] SCREAMING_SNAKE_CASE : Optional[int] = list(start.keys() ) return next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.next_tokens(_lowerCamelCase ) return len(_lowerCamelCase ) == 0 def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = list(root.values() ) if len(_lowerCamelCase ) == 0: return 1 else: return sum([self.count_leaves(_lowerCamelCase ) for nn in next_nodes] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = self.count_leaves(_lowerCamelCase ) return len(_lowerCamelCase ) != leaf_count class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveTrie(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = nested_token_ids SCREAMING_SNAKE_CASE : Optional[int] = self.trie.max_height SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = False def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : str = self.trie.next_tokens(self.current_seq ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False if self.does_advance(_lowerCamelCase ): self.current_seq.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = True else: SCREAMING_SNAKE_CASE : Dict = True self.reset() SCREAMING_SNAKE_CASE : Any = self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE : List[Any] = completed return stepped, completed, reset def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = [] def __lowerCAmelCase ( self ) ->Optional[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->List[str]: SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : str = self.seqlen SCREAMING_SNAKE_CASE : int = self.current_seq SCREAMING_SNAKE_CASE : Optional[int] = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE : str = max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE : List[str] = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = False self.init_state() def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Tuple = [constraint.copy(stateful=_lowerCamelCase ) for constraint in self.constraints] def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE : Optional[int] = constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.add(_lowerCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = False, False if self.completed: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[int] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.inprogress_constraint.update(_lowerCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE : str = None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE : Optional[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = pending_constraint.update(_lowerCamelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = None if not complete and stepped: SCREAMING_SNAKE_CASE : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __lowerCAmelCase ( self , _lowerCamelCase=True ) ->str: SCREAMING_SNAKE_CASE : Dict = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE : str = [ constraint.copy(stateful=_lowerCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.inprogress_constraint.copy(stateful=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [constraint.copy() for constraint in self.pending_constraints] return new_state
313
1
from __future__ import annotations class a_ : """simple docstring""" def __init__( self , _lowerCamelCase=None ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = data SCREAMING_SNAKE_CASE : Union[str, Any] = None def __repr__( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[int] = self while temp: string_rep.append(F"""{temp.data}""" ) SCREAMING_SNAKE_CASE : Tuple = temp.next return "->".join(_lowerCamelCase ) def UpperCAmelCase_( a__ ): """simple docstring""" if not elements_list: raise Exception('''The Elements List is empty''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = Node(elements_list[0] ) for i in range(1 , len(a__ ) ): SCREAMING_SNAKE_CASE : str = Node(elements_list[i] ) SCREAMING_SNAKE_CASE : int = current.next return head def UpperCAmelCase_( a__ ): """simple docstring""" if head_node is not None and isinstance(a__ , a__ ): print_reverse(head_node.next ) print(head_node.data ) def UpperCAmelCase_( ): """simple docstring""" from doctest import testmod testmod() SCREAMING_SNAKE_CASE : List[Any] = make_linked_list([14, 52, 14, 12, 43] ) print('''Linked List:''' ) print(a__ ) print('''Elements in Reverse:''' ) print_reverse(a__ ) if __name__ == "__main__": main()
313
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCAmelCase_( a__=32 , a__=10 , a__=100 , a__=1_026 , a__=True , a__="data/tokenized_stories_train_wikitext103.jbl" , a__="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = generate_datasets( a__ , a__ , number=a__ , min_len=1_026 , trim=a__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? SCREAMING_SNAKE_CASE : str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model SCREAMING_SNAKE_CASE : Dict = load_gpta('''gpt2''' ).to(a__ ) print('''computing perplexity on objective set''' ) SCREAMING_SNAKE_CASE : int = compute_perplexity(a__ , a__ , a__ ).item() print('''perplexity on objective set:''' , a__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCAmelCase_( a__ , a__=15 , a__=128 , a__=100 , a__="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model SCREAMING_SNAKE_CASE : List[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model SCREAMING_SNAKE_CASE : str = SecondaryLearner(a__ ) # Train secondary learner SCREAMING_SNAKE_CASE : Union[str, Any] = train_secondary_learner( a__ , a__ , max_epochs=a__ , batch_size=a__ , eval_freq=100 , igf_model_path=a__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCAmelCase_( a__ , a__ , a__ , a__=32 , a__=1_000 , a__=16 , a__=1.0 , a__=recopy_gpta , a__=None , a__=10 , a__="gpt2_finetuned.pt" , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) SCREAMING_SNAKE_CASE : Optional[int] = RandomSampler(a__ ) SCREAMING_SNAKE_CASE : Dict = DataLoader(a__ , sampler=a__ ) SCREAMING_SNAKE_CASE : Tuple = max_steps // (len(a__ )) + 1 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = recopy_model(a__ , a__ , a__ ) model.train() if secondary_learner is not None: secondary_learner.to(a__ ) secondary_learner.eval() SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Tuple = [] # Compute the performance of the transformer model at the beginning SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) for epoch in range(int(a__ ) ): for step, example in enumerate(a__ ): torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) SCREAMING_SNAKE_CASE : Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ , labels=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = True if secondary_learner is not None: SCREAMING_SNAKE_CASE : List[str] = secondary_learner.forward( torch.tensor(a__ , dtype=torch.long , device=a__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(a__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: SCREAMING_SNAKE_CASE : Dict = -1 if predicted_q < threshold: SCREAMING_SNAKE_CASE : str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) SCREAMING_SNAKE_CASE : List[str] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=a__ , type=a__ , required=a__ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a__ , type=a__ , required=a__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=a__ , default=a__ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=a__ , default=a__ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=a__ , type=a__ , required=a__ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=a__ , type=a__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=a__ , default=a__ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=a__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=a__ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=a__ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1_000 , type=a__ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=a__ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=a__ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=a__ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=a__ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1_026 , type=a__ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=a__ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=a__ , type=a__ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=a__ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=a__ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=a__ , type=a__ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=a__ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner SCREAMING_SNAKE_CASE : List[Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner SCREAMING_SNAKE_CASE : Tuple = training_secondary_learner( a__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model SCREAMING_SNAKE_CASE : Optional[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1_026 , trim=a__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a__ , a__ , a__ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=a__ , secondary_learner=a__ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
313
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->List[str]: super().__init__() self.register_modules( vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , ) def __lowerCAmelCase ( self , _lowerCamelCase = "auto" ) ->int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: self.enable_attention_slicing(_lowerCamelCase ) @torch.no_grad() def __call__( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = None , **_lowerCamelCase , ) ->Any: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = 1 elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = len(_lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(_lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCamelCase , _lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_lowerCamelCase )}.""" ) # get prompt text embeddings SCREAMING_SNAKE_CASE : Any = self.tokenizer( _lowerCamelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) SCREAMING_SNAKE_CASE : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = text_embeddings.shape SCREAMING_SNAKE_CASE : Optional[int] = text_embeddings.repeat(1 , _lowerCamelCase , 1 ) SCREAMING_SNAKE_CASE : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt , _lowerCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. SCREAMING_SNAKE_CASE : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE : List[str] if negative_prompt is None: SCREAMING_SNAKE_CASE : Any = [''''''] elif type(_lowerCamelCase ) is not type(_lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(_lowerCamelCase )} !=""" F""" {type(_lowerCamelCase )}.""" ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = [negative_prompt] elif batch_size != len(_lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(_lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: SCREAMING_SNAKE_CASE : str = negative_prompt SCREAMING_SNAKE_CASE : Optional[int] = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE : List[str] = self.tokenizer( _lowerCamelCase , padding='''max_length''' , max_length=_lowerCamelCase , truncation=_lowerCamelCase , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE : List[str] = uncond_embeddings.shape[1] SCREAMING_SNAKE_CASE : Dict = uncond_embeddings.repeat(_lowerCamelCase , _lowerCamelCase , 1 ) SCREAMING_SNAKE_CASE : List[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , _lowerCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. SCREAMING_SNAKE_CASE : int = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) SCREAMING_SNAKE_CASE : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) SCREAMING_SNAKE_CASE : Union[str, Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps SCREAMING_SNAKE_CASE : List[str] = torch.randn( _lowerCamelCase , generator=_lowerCamelCase , device='''cpu''' , dtype=_lowerCamelCase ).to(self.device ) SCREAMING_SNAKE_CASE : List[Any] = torch.randn(_lowerCamelCase , generator=_lowerCamelCase , device='''cpu''' , dtype=_lowerCamelCase ).to( self.device ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn( _lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.randn(_lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=_lowerCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) SCREAMING_SNAKE_CASE : Optional[int] = latents_reference.to(self.device ) SCREAMING_SNAKE_CASE : str = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images SCREAMING_SNAKE_CASE : Union[str, Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 SCREAMING_SNAKE_CASE : Any = (latents_shape[2] - latents_shape_reference[2]) // 2 SCREAMING_SNAKE_CASE : List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx SCREAMING_SNAKE_CASE : Any = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy SCREAMING_SNAKE_CASE : Optional[int] = 0 if dx < 0 else dx SCREAMING_SNAKE_CASE : Dict = 0 if dy < 0 else dy SCREAMING_SNAKE_CASE : Any = max(-dx , 0 ) SCREAMING_SNAKE_CASE : List[str] = max(-dy , 0 ) # import pdb # pdb.set_trace() SCREAMING_SNAKE_CASE : str = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand SCREAMING_SNAKE_CASE : List[str] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE : int = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE : int = {} if accepts_eta: SCREAMING_SNAKE_CASE : Dict = eta for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE : Tuple = self.scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) # predict the noise residual SCREAMING_SNAKE_CASE : Any = self.unet(_lowerCamelCase , _lowerCamelCase , encoder_hidden_states=_lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE : Dict = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = 1 / 0.1_8_2_1_5 * latents SCREAMING_SNAKE_CASE : Optional[Any] = self.vae.decode(_lowerCamelCase ).sample SCREAMING_SNAKE_CASE : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE : str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: SCREAMING_SNAKE_CASE : str = self.feature_extractor(self.numpy_to_pil(_lowerCamelCase ) , return_tensors='''pt''' ).to( self.device ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.safety_checker( images=_lowerCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: SCREAMING_SNAKE_CASE : int = None if output_type == "pil": SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_lowerCamelCase , nsfw_content_detected=_lowerCamelCase )
313
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = filter(lambda a__ : p.requires_grad , model.parameters() ) SCREAMING_SNAKE_CASE : List[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : Any = logging.getLogger(__name__) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if metric == "rouge2": SCREAMING_SNAKE_CASE : str = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": SCREAMING_SNAKE_CASE : List[Any] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": SCREAMING_SNAKE_CASE : int = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": SCREAMING_SNAKE_CASE : int = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) SCREAMING_SNAKE_CASE : Dict = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F"""val_{metric}""" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=a__ , verbose=a__ , ) class a_ ( pl.Callback ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) ->None: logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) SCREAMING_SNAKE_CASE : Optional[int] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results SCREAMING_SNAKE_CASE : List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": SCREAMING_SNAKE_CASE : Any = od / '''test_results.txt''' SCREAMING_SNAKE_CASE : Optional[int] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE : str = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" SCREAMING_SNAKE_CASE : Tuple = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_lowerCamelCase ) generations_file.parent.mkdir(exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , '''a+''' ) as writer: for key in sorted(_lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE : Tuple = metrics[key] if isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE : List[Any] = val.item() SCREAMING_SNAKE_CASE : Tuple = F"""{key}: {val:.6f}\n""" writer.write(_lowerCamelCase ) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE : Optional[Any] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: try: SCREAMING_SNAKE_CASE : Any = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE : Optional[int] = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE : int = count_trainable_parameters(_lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_lowerCamelCase , _lowerCamelCase , '''test''' ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
313
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : List[Any] = logging.get_logger(__name__) a__ : Any = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = 'levit' def __init__( self , _lowerCamelCase=224 , _lowerCamelCase=3 , _lowerCamelCase=3 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=16 , _lowerCamelCase=[128, 256, 384] , _lowerCamelCase=[4, 8, 12] , _lowerCamelCase=[4, 4, 4] , _lowerCamelCase=[16, 16, 16] , _lowerCamelCase=0 , _lowerCamelCase=[2, 2, 2] , _lowerCamelCase=[2, 2, 2] , _lowerCamelCase=0.0_2 , **_lowerCamelCase , ) ->str: super().__init__(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = image_size SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : str = kernel_size SCREAMING_SNAKE_CASE : str = stride SCREAMING_SNAKE_CASE : int = padding SCREAMING_SNAKE_CASE : Any = hidden_sizes SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = depths SCREAMING_SNAKE_CASE : List[Any] = key_dim SCREAMING_SNAKE_CASE : Tuple = drop_path_rate SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE : Optional[Any] = attention_ratio SCREAMING_SNAKE_CASE : str = mlp_ratio SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : List[Any] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = version.parse('1.11' ) @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self ) ->float: return 1e-4
313
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCAmelCase_( a__ ): """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def UpperCAmelCase_( a__ ): """simple docstring""" for char in word: SCREAMING_SNAKE_CASE : str = ord(a__ ) if not _is_chinese_char(a__ ): return 0 return 1 def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = set() for token in tokens: SCREAMING_SNAKE_CASE : str = len(a__ ) > 1 and is_chinese(a__ ) if chinese_word: word_set.add(a__ ) SCREAMING_SNAKE_CASE : str = list(a__ ) return word_list def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE : List[str] = max([len(a__ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE : Tuple = bert_tokens SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = 0, len(a__ ) while start < end: SCREAMING_SNAKE_CASE : Dict = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE : Optional[int] = min(end - start , a__ ) for i in range(a__ , 1 , -1 ): SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE : Optional[int] = '''##''' + bert_word[j] SCREAMING_SNAKE_CASE : List[str] = start + i SCREAMING_SNAKE_CASE : Optional[Any] = False break if single_word: start += 1 return bert_word def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : Optional[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = [get_chinese_word(a__ ) for r in res] ltp_res.extend(a__ ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : Any = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : int = bert_tokenizer(lines[i : i + 100] , add_special_tokens=a__ , truncation=a__ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : int = [] for input_ids, chinese_word in zip(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = [] for id in input_ids: SCREAMING_SNAKE_CASE : List[Any] = bert_tokenizer._convert_id_to_token(a__ ) input_tokens.append(a__ ) SCREAMING_SNAKE_CASE : List[str] = add_sub_symbol(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(a__ ): if token[:2] == "##": SCREAMING_SNAKE_CASE : Optional[int] = token[2:] # save chinese tokens' pos if len(a__ ) == 1 and _is_chinese_char(ord(a__ ) ): ref_id.append(a__ ) ref_ids.append(a__ ) assert len(a__ ) == len(a__ ) return ref_ids def UpperCAmelCase_( a__ ): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : List[str] = f.readlines() SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in data if len(a__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE : List[str] = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE : int = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE : int = prepare_ref(a__ , a__ , a__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Tuple = [json.dumps(a__ ) + '''\n''' for ref in ref_ids] f.writelines(a__ ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') a__ : int = parser.parse_args() main(args)
313
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a__ : Tuple = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a__ : Any = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a__ : int = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a__ : Union[str, Any] = { '''num_train_timesteps''': 40, '''sigma_min''': 0.0_02, '''sigma_max''': 80.0, } a__ : List[str] = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_02, '''sigma_max''': 80.0, } a__ : List[Any] = { '''num_train_timesteps''': 151, '''sigma_min''': 0.0_02, '''sigma_max''': 80.0, } def UpperCAmelCase_( a__ ): """simple docstring""" if isinstance(a__ , a__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : str = checkpoint[F"""{old_prefix}.in_layers.0.weight"""] SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[F"""{old_prefix}.in_layers.0.bias"""] SCREAMING_SNAKE_CASE : str = checkpoint[F"""{old_prefix}.in_layers.2.weight"""] SCREAMING_SNAKE_CASE : int = checkpoint[F"""{old_prefix}.in_layers.2.bias"""] SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint[F"""{old_prefix}.emb_layers.1.weight"""] SCREAMING_SNAKE_CASE : List[str] = checkpoint[F"""{old_prefix}.emb_layers.1.bias"""] SCREAMING_SNAKE_CASE : Tuple = checkpoint[F"""{old_prefix}.out_layers.0.weight"""] SCREAMING_SNAKE_CASE : List[Any] = checkpoint[F"""{old_prefix}.out_layers.0.bias"""] SCREAMING_SNAKE_CASE : Tuple = checkpoint[F"""{old_prefix}.out_layers.3.weight"""] SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[F"""{old_prefix}.out_layers.3.bias"""] if has_skip: SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint[F"""{old_prefix}.skip_connection.weight"""] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[F"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = checkpoint[F"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[F"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) SCREAMING_SNAKE_CASE : List[Any] = checkpoint[F"""{old_prefix}.norm.weight"""] SCREAMING_SNAKE_CASE : Dict = checkpoint[F"""{old_prefix}.norm.bias"""] SCREAMING_SNAKE_CASE : Optional[Any] = weight_q.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE : str = bias_q.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE : List[str] = weight_k.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE : List[str] = weight_v.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE : List[str] = bias_v.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE : List[str] = ( checkpoint[F"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) SCREAMING_SNAKE_CASE : Tuple = checkpoint[F"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = torch.load(a__ , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : List[str] = checkpoint['''time_embed.0.weight'''] SCREAMING_SNAKE_CASE : Optional[int] = checkpoint['''time_embed.0.bias'''] SCREAMING_SNAKE_CASE : Tuple = checkpoint['''time_embed.2.weight'''] SCREAMING_SNAKE_CASE : int = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: SCREAMING_SNAKE_CASE : Tuple = checkpoint['''label_emb.weight'''] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['''input_blocks.0.0.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['''input_blocks.0.0.bias'''] SCREAMING_SNAKE_CASE : int = unet_config['''down_block_types'''] SCREAMING_SNAKE_CASE : List[Any] = unet_config['''layers_per_block'''] SCREAMING_SNAKE_CASE : List[str] = unet_config['''attention_head_dim'''] SCREAMING_SNAKE_CASE : Tuple = unet_config['''block_out_channels'''] SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : str = channels_list[0] for i, layer_type in enumerate(a__ ): SCREAMING_SNAKE_CASE : Dict = channels_list[i] SCREAMING_SNAKE_CASE : Tuple = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(a__ ): SCREAMING_SNAKE_CASE : Dict = F"""down_blocks.{i}.resnets.{j}""" SCREAMING_SNAKE_CASE : Union[str, Any] = F"""input_blocks.{current_layer}.0""" SCREAMING_SNAKE_CASE : Tuple = True if j == 0 and downsample_block_has_skip else False SCREAMING_SNAKE_CASE : str = convert_resnet(a__ , a__ , a__ , a__ , has_skip=a__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(a__ ): SCREAMING_SNAKE_CASE : int = F"""down_blocks.{i}.resnets.{j}""" SCREAMING_SNAKE_CASE : List[str] = F"""input_blocks.{current_layer}.0""" SCREAMING_SNAKE_CASE : str = True if j == 0 and downsample_block_has_skip else False SCREAMING_SNAKE_CASE : List[Any] = convert_resnet(a__ , a__ , a__ , a__ , has_skip=a__ ) SCREAMING_SNAKE_CASE : Dict = F"""down_blocks.{i}.attentions.{j}""" SCREAMING_SNAKE_CASE : str = F"""input_blocks.{current_layer}.1""" SCREAMING_SNAKE_CASE : Any = convert_attention( a__ , a__ , a__ , a__ , a__ ) current_layer += 1 if i != len(a__ ) - 1: SCREAMING_SNAKE_CASE : List[Any] = F"""down_blocks.{i}.downsamplers.0""" SCREAMING_SNAKE_CASE : Dict = F"""input_blocks.{current_layer}.0""" SCREAMING_SNAKE_CASE : List[str] = convert_resnet(a__ , a__ , a__ , a__ ) current_layer += 1 SCREAMING_SNAKE_CASE : str = current_channels # hardcoded the mid-block for now SCREAMING_SNAKE_CASE : Tuple = '''mid_block.resnets.0''' SCREAMING_SNAKE_CASE : str = '''middle_block.0''' SCREAMING_SNAKE_CASE : str = convert_resnet(a__ , a__ , a__ , a__ ) SCREAMING_SNAKE_CASE : int = '''mid_block.attentions.0''' SCREAMING_SNAKE_CASE : int = '''middle_block.1''' SCREAMING_SNAKE_CASE : Any = convert_attention(a__ , a__ , a__ , a__ , a__ ) SCREAMING_SNAKE_CASE : Any = '''mid_block.resnets.1''' SCREAMING_SNAKE_CASE : Optional[int] = '''middle_block.2''' SCREAMING_SNAKE_CASE : Optional[int] = convert_resnet(a__ , a__ , a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Any = unet_config['''up_block_types'''] for i, layer_type in enumerate(a__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): SCREAMING_SNAKE_CASE : int = F"""up_blocks.{i}.resnets.{j}""" SCREAMING_SNAKE_CASE : List[Any] = F"""output_blocks.{current_layer}.0""" SCREAMING_SNAKE_CASE : List[str] = convert_resnet(a__ , a__ , a__ , a__ , has_skip=a__ ) current_layer += 1 if i != len(a__ ) - 1: SCREAMING_SNAKE_CASE : int = F"""up_blocks.{i}.upsamplers.0""" SCREAMING_SNAKE_CASE : Any = F"""output_blocks.{current_layer-1}.1""" SCREAMING_SNAKE_CASE : Union[str, Any] = convert_resnet(a__ , a__ , a__ , a__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): SCREAMING_SNAKE_CASE : List[str] = F"""up_blocks.{i}.resnets.{j}""" SCREAMING_SNAKE_CASE : Optional[Any] = F"""output_blocks.{current_layer}.0""" SCREAMING_SNAKE_CASE : Dict = convert_resnet(a__ , a__ , a__ , a__ , has_skip=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = F"""up_blocks.{i}.attentions.{j}""" SCREAMING_SNAKE_CASE : Tuple = F"""output_blocks.{current_layer}.1""" SCREAMING_SNAKE_CASE : Any = convert_attention( a__ , a__ , a__ , a__ , a__ ) current_layer += 1 if i != len(a__ ) - 1: SCREAMING_SNAKE_CASE : Optional[int] = F"""up_blocks.{i}.upsamplers.0""" SCREAMING_SNAKE_CASE : int = F"""output_blocks.{current_layer-1}.2""" SCREAMING_SNAKE_CASE : Any = convert_resnet(a__ , a__ , a__ , a__ ) SCREAMING_SNAKE_CASE : int = checkpoint['''out.0.weight'''] SCREAMING_SNAKE_CASE : str = checkpoint['''out.0.bias'''] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['''out.2.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') a__ : Optional[int] = parser.parse_args() a__ : List[Any] = strabool(args.class_cond) a__ : Any = os.path.basename(args.unet_path) print(F"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: a__ : Optional[int] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a__ : int = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a__ : int = TEST_UNET_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: a__ : Any = None a__ : Tuple = con_pt_to_diffuser(args.unet_path, unet_config) a__ : List[Any] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a__ : str = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a__ : List[Any] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a__ : Optional[Any] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"Checkpoint type {ckpt_name} is not currently supported.") a__ : List[str] = CMStochasticIterativeScheduler(**scheduler_config) a__ : List[str] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
313
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Tuple = '''1''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''f32le''' SCREAMING_SNAKE_CASE : List[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error SCREAMING_SNAKE_CASE : Optional[Any] = output_stream[0] SCREAMING_SNAKE_CASE : Any = np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def UpperCAmelCase_( a__ , a__ , a__ = "f32le" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Dict = '''1''' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Dict = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : Dict = '''alsa''' SCREAMING_SNAKE_CASE : Any = '''default''' elif system == "Darwin": SCREAMING_SNAKE_CASE : Union[str, Any] = '''avfoundation''' SCREAMING_SNAKE_CASE : Optional[int] = ''':0''' elif system == "Windows": SCREAMING_SNAKE_CASE : int = '''dshow''' SCREAMING_SNAKE_CASE : Any = '''default''' SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[Any] = _ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def UpperCAmelCase_( a__ , a__ , a__ = None , a__ = None , a__ = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : Tuple = stream_chunk_s else: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s SCREAMING_SNAKE_CASE : Union[str, Any] = ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[int] = np.intaa SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Any = np.floataa SCREAMING_SNAKE_CASE : Union[str, Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: SCREAMING_SNAKE_CASE : Optional[Any] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): SCREAMING_SNAKE_CASE : List[Any] = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : Dict = np.frombuffer(item['''raw'''] , dtype=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_( a__ , a__ , a__ , a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = b'''''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: SCREAMING_SNAKE_CASE : List[str] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : str = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : List[str] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: SCREAMING_SNAKE_CASE : List[str] = False yield item SCREAMING_SNAKE_CASE : Dict = stride_left SCREAMING_SNAKE_CASE : int = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: SCREAMING_SNAKE_CASE : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : Union[str, Any] = False yield item def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2**24 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : str = ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
313
1
from __future__ import annotations import typing from collections import Counter def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(a__ , max_perimeter + 1 ): SCREAMING_SNAKE_CASE : Dict = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): SCREAMING_SNAKE_CASE : Optional[int] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def UpperCAmelCase_( a__ = 1_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
313
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Tuple = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 'lxmert' __SCREAMING_SNAKE_CASE : Optional[Any] = {} def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=9500 , _lowerCamelCase=1600 , _lowerCamelCase=400 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=9 , _lowerCamelCase=5 , _lowerCamelCase=5 , _lowerCamelCase=2048 , _lowerCamelCase=4 , _lowerCamelCase=6.6_7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , **_lowerCamelCase , ) ->int: SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Any = num_qa_labels SCREAMING_SNAKE_CASE : Dict = num_object_labels SCREAMING_SNAKE_CASE : str = num_attr_labels SCREAMING_SNAKE_CASE : Tuple = l_layers SCREAMING_SNAKE_CASE : List[str] = x_layers SCREAMING_SNAKE_CASE : int = r_layers SCREAMING_SNAKE_CASE : List[Any] = visual_feat_dim SCREAMING_SNAKE_CASE : Tuple = visual_pos_dim SCREAMING_SNAKE_CASE : List[Any] = visual_loss_normalizer SCREAMING_SNAKE_CASE : Dict = task_matched SCREAMING_SNAKE_CASE : Dict = task_mask_lm SCREAMING_SNAKE_CASE : int = task_obj_predict SCREAMING_SNAKE_CASE : Union[str, Any] = task_qa SCREAMING_SNAKE_CASE : Dict = visual_obj_loss SCREAMING_SNAKE_CASE : List[str] = visual_attr_loss SCREAMING_SNAKE_CASE : Any = visual_feat_loss SCREAMING_SNAKE_CASE : Union[str, Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**_lowerCamelCase )
313
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'deformable_detr' __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[int] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : str = num_feature_levels SCREAMING_SNAKE_CASE : Optional[Any] = encoder_n_points SCREAMING_SNAKE_CASE : Any = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : List[str] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) ->int: return self.d_model def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
313
1
def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if len(a__ ) != len(a__ ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. SCREAMING_SNAKE_CASE : List[Any] = [p / w for p, w in zip(a__ , a__ )] # Creating a copy of the list and sorting profit/weight in ascending order SCREAMING_SNAKE_CASE : int = sorted(a__ ) # declaring useful variables SCREAMING_SNAKE_CASE : List[Any] = len(a__ ) SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Dict = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight SCREAMING_SNAKE_CASE : str = sorted_profit_by_weight[length - i - 1] SCREAMING_SNAKE_CASE : Any = profit_by_weight.index(a__ ) SCREAMING_SNAKE_CASE : Tuple = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) a__ : Optional[int] = [int(x) for x in input('''Input profits separated by spaces: ''').split()] a__ : List[Any] = [int(x) for x in input('''Input weights separated by spaces: ''').split()] a__ : Optional[int] = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
313
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = (EulerDiscreteScheduler,) __SCREAMING_SNAKE_CASE : Optional[int] = 10 def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**_lowerCamelCase ) return config def __lowerCAmelCase ( self ) ->Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Any = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : List[str] = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : Dict = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase , use_karras_sigmas=_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : int = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = output.prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
313
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) a__ : Optional[int] = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys a__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : Dict = logging.get_logger(__name__) a__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a__ : Optional[int] = { '''allenai/led-base-16384''': 16_384, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[Any] = '''post_processor''' SCREAMING_SNAKE_CASE : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Any = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[Any] = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict: SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
313
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Tuple = torch.nn.Linear(10 , 10 ) SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 ) SCREAMING_SNAKE_CASE : int = Accelerator() SCREAMING_SNAKE_CASE : Any = accelerator.prepare(_lowerCamelCase ) try: pickle.loads(pickle.dumps(_lowerCamelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
313
from __future__ import annotations import math def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if len(a__ ) != 2 or len(a[0] ) != 2 or len(a__ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) SCREAMING_SNAKE_CASE : Dict = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ ): """simple docstring""" if len(a__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) SCREAMING_SNAKE_CASE : str = len(a__ ) SCREAMING_SNAKE_CASE : Any = matrix_length // 2 SCREAMING_SNAKE_CASE : Tuple = [[a[i][j] for j in range(a__ , a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : Optional[int] = [ [a[i][j] for j in range(a__ , a__ )] for i in range(a__ , a__ ) ] SCREAMING_SNAKE_CASE : Optional[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : List[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ , a__ )] return top_left, top_right, bot_left, bot_right def UpperCAmelCase_( a__ ): """simple docstring""" return len(a__ ), len(matrix[0] ) def UpperCAmelCase_( a__ ): """simple docstring""" print('''\n'''.join(str(a__ ) for line in matrix ) ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ ) == (2, 2): return default_matrix_multiplication(a__ , a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE : Dict = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : int = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Any = actual_strassen(matrix_addition(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = matrix_addition(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = matrix_subtraction(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) # construct the new matrix from our 4 quadrants SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(len(a__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(a__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ )[1] != matrix_dimensions(a__ )[0]: SCREAMING_SNAKE_CASE : Any = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(a__ ) SCREAMING_SNAKE_CASE : str = matrix_dimensions(a__ ) SCREAMING_SNAKE_CASE : Tuple = matrix_dimensions(a__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] SCREAMING_SNAKE_CASE : str = max(*a__ , *a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(math.pow(2 , math.ceil(math.loga(a__ ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = matrixa SCREAMING_SNAKE_CASE : Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(a__ , a__ ) # Removing the additional zeros for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a__ : Dict = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a__ : Union[str, Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
313
1
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=[2, 3, 4] , _lowerCamelCase=None , ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : Union[str, Any] = image_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : int = depths SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = out_features SCREAMING_SNAKE_CASE : Union[str, Any] = out_indices SCREAMING_SNAKE_CASE : List[Any] = scope def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Any = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->Union[str, Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Dict = ConvNextVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : int = model(_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[int] = ConvNextVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : str = ConvNextVaBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Dict = ConvNextVaBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : int = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : int = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[str] = ConvNextVaModelTester(self ) SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Dict: pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def __lowerCAmelCase ( self ) ->Optional[int]: pass def __lowerCAmelCase ( self ) ->Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() SCREAMING_SNAKE_CASE : str = True if model_class.__name__ in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ]: continue SCREAMING_SNAKE_CASE : Optional[int] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ).loss loss.backward() def __lowerCAmelCase ( self ) ->List[str]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels() SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Optional[Any] = True if ( model_class.__name__ in [*get_values(_lowerCamelCase ), *get_values(_lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE : Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.gradient_checkpointing_enable() model.train() SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(**_lowerCamelCase ).loss loss.backward() def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : int = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def __lowerCAmelCase ( self ) ->Union[str, Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = ConvNextVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ) ->Union[str, Any]: return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = preprocessor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**_lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
313
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False ) ->Any: SCREAMING_SNAKE_CASE : str = scheduler SCREAMING_SNAKE_CASE : List[str] = optimizers if isinstance(_lowerCamelCase , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE : Union[str, Any] = split_batches SCREAMING_SNAKE_CASE : List[Any] = step_with_optimizer SCREAMING_SNAKE_CASE : List[str] = GradientState() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE : List[str] = AcceleratorState().num_processes for _ in range(_lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) ->List[str]: return self.scheduler.state_dict() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: self.scheduler.load_state_dict(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: return self.scheduler.get_lr() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]: return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase )
313
1
from collections.abc import Sequence def UpperCAmelCase_( a__ , a__ = False ): """simple docstring""" if not arr: return 0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 if allow_empty_subarrays else float('''-inf''' ) SCREAMING_SNAKE_CASE : List[Any] = 0.0 for num in arr: SCREAMING_SNAKE_CASE : List[Any] = max(0 if allow_empty_subarrays else num , curr_sum + num ) SCREAMING_SNAKE_CASE : Optional[int] = max(a__ , a__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() a__ : List[str] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
313
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCAmelCase_( a__ ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace(a__ , a__ ) return k def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy() cfg_kwargs.update(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**a__ ) SCREAMING_SNAKE_CASE : Optional[int] = PegasusForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE : Dict = torch_model.model.state_dict() SCREAMING_SNAKE_CASE : List[str] = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE : int = rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE : Dict = v.T SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE : int = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Optional[Any] = {k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = torch_model.model.load_state_dict(a__ , strict=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def UpperCAmelCase_( a__="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : List[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(a__ , desc='''converting tf checkpoint to dict''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE : Dict = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Any = array return tf_weights def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Path(a__ ).parent.name SCREAMING_SNAKE_CASE : Union[str, Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] SCREAMING_SNAKE_CASE : Dict = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(a__ ) SCREAMING_SNAKE_CASE : List[str] = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": SCREAMING_SNAKE_CASE : int = task_specific_params SCREAMING_SNAKE_CASE : List[str] = convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(a__ , Path(a__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ : List[str] = parser.parse_args() if args.save_dir is None: a__ : Any = Path(args.tf_ckpt_path).parent.name a__ : int = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
1
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a__ : Union[str, Any] = logging.getLogger(__name__) class a_ ( a__ ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = self.layer[current_layer](_lowerCamelCase , _lowerCamelCase , head_mask[current_layer] ) SCREAMING_SNAKE_CASE : List[str] = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = BertEncoderWithPabee(_lowerCamelCase ) self.init_weights() SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = 0 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : int = threshold def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : Dict = patience def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Dict = 0 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Union[str, Any] = self.inference_layers_num / self.inference_instances_num SCREAMING_SNAKE_CASE : Tuple = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_lowerCamelCase ) @add_start_docstrings_to_model_forward(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=False , ) ->Dict: if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: SCREAMING_SNAKE_CASE : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) SCREAMING_SNAKE_CASE : Any = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: SCREAMING_SNAKE_CASE : Any = torch.ones(_lowerCamelCase , device=_lowerCamelCase ) if token_type_ids is None: SCREAMING_SNAKE_CASE : str = torch.zeros(_lowerCamelCase , dtype=torch.long , device=_lowerCamelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. SCREAMING_SNAKE_CASE : torch.Tensor = self.get_extended_attention_mask(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = encoder_hidden_states.size() SCREAMING_SNAKE_CASE : Tuple = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(_lowerCamelCase , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.invert_attention_mask(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Optional[int] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_head_mask(_lowerCamelCase , self.config.num_hidden_layers ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.embeddings( input_ids=_lowerCamelCase , position_ids=_lowerCamelCase , token_type_ids=_lowerCamelCase , inputs_embeds=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = embedding_output if self.training: SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(self.config.num_hidden_layers ): SCREAMING_SNAKE_CASE : List[str] = self.encoder.adaptive_forward( _lowerCamelCase , current_layer=_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.pooler(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = output_layers[i](output_dropout(_lowerCamelCase ) ) res.append(_lowerCamelCase ) elif self.patience == 0: # Use all layers for inference SCREAMING_SNAKE_CASE : List[Any] = self.encoder( _lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.pooler(encoder_outputs[0] ) SCREAMING_SNAKE_CASE : List[Any] = [output_layers[self.config.num_hidden_layers - 1](_lowerCamelCase )] else: SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 SCREAMING_SNAKE_CASE : str = self.encoder.adaptive_forward( _lowerCamelCase , current_layer=_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = self.pooler(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = output_layers[i](_lowerCamelCase ) if regression: SCREAMING_SNAKE_CASE : List[str] = logits.detach() if patient_result is not None: SCREAMING_SNAKE_CASE : Optional[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: SCREAMING_SNAKE_CASE : Any = 0 else: SCREAMING_SNAKE_CASE : int = logits.detach().argmax(dim=1 ) if patient_result is not None: SCREAMING_SNAKE_CASE : Any = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_lowerCamelCase ) ): patient_counter += 1 else: SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : str = logits if patient_counter == self.patience: break SCREAMING_SNAKE_CASE : Tuple = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = config.num_labels SCREAMING_SNAKE_CASE : int = BertModelWithPabee(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[Any] = self.bert( input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , position_ids=_lowerCamelCase , head_mask=_lowerCamelCase , inputs_embeds=_lowerCamelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) SCREAMING_SNAKE_CASE : Optional[int] = (logits[-1],) if labels is not None: SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for ix, logits_item in enumerate(_lowerCamelCase ): if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE : Any = MSELoss() SCREAMING_SNAKE_CASE : Optional[int] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE : Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: SCREAMING_SNAKE_CASE : Optional[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 SCREAMING_SNAKE_CASE : Dict = (total_loss / total_weights,) + outputs return outputs
313
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = KandinskyImgaImgPipeline __SCREAMING_SNAKE_CASE : str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] __SCREAMING_SNAKE_CASE : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] __SCREAMING_SNAKE_CASE : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->int: return 32 @property def __lowerCAmelCase ( self ) ->List[str]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Tuple: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 100 @property def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Dict = MultilingualCLIP(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self ) ->Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : str = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : str = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE : Any = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Dict = pipeline( _lowerCamelCase , image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
1
from pathlib import Path import fire from tqdm import tqdm def UpperCAmelCase_( a__="ro" , a__="en" , a__="wmt16" , a__=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) SCREAMING_SNAKE_CASE : Optional[int] = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) SCREAMING_SNAKE_CASE : str = datasets.load_dataset(a__ , a__ ) if save_dir is None: SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{dataset}-{pair}""" SCREAMING_SNAKE_CASE : List[Any] = Path(a__ ) save_dir.mkdir(exist_ok=a__ ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets SCREAMING_SNAKE_CASE : Dict = '''val''' if split == '''validation''' else split SCREAMING_SNAKE_CASE : Any = save_dir.joinpath(F"""{fn}.source""" ) SCREAMING_SNAKE_CASE : Dict = save_dir.joinpath(F"""{fn}.target""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_path.open('''w+''' ) SCREAMING_SNAKE_CASE : Dict = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): SCREAMING_SNAKE_CASE : int = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
313
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase_( a__ , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def UpperCAmelCase_( a__ , a__ , a__=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE : Any = '''''' else: SCREAMING_SNAKE_CASE : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dct.pop(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = val def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ViTMSNConfig() SCREAMING_SNAKE_CASE : Optional[int] = 1_000 SCREAMING_SNAKE_CASE : str = '''datasets/huggingface/label-files''' SCREAMING_SNAKE_CASE : List[str] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(a__ , a__ ) , '''r''' ) ) SCREAMING_SNAKE_CASE : List[Any] = {int(a__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : str = idalabel SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = 384 SCREAMING_SNAKE_CASE : Any = 1_536 SCREAMING_SNAKE_CASE : List[str] = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[int] = 1_024 SCREAMING_SNAKE_CASE : Optional[int] = 4_096 SCREAMING_SNAKE_CASE : Tuple = 24 SCREAMING_SNAKE_CASE : Union[str, Any] = 16 SCREAMING_SNAKE_CASE : Dict = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = 7 SCREAMING_SNAKE_CASE : Union[str, Any] = 1_024 SCREAMING_SNAKE_CASE : List[Any] = 4_096 SCREAMING_SNAKE_CASE : List[Any] = 24 SCREAMING_SNAKE_CASE : Tuple = 16 SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMSNModel(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' )['''target_encoder'''] SCREAMING_SNAKE_CASE : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(a__ ) SCREAMING_SNAKE_CASE : Any = create_rename_keys(a__ , base_model=a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , base_model=a__ ) model.load_state_dict(a__ ) model.eval() SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(a__ , stream=a__ ).raw ) SCREAMING_SNAKE_CASE : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=a__ , image_std=a__ ) SCREAMING_SNAKE_CASE : int = image_processor(images=a__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE : Tuple = model(**a__ ) SCREAMING_SNAKE_CASE : str = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , a__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a__ : List[str] = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' a__ : Optional[int] = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' a__ : int = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=4 , _lowerCamelCase=False ) ->Dict: SCREAMING_SNAKE_CASE : Tuple = compute_bleu( reference_corpus=_lowerCamelCase , translation_corpus=_lowerCamelCase , max_order=_lowerCamelCase , smooth=_lowerCamelCase ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : List[Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
313
import csv import tweepy # Twitter API credentials a__ : Union[str, Any] = '''''' a__ : List[str] = '''''' a__ : Any = '''''' a__ : List[str] = '''''' def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = tweepy.OAuthHandler(a__ , a__ ) auth.set_access_token(a__ , a__ ) SCREAMING_SNAKE_CASE : List[str] = tweepy.API(a__ ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE : List[Any] = api.user_timeline(screen_name=a__ , count=200 ) # save most recent tweets alltweets.extend(a__ ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a__ ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE : Any = api.user_timeline( screen_name=a__ , count=200 , max_id=a__ ) # save most recent tweets alltweets.extend(a__ ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Dict = alltweets[-1].id - 1 print(F"""...{len(a__ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE : Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , '''w''' ) as f: SCREAMING_SNAKE_CASE : List[Any] = csv.writer(a__ ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(a__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
313
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType a__ : Any = logging.get_logger(__name__) a__ : Dict = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'imagegpt' __SCREAMING_SNAKE_CASE : Optional[Any] = ['past_key_values'] __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowerCamelCase=512 + 1 , _lowerCamelCase=32 * 32 , _lowerCamelCase=512 , _lowerCamelCase=24 , _lowerCamelCase=8 , _lowerCamelCase=None , _lowerCamelCase="quick_gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , **_lowerCamelCase , ) ->str: SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = n_positions SCREAMING_SNAKE_CASE : Optional[int] = n_embd SCREAMING_SNAKE_CASE : List[Any] = n_layer SCREAMING_SNAKE_CASE : List[Any] = n_head SCREAMING_SNAKE_CASE : int = n_inner SCREAMING_SNAKE_CASE : Dict = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = resid_pdrop SCREAMING_SNAKE_CASE : Dict = embd_pdrop SCREAMING_SNAKE_CASE : List[str] = attn_pdrop SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : int = scale_attn_weights SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE : str = reorder_and_upcast_attn SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings super().__init__(tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase ) class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = 3 , _lowerCamelCase = 32 , _lowerCamelCase = 32 , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = dict(preprocessor(images=_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return inputs
313
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'ibert' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=False , _lowerCamelCase="none" , **_lowerCamelCase , ) ->Any: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = quant_mode SCREAMING_SNAKE_CASE : Dict = force_dequant class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
313
1
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a__ : Tuple = logging.getLogger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 'sequence-classification' def __init__( self , _lowerCamelCase ) ->Optional[Any]: if type(_lowerCamelCase ) == dict: SCREAMING_SNAKE_CASE : Union[str, Any] = Namespace(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = glue_output_modes[hparams.task] SCREAMING_SNAKE_CASE : Optional[int] = glue_tasks_num_labels[hparams.task] super().__init__(_lowerCamelCase , _lowerCamelCase , self.mode ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->str: return self.model(**_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Union[str, Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: SCREAMING_SNAKE_CASE : Optional[int] = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None SCREAMING_SNAKE_CASE : Optional[int] = self(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = outputs[0] SCREAMING_SNAKE_CASE : List[str] = self.trainer.lr_schedulers[0]['''scheduler'''] SCREAMING_SNAKE_CASE : Any = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = self.hparams SCREAMING_SNAKE_CASE : Optional[int] = processors[args.task]() SCREAMING_SNAKE_CASE : Any = processor.get_labels() for mode in ["train", "dev"]: SCREAMING_SNAKE_CASE : Dict = self._feature_file(_lowerCamelCase ) if os.path.exists(_lowerCamelCase ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , _lowerCamelCase ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) SCREAMING_SNAKE_CASE : Dict = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) SCREAMING_SNAKE_CASE : str = convert_examples_to_features( _lowerCamelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ) ->DataLoader: SCREAMING_SNAKE_CASE : List[str] = '''dev''' if mode == '''test''' else mode SCREAMING_SNAKE_CASE : Optional[int] = self._feature_file(_lowerCamelCase ) logger.info('''Loading features from cached file %s''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = torch.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) SCREAMING_SNAKE_CASE : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) SCREAMING_SNAKE_CASE : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": SCREAMING_SNAKE_CASE : Dict = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , batch_size=_lowerCamelCase , shuffle=_lowerCamelCase , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: SCREAMING_SNAKE_CASE : List[Any] = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None SCREAMING_SNAKE_CASE : List[Any] = self(**_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = outputs[:2] SCREAMING_SNAKE_CASE : Optional[Any] = logits.detach().cpu().numpy() SCREAMING_SNAKE_CASE : Optional[int] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __lowerCAmelCase ( self , _lowerCamelCase ) ->tuple: SCREAMING_SNAKE_CASE : str = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() SCREAMING_SNAKE_CASE : Optional[int] = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": SCREAMING_SNAKE_CASE : str = np.argmax(_lowerCamelCase , axis=1 ) elif self.hparams.glue_output_mode == "regression": SCREAMING_SNAKE_CASE : Optional[Any] = np.squeeze(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) SCREAMING_SNAKE_CASE : List[str] = [[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE : Any = [[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE : Optional[Any] = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , _lowerCamelCase , _lowerCamelCase )} SCREAMING_SNAKE_CASE : int = dict(results.items() ) SCREAMING_SNAKE_CASE : List[str] = results return ret, preds_list, out_label_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self._eval_end(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __lowerCAmelCase ( self , _lowerCamelCase ) ->dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self._eval_end(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __lowerCAmelCase ( _lowerCamelCase , _lowerCamelCase ) ->Tuple: BaseTransformer.add_model_specific_args(_lowerCamelCase , _lowerCamelCase ) parser.add_argument( '''--max_seq_length''' , default=128 , type=_lowerCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=_lowerCamelCase , required=_lowerCamelCase , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=_lowerCamelCase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) SCREAMING_SNAKE_CASE : str = GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: SCREAMING_SNAKE_CASE : Tuple = os.path.join( '''./results''' , F"""{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}""" , ) os.makedirs(args.output_dir ) SCREAMING_SNAKE_CASE : Dict = GLUETransformer(a__ ) SCREAMING_SNAKE_CASE : Any = generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: SCREAMING_SNAKE_CASE : int = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=a__ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
313
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType a__ : Any = logging.get_logger(__name__) a__ : Dict = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'imagegpt' __SCREAMING_SNAKE_CASE : Optional[Any] = ['past_key_values'] __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowerCamelCase=512 + 1 , _lowerCamelCase=32 * 32 , _lowerCamelCase=512 , _lowerCamelCase=24 , _lowerCamelCase=8 , _lowerCamelCase=None , _lowerCamelCase="quick_gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , **_lowerCamelCase , ) ->str: SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = n_positions SCREAMING_SNAKE_CASE : Optional[int] = n_embd SCREAMING_SNAKE_CASE : List[Any] = n_layer SCREAMING_SNAKE_CASE : List[Any] = n_head SCREAMING_SNAKE_CASE : int = n_inner SCREAMING_SNAKE_CASE : Dict = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = resid_pdrop SCREAMING_SNAKE_CASE : Dict = embd_pdrop SCREAMING_SNAKE_CASE : List[str] = attn_pdrop SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : int = scale_attn_weights SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE : str = reorder_and_upcast_attn SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings super().__init__(tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase ) class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = 3 , _lowerCamelCase = 32 , _lowerCamelCase = 32 , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = dict(preprocessor(images=_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return inputs
313
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Any = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys a__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
from maths.prime_check import is_prime def UpperCAmelCase_( a__ ): """simple docstring""" if not isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(a__ ) if is_prime(a__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
313
1
from itertools import permutations def UpperCAmelCase_( a__ ): """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False SCREAMING_SNAKE_CASE : Dict = [7, 11, 13, 17] for i, test in enumerate(a__ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase_( a__ = 10 ): """simple docstring""" return sum( int(''''''.join(map(a__ , a__ ) ) ) for num in permutations(range(a__ ) ) if is_substring_divisible(a__ ) ) if __name__ == "__main__": print(F"{solution() = }")
313
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = KandinskyVaaControlnetImgaImgPipeline __SCREAMING_SNAKE_CASE : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[Any] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[str] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->Optional[Any]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 32 @property def __lowerCAmelCase ( self ) ->str: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Dict: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Tuple: return 100 @property def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->Any: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : str = self.dummy_unet SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_movq SCREAMING_SNAKE_CASE : List[str] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : str = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Dict = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = init_image.resize((512, 512) ) SCREAMING_SNAKE_CASE : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 2_5_5.0 SCREAMING_SNAKE_CASE : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : List[Any] = '''A robot, 4k photo''' SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Any = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , image=_lowerCamelCase , strength=0.8_5 , generator=_lowerCamelCase , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : List[str] = pipeline( image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , hint=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = torch.load(a__ , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : Dict = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository SCREAMING_SNAKE_CASE : List[Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: SCREAMING_SNAKE_CASE : Tuple = v else: SCREAMING_SNAKE_CASE : Tuple = v SCREAMING_SNAKE_CASE : int = chkpt['''params'''] SCREAMING_SNAKE_CASE : int = {n: v for n, v in config.items() if not isinstance(a__ , (torch.FloatTensor, numpy.ndarray) )} SCREAMING_SNAKE_CASE : Optional[int] = chkpt['''dico_word2id'''] SCREAMING_SNAKE_CASE : Dict = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model SCREAMING_SNAKE_CASE : Any = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME SCREAMING_SNAKE_CASE : List[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME SCREAMING_SNAKE_CASE : List[Any] = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(a__ , a__ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(a__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(a__ , indent=2 ) + '''\n''' ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(a__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(a__ , indent=2 ) + '''\n''' ) if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a__ : str = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
313
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker a__ : List[str] = '''CompVis/stable-diffusion-v1-1''' a__ : Optional[Any] = '''CompVis/stable-diffusion-v1-2''' a__ : Any = '''CompVis/stable-diffusion-v1-3''' a__ : Optional[Any] = '''CompVis/stable-diffusion-v1-4''' class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ) ->str: super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , requires_safety_checker=_lowerCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self ) ->Dict[str, Any]: return {k: getattr(self , _lowerCamelCase ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self , _lowerCamelCase = "auto" ) ->Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: self.enable_attention_slicing(_lowerCamelCase ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->str: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Tuple: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Dict: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Optional[Any]: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Dict: SCREAMING_SNAKE_CASE : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(_lowerCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Any = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Optional[int] = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
313
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a__ : List[str] = 10 def UpperCAmelCase_( a__ , a__ , a__ , a__ ): """simple docstring""" for i in range(a__ , a__ ): if array[i] == target: return i return -1 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = len(a__ ) while left <= right: if right - left < precision: return lin_search(a__ , a__ , a__ , a__ ) SCREAMING_SNAKE_CASE : Any = (left + right) // 3 + 1 SCREAMING_SNAKE_CASE : List[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: SCREAMING_SNAKE_CASE : Union[str, Any] = one_third - 1 elif array[two_third] < target: SCREAMING_SNAKE_CASE : Optional[Any] = two_third + 1 else: SCREAMING_SNAKE_CASE : Tuple = one_third + 1 SCREAMING_SNAKE_CASE : List[str] = two_third - 1 else: return -1 def UpperCAmelCase_( a__ , a__ , a__ , a__ ): """simple docstring""" if left < right: if right - left < precision: return lin_search(a__ , a__ , a__ , a__ ) SCREAMING_SNAKE_CASE : Tuple = (left + right) // 3 + 1 SCREAMING_SNAKE_CASE : Dict = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(a__ , one_third - 1 , a__ , a__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , a__ , a__ , a__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , a__ , a__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a__ : List[str] = input('''Enter numbers separated by comma:\n''').strip() a__ : List[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a__ : Optional[Any] = int(input('''Enter the number to be found in the list:\n''').strip()) a__ : Any = ite_ternary_search(collection, target) a__ : Any = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"Iterative search: {target} found at positions: {resulta}") print(F"Recursive search: {target} found at positions: {resulta}") else: print('''Not found''')
313
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class a_ ( nn.Module , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False __SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1280, 1280) __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 __SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None __SCREAMING_SNAKE_CASE : int = 1280 __SCREAMING_SNAKE_CASE : float = 0.0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : bool = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->FrozenDict: # init input tensors SCREAMING_SNAKE_CASE : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros(_lowerCamelCase , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = jax.random.split(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )["params"] def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = self.block_out_channels SCREAMING_SNAKE_CASE : Optional[int] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE : List[str] = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE : Optional[int] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE : Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE : Dict = FlaxTimestepEmbedding(_lowerCamelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.only_cross_attention if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : int = block_out_channels[i] SCREAMING_SNAKE_CASE : List[Any] = i == len(_lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = down_blocks # mid SCREAMING_SNAKE_CASE : int = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : str = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : Tuple = reversed_block_out_channels[min(i + 1 , len(_lowerCamelCase ) - 1 )] SCREAMING_SNAKE_CASE : Dict = i == len(_lowerCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": SCREAMING_SNAKE_CASE : str = FlaxCrossAttnUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Optional[int] = FlaxUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Tuple = up_blocks # out SCREAMING_SNAKE_CASE : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = True , _lowerCamelCase = False , ) ->Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowerCamelCase , jnp.ndarray ): SCREAMING_SNAKE_CASE : int = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE : List[str] = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.expand_dims(_lowerCamelCase , 0 ) SCREAMING_SNAKE_CASE : List[str] = self.time_proj(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.time_embedding(_lowerCamelCase ) # 2. pre-process SCREAMING_SNAKE_CASE : int = jnp.transpose(_lowerCamelCase , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_in(_lowerCamelCase ) # 3. down SCREAMING_SNAKE_CASE : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: SCREAMING_SNAKE_CASE : int = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCamelCase , _lowerCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE : Dict = new_down_block_res_samples # 4. mid SCREAMING_SNAKE_CASE : Optional[Any] = self.mid_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Optional[Any] = down_block_res_samples[-(self.layers_per_block + 1) :] SCREAMING_SNAKE_CASE : Optional[int] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = up_block( _lowerCamelCase , temb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train , ) else: SCREAMING_SNAKE_CASE : Optional[int] = up_block(_lowerCamelCase , temb=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train ) # 6. post-process SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.silu(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.conv_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.transpose(_lowerCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCamelCase )
313
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs a__ : str = imread(r'''digital_image_processing/image_data/lena_small.jpg''') a__ : Any = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = cn.convert_to_negative(a__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase_( ): """simple docstring""" with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(a__ , 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() SCREAMING_SNAKE_CASE : Optional[Any] = canny.canny(a__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase_( ): """simple docstring""" assert gg.gaussian_filter(a__ , 5 , sigma=0.9 ).all() def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) SCREAMING_SNAKE_CASE : int = conv.img_convolve(a__ , a__ ).astype(a__ ) assert res.any() def UpperCAmelCase_( ): """simple docstring""" assert med.median_filter(a__ , 3 ).any() def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = sob.sobel_filter(a__ ) assert grad.any() and theta.any() def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = sp.make_sepia(a__ , 20 ) assert sepia.all() def UpperCAmelCase_( a__ = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = bs.Burkes(imread(a__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase_( a__ = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = rs.NearestNeighbour(imread(a__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. SCREAMING_SNAKE_CASE : Tuple = imread(a__ , 0 ) # Test for get_neighbors_pixel function() return not None SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : int = image[x_coordinate][y_coordinate] SCREAMING_SNAKE_CASE : List[Any] = lbp.get_neighbors_pixel( a__ , a__ , a__ , a__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image SCREAMING_SNAKE_CASE : Tuple = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): SCREAMING_SNAKE_CASE : Dict = lbp.local_binary_value(a__ , a__ , a__ ) assert lbp_image.any()
313
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = StableUnCLIPImgaImgPipeline __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : Tuple = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE : int = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL() SCREAMING_SNAKE_CASE : Optional[Any] = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=True ) ->Optional[int]: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if pil_image: SCREAMING_SNAKE_CASE : Any = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : int = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[str] = DiffusionPipeline.numpy_to_pil(_lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableUnCLIPImgaImgPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(_lowerCamelCase ) inputs.update({'''image_embeds''': None} ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : str = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) ->Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : str = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Dict = pipe( _lowerCamelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
313
1
import datasets from .evaluate import evaluate a__ : Optional[int] = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' a__ : str = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' a__ : str = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Dict = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : List[str] = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
313
from abc import ABC, abstractmethod from typing import List, Optional class a_ ( a__ ): """simple docstring""" def __init__( self ) ->List[str]: # test for the above condition self.test() def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE : List[Any] = self.advance() if not self.does_advance(_lowerCamelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.update(_lowerCamelCase ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[int]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Union[str, Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Any: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->int: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = token_ids SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.token_ids ) SCREAMING_SNAKE_CASE : Any = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->List[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = False if self.does_advance(_lowerCamelCase ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE : str = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Union[str, Any] = completed else: # failed to make progress. SCREAMING_SNAKE_CASE : Dict = True self.reset() return stepped, completed, reset def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = 0 def __lowerCAmelCase ( self ) ->Any: return self.seqlen - (self.fulfilled_idx + 1) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Dict: SCREAMING_SNAKE_CASE : Any = PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : Dict = self.seqlen SCREAMING_SNAKE_CASE : int = self.fulfilled_idx SCREAMING_SNAKE_CASE : Tuple = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=True ) ->Dict: SCREAMING_SNAKE_CASE : Any = max([len(_lowerCamelCase ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE : List[str] = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE : Optional[Any] = root for tidx, token_id in enumerate(_lowerCamelCase ): if token_id not in level: SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : Tuple = level[token_id] if no_subsets and self.has_subsets(_lowerCamelCase , _lowerCamelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = root def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[Any] = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE : int = start[current_token] SCREAMING_SNAKE_CASE : Optional[int] = list(start.keys() ) return next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.next_tokens(_lowerCamelCase ) return len(_lowerCamelCase ) == 0 def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = list(root.values() ) if len(_lowerCamelCase ) == 0: return 1 else: return sum([self.count_leaves(_lowerCamelCase ) for nn in next_nodes] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = self.count_leaves(_lowerCamelCase ) return len(_lowerCamelCase ) != leaf_count class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveTrie(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = nested_token_ids SCREAMING_SNAKE_CASE : Optional[int] = self.trie.max_height SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = False def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : str = self.trie.next_tokens(self.current_seq ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False if self.does_advance(_lowerCamelCase ): self.current_seq.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = True else: SCREAMING_SNAKE_CASE : Dict = True self.reset() SCREAMING_SNAKE_CASE : Any = self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE : List[Any] = completed return stepped, completed, reset def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = [] def __lowerCAmelCase ( self ) ->Optional[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->List[str]: SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : str = self.seqlen SCREAMING_SNAKE_CASE : int = self.current_seq SCREAMING_SNAKE_CASE : Optional[int] = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE : str = max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE : List[str] = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = False self.init_state() def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Tuple = [constraint.copy(stateful=_lowerCamelCase ) for constraint in self.constraints] def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE : Optional[int] = constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.add(_lowerCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = False, False if self.completed: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[int] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.inprogress_constraint.update(_lowerCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE : str = None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE : Optional[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = pending_constraint.update(_lowerCamelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = None if not complete and stepped: SCREAMING_SNAKE_CASE : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __lowerCAmelCase ( self , _lowerCamelCase=True ) ->str: SCREAMING_SNAKE_CASE : Dict = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE : str = [ constraint.copy(stateful=_lowerCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.inprogress_constraint.copy(stateful=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [constraint.copy() for constraint in self.pending_constraints] return new_state
313
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F"""{test_file} instead.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = components[:-1] + [test_fn.replace('''.py''' , '''''' )] SCREAMING_SNAKE_CASE : Optional[Any] = '''.'''.join(a__ ) return test_module_path def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = get_module_path(a__ ) SCREAMING_SNAKE_CASE : Any = importlib.import_module(a__ ) return test_module def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : str = get_test_module(a__ ) for attr in dir(a__ ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(a__ , a__ ) ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Any = get_test_module(a__ ) for attr in dir(a__ ): SCREAMING_SNAKE_CASE : List[Any] = getattr(a__ , a__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). SCREAMING_SNAKE_CASE : Dict = getattr(a__ , '''all_model_classes''' , [] ) if len(a__ ) > 0: test_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = get_test_classes(a__ ) SCREAMING_SNAKE_CASE : str = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = test_class() if hasattr(a__ , '''setUp''' ): test.setUp() SCREAMING_SNAKE_CASE : Tuple = None if hasattr(a__ , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: SCREAMING_SNAKE_CASE : Tuple = test.model_tester.__class__ return model_tester def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = get_test_classes(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = get_test_classes_for_model(a__ , a__ ) SCREAMING_SNAKE_CASE : int = [] for test_class in test_classes: SCREAMING_SNAKE_CASE : List[Any] = get_model_tester_from_test_class(a__ ) if tester_class is not None: tester_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = get_test_classes(a__ ) SCREAMING_SNAKE_CASE : Tuple = {test_class: get_model_tester_from_test_class(a__ ) for test_class in test_classes} return test_tester_mapping def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = get_model_classes(a__ ) SCREAMING_SNAKE_CASE : Any = { model_class: get_test_classes_for_model(a__ , a__ ) for model_class in model_classes } return model_test_mapping def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = get_model_classes(a__ ) SCREAMING_SNAKE_CASE : Dict = { model_class: get_tester_classes_for_model(a__ , a__ ) for model_class in model_classes } return model_to_tester_mapping def UpperCAmelCase_( a__ ): """simple docstring""" if isinstance(a__ , a__ ): return o elif isinstance(a__ , a__ ): return o.__name__ elif isinstance(a__ , (list, tuple) ): return [to_json(a__ ) for x in o] elif isinstance(a__ , a__ ): return {to_json(a__ ): to_json(a__ ) for k, v in o.items()} else: return o
313
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCAmelCase_( a__=32 , a__=10 , a__=100 , a__=1_026 , a__=True , a__="data/tokenized_stories_train_wikitext103.jbl" , a__="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = generate_datasets( a__ , a__ , number=a__ , min_len=1_026 , trim=a__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? SCREAMING_SNAKE_CASE : str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model SCREAMING_SNAKE_CASE : Dict = load_gpta('''gpt2''' ).to(a__ ) print('''computing perplexity on objective set''' ) SCREAMING_SNAKE_CASE : int = compute_perplexity(a__ , a__ , a__ ).item() print('''perplexity on objective set:''' , a__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCAmelCase_( a__ , a__=15 , a__=128 , a__=100 , a__="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model SCREAMING_SNAKE_CASE : List[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model SCREAMING_SNAKE_CASE : str = SecondaryLearner(a__ ) # Train secondary learner SCREAMING_SNAKE_CASE : Union[str, Any] = train_secondary_learner( a__ , a__ , max_epochs=a__ , batch_size=a__ , eval_freq=100 , igf_model_path=a__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCAmelCase_( a__ , a__ , a__ , a__=32 , a__=1_000 , a__=16 , a__=1.0 , a__=recopy_gpta , a__=None , a__=10 , a__="gpt2_finetuned.pt" , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) SCREAMING_SNAKE_CASE : Optional[int] = RandomSampler(a__ ) SCREAMING_SNAKE_CASE : Dict = DataLoader(a__ , sampler=a__ ) SCREAMING_SNAKE_CASE : Tuple = max_steps // (len(a__ )) + 1 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = recopy_model(a__ , a__ , a__ ) model.train() if secondary_learner is not None: secondary_learner.to(a__ ) secondary_learner.eval() SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Tuple = [] # Compute the performance of the transformer model at the beginning SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) for epoch in range(int(a__ ) ): for step, example in enumerate(a__ ): torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) SCREAMING_SNAKE_CASE : Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ , labels=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = True if secondary_learner is not None: SCREAMING_SNAKE_CASE : List[str] = secondary_learner.forward( torch.tensor(a__ , dtype=torch.long , device=a__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(a__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: SCREAMING_SNAKE_CASE : Dict = -1 if predicted_q < threshold: SCREAMING_SNAKE_CASE : str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) SCREAMING_SNAKE_CASE : List[str] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=a__ , type=a__ , required=a__ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a__ , type=a__ , required=a__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=a__ , default=a__ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=a__ , default=a__ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=a__ , type=a__ , required=a__ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=a__ , type=a__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=a__ , default=a__ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=a__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=a__ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=a__ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1_000 , type=a__ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=a__ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=a__ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=a__ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=a__ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1_026 , type=a__ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=a__ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=a__ , type=a__ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=a__ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=a__ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=a__ , type=a__ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=a__ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner SCREAMING_SNAKE_CASE : List[Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner SCREAMING_SNAKE_CASE : Tuple = training_secondary_learner( a__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model SCREAMING_SNAKE_CASE : Optional[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1_026 , trim=a__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a__ , a__ , a__ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=a__ , secondary_learner=a__ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
313
1
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase = 16 , _lowerCamelCase = 88 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = 32 , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "geglu" , _lowerCamelCase = None , ) ->Optional[int]: super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_lowerCamelCase , attention_head_dim=_lowerCamelCase , in_channels=_lowerCamelCase , num_layers=_lowerCamelCase , dropout=_lowerCamelCase , norm_num_groups=_lowerCamelCase , cross_attention_dim=_lowerCamelCase , attention_bias=_lowerCamelCase , sample_size=_lowerCamelCase , num_vector_embeds=_lowerCamelCase , activation_fn=_lowerCamelCase , num_embeds_ada_norm=_lowerCamelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference SCREAMING_SNAKE_CASE : List[str] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` SCREAMING_SNAKE_CASE : Optional[int] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` SCREAMING_SNAKE_CASE : Optional[int] = [1, 0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = True , ) ->List[str]: SCREAMING_SNAKE_CASE : List[str] = hidden_states SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : int = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens SCREAMING_SNAKE_CASE : int = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] SCREAMING_SNAKE_CASE : Optional[int] = self.transformer_index_for_condition[i] SCREAMING_SNAKE_CASE : List[Any] = self.transformers[transformer_index]( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , timestep=_lowerCamelCase , cross_attention_kwargs=_lowerCamelCase , return_dict=_lowerCamelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] SCREAMING_SNAKE_CASE : int = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) SCREAMING_SNAKE_CASE : int = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_lowerCamelCase )
313
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = filter(lambda a__ : p.requires_grad , model.parameters() ) SCREAMING_SNAKE_CASE : List[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : Any = logging.getLogger(__name__) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if metric == "rouge2": SCREAMING_SNAKE_CASE : str = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": SCREAMING_SNAKE_CASE : List[Any] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": SCREAMING_SNAKE_CASE : int = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": SCREAMING_SNAKE_CASE : int = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) SCREAMING_SNAKE_CASE : Dict = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F"""val_{metric}""" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=a__ , verbose=a__ , ) class a_ ( pl.Callback ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) ->None: logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) SCREAMING_SNAKE_CASE : Optional[int] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results SCREAMING_SNAKE_CASE : List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": SCREAMING_SNAKE_CASE : Any = od / '''test_results.txt''' SCREAMING_SNAKE_CASE : Optional[int] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE : str = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" SCREAMING_SNAKE_CASE : Tuple = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_lowerCamelCase ) generations_file.parent.mkdir(exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , '''a+''' ) as writer: for key in sorted(_lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE : Tuple = metrics[key] if isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE : List[Any] = val.item() SCREAMING_SNAKE_CASE : Tuple = F"""{key}: {val:.6f}\n""" writer.write(_lowerCamelCase ) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE : Optional[Any] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: try: SCREAMING_SNAKE_CASE : Any = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE : Optional[int] = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE : int = count_trainable_parameters(_lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_lowerCamelCase , _lowerCamelCase , '''test''' ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
313
1
def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = 0, 0, 0 SCREAMING_SNAKE_CASE : Optional[int] = ugly_nums[ia] * 2 SCREAMING_SNAKE_CASE : str = ugly_nums[ia] * 3 SCREAMING_SNAKE_CASE : Tuple = ugly_nums[ia] * 5 for _ in range(1 , a__ ): SCREAMING_SNAKE_CASE : Optional[int] = min(a__ , a__ , a__ ) ugly_nums.append(a__ ) if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE : Optional[int] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE : Dict = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE : List[Any] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(200) = }")
313
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCAmelCase_( a__ ): """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def UpperCAmelCase_( a__ ): """simple docstring""" for char in word: SCREAMING_SNAKE_CASE : str = ord(a__ ) if not _is_chinese_char(a__ ): return 0 return 1 def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = set() for token in tokens: SCREAMING_SNAKE_CASE : str = len(a__ ) > 1 and is_chinese(a__ ) if chinese_word: word_set.add(a__ ) SCREAMING_SNAKE_CASE : str = list(a__ ) return word_list def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE : List[str] = max([len(a__ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE : Tuple = bert_tokens SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = 0, len(a__ ) while start < end: SCREAMING_SNAKE_CASE : Dict = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE : Optional[int] = min(end - start , a__ ) for i in range(a__ , 1 , -1 ): SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE : Optional[int] = '''##''' + bert_word[j] SCREAMING_SNAKE_CASE : List[str] = start + i SCREAMING_SNAKE_CASE : Optional[Any] = False break if single_word: start += 1 return bert_word def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : Optional[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = [get_chinese_word(a__ ) for r in res] ltp_res.extend(a__ ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : Any = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : int = bert_tokenizer(lines[i : i + 100] , add_special_tokens=a__ , truncation=a__ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : int = [] for input_ids, chinese_word in zip(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = [] for id in input_ids: SCREAMING_SNAKE_CASE : List[Any] = bert_tokenizer._convert_id_to_token(a__ ) input_tokens.append(a__ ) SCREAMING_SNAKE_CASE : List[str] = add_sub_symbol(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(a__ ): if token[:2] == "##": SCREAMING_SNAKE_CASE : Optional[int] = token[2:] # save chinese tokens' pos if len(a__ ) == 1 and _is_chinese_char(ord(a__ ) ): ref_id.append(a__ ) ref_ids.append(a__ ) assert len(a__ ) == len(a__ ) return ref_ids def UpperCAmelCase_( a__ ): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : List[str] = f.readlines() SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in data if len(a__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE : List[str] = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE : int = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE : int = prepare_ref(a__ , a__ , a__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Tuple = [json.dumps(a__ ) + '''\n''' for ref in ref_ids] f.writelines(a__ ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') a__ : int = parser.parse_args() main(args)
313
1
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=0 ) ->int: SCREAMING_SNAKE_CASE : str = 1.0 if scale is None else scale SCREAMING_SNAKE_CASE : Any = 0.0 if loc is None else loc super().__init__(_lowerCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_lowerCamelCase )] ) @property def __lowerCAmelCase ( self ) ->Tuple: return self.base_dist.mean * self.scale + self.loc @property def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.base_dist.variance * self.scale**2 @property def __lowerCAmelCase ( self ) ->List[Any]: return self.variance.sqrt() class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->None: super().__init__(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = args_dim SCREAMING_SNAKE_CASE : Any = nn.ModuleList([nn.Linear(_lowerCamelCase , _lowerCamelCase ) for dim in args_dim.values()] ) SCREAMING_SNAKE_CASE : List[Any] = domain_map def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple[torch.Tensor]: SCREAMING_SNAKE_CASE : Optional[Any] = [proj(_lowerCamelCase ) for proj in self.proj] return self.domain_map(*_lowerCamelCase ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->Dict: super().__init__() SCREAMING_SNAKE_CASE : Any = function def __lowerCAmelCase ( self , _lowerCamelCase , *_lowerCamelCase ) ->Union[str, Any]: return self.function(_lowerCamelCase , *_lowerCamelCase ) class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : type __SCREAMING_SNAKE_CASE : int __SCREAMING_SNAKE_CASE : Dict[str, int] def __init__( self , _lowerCamelCase = 1 ) ->None: SCREAMING_SNAKE_CASE : Any = dim SCREAMING_SNAKE_CASE : Optional[Any] = {k: dim * self.args_dim[k] for k in self.args_dim} def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if self.dim == 1: return self.distribution_class(*_lowerCamelCase ) else: return Independent(self.distribution_class(*_lowerCamelCase ) , 1 ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Distribution: SCREAMING_SNAKE_CASE : List[Any] = self._base_distribution(_lowerCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(_lowerCamelCase , loc=_lowerCamelCase , scale=_lowerCamelCase , event_dim=self.event_dim ) @property def __lowerCAmelCase ( self ) ->Tuple: return () if self.dim == 1 else (self.dim,) @property def __lowerCAmelCase ( self ) ->int: return len(self.event_shape ) @property def __lowerCAmelCase ( self ) ->float: return 0.0 def __lowerCAmelCase ( self , _lowerCamelCase ) ->nn.Module: return ParameterProjection( in_features=_lowerCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __lowerCAmelCase ( self , *_lowerCamelCase ) ->Dict: raise NotImplementedError() @staticmethod def __lowerCAmelCase ( _lowerCamelCase ) ->torch.Tensor: return (x + torch.sqrt(torch.square(_lowerCamelCase ) + 4.0 )) / 2.0 class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} __SCREAMING_SNAKE_CASE : type = StudentT @classmethod def __lowerCAmelCase ( cls , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = cls.squareplus(_lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) SCREAMING_SNAKE_CASE : Optional[int] = 2.0 + cls.squareplus(_lowerCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict[str, int] = {"loc": 1, "scale": 1} __SCREAMING_SNAKE_CASE : type = Normal @classmethod def __lowerCAmelCase ( cls , _lowerCamelCase , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : Tuple = cls.squareplus(_lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict[str, int] = {"total_count": 1, "logits": 1} __SCREAMING_SNAKE_CASE : type = NegativeBinomial @classmethod def __lowerCAmelCase ( cls , _lowerCamelCase , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = cls.squareplus(_lowerCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Distribution: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = distr_args if self.dim == 1: return self.distribution_class(total_count=_lowerCamelCase , logits=_lowerCamelCase ) else: return Independent(self.distribution_class(total_count=_lowerCamelCase , logits=_lowerCamelCase ) , 1 ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) ->Distribution: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
313
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Tuple = '''1''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''f32le''' SCREAMING_SNAKE_CASE : List[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error SCREAMING_SNAKE_CASE : Optional[Any] = output_stream[0] SCREAMING_SNAKE_CASE : Any = np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def UpperCAmelCase_( a__ , a__ , a__ = "f32le" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Dict = '''1''' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Dict = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : Dict = '''alsa''' SCREAMING_SNAKE_CASE : Any = '''default''' elif system == "Darwin": SCREAMING_SNAKE_CASE : Union[str, Any] = '''avfoundation''' SCREAMING_SNAKE_CASE : Optional[int] = ''':0''' elif system == "Windows": SCREAMING_SNAKE_CASE : int = '''dshow''' SCREAMING_SNAKE_CASE : Any = '''default''' SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[Any] = _ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def UpperCAmelCase_( a__ , a__ , a__ = None , a__ = None , a__ = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : Tuple = stream_chunk_s else: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s SCREAMING_SNAKE_CASE : Union[str, Any] = ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[int] = np.intaa SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Any = np.floataa SCREAMING_SNAKE_CASE : Union[str, Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: SCREAMING_SNAKE_CASE : Optional[Any] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): SCREAMING_SNAKE_CASE : List[Any] = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : Dict = np.frombuffer(item['''raw'''] , dtype=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_( a__ , a__ , a__ , a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = b'''''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: SCREAMING_SNAKE_CASE : List[str] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : str = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : List[str] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: SCREAMING_SNAKE_CASE : List[str] = False yield item SCREAMING_SNAKE_CASE : Dict = stride_left SCREAMING_SNAKE_CASE : int = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: SCREAMING_SNAKE_CASE : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : Union[str, Any] = False yield item def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2**24 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : str = ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
313
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Tuple = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=a__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=a__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=a__ ) return parser.parse_args() def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE : str = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE : Any = script_fpath.stem SCREAMING_SNAKE_CASE : List[Any] = importlib.import_module(a__ ) # Patch sys.argv SCREAMING_SNAKE_CASE : List[Any] = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
313
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'deformable_detr' __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[int] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : str = num_feature_levels SCREAMING_SNAKE_CASE : Optional[Any] = encoder_n_points SCREAMING_SNAKE_CASE : Any = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : List[str] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) ->int: return self.d_model def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
313
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable a__ : int = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ['''DPTFeatureExtractor'''] a__ : List[Any] = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = (EulerDiscreteScheduler,) __SCREAMING_SNAKE_CASE : Optional[int] = 10 def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**_lowerCamelCase ) return config def __lowerCAmelCase ( self ) ->Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Any = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : List[str] = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : Dict = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase , use_karras_sigmas=_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : int = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = output.prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
313
1
from __future__ import annotations a__ : Tuple = '''Muhammad Umer Farooq''' a__ : Tuple = '''MIT''' a__ : List[str] = '''1.0.0''' a__ : int = '''Muhammad Umer Farooq''' a__ : Any = '''[email protected]''' a__ : Union[str, Any] = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__() SCREAMING_SNAKE_CASE : list[str] = [] SCREAMING_SNAKE_CASE : int = domain def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: SCREAMING_SNAKE_CASE : Any = parse.urljoin(self.domain , _lowerCamelCase ) self.urls.append(_lowerCamelCase ) def UpperCAmelCase_( a__ ): """simple docstring""" return ".".join(get_sub_domain_name(a__ ).split('''.''' )[-2:] ) def UpperCAmelCase_( a__ ): """simple docstring""" return parse.urlparse(a__ ).netloc def UpperCAmelCase_( a__ = "https://github.com" ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = get_domain_name(a__ ) # Initialize the parser SCREAMING_SNAKE_CASE : str = Parser(a__ ) try: # Open URL SCREAMING_SNAKE_CASE : Union[str, Any] = requests.get(a__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through SCREAMING_SNAKE_CASE : Any = set() for link in parser.urls: # open URL. # read = requests.get(link) try: SCREAMING_SNAKE_CASE : Any = requests.get(a__ ) # Get the valid email. SCREAMING_SNAKE_CASE : Dict = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(a__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(a__ ) if __name__ == "__main__": a__ : List[Any] = emails_from_url('''https://github.com''') print(F"{len(emails)} emails found:") print('''\n'''.join(sorted(emails)))
313
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : Dict = logging.get_logger(__name__) a__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a__ : Optional[int] = { '''allenai/led-base-16384''': 16_384, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[Any] = '''post_processor''' SCREAMING_SNAKE_CASE : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Any = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[Any] = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict: SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
313
1
from heapq import heappop, heappush import numpy as np def UpperCAmelCase_( a__ , a__ , a__ , a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = grid.shape SCREAMING_SNAKE_CASE : Dict = [-1, 1, 0, 0] SCREAMING_SNAKE_CASE : str = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = [(0, source)], set() SCREAMING_SNAKE_CASE : Tuple = np.full((rows, cols) , np.inf ) SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : List[Any] = np.empty((rows, cols) , dtype=a__ ) SCREAMING_SNAKE_CASE : Dict = None while queue: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : str = heappop(a__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: SCREAMING_SNAKE_CASE : Tuple = [] while (x, y) != source: path.append((x, y) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = predecessors[x, y] path.append(a__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(a__ ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: SCREAMING_SNAKE_CASE : str = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(a__ , (dist + 1, (nx, ny)) ) SCREAMING_SNAKE_CASE : Dict = dist + 1 SCREAMING_SNAKE_CASE : Tuple = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
313
from __future__ import annotations import math def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if len(a__ ) != 2 or len(a[0] ) != 2 or len(a__ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) SCREAMING_SNAKE_CASE : Dict = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ ): """simple docstring""" if len(a__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) SCREAMING_SNAKE_CASE : str = len(a__ ) SCREAMING_SNAKE_CASE : Any = matrix_length // 2 SCREAMING_SNAKE_CASE : Tuple = [[a[i][j] for j in range(a__ , a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : Optional[int] = [ [a[i][j] for j in range(a__ , a__ )] for i in range(a__ , a__ ) ] SCREAMING_SNAKE_CASE : Optional[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : List[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ , a__ )] return top_left, top_right, bot_left, bot_right def UpperCAmelCase_( a__ ): """simple docstring""" return len(a__ ), len(matrix[0] ) def UpperCAmelCase_( a__ ): """simple docstring""" print('''\n'''.join(str(a__ ) for line in matrix ) ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ ) == (2, 2): return default_matrix_multiplication(a__ , a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE : Dict = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : int = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Any = actual_strassen(matrix_addition(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = matrix_addition(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = matrix_subtraction(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) # construct the new matrix from our 4 quadrants SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(len(a__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(a__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ )[1] != matrix_dimensions(a__ )[0]: SCREAMING_SNAKE_CASE : Any = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(a__ ) SCREAMING_SNAKE_CASE : str = matrix_dimensions(a__ ) SCREAMING_SNAKE_CASE : Tuple = matrix_dimensions(a__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] SCREAMING_SNAKE_CASE : str = max(*a__ , *a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(math.pow(2 , math.ceil(math.loga(a__ ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = matrixa SCREAMING_SNAKE_CASE : Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(a__ , a__ ) # Removing the additional zeros for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a__ : Dict = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a__ : Union[str, Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
313
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = StableUnCLIPImgaImgPipeline __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : Tuple = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE : int = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL() SCREAMING_SNAKE_CASE : Optional[Any] = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=True ) ->Optional[int]: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if pil_image: SCREAMING_SNAKE_CASE : Any = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : int = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[str] = DiffusionPipeline.numpy_to_pil(_lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableUnCLIPImgaImgPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(_lowerCamelCase ) inputs.update({'''image_embeds''': None} ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : str = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) ->Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : str = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Dict = pipe( _lowerCamelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
313
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False ) ->Any: SCREAMING_SNAKE_CASE : str = scheduler SCREAMING_SNAKE_CASE : List[str] = optimizers if isinstance(_lowerCamelCase , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE : Union[str, Any] = split_batches SCREAMING_SNAKE_CASE : List[Any] = step_with_optimizer SCREAMING_SNAKE_CASE : List[str] = GradientState() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE : List[str] = AcceleratorState().num_processes for _ in range(_lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) ->List[str]: return self.scheduler.state_dict() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: self.scheduler.load_state_dict(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: return self.scheduler.get_lr() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]: return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase )
313
1
def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : Any = 2 while i * i <= n: SCREAMING_SNAKE_CASE : str = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : List[Any] = 1 while True: i += 1 t_num += i if count_divisors(a__ ) > 500: break return t_num if __name__ == "__main__": print(solution())
313
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCAmelCase_( a__ ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace(a__ , a__ ) return k def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy() cfg_kwargs.update(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**a__ ) SCREAMING_SNAKE_CASE : Optional[int] = PegasusForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE : Dict = torch_model.model.state_dict() SCREAMING_SNAKE_CASE : List[str] = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE : int = rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE : Dict = v.T SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE : int = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Optional[Any] = {k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = torch_model.model.load_state_dict(a__ , strict=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def UpperCAmelCase_( a__="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : List[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(a__ , desc='''converting tf checkpoint to dict''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE : Dict = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Any = array return tf_weights def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Path(a__ ).parent.name SCREAMING_SNAKE_CASE : Union[str, Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] SCREAMING_SNAKE_CASE : Dict = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(a__ ) SCREAMING_SNAKE_CASE : List[str] = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": SCREAMING_SNAKE_CASE : int = task_specific_params SCREAMING_SNAKE_CASE : List[str] = convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(a__ , Path(a__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ : List[str] = parser.parse_args() if args.save_dir is None: a__ : Any = Path(args.tf_ckpt_path).parent.name a__ : int = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
313
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = KandinskyImgaImgPipeline __SCREAMING_SNAKE_CASE : str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] __SCREAMING_SNAKE_CASE : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] __SCREAMING_SNAKE_CASE : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->int: return 32 @property def __lowerCAmelCase ( self ) ->List[str]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Tuple: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 100 @property def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Dict = MultilingualCLIP(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self ) ->Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : str = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : str = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE : Any = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Dict = pipeline( _lowerCamelCase , image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'deformable_detr' __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[int] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : str = num_feature_levels SCREAMING_SNAKE_CASE : Optional[Any] = encoder_n_points SCREAMING_SNAKE_CASE : Any = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : List[str] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) ->int: return self.d_model def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
313
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase_( a__ , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def UpperCAmelCase_( a__ , a__ , a__=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE : Any = '''''' else: SCREAMING_SNAKE_CASE : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dct.pop(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = val def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ViTMSNConfig() SCREAMING_SNAKE_CASE : Optional[int] = 1_000 SCREAMING_SNAKE_CASE : str = '''datasets/huggingface/label-files''' SCREAMING_SNAKE_CASE : List[str] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(a__ , a__ ) , '''r''' ) ) SCREAMING_SNAKE_CASE : List[Any] = {int(a__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : str = idalabel SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = 384 SCREAMING_SNAKE_CASE : Any = 1_536 SCREAMING_SNAKE_CASE : List[str] = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[int] = 1_024 SCREAMING_SNAKE_CASE : Optional[int] = 4_096 SCREAMING_SNAKE_CASE : Tuple = 24 SCREAMING_SNAKE_CASE : Union[str, Any] = 16 SCREAMING_SNAKE_CASE : Dict = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = 7 SCREAMING_SNAKE_CASE : Union[str, Any] = 1_024 SCREAMING_SNAKE_CASE : List[Any] = 4_096 SCREAMING_SNAKE_CASE : List[Any] = 24 SCREAMING_SNAKE_CASE : Tuple = 16 SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMSNModel(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' )['''target_encoder'''] SCREAMING_SNAKE_CASE : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(a__ ) SCREAMING_SNAKE_CASE : Any = create_rename_keys(a__ , base_model=a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , base_model=a__ ) model.load_state_dict(a__ ) model.eval() SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(a__ , stream=a__ ).raw ) SCREAMING_SNAKE_CASE : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=a__ , image_std=a__ ) SCREAMING_SNAKE_CASE : int = image_processor(images=a__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE : Tuple = model(**a__ ) SCREAMING_SNAKE_CASE : str = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , a__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
1
from __future__ import annotations class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = text, pattern SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = len(_lowerCamelCase ), len(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __lowerCAmelCase ( self ) ->list[int]: # searches pattern in text and returns index positions SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(self.textLen - self.patLen + 1 ): SCREAMING_SNAKE_CASE : List[str] = self.mismatch_in_text(_lowerCamelCase ) if mismatch_index == -1: positions.append(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Tuple = self.match_in_pattern(self.text[mismatch_index] ) SCREAMING_SNAKE_CASE : Optional[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions a__ : Union[str, Any] = '''ABAABA''' a__ : Union[str, Any] = '''AB''' a__ : Optional[Any] = BoyerMooreSearch(text, pattern) a__ : Optional[Any] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
313
import csv import tweepy # Twitter API credentials a__ : Union[str, Any] = '''''' a__ : List[str] = '''''' a__ : Any = '''''' a__ : List[str] = '''''' def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = tweepy.OAuthHandler(a__ , a__ ) auth.set_access_token(a__ , a__ ) SCREAMING_SNAKE_CASE : List[str] = tweepy.API(a__ ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE : List[Any] = api.user_timeline(screen_name=a__ , count=200 ) # save most recent tweets alltweets.extend(a__ ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a__ ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE : Any = api.user_timeline( screen_name=a__ , count=200 , max_id=a__ ) # save most recent tweets alltweets.extend(a__ ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Dict = alltweets[-1].id - 1 print(F"""...{len(a__ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE : Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , '''w''' ) as f: SCREAMING_SNAKE_CASE : List[Any] = csv.writer(a__ ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(a__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
313
1
a__ : Optional[int] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a__ : list[bool | None] = [None] * 10_000_000 a__ : Optional[Any] = True a__ : Dict = False def UpperCAmelCase_( a__ ): """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore SCREAMING_SNAKE_CASE : Tuple = chain(next_number(a__ ) ) SCREAMING_SNAKE_CASE : Dict = number_chain while number < 10_000_000: SCREAMING_SNAKE_CASE : List[Any] = number_chain number *= 10 return number_chain def UpperCAmelCase_( a__ = 10_000_000 ): """simple docstring""" for i in range(1 , a__ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(a__ ) if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution() = }")
313
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'ibert' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=False , _lowerCamelCase="none" , **_lowerCamelCase , ) ->Any: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = quant_mode SCREAMING_SNAKE_CASE : Dict = force_dequant class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
313
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowercase_ : '''simple docstring''' __snake_case = 42 __snake_case = None __snake_case = None UpperCAmelCase__ = namedtuple("CoinsDistribResult", "moves excess") def _a ( a :TreeNode | None ) -> int: if root is None: return 0 # Validation def count_nodes(a :TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(a :TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a ) != count_coins(a ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(a :TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) a , a = get_distrib(node.left ) a , a = get_distrib(node.right ) a = 1 - left_distrib_excess a = 1 - right_distrib_excess a = ( left_distrib_moves + right_distrib_moves + abs(a ) + abs(a ) ) a = node.data - coins_to_left - coins_to_right return CoinsDistribResult(a , a ) return get_distrib(a )[0] if __name__ == "__main__": import doctest doctest.testmod()
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType a__ : Any = logging.get_logger(__name__) a__ : Dict = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'imagegpt' __SCREAMING_SNAKE_CASE : Optional[Any] = ['past_key_values'] __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowerCamelCase=512 + 1 , _lowerCamelCase=32 * 32 , _lowerCamelCase=512 , _lowerCamelCase=24 , _lowerCamelCase=8 , _lowerCamelCase=None , _lowerCamelCase="quick_gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , **_lowerCamelCase , ) ->str: SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = n_positions SCREAMING_SNAKE_CASE : Optional[int] = n_embd SCREAMING_SNAKE_CASE : List[Any] = n_layer SCREAMING_SNAKE_CASE : List[Any] = n_head SCREAMING_SNAKE_CASE : int = n_inner SCREAMING_SNAKE_CASE : Dict = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = resid_pdrop SCREAMING_SNAKE_CASE : Dict = embd_pdrop SCREAMING_SNAKE_CASE : List[str] = attn_pdrop SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : int = scale_attn_weights SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE : str = reorder_and_upcast_attn SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings super().__init__(tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase ) class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = 3 , _lowerCamelCase = 32 , _lowerCamelCase = 32 , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = dict(preprocessor(images=_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return inputs
313
0
'''simple docstring''' import qiskit def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase_ = qiskit.Aer.get_backend("aer_simulator" ) UpperCAmelCase_ = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase_ = qiskit.execute(snake_case_ , snake_case_ , shots=10_00 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =half_adder(1, 1) print(f"Half Adder Output Qubit Counts: {counts}")
1
from maths.prime_check import is_prime def UpperCAmelCase_( a__ ): """simple docstring""" if not isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(a__ ) if is_prime(a__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
313
0
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCamelCase : Tuple = 'http://www.mocksite.com/file1.txt' lowerCamelCase : Union[str, Any] = '"text": ["foo", "foo"]' lowerCamelCase : Dict = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 200 lowerCAmelCase__ : str = {"""Content-Length""": """100"""} lowerCAmelCase__ : Optional[Any] = {} def UpperCamelCase__ (self : Tuple , **UpperCamelCase : int ): '''simple docstring''' return [bytes(UpperCamelCase , '''utf-8''' )] def _SCREAMING_SNAKE_CASE (*A , **A ) -> str: """simple docstring""" return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(A , '''request''' , A ) lowercase__ = URL if issubclass(A , A ): lowercase__ = url elif issubclass(A , A ): lowercase__ = [url] elif issubclass(A , A ): lowercase__ = {'''train''': url} lowercase__ = '''dummy''' lowercase__ = '''downloads''' lowercase__ = tmp_path lowercase__ = DownloadConfig( cache_dir=os.path.join(A , A ) , use_etag=A , ) lowercase__ = DownloadManager(dataset_name=A , download_config=A ) lowercase__ = dl_manager.download(A ) lowercase__ = urls for downloaded_paths in [downloaded_paths]: if isinstance(A , A ): lowercase__ = [downloaded_paths] lowercase__ = [urls] elif isinstance(A , A ): assert "train" in downloaded_paths.keys() lowercase__ = downloaded_paths.values() lowercase__ = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(A , A ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowercase__ = Path(A ) lowercase__ = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowercase__ = downloaded_path.read_text() assert content == CONTENT lowercase__ = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() lowercase__ = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> List[str]: """simple docstring""" lowercase__ = str(A ) if issubclass(A , A ): lowercase__ = filename elif issubclass(A , A ): lowercase__ = [filename] elif issubclass(A , A ): lowercase__ = {'''train''': filename} lowercase__ = '''dummy''' lowercase__ = xz_file.parent lowercase__ = '''extracted''' lowercase__ = DownloadConfig( cache_dir=A , use_etag=A , ) lowercase__ = DownloadManager(dataset_name=A , download_config=A ) lowercase__ = dl_manager.extract(A ) lowercase__ = paths for extracted_paths in [extracted_paths]: if isinstance(A , A ): lowercase__ = [extracted_paths] lowercase__ = [paths] elif isinstance(A , A ): assert "train" in extracted_paths.keys() lowercase__ = extracted_paths.values() lowercase__ = paths.values() assert extracted_paths for extracted_path, input_path in zip(A , A ): assert extracted_path == dl_manager.extracted_paths[input_path] lowercase__ = Path(A ) lowercase__ = extracted_path.parts assert parts[-1] == hash_url_to_filename(A , etag=A ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowercase__ = extracted_path.read_text() lowercase__ = text_file.read_text() assert extracted_file_content == expected_file_content def _SCREAMING_SNAKE_CASE (A , A ) -> Any: """simple docstring""" assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(A , start=1 ): lowercase__ = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def _SCREAMING_SNAKE_CASE (A , A ) -> Any: """simple docstring""" lowercase__ = request.getfixturevalue(A ) lowercase__ = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(A ) , start=1 ): _test_jsonl(A , A ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def _SCREAMING_SNAKE_CASE (A , A ) -> int: """simple docstring""" lowercase__ = request.getfixturevalue(A ) lowercase__ = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(A ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(A ) , start=1 ): _test_jsonl(A , A ) assert num_tar == 1 assert num_jsonl == 2 def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(A ) , start=1 ): assert os.path.basename(A ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
2
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = KandinskyVaaControlnetImgaImgPipeline __SCREAMING_SNAKE_CASE : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[Any] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[str] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->Optional[Any]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 32 @property def __lowerCAmelCase ( self ) ->str: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Dict: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Tuple: return 100 @property def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->Any: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : str = self.dummy_unet SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_movq SCREAMING_SNAKE_CASE : List[str] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : str = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Dict = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = init_image.resize((512, 512) ) SCREAMING_SNAKE_CASE : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 2_5_5.0 SCREAMING_SNAKE_CASE : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : List[Any] = '''A robot, 4k photo''' SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Any = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , image=_lowerCamelCase , strength=0.8_5 , generator=_lowerCamelCase , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : List[str] = pipeline( image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , hint=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
0
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Optional[int] = logging.get_logger(__name__) lowercase : Any = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class A ( __snake_case ): __magic_name__ = '''mvp''' __magic_name__ = ['''past_key_values'''] __magic_name__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , SCREAMING_SNAKE_CASE=50267 , SCREAMING_SNAKE_CASE=1024 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=1024 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=100 , SCREAMING_SNAKE_CASE=800 , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" A : Tuple = vocab_size A : Tuple = max_position_embeddings A : Union[str, Any] = d_model A : Optional[Any] = encoder_ffn_dim A : Optional[Any] = encoder_layers A : List[str] = encoder_attention_heads A : Any = decoder_ffn_dim A : List[Any] = decoder_layers A : Optional[Any] = decoder_attention_heads A : Optional[int] = dropout A : Optional[Any] = attention_dropout A : List[str] = activation_dropout A : Union[str, Any] = activation_function A : Dict = init_std A : Optional[int] = encoder_layerdrop A : int = decoder_layerdrop A : Optional[int] = classifier_dropout A : List[str] = use_cache A : Tuple = encoder_layers A : Any = scale_embedding # scale factor will be sqrt(d_model) if True A : Union[str, Any] = use_prompt A : Optional[Any] = prompt_length A : Tuple = prompt_mid_dim super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , forced_eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , SCREAMING_SNAKE_CASE ): A : Tuple = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' )
3
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker a__ : List[str] = '''CompVis/stable-diffusion-v1-1''' a__ : Optional[Any] = '''CompVis/stable-diffusion-v1-2''' a__ : Any = '''CompVis/stable-diffusion-v1-3''' a__ : Optional[Any] = '''CompVis/stable-diffusion-v1-4''' class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ) ->str: super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , requires_safety_checker=_lowerCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self ) ->Dict[str, Any]: return {k: getattr(self , _lowerCamelCase ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self , _lowerCamelCase = "auto" ) ->Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: self.enable_attention_slicing(_lowerCamelCase ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->str: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Tuple: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Dict: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Optional[Any]: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Dict: SCREAMING_SNAKE_CASE : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(_lowerCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Any = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Optional[int] = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
313
0
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : List[str] = RoCBertTokenizer lowerCamelCase : Tuple = None lowerCamelCase : int = False lowerCamelCase : Tuple = True lowerCamelCase : int = filter_non_english def __UpperCAmelCase ( self : Dict ) -> Dict: super().setUp() lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] lowerCAmelCase = {} lowerCAmelCase = {} for i, value in enumerate(UpperCAmelCase__ ): lowerCAmelCase = i lowerCAmelCase = i lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(UpperCAmelCase__ , UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(UpperCAmelCase__ , UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: lowerCAmelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCAmelCase = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(UpperCAmelCase__ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase__ ) , [5, 6, 2, 5, 7, 8] ) def __UpperCAmelCase ( self : Any ) -> str: lowerCAmelCase = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def __UpperCAmelCase ( self : Optional[Any] ) -> str: lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self : List[Any] ) -> Any: lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def __UpperCAmelCase ( self : List[str] ) -> List[str]: lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __UpperCAmelCase ( self : List[str] ) -> List[str]: lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self : Any ) -> str: lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self : List[Any] ) -> Any: lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __UpperCAmelCase ( self : List[str] ) -> List[str]: lowerCAmelCase = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase__ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCAmelCase = {} for i, token in enumerate(UpperCAmelCase__ ): lowerCAmelCase = i lowerCAmelCase = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase__ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def __UpperCAmelCase ( self : Any ) -> Tuple: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __UpperCAmelCase ( self : List[Any] ) -> List[str]: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: lowerCAmelCase = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase__ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def __UpperCAmelCase ( self : Dict ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' lowerCAmelCase = tokenizer_r.encode_plus( UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , ) lowerCAmelCase = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase__ , 'do_lower_case' ) else False lowerCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def __UpperCAmelCase ( self : str ) -> Tuple: lowerCAmelCase = ['的', '人', '有'] lowerCAmelCase = ''.join(UpperCAmelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase = True lowerCAmelCase = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) lowerCAmelCase = tokenizer_r.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = False lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = tokenizer_r.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase__ ) lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(UpperCAmelCase__ ) ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: lowerCAmelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCAmelCase = tokenizer.encode('你好' , add_special_tokens=UpperCAmelCase__ ) lowerCAmelCase = tokenizer.encode('你是谁' , add_special_tokens=UpperCAmelCase__ ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __UpperCAmelCase ( self : str ) -> Optional[Any]: lowerCAmelCase = self.get_tokenizers(do_lower_case=UpperCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase = '你好,你是谁' lowerCAmelCase = tokenizer.tokenize(UpperCAmelCase__ ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) lowerCAmelCase = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase__ ) lowerCAmelCase = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase__ ) lowerCAmelCase = tokenizer.prepare_for_model( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) lowerCAmelCase = tokenizer.encode_plus(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
4
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class a_ ( nn.Module , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False __SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1280, 1280) __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 __SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None __SCREAMING_SNAKE_CASE : int = 1280 __SCREAMING_SNAKE_CASE : float = 0.0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : bool = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->FrozenDict: # init input tensors SCREAMING_SNAKE_CASE : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros(_lowerCamelCase , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = jax.random.split(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )["params"] def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = self.block_out_channels SCREAMING_SNAKE_CASE : Optional[int] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE : List[str] = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE : Optional[int] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE : Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE : Dict = FlaxTimestepEmbedding(_lowerCamelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.only_cross_attention if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : int = block_out_channels[i] SCREAMING_SNAKE_CASE : List[Any] = i == len(_lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = down_blocks # mid SCREAMING_SNAKE_CASE : int = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : str = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : Tuple = reversed_block_out_channels[min(i + 1 , len(_lowerCamelCase ) - 1 )] SCREAMING_SNAKE_CASE : Dict = i == len(_lowerCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": SCREAMING_SNAKE_CASE : str = FlaxCrossAttnUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Optional[int] = FlaxUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Tuple = up_blocks # out SCREAMING_SNAKE_CASE : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = True , _lowerCamelCase = False , ) ->Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowerCamelCase , jnp.ndarray ): SCREAMING_SNAKE_CASE : int = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE : List[str] = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.expand_dims(_lowerCamelCase , 0 ) SCREAMING_SNAKE_CASE : List[str] = self.time_proj(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.time_embedding(_lowerCamelCase ) # 2. pre-process SCREAMING_SNAKE_CASE : int = jnp.transpose(_lowerCamelCase , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_in(_lowerCamelCase ) # 3. down SCREAMING_SNAKE_CASE : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: SCREAMING_SNAKE_CASE : int = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCamelCase , _lowerCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE : Dict = new_down_block_res_samples # 4. mid SCREAMING_SNAKE_CASE : Optional[Any] = self.mid_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Optional[Any] = down_block_res_samples[-(self.layers_per_block + 1) :] SCREAMING_SNAKE_CASE : Optional[int] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = up_block( _lowerCamelCase , temb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train , ) else: SCREAMING_SNAKE_CASE : Optional[int] = up_block(_lowerCamelCase , temb=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train ) # 6. post-process SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.silu(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.conv_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.transpose(_lowerCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCamelCase )
313
0
from __future__ import annotations import math def UpperCAmelCase_ ( __snake_case ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCAmelCase__ = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) _lowercase =[] for num in range(len(__snake_case ) ): _lowercase =0 while 2 * i * i <= odd_composites[num]: _lowercase =odd_composites[num] - 2 * i * i if is_prime(__snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__snake_case ) == n: return list_nums return [] def UpperCAmelCase_ ( ) -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
5
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = StableUnCLIPImgaImgPipeline __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : Tuple = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE : int = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL() SCREAMING_SNAKE_CASE : Optional[Any] = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=True ) ->Optional[int]: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if pil_image: SCREAMING_SNAKE_CASE : Any = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : int = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[str] = DiffusionPipeline.numpy_to_pil(_lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableUnCLIPImgaImgPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(_lowerCamelCase ) inputs.update({'''image_embeds''': None} ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : str = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) ->Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : str = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Dict = pipe( _lowerCamelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
313
0
from math import ceil def __lowerCAmelCase ( a__ = 1001 ) -> int: __a = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __a = 2 * i + 1 __a = 2 * i __a = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
6
from abc import ABC, abstractmethod from typing import List, Optional class a_ ( a__ ): """simple docstring""" def __init__( self ) ->List[str]: # test for the above condition self.test() def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE : List[Any] = self.advance() if not self.does_advance(_lowerCamelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.update(_lowerCamelCase ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[int]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Union[str, Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Any: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->int: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = token_ids SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.token_ids ) SCREAMING_SNAKE_CASE : Any = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->List[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = False if self.does_advance(_lowerCamelCase ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE : str = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Union[str, Any] = completed else: # failed to make progress. SCREAMING_SNAKE_CASE : Dict = True self.reset() return stepped, completed, reset def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = 0 def __lowerCAmelCase ( self ) ->Any: return self.seqlen - (self.fulfilled_idx + 1) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Dict: SCREAMING_SNAKE_CASE : Any = PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : Dict = self.seqlen SCREAMING_SNAKE_CASE : int = self.fulfilled_idx SCREAMING_SNAKE_CASE : Tuple = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=True ) ->Dict: SCREAMING_SNAKE_CASE : Any = max([len(_lowerCamelCase ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE : List[str] = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE : Optional[Any] = root for tidx, token_id in enumerate(_lowerCamelCase ): if token_id not in level: SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : Tuple = level[token_id] if no_subsets and self.has_subsets(_lowerCamelCase , _lowerCamelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = root def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[Any] = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE : int = start[current_token] SCREAMING_SNAKE_CASE : Optional[int] = list(start.keys() ) return next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.next_tokens(_lowerCamelCase ) return len(_lowerCamelCase ) == 0 def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = list(root.values() ) if len(_lowerCamelCase ) == 0: return 1 else: return sum([self.count_leaves(_lowerCamelCase ) for nn in next_nodes] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = self.count_leaves(_lowerCamelCase ) return len(_lowerCamelCase ) != leaf_count class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveTrie(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = nested_token_ids SCREAMING_SNAKE_CASE : Optional[int] = self.trie.max_height SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = False def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : str = self.trie.next_tokens(self.current_seq ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False if self.does_advance(_lowerCamelCase ): self.current_seq.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = True else: SCREAMING_SNAKE_CASE : Dict = True self.reset() SCREAMING_SNAKE_CASE : Any = self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE : List[Any] = completed return stepped, completed, reset def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = [] def __lowerCAmelCase ( self ) ->Optional[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->List[str]: SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : str = self.seqlen SCREAMING_SNAKE_CASE : int = self.current_seq SCREAMING_SNAKE_CASE : Optional[int] = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE : str = max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE : List[str] = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = False self.init_state() def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Tuple = [constraint.copy(stateful=_lowerCamelCase ) for constraint in self.constraints] def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE : Optional[int] = constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.add(_lowerCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = False, False if self.completed: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[int] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.inprogress_constraint.update(_lowerCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE : str = None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE : Optional[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = pending_constraint.update(_lowerCamelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = None if not complete and stepped: SCREAMING_SNAKE_CASE : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __lowerCAmelCase ( self , _lowerCamelCase=True ) ->str: SCREAMING_SNAKE_CASE : Dict = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE : str = [ constraint.copy(stateful=_lowerCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.inprogress_constraint.copy(stateful=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [constraint.copy() for constraint in self.pending_constraints] return new_state
313
0
def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> str: '''simple docstring''' A__ = 0 # if input_string is "aba" than new_input_string become "a|b|a" A__ = '' A__ = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(SCREAMING_SNAKE_CASE__ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring A__ , A__ = 0, 0 # length[i] shows the length of palindromic substring with center i A__ = [1 for i in range(len(SCREAMING_SNAKE_CASE__ ) )] # for each character in new_string find corresponding palindromic string A__ = 0 for j in range(len(SCREAMING_SNAKE_CASE__ ) ): A__ = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(SCREAMING_SNAKE_CASE__ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 A__ = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: A__ = j - k + 1 # noqa: E741 A__ = j + k - 1 # update max_length and start position if max_length < length[j]: A__ = length[j] A__ = j # create that string A__ = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
7
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCAmelCase_( a__=32 , a__=10 , a__=100 , a__=1_026 , a__=True , a__="data/tokenized_stories_train_wikitext103.jbl" , a__="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = generate_datasets( a__ , a__ , number=a__ , min_len=1_026 , trim=a__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? SCREAMING_SNAKE_CASE : str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model SCREAMING_SNAKE_CASE : Dict = load_gpta('''gpt2''' ).to(a__ ) print('''computing perplexity on objective set''' ) SCREAMING_SNAKE_CASE : int = compute_perplexity(a__ , a__ , a__ ).item() print('''perplexity on objective set:''' , a__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCAmelCase_( a__ , a__=15 , a__=128 , a__=100 , a__="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model SCREAMING_SNAKE_CASE : List[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model SCREAMING_SNAKE_CASE : str = SecondaryLearner(a__ ) # Train secondary learner SCREAMING_SNAKE_CASE : Union[str, Any] = train_secondary_learner( a__ , a__ , max_epochs=a__ , batch_size=a__ , eval_freq=100 , igf_model_path=a__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCAmelCase_( a__ , a__ , a__ , a__=32 , a__=1_000 , a__=16 , a__=1.0 , a__=recopy_gpta , a__=None , a__=10 , a__="gpt2_finetuned.pt" , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) SCREAMING_SNAKE_CASE : Optional[int] = RandomSampler(a__ ) SCREAMING_SNAKE_CASE : Dict = DataLoader(a__ , sampler=a__ ) SCREAMING_SNAKE_CASE : Tuple = max_steps // (len(a__ )) + 1 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = recopy_model(a__ , a__ , a__ ) model.train() if secondary_learner is not None: secondary_learner.to(a__ ) secondary_learner.eval() SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Tuple = [] # Compute the performance of the transformer model at the beginning SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) for epoch in range(int(a__ ) ): for step, example in enumerate(a__ ): torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) SCREAMING_SNAKE_CASE : Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ , labels=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = True if secondary_learner is not None: SCREAMING_SNAKE_CASE : List[str] = secondary_learner.forward( torch.tensor(a__ , dtype=torch.long , device=a__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(a__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: SCREAMING_SNAKE_CASE : Dict = -1 if predicted_q < threshold: SCREAMING_SNAKE_CASE : str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) SCREAMING_SNAKE_CASE : List[str] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=a__ , type=a__ , required=a__ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a__ , type=a__ , required=a__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=a__ , default=a__ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=a__ , default=a__ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=a__ , type=a__ , required=a__ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=a__ , type=a__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=a__ , default=a__ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=a__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=a__ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=a__ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1_000 , type=a__ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=a__ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=a__ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=a__ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=a__ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1_026 , type=a__ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=a__ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=a__ , type=a__ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=a__ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=a__ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=a__ , type=a__ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=a__ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner SCREAMING_SNAKE_CASE : List[Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner SCREAMING_SNAKE_CASE : Tuple = training_secondary_learner( a__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model SCREAMING_SNAKE_CASE : Optional[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1_026 , trim=a__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a__ , a__ , a__ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=a__ , secondary_learner=a__ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
313
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = filter(lambda a__ : p.requires_grad , model.parameters() ) SCREAMING_SNAKE_CASE : List[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : Any = logging.getLogger(__name__) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if metric == "rouge2": SCREAMING_SNAKE_CASE : str = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": SCREAMING_SNAKE_CASE : List[Any] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": SCREAMING_SNAKE_CASE : int = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": SCREAMING_SNAKE_CASE : int = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) SCREAMING_SNAKE_CASE : Dict = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F"""val_{metric}""" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=a__ , verbose=a__ , ) class a_ ( pl.Callback ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) ->None: logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) SCREAMING_SNAKE_CASE : Optional[int] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results SCREAMING_SNAKE_CASE : List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": SCREAMING_SNAKE_CASE : Any = od / '''test_results.txt''' SCREAMING_SNAKE_CASE : Optional[int] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE : str = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" SCREAMING_SNAKE_CASE : Tuple = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_lowerCamelCase ) generations_file.parent.mkdir(exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , '''a+''' ) as writer: for key in sorted(_lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE : Tuple = metrics[key] if isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE : List[Any] = val.item() SCREAMING_SNAKE_CASE : Tuple = F"""{key}: {val:.6f}\n""" writer.write(_lowerCamelCase ) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE : Optional[Any] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: try: SCREAMING_SNAKE_CASE : Any = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE : Optional[int] = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE : int = count_trainable_parameters(_lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_lowerCamelCase , _lowerCamelCase , '''test''' ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
313
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase : Any ={ 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple =['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __lowerCAmelCase : Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCAmelCase_( a__ ): """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def UpperCAmelCase_( a__ ): """simple docstring""" for char in word: SCREAMING_SNAKE_CASE : str = ord(a__ ) if not _is_chinese_char(a__ ): return 0 return 1 def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = set() for token in tokens: SCREAMING_SNAKE_CASE : str = len(a__ ) > 1 and is_chinese(a__ ) if chinese_word: word_set.add(a__ ) SCREAMING_SNAKE_CASE : str = list(a__ ) return word_list def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE : List[str] = max([len(a__ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE : Tuple = bert_tokens SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = 0, len(a__ ) while start < end: SCREAMING_SNAKE_CASE : Dict = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE : Optional[int] = min(end - start , a__ ) for i in range(a__ , 1 , -1 ): SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE : Optional[int] = '''##''' + bert_word[j] SCREAMING_SNAKE_CASE : List[str] = start + i SCREAMING_SNAKE_CASE : Optional[Any] = False break if single_word: start += 1 return bert_word def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : Optional[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = [get_chinese_word(a__ ) for r in res] ltp_res.extend(a__ ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : Any = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : int = bert_tokenizer(lines[i : i + 100] , add_special_tokens=a__ , truncation=a__ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : int = [] for input_ids, chinese_word in zip(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = [] for id in input_ids: SCREAMING_SNAKE_CASE : List[Any] = bert_tokenizer._convert_id_to_token(a__ ) input_tokens.append(a__ ) SCREAMING_SNAKE_CASE : List[str] = add_sub_symbol(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(a__ ): if token[:2] == "##": SCREAMING_SNAKE_CASE : Optional[int] = token[2:] # save chinese tokens' pos if len(a__ ) == 1 and _is_chinese_char(ord(a__ ) ): ref_id.append(a__ ) ref_ids.append(a__ ) assert len(a__ ) == len(a__ ) return ref_ids def UpperCAmelCase_( a__ ): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : List[str] = f.readlines() SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in data if len(a__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE : List[str] = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE : int = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE : int = prepare_ref(a__ , a__ , a__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Tuple = [json.dumps(a__ ) + '''\n''' for ref in ref_ids] f.writelines(a__ ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') a__ : int = parser.parse_args() main(args)
313
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Tuple = '''1''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''f32le''' SCREAMING_SNAKE_CASE : List[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error SCREAMING_SNAKE_CASE : Optional[Any] = output_stream[0] SCREAMING_SNAKE_CASE : Any = np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def UpperCAmelCase_( a__ , a__ , a__ = "f32le" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Dict = '''1''' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Dict = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : Dict = '''alsa''' SCREAMING_SNAKE_CASE : Any = '''default''' elif system == "Darwin": SCREAMING_SNAKE_CASE : Union[str, Any] = '''avfoundation''' SCREAMING_SNAKE_CASE : Optional[int] = ''':0''' elif system == "Windows": SCREAMING_SNAKE_CASE : int = '''dshow''' SCREAMING_SNAKE_CASE : Any = '''default''' SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[Any] = _ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def UpperCAmelCase_( a__ , a__ , a__ = None , a__ = None , a__ = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : Tuple = stream_chunk_s else: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s SCREAMING_SNAKE_CASE : Union[str, Any] = ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[int] = np.intaa SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Any = np.floataa SCREAMING_SNAKE_CASE : Union[str, Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: SCREAMING_SNAKE_CASE : Optional[Any] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): SCREAMING_SNAKE_CASE : List[Any] = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : Dict = np.frombuffer(item['''raw'''] , dtype=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_( a__ , a__ , a__ , a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = b'''''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: SCREAMING_SNAKE_CASE : List[str] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : str = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : List[str] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: SCREAMING_SNAKE_CASE : List[str] = False yield item SCREAMING_SNAKE_CASE : Dict = stride_left SCREAMING_SNAKE_CASE : int = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: SCREAMING_SNAKE_CASE : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : Union[str, Any] = False yield item def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2**24 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : str = ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
313
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'spiece.model'} lowerCAmelCase__ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } lowerCAmelCase__ = { 'albert-base-v1': 5_12, 'albert-large-v1': 5_12, 'albert-xlarge-v1': 5_12, 'albert-xxlarge-v1': 5_12, 'albert-base-v2': 5_12, 'albert-large-v2': 5_12, 'albert-xlarge-v2': 5_12, 'albert-xxlarge-v2': 5_12, } lowerCAmelCase__ = '▁' class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase = None , **__lowerCamelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _A : Tuple = ( AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase) if isinstance(__lowerCamelCase , __lowerCamelCase) else mask_token ) _A : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _A : Union[str, Any] = do_lower_case _A : List[str] = remove_space _A : str = keep_accents _A : List[str] = vocab_file _A : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(__lowerCamelCase) @property def _lowerCamelCase ( self) -> Tuple: return len(self.sp_model) def _lowerCamelCase ( self) -> List[Any]: _A : Optional[Any] = {self.convert_ids_to_tokens(__lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Union[str, Any]: _A : int = self.__dict__.copy() _A : Optional[int] = None return state def __setstate__( self , __lowerCamelCase) -> int: _A : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): _A : Tuple = {} _A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowerCamelCase ( self , __lowerCamelCase) -> int: if self.remove_space: _A : Optional[Any] = " ".join(inputs.strip().split()) else: _A : List[str] = inputs _A : int = outputs.replace("``" , "\"").replace("''" , "\"") if not self.keep_accents: _A : Dict = unicodedata.normalize("NFKD" , __lowerCamelCase) _A : Union[str, Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase)]) if self.do_lower_case: _A : Optional[Any] = outputs.lower() return outputs def _lowerCamelCase ( self , __lowerCamelCase) -> List[str]: _A : Union[str, Any] = self.preprocess_text(__lowerCamelCase) _A : int = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase) _A : Any = [] for piece in pieces: if len(__lowerCamelCase) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): _A : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: _A : List[str] = cur_pieces[1:] else: _A : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(__lowerCamelCase) else: new_pieces.append(__lowerCamelCase) return new_pieces def _lowerCamelCase ( self , __lowerCamelCase) -> Any: return self.sp_model.PieceToId(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: return self.sp_model.IdToPiece(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: _A : int = [] _A : str = "" _A : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase) + token _A : Any = True _A : List[str] = [] else: current_sub_tokens.append(__lowerCamelCase) _A : Union[str, Any] = False out_string += self.sp_model.decode(__lowerCamelCase) return out_string.strip() def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : List[str] = [self.sep_token_id] _A : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase) if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase)) + [1] + ([0] * len(__lowerCamelCase)) + [1] return [1] + ([0] * len(__lowerCamelCase)) + [1] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> List[int]: _A : List[str] = [self.sep_token_id] _A : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : int = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(__lowerCamelCase , "wb") as fi: _A : List[str] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase) return (out_vocab_file,)
11
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
0
def lowerCamelCase__ ( A__ : int = 10 ): '''simple docstring''' if not isinstance(A__ , A__ ) or n < 0: raise ValueError("""Invalid input""" ) __lowerCamelCase = 10**n __lowerCamelCase = 28433 * (pow(2 , 7830457 , A__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
12
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'deformable_detr' __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[int] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : str = num_feature_levels SCREAMING_SNAKE_CASE : Optional[Any] = encoder_n_points SCREAMING_SNAKE_CASE : Any = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : List[str] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) ->int: return self.d_model def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
313
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Dict = KandinskyImgaImgPipeline _UpperCAmelCase : Dict = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] _UpperCAmelCase : Union[str, Any] = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] _UpperCAmelCase : Dict = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Tuple = False @property def _SCREAMING_SNAKE_CASE ( self : Dict): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return 32 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Any): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : str): return 100 @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Tuple): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE_: Optional[int] = MultilingualCLIP(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = text_encoder.eval() return text_encoder @property def _SCREAMING_SNAKE_CASE ( self : str): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: List[str] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } SCREAMING_SNAKE_CASE_: Union[str, Any] = UNetaDConditionModel(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : int): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : Any): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Any = VQModel(**self.dummy_movq_kwargs) return model def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[int] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: List[Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: Optional[int] = self.dummy_unet SCREAMING_SNAKE_CASE_: Any = self.dummy_movq SCREAMING_SNAKE_CASE_: str = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_0085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } SCREAMING_SNAKE_CASE_: str = DDIMScheduler(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=0): SCREAMING_SNAKE_CASE_: Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(lowerCAmelCase__) # create init_image SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = image.cpu().permute(0 , 2 , 3 , 1)[0] SCREAMING_SNAKE_CASE_: Any = Image.fromarray(np.uinta(lowerCAmelCase__)).convert("RGB").resize((256, 256)) if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: List[str] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: List[Any] = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = "cpu" SCREAMING_SNAKE_CASE_: Any = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Optional[Any] = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: List[str] = output.images SCREAMING_SNAKE_CASE_: Any = pipe( **self.get_dummy_inputs(lowerCAmelCase__) , return_dict=lowerCAmelCase__ , )[0] SCREAMING_SNAKE_CASE_: int = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: str = np.array( [0.6147_4943, 0.607_3539, 0.4330_8544, 0.592_8269, 0.4749_3595, 0.4675_5973, 0.461_3838, 0.4536_8797, 0.5011_9233]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : int): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy") SCREAMING_SNAKE_CASE_: Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png") SCREAMING_SNAKE_CASE_: str = "A red cartoon frog, 4k" SCREAMING_SNAKE_CASE_: int = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa) SCREAMING_SNAKE_CASE_: int = pipeline.to(lowerCAmelCase__) pipeline.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() SCREAMING_SNAKE_CASE_: Any = pipeline( lowerCAmelCase__ , image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) SCREAMING_SNAKE_CASE_: str = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = (EulerDiscreteScheduler,) __SCREAMING_SNAKE_CASE : Optional[int] = 10 def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**_lowerCamelCase ) return config def __lowerCAmelCase ( self ) ->Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Any = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : List[str] = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : Dict = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase , use_karras_sigmas=_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : int = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = output.prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
313
0
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[float]]: """simple docstring""" A__ = [] for data in source_data: for i, el in enumerate(lowercase_ ): if len(lowercase_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(lowercase_ ) ) return data_lists def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[float]]: """simple docstring""" A__ = [] for dlist, weight in zip(lowercase_ , lowercase_ ): A__ = min(lowercase_ ) A__ = max(lowercase_ ) A__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: A__ = f"""Invalid weight of {weight:f} provided""" raise ValueError(lowercase_ ) score_lists.append(lowercase_ ) return score_lists def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]: """simple docstring""" A__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(lowercase_ ): A__ = final_scores[j] + ele return final_scores def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[float]]: """simple docstring""" A__ = get_data(lowercase_ ) A__ = calculate_each_score(lowercase_ , lowercase_ ) A__ = generate_final_scores(lowercase_ ) # append scores to source data for i, ele in enumerate(lowercase_ ): source_data[i].append(lowercase_ ) return source_data
14
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : Dict = logging.get_logger(__name__) a__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a__ : Optional[int] = { '''allenai/led-base-16384''': 16_384, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[Any] = '''post_processor''' SCREAMING_SNAKE_CASE : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Any = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[Any] = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict: SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
313
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "char" snake_case_ = "bpe" snake_case_ = "wp" SCREAMING_SNAKE_CASE :Optional[int] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = ["image_processor", "char_tokenizer"] snake_case_ = "ViTImageProcessor" snake_case_ = "MgpstrTokenizer" def __init__( self : Tuple ,A : Optional[Any]=None ,A : Optional[Any]=None ,**A : Optional[Any] ): __A = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,A ,) __A = kwargs.pop("feature_extractor" ) __A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) __A = tokenizer __A = AutoTokenizer.from_pretrained("gpt2" ) __A = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(A ,A ) def __call__( self : Optional[Any] ,A : Tuple=None ,A : List[str]=None ,A : Optional[Any]=None ,**A : Union[str, Any] ): if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: __A = self.image_processor(A ,return_tensors=A ,**A ) if text is not None: __A = self.char_tokenizer(A ,return_tensors=A ,**A ) if text is None: return inputs elif images is None: return encodings else: __A = encodings["input_ids"] return inputs def UpperCamelCase_ ( self : Union[str, Any] ,A : Optional[Any] ): __A , __A , __A = sequences __A = char_preds.size(0 ) __A , __A = self._decode_helper(A ,"char" ) __A , __A = self._decode_helper(A ,"bpe" ) __A , __A = self._decode_helper(A ,"wp" ) __A = [] __A = [] for i in range(A ): __A = [char_scores[i], bpe_scores[i], wp_scores[i]] __A = [char_strs[i], bpe_strs[i], wp_strs[i]] __A = scores.index(max(A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __A = {} __A = final_strs __A = final_scores __A = char_strs __A = bpe_strs __A = wp_strs return out def UpperCamelCase_ ( self : Tuple ,A : str ,A : Tuple ): if format == DecodeType.CHARACTER: __A = self.char_decode __A = 1 __A = "[s]" elif format == DecodeType.BPE: __A = self.bpe_decode __A = 2 __A = "#" elif format == DecodeType.WORDPIECE: __A = self.wp_decode __A = 1_02 __A = "[SEP]" else: raise ValueError(f'''Format {format} is not supported.''' ) __A , __A = [], [] __A = pred_logits.size(0 ) __A = pred_logits.size(1 ) __A , __A = pred_logits.topk(1 ,dim=-1 ,largest=A ,sorted=A ) __A = preds_index.view(-1 ,A )[:, 1:] __A = decoder(A ) __A , __A = torch.nn.functional.softmax(A ,dim=2 ).max(dim=2 ) __A = preds_max_prob[:, 1:] for index in range(A ): __A = preds_str[index].find(A ) __A = preds_str[index][:pred_eos] __A = preds_index[index].cpu().tolist() __A = pred_index.index(A ) if eos_token in pred_index else -1 __A = preds_max_prob[index][: pred_eos_index + 1] __A = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(A ) conf_scores.append(A ) return dec_strs, conf_scores def UpperCamelCase_ ( self : Tuple ,A : Optional[int] ): __A = [seq.replace(" " ,"" ) for seq in self.char_tokenizer.batch_decode(A )] return decode_strs def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ): return self.bpe_tokenizer.batch_decode(A ) def UpperCamelCase_ ( self : Tuple ,A : List[str] ): __A = [seq.replace(" " ,"" ) for seq in self.wp_tokenizer.batch_decode(A )] return decode_strs
15
from __future__ import annotations import math def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if len(a__ ) != 2 or len(a[0] ) != 2 or len(a__ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) SCREAMING_SNAKE_CASE : Dict = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ ): """simple docstring""" if len(a__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) SCREAMING_SNAKE_CASE : str = len(a__ ) SCREAMING_SNAKE_CASE : Any = matrix_length // 2 SCREAMING_SNAKE_CASE : Tuple = [[a[i][j] for j in range(a__ , a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : Optional[int] = [ [a[i][j] for j in range(a__ , a__ )] for i in range(a__ , a__ ) ] SCREAMING_SNAKE_CASE : Optional[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : List[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ , a__ )] return top_left, top_right, bot_left, bot_right def UpperCAmelCase_( a__ ): """simple docstring""" return len(a__ ), len(matrix[0] ) def UpperCAmelCase_( a__ ): """simple docstring""" print('''\n'''.join(str(a__ ) for line in matrix ) ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ ) == (2, 2): return default_matrix_multiplication(a__ , a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE : Dict = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : int = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Any = actual_strassen(matrix_addition(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = matrix_addition(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = matrix_subtraction(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) # construct the new matrix from our 4 quadrants SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(len(a__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(a__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ )[1] != matrix_dimensions(a__ )[0]: SCREAMING_SNAKE_CASE : Any = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(a__ ) SCREAMING_SNAKE_CASE : str = matrix_dimensions(a__ ) SCREAMING_SNAKE_CASE : Tuple = matrix_dimensions(a__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] SCREAMING_SNAKE_CASE : str = max(*a__ , *a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(math.pow(2 , math.ceil(math.loga(a__ ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = matrixa SCREAMING_SNAKE_CASE : Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(a__ , a__ ) # Removing the additional zeros for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a__ : Dict = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a__ : Union[str, Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
313
0
"""simple docstring""" import torch from torch import nn class __A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Any ,_snake_case : str ,_snake_case : List[Any] ,_snake_case : str ,_snake_case : Optional[Any]=1 ,_snake_case : List[str]=False ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ : Optional[Any] = n_token lowercase__ : List[str] = d_embed lowercase__ : int = d_proj lowercase__ : Union[str, Any] = cutoffs + [n_token] lowercase__ : Optional[Any] = [0] + self.cutoffs lowercase__ : Optional[Any] = div_val lowercase__ : Dict = self.cutoffs[0] lowercase__ : str = len(self.cutoffs ) - 1 lowercase__ : Optional[Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowercase__ : List[Any] = nn.Parameter(torch.zeros(self.n_clusters ,self.d_embed ) ) lowercase__ : Any = nn.Parameter(torch.zeros(self.n_clusters ) ) lowercase__ : Dict = nn.ModuleList() lowercase__ : Optional[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_snake_case ,_snake_case ) ) ) else: self.out_projs.append(_snake_case ) self.out_layers.append(nn.Linear(_snake_case ,_snake_case ) ) else: for i in range(len(self.cutoffs ) ): lowercase__ , lowercase__ : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ : List[str] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_snake_case ,_snake_case ) ) ) self.out_layers.append(nn.Linear(_snake_case ,r_idx - l_idx ) ) lowercase__ : Union[str, Any] = keep_order def UpperCAmelCase ( self : List[Any] ,_snake_case : int ,_snake_case : Union[str, Any] ,_snake_case : int ,_snake_case : Optional[Any] ) -> Tuple: """simple docstring""" if proj is None: lowercase__ : List[Any] = nn.functional.linear(_snake_case ,_snake_case ,bias=_snake_case ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowercase__ : List[str] = nn.functional.linear(_snake_case ,proj.t().contiguous() ) lowercase__ : Tuple = nn.functional.linear(_snake_case ,_snake_case ,bias=_snake_case ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCAmelCase ( self : Dict ,_snake_case : List[str] ,_snake_case : Dict=None ,_snake_case : Dict=False ) -> Optional[int]: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n lowercase__ : List[str] = hidden[..., :-1, :].contiguous() lowercase__ : List[str] = labels[..., 1:].contiguous() lowercase__ : str = hidden.view(-1 ,hidden.size(-1 ) ) lowercase__ : int = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: lowercase__ : str = hidden.view(-1 ,hidden.size(-1 ) ) if self.n_clusters == 0: lowercase__ : int = self._compute_logit(_snake_case ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) if labels is not None: lowercase__ : Dict = labels != -100 lowercase__ : Union[str, Any] = torch.zeros_like(_snake_case ,dtype=hidden.dtype ,device=hidden.device ) lowercase__ : List[str] = ( -nn.functional.log_softmax(_snake_case ,dim=-1 )[mask].gather(1 ,labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowercase__ : str = nn.functional.log_softmax(_snake_case ,dim=-1 ) else: # construct weights and biases lowercase__ , lowercase__ : Dict = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase__ , lowercase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ : List[str] = self.out_layers[0].weight[l_idx:r_idx] lowercase__ : int = self.out_layers[0].bias[l_idx:r_idx] else: lowercase__ : Union[str, Any] = self.out_layers[i].weight lowercase__ : List[str] = self.out_layers[i].bias if i == 0: lowercase__ : int = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) lowercase__ : Tuple = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(_snake_case ) biases.append(_snake_case ) lowercase__ , lowercase__ , lowercase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowercase__ : Optional[int] = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : Tuple = nn.functional.log_softmax(_snake_case ,dim=1 ) if labels is None: lowercase__ : Any = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowercase__ : List[Any] = torch.zeros_like(_snake_case ,dtype=hidden.dtype ,device=hidden.device ) lowercase__ : Any = 0 lowercase__ : Optional[int] = [0] + self.cutoffs for i in range(len(_snake_case ) - 1 ): lowercase__ , lowercase__ : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowercase__ : Dict = (labels >= l_idx) & (labels < r_idx) lowercase__ : Optional[int] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowercase__ : Optional[int] = labels.index_select(0 ,_snake_case ) - l_idx lowercase__ : Tuple = head_logprob.index_select(0 ,_snake_case ) lowercase__ : List[Any] = hidden.index_select(0 ,_snake_case ) else: lowercase__ : int = hidden if i == 0: if labels is not None: lowercase__ : str = head_logprob_i.gather(1 ,target_i[:, None] ).squeeze(1 ) else: lowercase__ : Dict = head_logprob[:, : self.cutoffs[0]] else: lowercase__ , lowercase__ , lowercase__ : Optional[Any] = weights[i], biases[i], self.out_projs[i] lowercase__ : Optional[Any] = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = nn.functional.log_softmax(_snake_case ,dim=1 ) lowercase__ : Optional[int] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowercase__ : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 ,target_i[:, None] ).squeeze(1 ) else: lowercase__ : List[str] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowercase__ : Optional[Any] = logprob_i if labels is not None: if (hasattr(self ,'''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 ,_snake_case ,-logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[str] ) -> int: """simple docstring""" if self.n_clusters == 0: lowercase__ : List[Any] = self._compute_logit(_snake_case ,self.out_layers[0].weight ,self.out_layers[0].bias ,self.out_projs[0] ) return nn.functional.log_softmax(_snake_case ,dim=-1 ) else: # construct weights and biases lowercase__ , lowercase__ : Optional[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase__ , lowercase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase__ : List[Any] = self.out_layers[0].weight[l_idx:r_idx] lowercase__ : List[Any] = self.out_layers[0].bias[l_idx:r_idx] else: lowercase__ : Optional[int] = self.out_layers[i].weight lowercase__ : int = self.out_layers[i].bias if i == 0: lowercase__ : str = torch.cat([weight_i, self.cluster_weight] ,dim=0 ) lowercase__ : Dict = torch.cat([bias_i, self.cluster_bias] ,dim=0 ) weights.append(_snake_case ) biases.append(_snake_case ) lowercase__ , lowercase__ , lowercase__ : List[str] = weights[0], biases[0], self.out_projs[0] lowercase__ : Optional[Any] = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : Optional[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowercase__ : List[Any] = nn.functional.log_softmax(_snake_case ,dim=1 ) lowercase__ : Optional[Any] = [0] + self.cutoffs for i in range(len(_snake_case ) - 1 ): lowercase__ , lowercase__ : Union[str, Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowercase__ : Dict = head_logprob[:, : self.cutoffs[0]] else: lowercase__ , lowercase__ , lowercase__ : List[str] = weights[i], biases[i], self.out_projs[i] lowercase__ : Any = self._compute_logit(_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ : Any = nn.functional.log_softmax(_snake_case ,dim=1 ) lowercase__ : Any = head_logprob[:, -i] + tail_logprob_i lowercase__ : str = logprob_i return out
16
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False ) ->Any: SCREAMING_SNAKE_CASE : str = scheduler SCREAMING_SNAKE_CASE : List[str] = optimizers if isinstance(_lowerCamelCase , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE : Union[str, Any] = split_batches SCREAMING_SNAKE_CASE : List[Any] = step_with_optimizer SCREAMING_SNAKE_CASE : List[str] = GradientState() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE : List[str] = AcceleratorState().num_processes for _ in range(_lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) ->List[str]: return self.scheduler.state_dict() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: self.scheduler.load_state_dict(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: return self.scheduler.get_lr() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]: return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase )
313
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[Any] ): __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) __lowercase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase__ ) __lowercase = -1 __lowercase = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) __lowercase = model.generate(UpperCAmelCase__, max_new_tokens=1_0, do_sample=UpperCAmelCase__ ) __lowercase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __lowercase = TextStreamer(UpperCAmelCase__ ) model.generate(UpperCAmelCase__, max_new_tokens=1_0, do_sample=UpperCAmelCase__, streamer=UpperCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase = cs.out[:-1] self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) __lowercase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase__ ) __lowercase = -1 __lowercase = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) __lowercase = model.generate(UpperCAmelCase__, max_new_tokens=1_0, do_sample=UpperCAmelCase__ ) __lowercase = tokenizer.decode(greedy_ids[0] ) __lowercase = TextIteratorStreamer(UpperCAmelCase__ ) __lowercase = {"input_ids": input_ids, "max_new_tokens": 1_0, "do_sample": False, "streamer": streamer} __lowercase = Thread(target=model.generate, kwargs=UpperCAmelCase__ ) thread.start() __lowercase = "" for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) __lowercase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase__ ) __lowercase = -1 __lowercase = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) __lowercase = model.generate(UpperCAmelCase__, max_new_tokens=1_0, do_sample=UpperCAmelCase__ ) __lowercase = greedy_ids[:, input_ids.shape[1] :] __lowercase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __lowercase = TextStreamer(UpperCAmelCase__, skip_prompt=UpperCAmelCase__ ) model.generate(UpperCAmelCase__, max_new_tokens=1_0, do_sample=UpperCAmelCase__, streamer=UpperCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase = cs.out[:-1] self.assertEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __lowercase = AutoTokenizer.from_pretrained("distilgpt2" ) __lowercase = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(UpperCAmelCase__ ) __lowercase = -1 __lowercase = torch.ones((1, 5), device=UpperCAmelCase__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: __lowercase = TextStreamer(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ ) model.generate(UpperCAmelCase__, max_new_tokens=1, do_sample=UpperCAmelCase__, streamer=UpperCAmelCase__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __lowercase = cs.out[:-1] # Remove the final "\n" __lowercase = tokenizer(UpperCAmelCase__, return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape, (1, 1) ) def _lowercase ( self : Any ): __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) __lowercase = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase__ ) __lowercase = -1 __lowercase = ids_tensor((1, 5), vocab_size=model.config.vocab_size ).to(UpperCAmelCase__ ) __lowercase = TextIteratorStreamer(UpperCAmelCase__, timeout=0.001 ) __lowercase = {"input_ids": input_ids, "max_new_tokens": 1_0, "do_sample": False, "streamer": streamer} __lowercase = Thread(target=model.generate, kwargs=UpperCAmelCase__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCAmelCase__ ): __lowercase = "" for new_text in streamer: streamer_text += new_text
17
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCAmelCase_( a__ ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace(a__ , a__ ) return k def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy() cfg_kwargs.update(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**a__ ) SCREAMING_SNAKE_CASE : Optional[int] = PegasusForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE : Dict = torch_model.model.state_dict() SCREAMING_SNAKE_CASE : List[str] = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE : int = rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE : Dict = v.T SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE : int = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Optional[Any] = {k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = torch_model.model.load_state_dict(a__ , strict=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def UpperCAmelCase_( a__="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : List[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(a__ , desc='''converting tf checkpoint to dict''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE : Dict = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Any = array return tf_weights def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Path(a__ ).parent.name SCREAMING_SNAKE_CASE : Union[str, Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] SCREAMING_SNAKE_CASE : Dict = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(a__ ) SCREAMING_SNAKE_CASE : List[str] = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": SCREAMING_SNAKE_CASE : int = task_specific_params SCREAMING_SNAKE_CASE : List[str] = convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(a__ , Path(a__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ : List[str] = parser.parse_args() if args.save_dir is None: a__ : Any = Path(args.tf_ckpt_path).parent.name a__ : int = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
0
import random def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = num - 1 SCREAMING_SNAKE_CASE_ : List[str] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE_ : List[str] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE_ : str = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE_ : List[str] = pow(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if v != 1: SCREAMING_SNAKE_CASE_ : List[Any] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE_ : Dict = i + 1 SCREAMING_SNAKE_CASE_ : List[str] = (v**2) % num return True def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if num < 2: return False SCREAMING_SNAKE_CASE_ : Dict = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : int = 1_0_2_4 ): """simple docstring""" while True: SCREAMING_SNAKE_CASE_ : Optional[Any] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(lowerCAmelCase ): return num if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
18
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = KandinskyImgaImgPipeline __SCREAMING_SNAKE_CASE : str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] __SCREAMING_SNAKE_CASE : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] __SCREAMING_SNAKE_CASE : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->int: return 32 @property def __lowerCAmelCase ( self ) ->List[str]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Tuple: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 100 @property def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Dict = MultilingualCLIP(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self ) ->Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : str = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : str = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE : Any = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Dict = pipeline( _lowerCamelCase , image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionSAGPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> List[str]: torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase_ = CLIPTextModel(lowercase ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=0 ) -> List[str]: if str(lowercase ).startswith("mps" ): lowerCamelCase_ = torch.manual_seed(lowercase ) else: lowerCamelCase_ = torch.Generator(device=lowercase ).manual_seed(lowercase ) lowerCamelCase_ = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) lowerCamelCase_ = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = "." lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = sag_pipe( [prompt] , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowerCamelCase_ = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = "." lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = sag_pipe( [prompt] , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowerCamelCase_ = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = "." lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) lowerCamelCase_ = output.images assert image.shape == (1, 512, 768, 3)
19
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase_( a__ , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def UpperCAmelCase_( a__ , a__ , a__=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE : Any = '''''' else: SCREAMING_SNAKE_CASE : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dct.pop(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = val def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ViTMSNConfig() SCREAMING_SNAKE_CASE : Optional[int] = 1_000 SCREAMING_SNAKE_CASE : str = '''datasets/huggingface/label-files''' SCREAMING_SNAKE_CASE : List[str] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(a__ , a__ ) , '''r''' ) ) SCREAMING_SNAKE_CASE : List[Any] = {int(a__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : str = idalabel SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = 384 SCREAMING_SNAKE_CASE : Any = 1_536 SCREAMING_SNAKE_CASE : List[str] = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[int] = 1_024 SCREAMING_SNAKE_CASE : Optional[int] = 4_096 SCREAMING_SNAKE_CASE : Tuple = 24 SCREAMING_SNAKE_CASE : Union[str, Any] = 16 SCREAMING_SNAKE_CASE : Dict = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = 7 SCREAMING_SNAKE_CASE : Union[str, Any] = 1_024 SCREAMING_SNAKE_CASE : List[Any] = 4_096 SCREAMING_SNAKE_CASE : List[Any] = 24 SCREAMING_SNAKE_CASE : Tuple = 16 SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMSNModel(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' )['''target_encoder'''] SCREAMING_SNAKE_CASE : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(a__ ) SCREAMING_SNAKE_CASE : Any = create_rename_keys(a__ , base_model=a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , base_model=a__ ) model.load_state_dict(a__ ) model.eval() SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(a__ , stream=a__ ).raw ) SCREAMING_SNAKE_CASE : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=a__ , image_std=a__ ) SCREAMING_SNAKE_CASE : int = image_processor(images=a__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE : Tuple = model(**a__ ) SCREAMING_SNAKE_CASE : str = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , a__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Optional[int] = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class __snake_case ( lowerCAmelCase ): _a : str= "mgp-str" def __init__( self ,snake_case=[32, 128] ,snake_case=4 ,snake_case=3 ,snake_case=27 ,snake_case=38 ,snake_case=50257 ,snake_case=30522 ,snake_case=768 ,snake_case=12 ,snake_case=12 ,snake_case=4.0 ,snake_case=True ,snake_case=False ,snake_case=1e-5 ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.0 ,snake_case=False ,snake_case=0.02 ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) lowercase : Optional[int] = image_size lowercase : Any = patch_size lowercase : Any = num_channels lowercase : Tuple = max_token_length lowercase : Any = num_character_labels lowercase : int = num_bpe_labels lowercase : Union[str, Any] = num_wordpiece_labels lowercase : Any = hidden_size lowercase : Union[str, Any] = num_hidden_layers lowercase : Union[str, Any] = num_attention_heads lowercase : Tuple = mlp_ratio lowercase : Tuple = distilled lowercase : Any = layer_norm_eps lowercase : Any = drop_rate lowercase : Union[str, Any] = qkv_bias lowercase : Dict = attn_drop_rate lowercase : Union[str, Any] = drop_path_rate lowercase : Optional[Any] = output_aa_attentions lowercase : str = initializer_range
20
import csv import tweepy # Twitter API credentials a__ : Union[str, Any] = '''''' a__ : List[str] = '''''' a__ : Any = '''''' a__ : List[str] = '''''' def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = tweepy.OAuthHandler(a__ , a__ ) auth.set_access_token(a__ , a__ ) SCREAMING_SNAKE_CASE : List[str] = tweepy.API(a__ ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE : List[Any] = api.user_timeline(screen_name=a__ , count=200 ) # save most recent tweets alltweets.extend(a__ ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a__ ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE : Any = api.user_timeline( screen_name=a__ , count=200 , max_id=a__ ) # save most recent tweets alltweets.extend(a__ ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Dict = alltweets[-1].id - 1 print(F"""...{len(a__ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE : Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , '''w''' ) as f: SCREAMING_SNAKE_CASE : List[Any] = csv.writer(a__ ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(a__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
313
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: _lowercase : Optional[Any] = args.pruning_method _lowercase : Tuple = args.threshold _lowercase : int = args.model_name_or_path.rstrip('/' ) _lowercase : List[str] = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) _lowercase : Optional[int] = torch.load(os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) _lowercase : Dict = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowercase : Union[str, Any] = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _lowercase : Optional[Any] = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: _lowercase : Union[str, Any] = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _lowercase : List[str] = MagnitudeBinarizer.apply(inputs=lowerCamelCase_ , threshold=lowerCamelCase_ ) _lowercase : str = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowercase : Dict = name[:-6] _lowercase : Optional[Any] = model[F'''{prefix_}mask_scores'''] _lowercase : Union[str, Any] = TopKBinarizer.apply(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : Union[str, Any] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowercase : str = name[:-6] _lowercase : Dict = model[F'''{prefix_}mask_scores'''] _lowercase : List[Any] = ThresholdBinarizer.apply(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[Any] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowercase : Optional[Any] = name[:-6] _lowercase : Tuple = model[F'''{prefix_}mask_scores'''] _lowercase , _lowercase : Any = -0.1, 1.1 _lowercase : Dict = torch.sigmoid(lowerCamelCase_ ) _lowercase : List[Any] = s * (r - l) + l _lowercase : Optional[Any] = s_bar.clamp(min=0.0 , max=1.0 ) _lowercase : Optional[Any] = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _lowercase : Tuple = os.path.join( os.path.dirname(lowerCamelCase_ ) , F'''bertarized_{os.path.basename(lowerCamelCase_ )}''' ) if not os.path.isdir(lowerCamelCase_ ): shutil.copytree(lowerCamelCase_ , lowerCamelCase_ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() main(args)
21
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'ibert' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=False , _lowerCamelCase="none" , **_lowerCamelCase , ) ->Any: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = quant_mode SCREAMING_SNAKE_CASE : Dict = force_dequant class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
313
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) class A_ ( lowerCAmelCase_ ): def __init__( self : Dict , *snake_case_ : int , **snake_case_ : Optional[Any] ): warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
22
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType a__ : Any = logging.get_logger(__name__) a__ : Dict = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'imagegpt' __SCREAMING_SNAKE_CASE : Optional[Any] = ['past_key_values'] __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowerCamelCase=512 + 1 , _lowerCamelCase=32 * 32 , _lowerCamelCase=512 , _lowerCamelCase=24 , _lowerCamelCase=8 , _lowerCamelCase=None , _lowerCamelCase="quick_gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , **_lowerCamelCase , ) ->str: SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = n_positions SCREAMING_SNAKE_CASE : Optional[int] = n_embd SCREAMING_SNAKE_CASE : List[Any] = n_layer SCREAMING_SNAKE_CASE : List[Any] = n_head SCREAMING_SNAKE_CASE : int = n_inner SCREAMING_SNAKE_CASE : Dict = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = resid_pdrop SCREAMING_SNAKE_CASE : Dict = embd_pdrop SCREAMING_SNAKE_CASE : List[str] = attn_pdrop SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : int = scale_attn_weights SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE : str = reorder_and_upcast_attn SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings super().__init__(tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase ) class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = 3 , _lowerCamelCase = 32 , _lowerCamelCase = 32 , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = dict(preprocessor(images=_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return inputs
313
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class SCREAMING_SNAKE_CASE: """simple docstring""" lowerCamelCase__ = BlenderbotConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self : Any , __snake_case : str , __snake_case : int=13 , __snake_case : Union[str, Any]=7 , __snake_case : Optional[Any]=True , __snake_case : Optional[int]=False , __snake_case : Optional[int]=99 , __snake_case : str=32 , __snake_case : Dict=2 , __snake_case : int=4 , __snake_case : List[Any]=37 , __snake_case : Union[str, Any]=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : Optional[int]=20 , __snake_case : int=2 , __snake_case : Optional[Any]=1 , __snake_case : List[str]=0 , ) -> Tuple: UpperCAmelCase : int = parent UpperCAmelCase : int = batch_size UpperCAmelCase : Optional[Any] = seq_length UpperCAmelCase : Dict = is_training UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : int = vocab_size UpperCAmelCase : str = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : str = intermediate_size UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : int = eos_token_id UpperCAmelCase : str = pad_token_id UpperCAmelCase : int = bos_token_id def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : int = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : Dict = prepare_blenderbot_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, inputs_dict def A ( self : List[str] , __snake_case : int , __snake_case : Optional[int] ) -> List[Any]: UpperCAmelCase : Dict = TFBlenderbotModel(config=__snake_case ).get_decoder() UpperCAmelCase : Tuple = inputs_dict['''input_ids'''] UpperCAmelCase : Union[str, Any] = input_ids[:1, :] UpperCAmelCase : Union[str, Any] = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase : Union[str, Any] = inputs_dict['''head_mask'''] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[Any] = model(__snake_case , attention_mask=__snake_case , head_mask=__snake_case , use_cache=__snake_case ) UpperCAmelCase , UpperCAmelCase : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : str = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : int = model(__snake_case , attention_mask=__snake_case )[0] UpperCAmelCase : Optional[Any] = model(__snake_case , attention_mask=__snake_case , past_key_values=__snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__snake_case , __snake_case , rtol=1E-3 ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str=None , ) -> Any: if attention_mask is None: UpperCAmelCase : str = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE( A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowerCamelCase__ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False def A ( self : str ) -> int: UpperCAmelCase : str = TFBlenderbotModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case ) def A ( self : int ) -> str: self.config_tester.run_common_tests() def A ( self : Any ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__snake_case ) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ["""My friends are cool but they eat too many carbs."""] lowerCamelCase__ = """facebook/blenderbot-400M-distill""" @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def A ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def A ( self : Dict ) -> List[str]: UpperCAmelCase : List[Any] = self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase : Tuple = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__snake_case )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
23
from maths.prime_check import is_prime def UpperCAmelCase_( a__ ): """simple docstring""" if not isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(a__ ) if is_prime(a__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
313
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() snake_case_ = logging.get_logger(__name__) snake_case_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } snake_case_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def lowerCamelCase__ ( snake_case_ : Tuple ) -> Tuple: __snake_case = {} with open(snake_case_ , '''r''' ) as file: for line_number, line in enumerate(snake_case_ ): __snake_case = line.strip() if line: __snake_case = line.split() __snake_case = line_number __snake_case = words[0] __snake_case = value return result def lowerCamelCase__ ( snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Optional[Any] ) -> List[Any]: for attribute in key.split('''.''' ): __snake_case = getattr(snake_case_ , snake_case_ ) __snake_case = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case_ ): __snake_case = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case = '''param''' if weight_type is not None and weight_type != "param": __snake_case = getattr(snake_case_ , snake_case_ ).shape elif weight_type is not None and weight_type == "param": __snake_case = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case = getattr(snake_case_ , snake_case_ ) __snake_case = shape_pointer.shape # let's reduce dimension __snake_case = value[0] else: __snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case = value elif weight_type == "weight_g": __snake_case = value elif weight_type == "weight_v": __snake_case = value elif weight_type == "bias": __snake_case = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case = getattr(snake_case_ , snake_case_ ) __snake_case = value else: __snake_case = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase__ ( snake_case_ : Dict , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : List[str] ) -> str: __snake_case = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(snake_case_ ): __snake_case = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case = '''param''' if weight_type is not None and weight_type != "param": __snake_case = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case = '''.'''.join([key, hf_param_name] ) else: __snake_case = key __snake_case = value if '''lm_head''' in full_key else value[0] snake_case_ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def lowerCamelCase__ ( snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : List[str]=None , snake_case_ : Dict=None ) -> str: __snake_case = False for key, mapped_key in MAPPING.items(): __snake_case = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case = True if "*" in mapped_key: __snake_case = name.split(snake_case_ )[0].split('''.''' )[-2] __snake_case = mapped_key.replace('''*''' , snake_case_ ) if "weight_g" in name: __snake_case = '''weight_g''' elif "weight_v" in name: __snake_case = '''weight_v''' elif "bias" in name: __snake_case = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case = '''weight''' else: __snake_case = None if hf_dict is not None: rename_dict(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return is_used return is_used def lowerCamelCase__ ( snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : List[str] ) -> int: __snake_case = [] __snake_case = fairseq_model.state_dict() __snake_case = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case = True else: __snake_case = load_wavaveca_layer(snake_case_ , snake_case_ , snake_case_ ) if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCamelCase__ ( snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : List[str] ) -> List[Any]: __snake_case = full_name.split('''conv_layers.''' )[-1] __snake_case = name.split('''.''' ) __snake_case = int(items[0] ) __snake_case = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def lowerCamelCase__ ( snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : int=None , snake_case_ : Any=None , snake_case_ : Any=True , snake_case_ : Any=False ) -> List[str]: if config_path is not None: __snake_case = WavaVecaConfig.from_pretrained(snake_case_ ) else: __snake_case = WavaVecaConfig() if is_seq_class: __snake_case = read_txt_into_dict(snake_case_ ) __snake_case = idalabel __snake_case = WavaVecaForSequenceClassification(snake_case_ ) __snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) feature_extractor.save_pretrained(snake_case_ ) elif is_finetuned: if dict_path: __snake_case = Dictionary.load(snake_case_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case = target_dict.pad_index __snake_case = target_dict.bos_index __snake_case = target_dict.eos_index __snake_case = len(target_dict.symbols ) __snake_case = os.path.join(snake_case_ , '''vocab.json''' ) if not os.path.isdir(snake_case_ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(snake_case_ ) ) return os.makedirs(snake_case_ , exist_ok=snake_case_ ) __snake_case = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case = 0 __snake_case = 1 with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(snake_case_ , snake_case_ ) __snake_case = WavaVecaCTCTokenizer( snake_case_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=snake_case_ , ) __snake_case = True if config.feat_extract_norm == '''layer''' else False __snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) __snake_case = WavaVecaProcessor(feature_extractor=snake_case_ , tokenizer=snake_case_ ) processor.save_pretrained(snake_case_ ) __snake_case = WavaVecaForCTC(snake_case_ ) else: __snake_case = WavaVecaForPreTraining(snake_case_ ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case = argparse.Namespace(task='''audio_pretraining''' ) __snake_case = fairseq.tasks.setup_task(snake_case_ ) __snake_case , __snake_case , __snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=snake_case_ ) __snake_case = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ , not is_finetuned ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) snake_case_ = parser.parse_args() snake_case_ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = KandinskyVaaControlnetImgaImgPipeline __SCREAMING_SNAKE_CASE : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[Any] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[str] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->Optional[Any]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 32 @property def __lowerCAmelCase ( self ) ->str: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Dict: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Tuple: return 100 @property def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->Any: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : str = self.dummy_unet SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_movq SCREAMING_SNAKE_CASE : List[str] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : str = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Dict = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = init_image.resize((512, 512) ) SCREAMING_SNAKE_CASE : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 2_5_5.0 SCREAMING_SNAKE_CASE : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : List[Any] = '''A robot, 4k photo''' SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Any = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , image=_lowerCamelCase , strength=0.8_5 , generator=_lowerCamelCase , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : List[str] = pipeline( image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , hint=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
0
"""simple docstring""" from __future__ import annotations import math def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(_snake_case ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 ,node_index * 2 ,_snake_case ,_snake_case ,_snake_case ) ,minimax(depth + 1 ,node_index * 2 + 1 ,_snake_case ,_snake_case ,_snake_case ) ,) return min( minimax(depth + 1 ,node_index * 2 ,_snake_case ,_snake_case ,_snake_case ) ,minimax(depth + 1 ,node_index * 2 + 1 ,_snake_case ,_snake_case ,_snake_case ) ,) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : List[Any] = [90, 23, 6, 33, 21, 65, 123, 34_423] SCREAMING_SNAKE_CASE__ : Dict = math.log(len(_snake_case ) ,2 ) print("""Optimal value : """ ,end="""""" ) print(minimax(0 ,0 ,_snake_case ,_snake_case ,_snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
25
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker a__ : List[str] = '''CompVis/stable-diffusion-v1-1''' a__ : Optional[Any] = '''CompVis/stable-diffusion-v1-2''' a__ : Any = '''CompVis/stable-diffusion-v1-3''' a__ : Optional[Any] = '''CompVis/stable-diffusion-v1-4''' class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ) ->str: super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , requires_safety_checker=_lowerCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self ) ->Dict[str, Any]: return {k: getattr(self , _lowerCamelCase ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self , _lowerCamelCase = "auto" ) ->Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: self.enable_attention_slicing(_lowerCamelCase ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->str: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Tuple: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Dict: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Optional[Any]: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Dict: SCREAMING_SNAKE_CASE : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(_lowerCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Any = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Optional[int] = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
313
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = "xlm" _a = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self , _a=3_0145 , _a=2048 , _a=12 , _a=16 , _a=0.1 , _a=0.1 , _a=True , _a=False , _a=False , _a=False , _a=1 , _a=True , _a=512 , _a=2048**-0.5 , _a=1e-12 , _a=0.02 , _a=0 , _a=1 , _a=2 , _a=3 , _a=5 , _a=True , _a="first" , _a=True , _a=None , _a=True , _a=0.1 , _a=5 , _a=5 , _a=0 , _a=0 , _a=2 , _a=0 , **_a , ) -> Optional[int]: _A : Optional[int] = vocab_size _A : Optional[Any] = emb_dim _A : Optional[int] = n_layers _A : Optional[int] = n_heads _A : List[str] = dropout _A : Optional[int] = attention_dropout _A : Optional[Any] = gelu_activation _A : Union[str, Any] = sinusoidal_embeddings _A : Union[str, Any] = causal _A : List[str] = asm _A : int = n_langs _A : List[Any] = use_lang_emb _A : Any = layer_norm_eps _A : str = bos_index _A : Union[str, Any] = eos_index _A : Optional[Any] = pad_index _A : Optional[int] = unk_index _A : str = mask_index _A : Tuple = is_encoder _A : Dict = max_position_embeddings _A : Tuple = embed_init_std _A : Optional[Any] = init_std _A : Tuple = summary_type _A : Optional[int] = summary_use_proj _A : Optional[Any] = summary_activation _A : Dict = summary_proj_to_labels _A : Union[str, Any] = summary_first_dropout _A : Tuple = start_n_top _A : int = end_n_top _A : Optional[Any] = mask_token_id _A : Union[str, Any] = lang_id if "n_words" in kwargs: _A : List[str] = kwargs["""n_words"""] super().__init__(pad_token_id=_a , bos_token_id=_a , **_a ) class lowercase ( UpperCamelCase__ ): @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _A : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
26
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class a_ ( nn.Module , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False __SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1280, 1280) __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 __SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None __SCREAMING_SNAKE_CASE : int = 1280 __SCREAMING_SNAKE_CASE : float = 0.0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : bool = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->FrozenDict: # init input tensors SCREAMING_SNAKE_CASE : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros(_lowerCamelCase , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = jax.random.split(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )["params"] def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = self.block_out_channels SCREAMING_SNAKE_CASE : Optional[int] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE : List[str] = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE : Optional[int] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE : Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE : Dict = FlaxTimestepEmbedding(_lowerCamelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.only_cross_attention if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : int = block_out_channels[i] SCREAMING_SNAKE_CASE : List[Any] = i == len(_lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = down_blocks # mid SCREAMING_SNAKE_CASE : int = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : str = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : Tuple = reversed_block_out_channels[min(i + 1 , len(_lowerCamelCase ) - 1 )] SCREAMING_SNAKE_CASE : Dict = i == len(_lowerCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": SCREAMING_SNAKE_CASE : str = FlaxCrossAttnUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Optional[int] = FlaxUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Tuple = up_blocks # out SCREAMING_SNAKE_CASE : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = True , _lowerCamelCase = False , ) ->Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowerCamelCase , jnp.ndarray ): SCREAMING_SNAKE_CASE : int = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE : List[str] = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.expand_dims(_lowerCamelCase , 0 ) SCREAMING_SNAKE_CASE : List[str] = self.time_proj(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.time_embedding(_lowerCamelCase ) # 2. pre-process SCREAMING_SNAKE_CASE : int = jnp.transpose(_lowerCamelCase , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_in(_lowerCamelCase ) # 3. down SCREAMING_SNAKE_CASE : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: SCREAMING_SNAKE_CASE : int = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCamelCase , _lowerCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE : Dict = new_down_block_res_samples # 4. mid SCREAMING_SNAKE_CASE : Optional[Any] = self.mid_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Optional[Any] = down_block_res_samples[-(self.layers_per_block + 1) :] SCREAMING_SNAKE_CASE : Optional[int] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = up_block( _lowerCamelCase , temb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train , ) else: SCREAMING_SNAKE_CASE : Optional[int] = up_block(_lowerCamelCase , temb=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train ) # 6. post-process SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.silu(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.conv_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.transpose(_lowerCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCamelCase )
313
0
'''simple docstring''' import json import sys def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: __a : Optional[Any] = json.load(_SCREAMING_SNAKE_CASE ) __a : str = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(_SCREAMING_SNAKE_CASE ): __a : Optional[Any] = results[benchmark_name] __a : List[str] = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) __a : List[Any] = '| metric |' __a : List[Any] = '|--------|' __a : Union[str, Any] = '| new / old (diff) |' for metric_name in sorted(_SCREAMING_SNAKE_CASE ): __a : str = benchmark_res[metric_name] __a : str = metric_vals['new'] __a : Dict = metric_vals.get('old' , _SCREAMING_SNAKE_CASE ) __a : Dict = metric_vals.get('diff' , _SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = F""" {new_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": __lowercase : List[str] = sys.argv[1] __lowercase : str = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
27
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = StableUnCLIPImgaImgPipeline __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : Tuple = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE : int = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL() SCREAMING_SNAKE_CASE : Optional[Any] = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=True ) ->Optional[int]: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if pil_image: SCREAMING_SNAKE_CASE : Any = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : int = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[str] = DiffusionPipeline.numpy_to_pil(_lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableUnCLIPImgaImgPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(_lowerCamelCase ) inputs.update({'''image_embeds''': None} ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : str = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) ->Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : str = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Dict = pipe( _lowerCamelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
313
0
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) _lowerCamelCase : Union[str, Any] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def A ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[Any]=None ): """simple docstring""" UpperCamelCase = self.layer[current_layer](UpperCamelCase__ , UpperCamelCase__ , head_mask[current_layer] ) UpperCamelCase = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _a , ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Any , UpperCamelCase__ : str ): """simple docstring""" super().__init__(UpperCamelCase__ ) UpperCamelCase = BertEncoderWithPabee(UpperCamelCase__ ) self.init_weights() UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 def A ( self : List[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" UpperCamelCase = threshold def A ( self : Dict , UpperCamelCase__ : Tuple ): """simple docstring""" UpperCamelCase = patience def A ( self : Tuple ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = 0 def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.inference_layers_num / self.inference_instances_num UpperCamelCase = ( f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(UpperCamelCase__ ) @add_start_docstrings_to_model_forward(UpperCamelCase__ ) def A ( self : int , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: UpperCamelCase = input_ids.size() elif inputs_embeds is not None: UpperCamelCase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) UpperCamelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCamelCase = torch.ones(UpperCamelCase__ , device=UpperCamelCase__ ) if token_type_ids is None: UpperCamelCase = torch.zeros(UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCamelCase = self.get_extended_attention_mask(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCamelCase , UpperCamelCase , UpperCamelCase = encoder_hidden_states.size() UpperCamelCase = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCamelCase = torch.ones(UpperCamelCase__ , device=UpperCamelCase__ ) UpperCamelCase = self.invert_attention_mask(UpperCamelCase__ ) else: UpperCamelCase = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCamelCase = self.get_head_mask(UpperCamelCase__ , self.config.num_hidden_layers ) UpperCamelCase = self.embeddings( input_ids=UpperCamelCase__ , position_ids=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ ) UpperCamelCase = embedding_output if self.training: UpperCamelCase = [] for i in range(self.config.num_hidden_layers ): UpperCamelCase = self.encoder.adaptive_forward( UpperCamelCase__ , current_layer=UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ ) UpperCamelCase = self.pooler(UpperCamelCase__ ) UpperCamelCase = output_layers[i](output_dropout(UpperCamelCase__ ) ) res.append(UpperCamelCase__ ) elif self.patience == 0: # Use all layers for inference UpperCamelCase = self.encoder( UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) UpperCamelCase = self.pooler(encoder_outputs[0] ) UpperCamelCase = [output_layers[self.config.num_hidden_layers - 1](UpperCamelCase__ )] else: UpperCamelCase = 0 UpperCamelCase = None UpperCamelCase = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCamelCase = self.encoder.adaptive_forward( UpperCamelCase__ , current_layer=UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ ) UpperCamelCase = self.pooler(UpperCamelCase__ ) UpperCamelCase = output_layers[i](UpperCamelCase__ ) if regression: UpperCamelCase = logits.detach() if patient_result is not None: UpperCamelCase = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCamelCase = 0 else: UpperCamelCase = logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCamelCase = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCamelCase__ ) ): patient_counter += 1 else: UpperCamelCase = 0 UpperCamelCase = logits if patient_counter == self.patience: break UpperCamelCase = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _a , ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : List[Any] ): """simple docstring""" super().__init__(UpperCamelCase__ ) UpperCamelCase = config.num_labels UpperCamelCase = BertModelWithPabee(UpperCamelCase__ ) UpperCamelCase = nn.Dropout(config.hidden_dropout_prob ) UpperCamelCase = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase__ ) def A ( self : str , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[Any]=None , ): """simple docstring""" UpperCamelCase = self.bert( input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , position_ids=UpperCamelCase__ , head_mask=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) UpperCamelCase = (logits[-1],) if labels is not None: UpperCamelCase = None UpperCamelCase = 0 for ix, logits_item in enumerate(UpperCamelCase__ ): if self.num_labels == 1: # We are doing regression UpperCamelCase = MSELoss() UpperCamelCase = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: UpperCamelCase = CrossEntropyLoss() UpperCamelCase = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: UpperCamelCase = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCamelCase = (total_loss / total_weights,) + outputs return outputs
28
from abc import ABC, abstractmethod from typing import List, Optional class a_ ( a__ ): """simple docstring""" def __init__( self ) ->List[str]: # test for the above condition self.test() def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE : List[Any] = self.advance() if not self.does_advance(_lowerCamelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.update(_lowerCamelCase ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[int]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Union[str, Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Any: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->int: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = token_ids SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.token_ids ) SCREAMING_SNAKE_CASE : Any = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->List[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = False if self.does_advance(_lowerCamelCase ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE : str = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Union[str, Any] = completed else: # failed to make progress. SCREAMING_SNAKE_CASE : Dict = True self.reset() return stepped, completed, reset def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = 0 def __lowerCAmelCase ( self ) ->Any: return self.seqlen - (self.fulfilled_idx + 1) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Dict: SCREAMING_SNAKE_CASE : Any = PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : Dict = self.seqlen SCREAMING_SNAKE_CASE : int = self.fulfilled_idx SCREAMING_SNAKE_CASE : Tuple = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=True ) ->Dict: SCREAMING_SNAKE_CASE : Any = max([len(_lowerCamelCase ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE : List[str] = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE : Optional[Any] = root for tidx, token_id in enumerate(_lowerCamelCase ): if token_id not in level: SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : Tuple = level[token_id] if no_subsets and self.has_subsets(_lowerCamelCase , _lowerCamelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = root def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[Any] = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE : int = start[current_token] SCREAMING_SNAKE_CASE : Optional[int] = list(start.keys() ) return next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.next_tokens(_lowerCamelCase ) return len(_lowerCamelCase ) == 0 def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = list(root.values() ) if len(_lowerCamelCase ) == 0: return 1 else: return sum([self.count_leaves(_lowerCamelCase ) for nn in next_nodes] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = self.count_leaves(_lowerCamelCase ) return len(_lowerCamelCase ) != leaf_count class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveTrie(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = nested_token_ids SCREAMING_SNAKE_CASE : Optional[int] = self.trie.max_height SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = False def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : str = self.trie.next_tokens(self.current_seq ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False if self.does_advance(_lowerCamelCase ): self.current_seq.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = True else: SCREAMING_SNAKE_CASE : Dict = True self.reset() SCREAMING_SNAKE_CASE : Any = self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE : List[Any] = completed return stepped, completed, reset def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = [] def __lowerCAmelCase ( self ) ->Optional[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->List[str]: SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : str = self.seqlen SCREAMING_SNAKE_CASE : int = self.current_seq SCREAMING_SNAKE_CASE : Optional[int] = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE : str = max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE : List[str] = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = False self.init_state() def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Tuple = [constraint.copy(stateful=_lowerCamelCase ) for constraint in self.constraints] def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE : Optional[int] = constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.add(_lowerCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = False, False if self.completed: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[int] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.inprogress_constraint.update(_lowerCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE : str = None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE : Optional[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = pending_constraint.update(_lowerCamelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = None if not complete and stepped: SCREAMING_SNAKE_CASE : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __lowerCAmelCase ( self , _lowerCamelCase=True ) ->str: SCREAMING_SNAKE_CASE : Dict = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE : str = [ constraint.copy(stateful=_lowerCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.inprogress_constraint.copy(stateful=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [constraint.copy() for constraint in self.pending_constraints] return new_state
313
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , **_UpperCamelCase ) -> Optional[int]: super().__init__(**_UpperCamelCase ) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) requires_backends(self , 'vision' ) self.check_model_type(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> Any: if "text_queries" in kwargs: UpperCAmelCase_ : Tuple = kwargs.pop('text_queries' ) if isinstance(_UpperCamelCase , (str, Image.Image) ): UpperCAmelCase_ : Optional[Any] = {'image': image, 'candidate_labels': candidate_labels} else: UpperCAmelCase_ : Union[str, Any] = image UpperCAmelCase_ : Tuple = super().__call__(_UpperCamelCase , **_UpperCamelCase ) return results def __UpperCAmelCase ( self , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Tuple = {} if "threshold" in kwargs: UpperCAmelCase_ : str = kwargs['threshold'] if "top_k" in kwargs: UpperCAmelCase_ : str = kwargs['top_k'] return {}, {}, postprocess_params def __UpperCAmelCase ( self , _UpperCamelCase ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = load_image(inputs['image'] ) UpperCAmelCase_ : List[Any] = inputs['candidate_labels'] if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = candidate_labels.split(',' ) UpperCAmelCase_ : Optional[int] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_UpperCamelCase ): UpperCAmelCase_ : Tuple = self.tokenizer(_UpperCamelCase , return_tensors=self.framework ) UpperCAmelCase_ : Union[str, Any] = self.image_processor(_UpperCamelCase , return_tensors=self.framework ) yield { "is_last": i == len(_UpperCamelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : List[str] = model_inputs.pop('target_size' ) UpperCAmelCase_ : Dict = model_inputs.pop('candidate_label' ) UpperCAmelCase_ : Any = model_inputs.pop('is_last' ) UpperCAmelCase_ : Tuple = self.model(**_UpperCamelCase ) UpperCAmelCase_ : Any = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=0.1 , _UpperCamelCase=None ) -> Tuple: UpperCAmelCase_ : Optional[Any] = [] for model_output in model_outputs: UpperCAmelCase_ : Optional[Any] = model_output['candidate_label'] UpperCAmelCase_ : List[str] = BaseModelOutput(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = self.image_processor.post_process_object_detection( outputs=_UpperCamelCase , threshold=_UpperCamelCase , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): UpperCAmelCase_ : List[Any] = outputs['scores'][index].item() UpperCAmelCase_ : Dict = self._get_bounding_box(outputs['boxes'][index][0] ) UpperCAmelCase_ : List[Any] = {'score': score, 'label': label, 'box': box} results.append(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : x["score"] , reverse=_UpperCamelCase ) if top_k: UpperCAmelCase_ : List[str] = results[:top_k] return results def __UpperCAmelCase ( self , _UpperCamelCase ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = box.int().tolist() UpperCAmelCase_ : Optional[Any] = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
29
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCAmelCase_( a__=32 , a__=10 , a__=100 , a__=1_026 , a__=True , a__="data/tokenized_stories_train_wikitext103.jbl" , a__="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = generate_datasets( a__ , a__ , number=a__ , min_len=1_026 , trim=a__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? SCREAMING_SNAKE_CASE : str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model SCREAMING_SNAKE_CASE : Dict = load_gpta('''gpt2''' ).to(a__ ) print('''computing perplexity on objective set''' ) SCREAMING_SNAKE_CASE : int = compute_perplexity(a__ , a__ , a__ ).item() print('''perplexity on objective set:''' , a__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCAmelCase_( a__ , a__=15 , a__=128 , a__=100 , a__="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model SCREAMING_SNAKE_CASE : List[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model SCREAMING_SNAKE_CASE : str = SecondaryLearner(a__ ) # Train secondary learner SCREAMING_SNAKE_CASE : Union[str, Any] = train_secondary_learner( a__ , a__ , max_epochs=a__ , batch_size=a__ , eval_freq=100 , igf_model_path=a__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCAmelCase_( a__ , a__ , a__ , a__=32 , a__=1_000 , a__=16 , a__=1.0 , a__=recopy_gpta , a__=None , a__=10 , a__="gpt2_finetuned.pt" , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) SCREAMING_SNAKE_CASE : Optional[int] = RandomSampler(a__ ) SCREAMING_SNAKE_CASE : Dict = DataLoader(a__ , sampler=a__ ) SCREAMING_SNAKE_CASE : Tuple = max_steps // (len(a__ )) + 1 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = recopy_model(a__ , a__ , a__ ) model.train() if secondary_learner is not None: secondary_learner.to(a__ ) secondary_learner.eval() SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Tuple = [] # Compute the performance of the transformer model at the beginning SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) for epoch in range(int(a__ ) ): for step, example in enumerate(a__ ): torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) SCREAMING_SNAKE_CASE : Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ , labels=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = True if secondary_learner is not None: SCREAMING_SNAKE_CASE : List[str] = secondary_learner.forward( torch.tensor(a__ , dtype=torch.long , device=a__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(a__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: SCREAMING_SNAKE_CASE : Dict = -1 if predicted_q < threshold: SCREAMING_SNAKE_CASE : str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) SCREAMING_SNAKE_CASE : List[str] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=a__ , type=a__ , required=a__ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a__ , type=a__ , required=a__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=a__ , default=a__ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=a__ , default=a__ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=a__ , type=a__ , required=a__ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=a__ , type=a__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=a__ , default=a__ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=a__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=a__ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=a__ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1_000 , type=a__ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=a__ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=a__ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=a__ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=a__ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1_026 , type=a__ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=a__ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=a__ , type=a__ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=a__ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=a__ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=a__ , type=a__ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=a__ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner SCREAMING_SNAKE_CASE : List[Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner SCREAMING_SNAKE_CASE : Tuple = training_secondary_learner( a__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model SCREAMING_SNAKE_CASE : Optional[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1_026 , trim=a__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a__ , a__ , a__ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=a__ , secondary_learner=a__ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
313
0
import argparse import json import subprocess def a ( snake_case__: Union[str, Any] , snake_case__: Any ): '''simple docstring''' lowercase_ = [] lowercase_ = ( F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) lowercase_ = subprocess.run(snake_case__ , shell=snake_case__ , stdout=subprocess.PIPE ) lowercase_ = output.stdout.decode('''utf-8''' ) lowercase_ = json.loads(snake_case__ ) lowercase_ = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(snake_case__ ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(snake_case__ ) ) if len(snake_case__ ) > 0: lowercase_ = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(F'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def a ( snake_case__: Optional[Any] ): '''simple docstring''' return values.split(''',''' ) __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) __a = parser.parse_args() get_runner_status(args.target_runners, args.token)
30
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = filter(lambda a__ : p.requires_grad , model.parameters() ) SCREAMING_SNAKE_CASE : List[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : Any = logging.getLogger(__name__) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if metric == "rouge2": SCREAMING_SNAKE_CASE : str = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": SCREAMING_SNAKE_CASE : List[Any] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": SCREAMING_SNAKE_CASE : int = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": SCREAMING_SNAKE_CASE : int = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) SCREAMING_SNAKE_CASE : Dict = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F"""val_{metric}""" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=a__ , verbose=a__ , ) class a_ ( pl.Callback ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) ->None: logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) SCREAMING_SNAKE_CASE : Optional[int] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results SCREAMING_SNAKE_CASE : List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": SCREAMING_SNAKE_CASE : Any = od / '''test_results.txt''' SCREAMING_SNAKE_CASE : Optional[int] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE : str = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" SCREAMING_SNAKE_CASE : Tuple = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_lowerCamelCase ) generations_file.parent.mkdir(exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , '''a+''' ) as writer: for key in sorted(_lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE : Tuple = metrics[key] if isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE : List[Any] = val.item() SCREAMING_SNAKE_CASE : Tuple = F"""{key}: {val:.6f}\n""" writer.write(_lowerCamelCase ) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE : Optional[Any] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: try: SCREAMING_SNAKE_CASE : Any = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE : Optional[int] = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE : int = count_trainable_parameters(_lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_lowerCamelCase , _lowerCamelCase , '''test''' ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
313
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __SCREAMING_SNAKE_CASE : List[str] = TypeVar("""T""") __SCREAMING_SNAKE_CASE : str = TypeVar("""U""") class lowerCamelCase_ (Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , A : T | None , A : U | None ): _UpperCAmelCase : Any = key _UpperCAmelCase : List[str] = val _UpperCAmelCase : DoubleLinkedListNode[T, U] | None = None _UpperCAmelCase : DoubleLinkedListNode[T, U] | None = None def __repr__( self : str ): return ( F"""Node: key: {self.key}, val: {self.val}, """ F"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class lowerCamelCase_ (Generic[T, U] ): '''simple docstring''' def __init__( self : Any ): _UpperCAmelCase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(A , A ) _UpperCAmelCase : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(A , A ) _UpperCAmelCase , _UpperCAmelCase : Dict = self.rear, self.head def __repr__( self : Optional[int] ): _UpperCAmelCase : List[str] = ["DoubleLinkedList"] _UpperCAmelCase : Tuple = self.head while node.next is not None: rep.append(str(A ) ) _UpperCAmelCase : str = node.next rep.append(str(self.rear ) ) return ",\n ".join(A ) def _A ( self : Union[str, Any] , A : DoubleLinkedListNode[T, U] ): _UpperCAmelCase : Optional[Any] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _UpperCAmelCase : Dict = node _UpperCAmelCase : List[Any] = previous _UpperCAmelCase : Optional[int] = node _UpperCAmelCase : str = self.rear def _A ( self : List[Any] , A : DoubleLinkedListNode[T, U] ): if node.prev is None or node.next is None: return None _UpperCAmelCase : str = node.next _UpperCAmelCase : List[Any] = node.prev _UpperCAmelCase : Tuple = None _UpperCAmelCase : List[str] = None return node class lowerCamelCase_ (Generic[T, U] ): '''simple docstring''' __UpperCamelCase: dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : Dict , A : int ): _UpperCAmelCase : DoubleLinkedList[T, U] = DoubleLinkedList() _UpperCAmelCase : int = capacity _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Any = 0 _UpperCAmelCase : str = 0 _UpperCAmelCase : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : List[Any] ): return ( F"""CacheInfo(hits={self.hits}, misses={self.miss}, """ F"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Optional[Any] , A : T ): return key in self.cache def _A ( self : int , A : T ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _UpperCAmelCase : DoubleLinkedListNode[T, U] = self.cache[key] _UpperCAmelCase : Optional[int] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(A ) return node.val self.miss += 1 return None def _A ( self : List[str] , A : T , A : U ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _UpperCAmelCase : Tuple = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(A ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _UpperCAmelCase : List[str] = DoubleLinkedListNode(A , A ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _UpperCAmelCase : int = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _UpperCAmelCase : int = value self.list.add(A ) @classmethod def _A ( cls : Optional[int] , A : int = 128 ): def cache_decorator_inner(A : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*A : T ) -> U: if func not in cls.decorator_function_to_instance_map: _UpperCAmelCase : Tuple = LRUCache(A ) _UpperCAmelCase : List[str] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _UpperCAmelCase : List[Any] = func(*A ) cls.decorator_function_to_instance_map[func].put(args[0] , A ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(A , "cache_info" , A ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
31
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCAmelCase_( a__ ): """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def UpperCAmelCase_( a__ ): """simple docstring""" for char in word: SCREAMING_SNAKE_CASE : str = ord(a__ ) if not _is_chinese_char(a__ ): return 0 return 1 def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = set() for token in tokens: SCREAMING_SNAKE_CASE : str = len(a__ ) > 1 and is_chinese(a__ ) if chinese_word: word_set.add(a__ ) SCREAMING_SNAKE_CASE : str = list(a__ ) return word_list def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE : List[str] = max([len(a__ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE : Tuple = bert_tokens SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = 0, len(a__ ) while start < end: SCREAMING_SNAKE_CASE : Dict = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE : Optional[int] = min(end - start , a__ ) for i in range(a__ , 1 , -1 ): SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE : Optional[int] = '''##''' + bert_word[j] SCREAMING_SNAKE_CASE : List[str] = start + i SCREAMING_SNAKE_CASE : Optional[Any] = False break if single_word: start += 1 return bert_word def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : Optional[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = [get_chinese_word(a__ ) for r in res] ltp_res.extend(a__ ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : Any = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : int = bert_tokenizer(lines[i : i + 100] , add_special_tokens=a__ , truncation=a__ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : int = [] for input_ids, chinese_word in zip(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = [] for id in input_ids: SCREAMING_SNAKE_CASE : List[Any] = bert_tokenizer._convert_id_to_token(a__ ) input_tokens.append(a__ ) SCREAMING_SNAKE_CASE : List[str] = add_sub_symbol(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(a__ ): if token[:2] == "##": SCREAMING_SNAKE_CASE : Optional[int] = token[2:] # save chinese tokens' pos if len(a__ ) == 1 and _is_chinese_char(ord(a__ ) ): ref_id.append(a__ ) ref_ids.append(a__ ) assert len(a__ ) == len(a__ ) return ref_ids def UpperCAmelCase_( a__ ): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : List[str] = f.readlines() SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in data if len(a__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE : List[str] = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE : int = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE : int = prepare_ref(a__ , a__ , a__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Tuple = [json.dumps(a__ ) + '''\n''' for ref in ref_ids] f.writelines(a__ ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') a__ : int = parser.parse_args() main(args)
313
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : int = {'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ['ViTFeatureExtractor'] UpperCAmelCase_ : Optional[Any] = ['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
32
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Tuple = '''1''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''f32le''' SCREAMING_SNAKE_CASE : List[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error SCREAMING_SNAKE_CASE : Optional[Any] = output_stream[0] SCREAMING_SNAKE_CASE : Any = np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def UpperCAmelCase_( a__ , a__ , a__ = "f32le" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Dict = '''1''' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Dict = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : Dict = '''alsa''' SCREAMING_SNAKE_CASE : Any = '''default''' elif system == "Darwin": SCREAMING_SNAKE_CASE : Union[str, Any] = '''avfoundation''' SCREAMING_SNAKE_CASE : Optional[int] = ''':0''' elif system == "Windows": SCREAMING_SNAKE_CASE : int = '''dshow''' SCREAMING_SNAKE_CASE : Any = '''default''' SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[Any] = _ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def UpperCAmelCase_( a__ , a__ , a__ = None , a__ = None , a__ = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : Tuple = stream_chunk_s else: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s SCREAMING_SNAKE_CASE : Union[str, Any] = ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[int] = np.intaa SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Any = np.floataa SCREAMING_SNAKE_CASE : Union[str, Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: SCREAMING_SNAKE_CASE : Optional[Any] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): SCREAMING_SNAKE_CASE : List[Any] = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : Dict = np.frombuffer(item['''raw'''] , dtype=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_( a__ , a__ , a__ , a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = b'''''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: SCREAMING_SNAKE_CASE : List[str] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : str = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : List[str] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: SCREAMING_SNAKE_CASE : List[str] = False yield item SCREAMING_SNAKE_CASE : Dict = stride_left SCREAMING_SNAKE_CASE : int = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: SCREAMING_SNAKE_CASE : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : Union[str, Any] = False yield item def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2**24 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : str = ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
313
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
33
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
0
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class _a ( __a ): __a : Optional[int] = """owlvit_text_model""" def __init__( self : Tuple , lowercase : Union[str, Any]=49_408 , lowercase : str=512 , lowercase : int=2_048 , lowercase : Optional[Any]=12 , lowercase : Any=8 , lowercase : Optional[int]=16 , lowercase : Union[str, Any]="quick_gelu" , lowercase : Dict=1E-5 , lowercase : Tuple=0.0 , lowercase : str=0.02 , lowercase : Dict=1.0 , lowercase : str=0 , lowercase : List[str]=49_406 , lowercase : int=49_407 , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_act UpperCAmelCase = layer_norm_eps UpperCAmelCase = attention_dropout UpperCAmelCase = initializer_range UpperCAmelCase = initializer_factor @classmethod def A ( cls : int , lowercase : Union[str, os.PathLike] , **lowercase : List[Any] ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": UpperCAmelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase , **lowercase ) class _a ( __a ): __a : Dict = """owlvit_vision_model""" def __init__( self : Tuple , lowercase : str=768 , lowercase : Dict=3_072 , lowercase : int=12 , lowercase : Tuple=12 , lowercase : Optional[int]=3 , lowercase : Optional[int]=768 , lowercase : Optional[int]=32 , lowercase : Union[str, Any]="quick_gelu" , lowercase : Dict=1E-5 , lowercase : List[Any]=0.0 , lowercase : List[Any]=0.02 , lowercase : str=1.0 , **lowercase : str , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = num_channels UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = hidden_act UpperCAmelCase = layer_norm_eps UpperCAmelCase = attention_dropout UpperCAmelCase = initializer_range UpperCAmelCase = initializer_factor @classmethod def A ( cls : Optional[Any] , lowercase : Union[str, os.PathLike] , **lowercase : int ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": UpperCAmelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase , **lowercase ) class _a ( __a ): __a : Dict = """owlvit""" __a : Optional[Any] = True def __init__( self : Tuple , lowercase : Tuple=None , lowercase : Optional[Any]=None , lowercase : List[str]=512 , lowercase : Any=2.6592 , lowercase : List[Any]=True , **lowercase : str , ): '''simple docstring''' super().__init__(**lowercase ) if text_config is None: UpperCAmelCase = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: UpperCAmelCase = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) UpperCAmelCase = OwlViTTextConfig(**lowercase ) UpperCAmelCase = OwlViTVisionConfig(**lowercase ) UpperCAmelCase = projection_dim UpperCAmelCase = logit_scale_init_value UpperCAmelCase = return_dict UpperCAmelCase = 1.0 @classmethod def A ( cls : Tuple , lowercase : Union[str, os.PathLike] , **lowercase : List[str] ): '''simple docstring''' cls._set_token_in_kwargs(lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowercase , **lowercase ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase , **lowercase ) @classmethod def A ( cls : List[str] , lowercase : Dict , lowercase : Dict , **lowercase : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = text_config UpperCAmelCase = vision_config return cls.from_dict(lowercase , **lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.text_config.to_dict() UpperCAmelCase = self.vision_config.to_dict() UpperCAmelCase = self.__class__.model_type return output class _a ( __a ): @property def A ( self : Optional[Any] ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def A ( self : str ): '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def A ( self : Any ): '''simple docstring''' return 1E-4 def A ( self : Tuple , lowercase : "ProcessorMixin" , lowercase : int = -1 , lowercase : int = -1 , lowercase : Optional["TensorType"] = None , ): '''simple docstring''' UpperCAmelCase = super().generate_dummy_inputs( processor.tokenizer , batch_size=lowercase , seq_length=lowercase , framework=lowercase ) UpperCAmelCase = super().generate_dummy_inputs( processor.image_processor , batch_size=lowercase , framework=lowercase ) return {**text_input_dict, **image_input_dict} @property def A ( self : List[Any] ): '''simple docstring''' return 14
34
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'deformable_detr' __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[int] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : str = num_feature_levels SCREAMING_SNAKE_CASE : Optional[Any] = encoder_n_points SCREAMING_SNAKE_CASE : Any = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : List[str] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) ->int: return self.d_model def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
313
0
'''simple docstring''' from __future__ import annotations __a = 1.6021E-19 # units = C def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
35
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = (EulerDiscreteScheduler,) __SCREAMING_SNAKE_CASE : Optional[int] = 10 def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**_lowerCamelCase ) return config def __lowerCAmelCase ( self ) ->Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Any = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : List[str] = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : Dict = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase , use_karras_sigmas=_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : int = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = output.prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
313
0
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _snake_case = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 16_000 ): '''simple docstring''' _lowerCAmelCase : List[str] = int(round(sample_rate * max_length ) ) if len(_lowerCamelCase ) <= sample_length: return wav _lowerCAmelCase : Tuple = randint(0 , len(_lowerCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field(default=a , metadata={'help': 'Name of a dataset from the datasets package'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'A file containing the training audio paths and labels.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'A file containing the validation audio paths and labels.'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) lowerCamelCase__ = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) lowerCamelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Name or path of preprocessor config.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def snake_case__ ( self): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", __a, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`.") def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _lowerCamelCase , _lowerCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowerCAmelCase : Tuple = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} " + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _lowerCAmelCase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. _lowerCAmelCase : Tuple = DatasetDict() _lowerCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--label_column_name` to the correct text column - one of " F"{', '.join(raw_datasets['train'].column_names )}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _lowerCAmelCase : Any = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _lowerCAmelCase : Any = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _lowerCAmelCase : Union[str, Any] = feature_extractor.model_input_names[0] def train_transforms(_lowerCamelCase ): _lowerCAmelCase : Dict = [] for audio in batch[data_args.audio_column_name]: _lowerCAmelCase : Any = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_lowerCamelCase ) _lowerCAmelCase : List[str] = feature_extractor(_lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase : Optional[int] = {model_input_name: inputs.get(_lowerCamelCase )} _lowerCAmelCase : List[str] = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = [audio["array"] for audio in batch[data_args.audio_column_name]] _lowerCAmelCase : Tuple = feature_extractor(_lowerCamelCase , sampling_rate=feature_extractor.sampling_rate ) _lowerCAmelCase : List[str] = {model_input_name: inputs.get(_lowerCamelCase )} _lowerCAmelCase : Union[str, Any] = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _lowerCAmelCase : int = raw_datasets["train"].features[data_args.label_column_name].names _lowerCAmelCase , _lowerCAmelCase : str = {}, {} for i, label in enumerate(_lowerCamelCase ): _lowerCAmelCase : List[str] = str(_lowerCamelCase ) _lowerCAmelCase : Tuple = label # Load the accuracy metric from the datasets package _lowerCAmelCase : Dict = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase ): _lowerCAmelCase : int = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_lowerCamelCase , references=eval_pred.label_ids ) _lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel=_lowerCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowerCAmelCase : Optional[int] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _lowerCAmelCase : Union[str, Any] = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_lowerCamelCase , output_all_columns=_lowerCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _lowerCAmelCase : int = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_lowerCamelCase , output_all_columns=_lowerCamelCase ) # Initialize our trainer _lowerCAmelCase : Optional[Any] = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_lowerCamelCase , tokenizer=_lowerCamelCase , ) # Training if training_args.do_train: _lowerCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase : Union[str, Any] = last_checkpoint _lowerCAmelCase : Optional[Any] = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _lowerCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("eval" , _lowerCamelCase ) trainer.save_metrics("eval" , _lowerCamelCase ) # Write model card and (optionally) push to hub _lowerCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) if __name__ == "__main__": main()
36
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : Dict = logging.get_logger(__name__) a__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a__ : Optional[int] = { '''allenai/led-base-16384''': 16_384, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[Any] = '''post_processor''' SCREAMING_SNAKE_CASE : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Any = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[Any] = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict: SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
313
0
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase = 16 _lowerCAmelCase = 32 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase = 16 ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ : Optional[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase , max_length=UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ : Union[str, Any] = datasets.map( UpperCamelCase , batched=UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ : Dict = 8 else: lowerCAmelCase__ : Optional[int] = None return tokenizer.pad( UpperCamelCase , padding="""longest""" , max_length=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCAmelCase__ : Optional[Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) lowerCAmelCase__ : List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase = mocked_dataloaders # noqa: F811 def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase ) == "1": lowerCAmelCase__ : Tuple = 2 # Initialize accelerator lowerCAmelCase__ : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ : Dict = config["""lr"""] lowerCAmelCase__ : Union[str, Any] = int(config["""num_epochs"""] ) lowerCAmelCase__ : List[Any] = int(config["""seed"""] ) lowerCAmelCase__ : Union[str, Any] = int(config["""batch_size"""] ) lowerCAmelCase__ : Optional[Any] = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=UpperCamelCase ) def inner_training_loop(UpperCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ : int = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = get_dataloaders(UpperCamelCase , UpperCamelCase ) # Instantiate scheduler lowerCAmelCase__ : Dict = get_linear_schedule_with_warmup( optimizer=UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = accelerator.prepare( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Now we train the model for epoch in range(UpperCamelCase ): model.train() for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ : Any = model(**UpperCamelCase ) lowerCAmelCase__ : Tuple = outputs.loss accelerator.backward(UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ : str = model(**UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCamelCase , references=UpperCamelCase , ) lowerCAmelCase__ : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , UpperCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase , default=UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCAmelCase__ : Union[str, Any] = parser.parse_args() lowerCAmelCase__ : Any = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": main()
37
from __future__ import annotations import math def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if len(a__ ) != 2 or len(a[0] ) != 2 or len(a__ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) SCREAMING_SNAKE_CASE : Dict = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ ): """simple docstring""" if len(a__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) SCREAMING_SNAKE_CASE : str = len(a__ ) SCREAMING_SNAKE_CASE : Any = matrix_length // 2 SCREAMING_SNAKE_CASE : Tuple = [[a[i][j] for j in range(a__ , a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : Optional[int] = [ [a[i][j] for j in range(a__ , a__ )] for i in range(a__ , a__ ) ] SCREAMING_SNAKE_CASE : Optional[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : List[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ , a__ )] return top_left, top_right, bot_left, bot_right def UpperCAmelCase_( a__ ): """simple docstring""" return len(a__ ), len(matrix[0] ) def UpperCAmelCase_( a__ ): """simple docstring""" print('''\n'''.join(str(a__ ) for line in matrix ) ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ ) == (2, 2): return default_matrix_multiplication(a__ , a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE : Dict = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : int = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Any = actual_strassen(matrix_addition(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = matrix_addition(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = matrix_subtraction(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) # construct the new matrix from our 4 quadrants SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(len(a__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(a__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ )[1] != matrix_dimensions(a__ )[0]: SCREAMING_SNAKE_CASE : Any = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(a__ ) SCREAMING_SNAKE_CASE : str = matrix_dimensions(a__ ) SCREAMING_SNAKE_CASE : Tuple = matrix_dimensions(a__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] SCREAMING_SNAKE_CASE : str = max(*a__ , *a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(math.pow(2 , math.ceil(math.loga(a__ ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = matrixa SCREAMING_SNAKE_CASE : Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(a__ , a__ ) # Removing the additional zeros for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a__ : Dict = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a__ : Union[str, Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
313
0
import sys import turtle def SCREAMING_SNAKE_CASE_ ( __magic_name__ : tuple[float, float] , __magic_name__ : tuple[float, float] ) -> tuple[float, float]: """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : tuple[float, float] , __magic_name__ : tuple[float, float] , __magic_name__ : tuple[float, float] , __magic_name__ : int , ) -> None: """simple docstring""" my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(__magic_name__ , get_mid(__magic_name__ , __magic_name__ ) , get_mid(__magic_name__ , __magic_name__ ) , depth - 1 ) triangle(__magic_name__ , get_mid(__magic_name__ , __magic_name__ ) , get_mid(__magic_name__ , __magic_name__ ) , depth - 1 ) triangle(__magic_name__ , get_mid(__magic_name__ , __magic_name__ ) , get_mid(__magic_name__ , __magic_name__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) UpperCAmelCase_ : str = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') UpperCAmelCase_ : int = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
38
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False ) ->Any: SCREAMING_SNAKE_CASE : str = scheduler SCREAMING_SNAKE_CASE : List[str] = optimizers if isinstance(_lowerCamelCase , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE : Union[str, Any] = split_batches SCREAMING_SNAKE_CASE : List[Any] = step_with_optimizer SCREAMING_SNAKE_CASE : List[str] = GradientState() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE : List[str] = AcceleratorState().num_processes for _ in range(_lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) ->List[str]: return self.scheduler.state_dict() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: self.scheduler.load_state_dict(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: return self.scheduler.get_lr() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]: return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase )
313
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = AlbertTokenizer UpperCamelCase__ = AlbertTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True def UpperCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 'this is a test' _UpperCAmelCase = 'this is a test' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = '<pad>' _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(UpperCAmelCase ) , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [48, 25, 21, 1289] ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode('sequence builders' ) _UpperCAmelCase = tokenizer.encode('multi-sequence build' ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
39
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCAmelCase_( a__ ): """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE : Union[str, Any] = k.replace(a__ , a__ ) return k def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy() cfg_kwargs.update(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**a__ ) SCREAMING_SNAKE_CASE : Optional[int] = PegasusForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE : Dict = torch_model.model.state_dict() SCREAMING_SNAKE_CASE : List[str] = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE : int = rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE : Dict = v.T SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE : int = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Union[str, Any] = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE : Optional[Any] = {k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = torch_model.model.load_state_dict(a__ , strict=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def UpperCAmelCase_( a__="./ckpt/aeslc/model.ckpt-32000" ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : List[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(a__ , desc='''converting tf checkpoint to dict''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE : Dict = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Any = array return tf_weights def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Path(a__ ).parent.name SCREAMING_SNAKE_CASE : Union[str, Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] SCREAMING_SNAKE_CASE : Dict = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(a__ ) SCREAMING_SNAKE_CASE : List[str] = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": SCREAMING_SNAKE_CASE : int = task_specific_params SCREAMING_SNAKE_CASE : List[str] = convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(a__ , Path(a__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') a__ : List[str] = parser.parse_args() if args.save_dir is None: a__ : Any = Path(args.tf_ckpt_path).parent.name a__ : int = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
313
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
40
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = KandinskyImgaImgPipeline __SCREAMING_SNAKE_CASE : str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] __SCREAMING_SNAKE_CASE : int = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] __SCREAMING_SNAKE_CASE : int = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->int: return 32 @property def __lowerCAmelCase ( self ) ->List[str]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Tuple: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 100 @property def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Dict = MultilingualCLIP(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = text_encoder.eval() return text_encoder @property def __lowerCAmelCase ( self ) ->Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Any = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : str = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : str = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE : Any = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Dict = pipeline( _lowerCamelCase , image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
0
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _A : Union[str, Any] ='''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' _A : Optional[Any] ='''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' _A : Optional[int] =''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[str]: return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Optional[Any]: lowerCamelCase__ : Optional[int] = simple_accuracy(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Any = float(fa_score(y_true=UpperCamelCase , y_pred=UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> str: lowerCamelCase__ : int = float(pearsonr(UpperCamelCase , UpperCamelCase )[0] ) lowerCamelCase__ : Tuple = float(spearmanr(UpperCamelCase , UpperCamelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def lowerCamelCase_ ( self: Optional[Any] ): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] ): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(UpperCamelCase__ , UpperCamelCase__ )} elif self.config_name == "stsb": return pearson_and_spearman(UpperCamelCase__ , UpperCamelCase__ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(UpperCamelCase__ , UpperCamelCase__ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
41
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase_( a__ , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def UpperCAmelCase_( a__ , a__ , a__=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE : Any = '''''' else: SCREAMING_SNAKE_CASE : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dct.pop(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = val def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ViTMSNConfig() SCREAMING_SNAKE_CASE : Optional[int] = 1_000 SCREAMING_SNAKE_CASE : str = '''datasets/huggingface/label-files''' SCREAMING_SNAKE_CASE : List[str] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(a__ , a__ ) , '''r''' ) ) SCREAMING_SNAKE_CASE : List[Any] = {int(a__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : str = idalabel SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = 384 SCREAMING_SNAKE_CASE : Any = 1_536 SCREAMING_SNAKE_CASE : List[str] = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Optional[int] = 1_024 SCREAMING_SNAKE_CASE : Optional[int] = 4_096 SCREAMING_SNAKE_CASE : Tuple = 24 SCREAMING_SNAKE_CASE : Union[str, Any] = 16 SCREAMING_SNAKE_CASE : Dict = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = 7 SCREAMING_SNAKE_CASE : Union[str, Any] = 1_024 SCREAMING_SNAKE_CASE : List[Any] = 4_096 SCREAMING_SNAKE_CASE : List[Any] = 24 SCREAMING_SNAKE_CASE : Tuple = 16 SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMSNModel(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' )['''target_encoder'''] SCREAMING_SNAKE_CASE : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(a__ ) SCREAMING_SNAKE_CASE : Any = create_rename_keys(a__ , base_model=a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ , base_model=a__ ) model.load_state_dict(a__ ) model.eval() SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(a__ , stream=a__ ).raw ) SCREAMING_SNAKE_CASE : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=a__ , image_std=a__ ) SCREAMING_SNAKE_CASE : int = image_processor(images=a__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE : Tuple = model(**a__ ) SCREAMING_SNAKE_CASE : str = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE : str = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , a__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean lowercase : Any = 0 lowercase : Dict = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right lowercase : Union[str, Any] = tuple[int, int] class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): """simple docstring""" _snake_case = pos_x _snake_case = pos_y _snake_case = (pos_y, pos_x) _snake_case = goal_x _snake_case = goal_y _snake_case = g_cost _snake_case = parent _snake_case = self.calculate_heuristic() _snake_case = self.g_cost + self.h_cost def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.pos_x - self.goal_x _snake_case = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCAmelCase_ ) + abs(lowerCAmelCase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowerCAmelCase_ ): """simple docstring""" return self.f_cost < other.f_cost class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCAmelCase_ ) _snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , lowerCAmelCase_ ) _snake_case = [self.start] _snake_case = [] _snake_case = False def lowerCamelCase ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _snake_case = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCAmelCase_ ) self.closed_nodes.append(lowerCAmelCase_ ) _snake_case = self.get_successors(lowerCAmelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCAmelCase_ ) else: # retrieve the best current path _snake_case = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCAmelCase_ ) else: self.open_nodes.append(lowerCAmelCase_ ) return [self.start.pos] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = [] for action in delta: _snake_case = parent.pos_x + action[1] _snake_case = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCAmelCase_ , lowerCAmelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCAmelCase_ , ) ) return successors def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = node _snake_case = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _snake_case = current_node.parent path.reverse() return path class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = AStar(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = AStar(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False def lowerCamelCase ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _snake_case = self.fwd_astar.open_nodes.pop(0 ) _snake_case = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCAmelCase_ , lowerCAmelCase_ ) self.fwd_astar.closed_nodes.append(lowerCAmelCase_ ) self.bwd_astar.closed_nodes.append(lowerCAmelCase_ ) _snake_case = current_bwd_node _snake_case = current_fwd_node _snake_case = { self.fwd_astar: self.fwd_astar.get_successors(lowerCAmelCase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowerCAmelCase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCAmelCase_ ) else: # retrieve the best current path _snake_case = astar.open_nodes.pop( astar.open_nodes.index(lowerCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCAmelCase_ ) else: astar.open_nodes.append(lowerCAmelCase_ ) return [self.fwd_astar.start.pos] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.fwd_astar.retrace_path(lowerCAmelCase_ ) _snake_case = self.bwd_astar.retrace_path(lowerCAmelCase_ ) bwd_path.pop() bwd_path.reverse() _snake_case = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] lowercase : Dict = (0, 0) lowercase : str = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase : Dict = time.time() lowercase : Tuple = AStar(init, goal) lowercase : Optional[int] = a_star.search() lowercase : str = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') lowercase : List[str] = time.time() lowercase : int = BidirectionalAStar(init, goal) lowercase : str = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
42
import csv import tweepy # Twitter API credentials a__ : Union[str, Any] = '''''' a__ : List[str] = '''''' a__ : Any = '''''' a__ : List[str] = '''''' def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = tweepy.OAuthHandler(a__ , a__ ) auth.set_access_token(a__ , a__ ) SCREAMING_SNAKE_CASE : List[str] = tweepy.API(a__ ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE : List[Any] = api.user_timeline(screen_name=a__ , count=200 ) # save most recent tweets alltweets.extend(a__ ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a__ ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE : Any = api.user_timeline( screen_name=a__ , count=200 , max_id=a__ ) # save most recent tweets alltweets.extend(a__ ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Dict = alltweets[-1].id - 1 print(F"""...{len(a__ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE : Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , '''w''' ) as f: SCREAMING_SNAKE_CASE : List[Any] = csv.writer(a__ ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(a__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
313
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
43
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'ibert' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=False , _lowerCamelCase="none" , **_lowerCamelCase , ) ->Any: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = quant_mode SCREAMING_SNAKE_CASE : Dict = force_dequant class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
313
0
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() _a : str = logging.get_logger(__name__) _a : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } _a : List[Any] = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str ) -> List[str]: for attribute in key.split(""".""" ): _lowerCAmelCase : Tuple = getattr(_lowerCamelCase ,_lowerCamelCase ) if weight_type is not None: _lowerCAmelCase : int = getattr(_lowerCamelCase ,_lowerCamelCase ).shape else: _lowerCAmelCase : str = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _lowerCAmelCase : Optional[Any] = value elif weight_type == "weight_g": _lowerCAmelCase : str = value elif weight_type == "weight_v": _lowerCAmelCase : Union[str, Any] = value elif weight_type == "bias": _lowerCAmelCase : Optional[int] = value else: _lowerCAmelCase : List[Any] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : Dict ) -> Any: _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = fairseq_model.state_dict() _lowerCAmelCase : int = hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase : int = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,hf_model.config.feat_extract_norm == """group""" ,) _lowerCAmelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _lowerCAmelCase : List[Any] = True if "*" in mapped_key: _lowerCAmelCase : int = name.split(_lowerCamelCase )[0].split(""".""" )[-2] _lowerCAmelCase : Any = mapped_key.replace("""*""" ,_lowerCamelCase ) if "weight_g" in name: _lowerCAmelCase : int = """weight_g""" elif "weight_v" in name: _lowerCAmelCase : List[str] = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: _lowerCAmelCase : Tuple = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase : str = """weight""" else: _lowerCAmelCase : Dict = None set_recursively(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : Any ,_lowerCamelCase : Tuple ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Optional[Any] ) -> List[str]: _lowerCAmelCase : List[Any] = full_name.split("""conv_layers.""" )[-1] _lowerCAmelCase : Optional[Any] = name.split(""".""" ) _lowerCAmelCase : Dict = int(items[0] ) _lowerCAmelCase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _lowerCAmelCase : List[str] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _lowerCAmelCase : Any = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _lowerCAmelCase : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _lowerCAmelCase : int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : List[Any] ,_lowerCamelCase : str=None ) -> Dict: # load the pre-trained checkpoints _lowerCAmelCase : int = torch.load(_lowerCamelCase ) _lowerCAmelCase : List[str] = WavLMConfigOrig(checkpoint["""cfg"""] ) _lowerCAmelCase : Tuple = WavLMOrig(_lowerCamelCase ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: _lowerCAmelCase : Any = WavLMConfig.from_pretrained(_lowerCamelCase ) else: _lowerCAmelCase : Any = WavLMConfig() _lowerCAmelCase : Union[str, Any] = WavLMModel(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase ,_lowerCamelCase ) hf_wavlm.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _a : Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') _a : int = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
44
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType a__ : Any = logging.get_logger(__name__) a__ : Dict = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'imagegpt' __SCREAMING_SNAKE_CASE : Optional[Any] = ['past_key_values'] __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowerCamelCase=512 + 1 , _lowerCamelCase=32 * 32 , _lowerCamelCase=512 , _lowerCamelCase=24 , _lowerCamelCase=8 , _lowerCamelCase=None , _lowerCamelCase="quick_gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , **_lowerCamelCase , ) ->str: SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = n_positions SCREAMING_SNAKE_CASE : Optional[int] = n_embd SCREAMING_SNAKE_CASE : List[Any] = n_layer SCREAMING_SNAKE_CASE : List[Any] = n_head SCREAMING_SNAKE_CASE : int = n_inner SCREAMING_SNAKE_CASE : Dict = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = resid_pdrop SCREAMING_SNAKE_CASE : Dict = embd_pdrop SCREAMING_SNAKE_CASE : List[str] = attn_pdrop SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : int = scale_attn_weights SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE : str = reorder_and_upcast_attn SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings super().__init__(tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase ) class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = 3 , _lowerCamelCase = 32 , _lowerCamelCase = 32 , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = dict(preprocessor(images=_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return inputs
313
0
"""simple docstring""" from collections import deque def lowercase ( lowerCAmelCase__ : str ) -> List[str]: __a = len(lowerCAmelCase__ ) __a = deque() __a = [False for _ in range(lowerCAmelCase__ )] __a = [-1 for _ in range(lowerCAmelCase__ )] __a = index_of[:] def strong_connect(lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ): __a = index # the number when this node is seen __a = index # lowest rank node reachable from here index += 1 stack.append(lowerCAmelCase__ ) __a = True for w in g[v]: if index_of[w] == -1: __a = strong_connect(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __a = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __a = [] __a = stack.pop() __a = False component.append(lowerCAmelCase__ ) while w != v: __a = stack.pop() __a = False component.append(lowerCAmelCase__ ) components.append(lowerCAmelCase__ ) return index __a = [] for v in range(lowerCAmelCase__ ): if index_of[v] == -1: strong_connect(lowerCAmelCase__ , 0 , lowerCAmelCase__ ) return components def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: __a = [[] for _ in range(lowerCAmelCase__ )] for u, v in edges: g[u].append(lowerCAmelCase__ ) return g if __name__ == "__main__": # Test lowercase_ = 7 lowercase_ = [0, 0, 1, 2, 3, 3, 4, 4, 6] lowercase_ = [1, 3, 2, 0, 1, 4, 5, 6, 5] lowercase_ = [(u, v) for u, v in zip(source, target)] lowercase_ = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
45
from maths.prime_check import is_prime def UpperCAmelCase_( a__ ): """simple docstring""" if not isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(a__ ) if is_prime(a__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
313
0
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase = 0 for ch in input_str: lowerCAmelCase = ord(SCREAMING_SNAKE_CASE ) lowerCAmelCase = pow(2 , SCREAMING_SNAKE_CASE ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
46
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = KandinskyVaaControlnetImgaImgPipeline __SCREAMING_SNAKE_CASE : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[Any] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __SCREAMING_SNAKE_CASE : List[str] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : List[Any] = False @property def __lowerCAmelCase ( self ) ->Optional[Any]: return 32 @property def __lowerCAmelCase ( self ) ->Optional[int]: return 32 @property def __lowerCAmelCase ( self ) ->str: return self.time_input_dim @property def __lowerCAmelCase ( self ) ->Dict: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) ->Tuple: return 100 @property def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel(**_lowerCamelCase ) return model @property def __lowerCAmelCase ( self ) ->Any: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self ) ->Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : str = self.dummy_unet SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_movq SCREAMING_SNAKE_CASE : List[str] = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE : str = DDIMScheduler(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCamelCase ) # create init_image SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Dict = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create hint SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = init_image.resize((512, 512) ) SCREAMING_SNAKE_CASE : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(np.array(_lowerCamelCase ) ).float() / 2_5_5.0 SCREAMING_SNAKE_CASE : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : List[Any] = '''A robot, 4k photo''' SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Any = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = pipe_prior( _lowerCamelCase , image=_lowerCamelCase , strength=0.8_5 , generator=_lowerCamelCase , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : List[str] = pipeline( image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , hint=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
313
0
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCamelCase : Union[str, Any] = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCamelCase : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _lowerCAmelCase ( _UpperCamelCase : str ) -> str: """simple docstring""" if "://" in dataset_path: _SCREAMING_SNAKE_CASE =dataset_path.split('://' )[1] return dataset_path def _lowerCAmelCase ( _UpperCamelCase : fsspec.AbstractFileSystem ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def _lowerCAmelCase ( _UpperCamelCase : fsspec.AbstractFileSystem , _UpperCamelCase : str , _UpperCamelCase : str ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =not is_remote_filesystem(_UpperCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(_UpperCamelCase ) , fs._strip_protocol(_UpperCamelCase ) ) else: fs.mv(_UpperCamelCase , _UpperCamelCase , recursive=_UpperCamelCase ) def _lowerCAmelCase ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =threading.Lock()
47
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker a__ : List[str] = '''CompVis/stable-diffusion-v1-1''' a__ : Optional[Any] = '''CompVis/stable-diffusion-v1-2''' a__ : Any = '''CompVis/stable-diffusion-v1-3''' a__ : Optional[Any] = '''CompVis/stable-diffusion-v1-4''' class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ) ->str: super()._init_() SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = StableDiffusionPipeline( vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , requires_safety_checker=_lowerCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self ) ->Dict[str, Any]: return {k: getattr(self , _lowerCamelCase ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self , _lowerCamelCase = "auto" ) ->Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: self.enable_attention_slicing(_lowerCamelCase ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->str: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Tuple: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Dict: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Optional[Any]: return self.pipea( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Dict: SCREAMING_SNAKE_CASE : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(_lowerCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : Any = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Optional[int] = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , **_lowerCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
313
0
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowerCamelCase : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 lowerCamelCase : Optional[int] = 1 for i in range(1 ,n + 1 ): # to compute current row from previous row. lowerCamelCase : List[str] = min(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
48
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class a_ ( nn.Module , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False __SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1280, 1280) __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 __SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None __SCREAMING_SNAKE_CASE : int = 1280 __SCREAMING_SNAKE_CASE : float = 0.0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : bool = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->FrozenDict: # init input tensors SCREAMING_SNAKE_CASE : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros(_lowerCamelCase , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = jax.random.split(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )["params"] def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = self.block_out_channels SCREAMING_SNAKE_CASE : Optional[int] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE : List[str] = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE : Optional[int] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE : Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE : Dict = FlaxTimestepEmbedding(_lowerCamelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.only_cross_attention if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : int = block_out_channels[i] SCREAMING_SNAKE_CASE : List[Any] = i == len(_lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = down_blocks # mid SCREAMING_SNAKE_CASE : int = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : str = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : Tuple = reversed_block_out_channels[min(i + 1 , len(_lowerCamelCase ) - 1 )] SCREAMING_SNAKE_CASE : Dict = i == len(_lowerCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": SCREAMING_SNAKE_CASE : str = FlaxCrossAttnUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Optional[int] = FlaxUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Tuple = up_blocks # out SCREAMING_SNAKE_CASE : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = True , _lowerCamelCase = False , ) ->Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowerCamelCase , jnp.ndarray ): SCREAMING_SNAKE_CASE : int = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE : List[str] = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.expand_dims(_lowerCamelCase , 0 ) SCREAMING_SNAKE_CASE : List[str] = self.time_proj(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.time_embedding(_lowerCamelCase ) # 2. pre-process SCREAMING_SNAKE_CASE : int = jnp.transpose(_lowerCamelCase , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_in(_lowerCamelCase ) # 3. down SCREAMING_SNAKE_CASE : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: SCREAMING_SNAKE_CASE : int = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCamelCase , _lowerCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE : Dict = new_down_block_res_samples # 4. mid SCREAMING_SNAKE_CASE : Optional[Any] = self.mid_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Optional[Any] = down_block_res_samples[-(self.layers_per_block + 1) :] SCREAMING_SNAKE_CASE : Optional[int] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = up_block( _lowerCamelCase , temb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train , ) else: SCREAMING_SNAKE_CASE : Optional[int] = up_block(_lowerCamelCase , temb=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train ) # 6. post-process SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.silu(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.conv_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.transpose(_lowerCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCamelCase )
313
0
def __snake_case ( _UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ): __a = set() # Replace all the whitespace in our sentence __a = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_UpperCAmelCase ) == 26 def __snake_case ( _UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ): __a = [False] * 26 for char in input_str: if char.islower(): __a = True elif char.isupper(): __a = True return all(_UpperCAmelCase ) def __snake_case ( _UpperCAmelCase = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def __snake_case ( ): from timeit import timeit __a = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=_UpperCAmelCase ) ) print(timeit('''is_pangram_faster()''' , setup=_UpperCAmelCase ) ) print(timeit('''is_pangram_fastest()''' , setup=_UpperCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
49
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = StableUnCLIPImgaImgPipeline __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : Tuple = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE : int = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL() SCREAMING_SNAKE_CASE : Optional[Any] = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=True ) ->Optional[int]: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if pil_image: SCREAMING_SNAKE_CASE : Any = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : int = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[str] = DiffusionPipeline.numpy_to_pil(_lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableUnCLIPImgaImgPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(_lowerCamelCase ) inputs.update({'''image_embeds''': None} ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : str = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) ->Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : str = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Dict = pipe( _lowerCamelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
313
0
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase : def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : Dict=30 , UpperCAmelCase : str=2 , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Dict=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : Optional[Any]=5 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Union[str, Any]=10 , UpperCAmelCase : Union[str, Any]=0.0_2 , UpperCAmelCase : Optional[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : Any = parent lowerCamelCase__ : Optional[int] = batch_size lowerCamelCase__ : int = image_size lowerCamelCase__ : Tuple = patch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : List[str] = use_labels lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : int = hidden_act lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Optional[int] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : Tuple = (image_size // patch_size) ** 2 lowerCamelCase__ : Dict = num_patches + 1 def A_ ( self : Optional[Any] ) -> int: lowerCamelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Dict = self.get_config() return config, pixel_values, labels def A_ ( self : Union[str, Any] ) -> Union[str, Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Dict ) -> Dict: lowerCamelCase__ : Optional[Any] = ViTMSNModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Dict = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any ) -> List[Any]: lowerCamelCase__ : List[Any] = self.type_sequence_label_size lowerCamelCase__ : Dict = ViTMSNForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : Optional[int] = 1 lowerCamelCase__ : Tuple = ViTMSNForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Any = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : List[str] ) -> List[Any]: lowerCamelCase__ : List[Any] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = config_and_inputs lowerCamelCase__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () UpperCAmelCase__ = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def A_ ( self : Any ) -> Union[str, Any]: lowerCamelCase__ : Any = ViTMSNModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A_ ( self : int ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def A_ ( self : Optional[int] ) -> Any: pass def A_ ( self : Optional[int] ) -> str: lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : int = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A_ ( self : List[str] ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Tuple = model_class(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Dict = [*signature.parameters.keys()] lowerCamelCase__ : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A_ ( self : Tuple ) -> Dict: lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> int: lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def A_ ( self : int ) -> Any: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[Any] = ViTMSNModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def A_ ( self : Dict ) -> List[str]: return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def A_ ( self : Optional[int] ) -> List[str]: torch.manual_seed(2 ) lowerCamelCase__ : Dict = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.default_image_processor lowerCamelCase__ : Any = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=UpperCAmelCase , return_tensors='pt' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ : str = model(**UpperCAmelCase ) # verify the logits lowerCamelCase__ : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCamelCase__ : int = torch.tensor([-0.0_8_0_3, -0.4_4_5_4, -0.2_3_7_5] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
50
from abc import ABC, abstractmethod from typing import List, Optional class a_ ( a__ ): """simple docstring""" def __init__( self ) ->List[str]: # test for the above condition self.test() def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE : List[Any] = self.advance() if not self.does_advance(_lowerCamelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.update(_lowerCamelCase ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[int]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Union[str, Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Any: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->int: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = token_ids SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.token_ids ) SCREAMING_SNAKE_CASE : Any = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->List[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = False if self.does_advance(_lowerCamelCase ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE : str = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Union[str, Any] = completed else: # failed to make progress. SCREAMING_SNAKE_CASE : Dict = True self.reset() return stepped, completed, reset def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = 0 def __lowerCAmelCase ( self ) ->Any: return self.seqlen - (self.fulfilled_idx + 1) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Dict: SCREAMING_SNAKE_CASE : Any = PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : Dict = self.seqlen SCREAMING_SNAKE_CASE : int = self.fulfilled_idx SCREAMING_SNAKE_CASE : Tuple = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=True ) ->Dict: SCREAMING_SNAKE_CASE : Any = max([len(_lowerCamelCase ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE : List[str] = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE : Optional[Any] = root for tidx, token_id in enumerate(_lowerCamelCase ): if token_id not in level: SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : Tuple = level[token_id] if no_subsets and self.has_subsets(_lowerCamelCase , _lowerCamelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = root def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[Any] = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE : int = start[current_token] SCREAMING_SNAKE_CASE : Optional[int] = list(start.keys() ) return next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.next_tokens(_lowerCamelCase ) return len(_lowerCamelCase ) == 0 def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = list(root.values() ) if len(_lowerCamelCase ) == 0: return 1 else: return sum([self.count_leaves(_lowerCamelCase ) for nn in next_nodes] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = self.count_leaves(_lowerCamelCase ) return len(_lowerCamelCase ) != leaf_count class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveTrie(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = nested_token_ids SCREAMING_SNAKE_CASE : Optional[int] = self.trie.max_height SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = False def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : str = self.trie.next_tokens(self.current_seq ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False if self.does_advance(_lowerCamelCase ): self.current_seq.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = True else: SCREAMING_SNAKE_CASE : Dict = True self.reset() SCREAMING_SNAKE_CASE : Any = self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE : List[Any] = completed return stepped, completed, reset def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = [] def __lowerCAmelCase ( self ) ->Optional[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->List[str]: SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : str = self.seqlen SCREAMING_SNAKE_CASE : int = self.current_seq SCREAMING_SNAKE_CASE : Optional[int] = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE : str = max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE : List[str] = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = False self.init_state() def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Tuple = [constraint.copy(stateful=_lowerCamelCase ) for constraint in self.constraints] def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE : Optional[int] = constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.add(_lowerCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = False, False if self.completed: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[int] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.inprogress_constraint.update(_lowerCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE : str = None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE : Optional[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = pending_constraint.update(_lowerCamelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = None if not complete and stepped: SCREAMING_SNAKE_CASE : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __lowerCAmelCase ( self , _lowerCamelCase=True ) ->str: SCREAMING_SNAKE_CASE : Dict = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE : str = [ constraint.copy(stateful=_lowerCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.inprogress_constraint.copy(stateful=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [constraint.copy() for constraint in self.pending_constraints] return new_state
313
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __snake_case ( a ): def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_snake_case , '''hidden_sizes''')) self.parent.assertTrue(hasattr(_snake_case , '''num_attention_heads''')) class __snake_case : def __init__( self : Dict , _snake_case : Union[str, Any] , _snake_case : str=13 , _snake_case : int=64 , _snake_case : List[Any]=3 , _snake_case : Optional[int]=3 , _snake_case : List[Any]=2 , _snake_case : Dict=1 , _snake_case : Union[str, Any]=16 , _snake_case : Any=[128, 256, 384] , _snake_case : Any=[4, 6, 8] , _snake_case : Optional[int]=[2, 3, 4] , _snake_case : List[Any]=[16, 16, 16] , _snake_case : Union[str, Any]=0 , _snake_case : Optional[int]=[2, 2, 2] , _snake_case : Any=[2, 2, 2] , _snake_case : List[Any]=0.0_2 , _snake_case : List[str]=True , _snake_case : List[Any]=True , _snake_case : Any=2 , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : List[str]): """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowerCamelCase ( self : str , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Any): """simple docstring""" UpperCAmelCase_ = LevitModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ = image_size[0], image_size[1] for _ in range(4): UpperCAmelCase_ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1) UpperCAmelCase_ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]) , ) def lowerCamelCase ( self : Optional[Any] , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = LevitForImageClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ = model(_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : Optional[int] = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Any = False def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = LevitModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37) def lowerCamelCase ( self : Any): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : Tuple): """simple docstring""" return @unittest.skip(reason='''Levit does not use inputs_embeds''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass @unittest.skip(reason='''Levit does not support input and output embeddings''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass @unittest.skip(reason='''Levit does not output attentions''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_snake_case) UpperCAmelCase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" def check_hidden_states_output(_snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Optional[Any]): UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = len(self.model_tester.depths) + 1 self.assertEqual(len(_snake_case) , _snake_case) UpperCAmelCase_ = (self.model_tester.image_size, self.model_tester.image_size) UpperCAmelCase_ , UpperCAmelCase_ = image_size[0], image_size[1] for _ in range(4): UpperCAmelCase_ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) UpperCAmelCase_ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : Any , _snake_case : Optional[int] , _snake_case : str , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_snake_case) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.train() UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case) UpperCAmelCase_ = model(**_snake_case).loss loss.backward() def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ = False UpperCAmelCase_ = True for model_class in self.all_model_classes: if model_class in get_values(_snake_case) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCAmelCase_ = model_class(_snake_case) model.gradient_checkpointing_enable() model.to(_snake_case) model.train() UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case) UpperCAmelCase_ = model(**_snake_case).loss loss.backward() def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_snake_case), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}"""): UpperCAmelCase_ = problem_type['''title'''] UpperCAmelCase_ = problem_type['''num_labels'''] UpperCAmelCase_ = model_class(_snake_case) model.to(_snake_case) model.train() UpperCAmelCase_ = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case) if problem_type["num_labels"] > 1: UpperCAmelCase_ = inputs['''labels'''].unsqueeze(1).repeat(1 , problem_type['''num_labels''']) UpperCAmelCase_ = inputs['''labels'''].to(problem_type['''dtype''']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_snake_case) as warning_list: UpperCAmelCase_ = model(**_snake_case).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""") loss.backward() @slow def lowerCamelCase ( self : List[str]): """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = LevitModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) def A () -> Any: """simple docstring""" UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( _snake_case) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_snake_case , return_tensors='''pt''').to(_snake_case) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_snake_case) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7]).to(_snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4))
51
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCAmelCase_( a__=32 , a__=10 , a__=100 , a__=1_026 , a__=True , a__="data/tokenized_stories_train_wikitext103.jbl" , a__="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = generate_datasets( a__ , a__ , number=a__ , min_len=1_026 , trim=a__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? SCREAMING_SNAKE_CASE : str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model SCREAMING_SNAKE_CASE : Dict = load_gpta('''gpt2''' ).to(a__ ) print('''computing perplexity on objective set''' ) SCREAMING_SNAKE_CASE : int = compute_perplexity(a__ , a__ , a__ ).item() print('''perplexity on objective set:''' , a__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCAmelCase_( a__ , a__=15 , a__=128 , a__=100 , a__="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model SCREAMING_SNAKE_CASE : List[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model SCREAMING_SNAKE_CASE : str = SecondaryLearner(a__ ) # Train secondary learner SCREAMING_SNAKE_CASE : Union[str, Any] = train_secondary_learner( a__ , a__ , max_epochs=a__ , batch_size=a__ , eval_freq=100 , igf_model_path=a__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCAmelCase_( a__ , a__ , a__ , a__=32 , a__=1_000 , a__=16 , a__=1.0 , a__=recopy_gpta , a__=None , a__=10 , a__="gpt2_finetuned.pt" , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) SCREAMING_SNAKE_CASE : Optional[int] = RandomSampler(a__ ) SCREAMING_SNAKE_CASE : Dict = DataLoader(a__ , sampler=a__ ) SCREAMING_SNAKE_CASE : Tuple = max_steps // (len(a__ )) + 1 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = recopy_model(a__ , a__ , a__ ) model.train() if secondary_learner is not None: secondary_learner.to(a__ ) secondary_learner.eval() SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Tuple = [] # Compute the performance of the transformer model at the beginning SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) for epoch in range(int(a__ ) ): for step, example in enumerate(a__ ): torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) SCREAMING_SNAKE_CASE : Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ , labels=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = True if secondary_learner is not None: SCREAMING_SNAKE_CASE : List[str] = secondary_learner.forward( torch.tensor(a__ , dtype=torch.long , device=a__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(a__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: SCREAMING_SNAKE_CASE : Dict = -1 if predicted_q < threshold: SCREAMING_SNAKE_CASE : str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) SCREAMING_SNAKE_CASE : List[str] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=a__ , type=a__ , required=a__ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a__ , type=a__ , required=a__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=a__ , default=a__ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=a__ , default=a__ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=a__ , type=a__ , required=a__ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=a__ , type=a__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=a__ , default=a__ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=a__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=a__ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=a__ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1_000 , type=a__ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=a__ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=a__ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=a__ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=a__ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1_026 , type=a__ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=a__ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=a__ , type=a__ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=a__ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=a__ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=a__ , type=a__ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=a__ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner SCREAMING_SNAKE_CASE : List[Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner SCREAMING_SNAKE_CASE : Tuple = training_secondary_learner( a__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model SCREAMING_SNAKE_CASE : Optional[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1_026 , trim=a__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a__ , a__ , a__ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=a__ , secondary_learner=a__ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
313
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=True , A_=False , A_=False , A_=False , A_=2 , A_=99 , A_=0 , A_=32 , A_=5 , A_=4 , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=2 , A_=4 , A_="last" , A_=True , A_=None , A_=0 , ): '''simple docstring''' UpperCamelCase : Any = parent UpperCamelCase : str = batch_size UpperCamelCase : Tuple = seq_length UpperCamelCase : Union[str, Any] = is_training UpperCamelCase : List[Any] = use_input_lengths UpperCamelCase : Optional[Any] = use_token_type_ids UpperCamelCase : Optional[int] = use_labels UpperCamelCase : Optional[int] = gelu_activation UpperCamelCase : Optional[Any] = sinusoidal_embeddings UpperCamelCase : Tuple = causal UpperCamelCase : List[Any] = asm UpperCamelCase : List[str] = n_langs UpperCamelCase : Any = vocab_size UpperCamelCase : List[str] = n_special UpperCamelCase : Optional[Any] = hidden_size UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Optional[int] = hidden_dropout_prob UpperCamelCase : Optional[Any] = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : Union[str, Any] = type_sequence_label_size UpperCamelCase : Optional[int] = initializer_range UpperCamelCase : Any = num_labels UpperCamelCase : Dict = num_choices UpperCamelCase : Union[str, Any] = summary_type UpperCamelCase : int = use_proj UpperCamelCase : List[Any] = scope UpperCamelCase : List[Any] = bos_token_id def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : List[str] = None if self.use_input_lengths: UpperCamelCase : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase : Optional[int] = None if self.use_token_type_ids: UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase : Dict = None UpperCamelCase : int = None UpperCamelCase : Union[str, Any] = None if self.use_labels: UpperCamelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Optional[int] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __UpperCamelCase( self ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : List[str] = XLMModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : Optional[int] = model(A_ , lengths=A_ , langs=A_ ) UpperCamelCase : Optional[int] = model(A_ , langs=A_ ) UpperCamelCase : Any = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Union[str, Any] = XLMWithLMHeadModel(A_ ) model.to(A_ ) model.eval() UpperCamelCase : List[Any] = model(A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : List[str] = XLMForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() UpperCamelCase : str = model(A_ ) UpperCamelCase : List[Any] = model(A_ , start_positions=A_ , end_positions=A_ ) UpperCamelCase : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Optional[Any] = XLMForQuestionAnswering(A_ ) model.to(A_ ) model.eval() UpperCamelCase : Tuple = model(A_ ) UpperCamelCase : int = model( A_ , start_positions=A_ , end_positions=A_ , cls_index=A_ , is_impossible=A_ , p_mask=A_ , ) UpperCamelCase : Dict = model( A_ , start_positions=A_ , end_positions=A_ , cls_index=A_ , is_impossible=A_ , ) ((UpperCamelCase) , ) : List[Any] = result_with_labels.to_tuple() UpperCamelCase : Tuple = model(A_ , start_positions=A_ , end_positions=A_ ) ((UpperCamelCase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Any = XLMForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase : Any = model(A_ ) UpperCamelCase : str = model(A_ , labels=A_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : List[Any] = self.num_labels UpperCamelCase : List[str] = XLMForTokenClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase : Optional[int] = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Optional[int] = self.num_choices UpperCamelCase : Tuple = XLMForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Optional[int] = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Optional[Any] = config_and_inputs UpperCamelCase : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class A__ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :int = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _UpperCAmelCase :Optional[Any] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _UpperCAmelCase :Union[str, Any] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __UpperCamelCase( self , A_ , A_ , A_=False ): '''simple docstring''' UpperCamelCase : Union[str, Any] = super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCamelCase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) UpperCamelCase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) return inputs_dict def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = XLMModelTester(self ) UpperCamelCase : Any = ConfigTester(self , config_class=A_ , emb_dim=37 ) def __UpperCamelCase( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_ ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_=False , A_=1 ): '''simple docstring''' self.assertIsInstance(A_ , A_ ) self.assertListEqual( [isinstance(A_ , A_ ) for iter_attentions in attentions] , [True] * len(A_ ) ) self.assertEqual(len(A_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A_ ): # adds PAD dummy token UpperCamelCase : str = min_length + idx + 1 UpperCamelCase : int = min_length + idx + 1 UpperCamelCase : str = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(A_ ) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_=False , A_=1 ): '''simple docstring''' self.assertIsInstance(A_ , A_ ) self.assertListEqual( [isinstance(A_ , A_ ) for iter_hidden_states in hidden_states] , [True] * len(A_ ) , ) self.assertEqual(len(A_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A_ ): # adds PAD dummy token UpperCamelCase : Any = min_length + idx + 1 UpperCamelCase : Optional[int] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(A_ ) , ) pass @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[Any] = XLMModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class A__ ( unittest.TestCase ): @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(A_ ) UpperCamelCase : Dict = torch.tensor([[14, 447]] , dtype=torch.long , device=A_ ) # the president UpperCamelCase : int = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCamelCase : Optional[int] = model.generate(A_ , do_sample=A_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , A_ )
52
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = filter(lambda a__ : p.requires_grad , model.parameters() ) SCREAMING_SNAKE_CASE : List[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : Any = logging.getLogger(__name__) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if metric == "rouge2": SCREAMING_SNAKE_CASE : str = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": SCREAMING_SNAKE_CASE : List[Any] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": SCREAMING_SNAKE_CASE : int = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": SCREAMING_SNAKE_CASE : int = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) SCREAMING_SNAKE_CASE : Dict = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F"""val_{metric}""" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=a__ , verbose=a__ , ) class a_ ( pl.Callback ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) ->None: logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) SCREAMING_SNAKE_CASE : Optional[int] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results SCREAMING_SNAKE_CASE : List[str] = Path(pl_module.hparams.output_dir ) if type_path == "test": SCREAMING_SNAKE_CASE : Any = od / '''test_results.txt''' SCREAMING_SNAKE_CASE : Optional[int] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE : str = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" SCREAMING_SNAKE_CASE : Tuple = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_lowerCamelCase ) generations_file.parent.mkdir(exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , '''a+''' ) as writer: for key in sorted(_lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE : Tuple = metrics[key] if isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE : List[Any] = val.item() SCREAMING_SNAKE_CASE : Tuple = F"""{key}: {val:.6f}\n""" writer.write(_lowerCamelCase ) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE : Optional[Any] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(_lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: try: SCREAMING_SNAKE_CASE : Any = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE : Optional[int] = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE : int = count_trainable_parameters(_lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_lowerCamelCase , _lowerCamelCase , '''test''' ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
313
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a__ : Union[str, Any] =(3, 9, -11, 0, 7, 5, 1, -1) a__ : Optional[int] =(4, 6, 2, 0, 8, 10, 3, -2) @dataclass class snake_case : """simple docstring""" SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : Node | None class snake_case : """simple docstring""" def __init__( self : Optional[Any] , __A : Iterable[int] ): __UpperCamelCase = None for i in sorted(__A , reverse=__A ): __UpperCamelCase = Node(__A , self.head ) def __iter__( self : Any ): __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next_node def __len__( self : Optional[int] ): return sum(1 for _ in self ) def __str__( self : List[Any] ): return " -> ".join([str(__A ) for node in self] ) def lowercase__ ( __lowercase : SortedLinkedList , __lowercase : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__lowercase ) + list(__lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() a__ : List[Any] =SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
53
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCAmelCase_( a__ ): """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def UpperCAmelCase_( a__ ): """simple docstring""" for char in word: SCREAMING_SNAKE_CASE : str = ord(a__ ) if not _is_chinese_char(a__ ): return 0 return 1 def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = set() for token in tokens: SCREAMING_SNAKE_CASE : str = len(a__ ) > 1 and is_chinese(a__ ) if chinese_word: word_set.add(a__ ) SCREAMING_SNAKE_CASE : str = list(a__ ) return word_list def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE : List[str] = max([len(a__ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE : Tuple = bert_tokens SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = 0, len(a__ ) while start < end: SCREAMING_SNAKE_CASE : Dict = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE : Optional[int] = min(end - start , a__ ) for i in range(a__ , 1 , -1 ): SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE : Optional[int] = '''##''' + bert_word[j] SCREAMING_SNAKE_CASE : List[str] = start + i SCREAMING_SNAKE_CASE : Optional[Any] = False break if single_word: start += 1 return bert_word def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : Optional[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = [get_chinese_word(a__ ) for r in res] ltp_res.extend(a__ ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : Any = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : int = bert_tokenizer(lines[i : i + 100] , add_special_tokens=a__ , truncation=a__ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : int = [] for input_ids, chinese_word in zip(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = [] for id in input_ids: SCREAMING_SNAKE_CASE : List[Any] = bert_tokenizer._convert_id_to_token(a__ ) input_tokens.append(a__ ) SCREAMING_SNAKE_CASE : List[str] = add_sub_symbol(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(a__ ): if token[:2] == "##": SCREAMING_SNAKE_CASE : Optional[int] = token[2:] # save chinese tokens' pos if len(a__ ) == 1 and _is_chinese_char(ord(a__ ) ): ref_id.append(a__ ) ref_ids.append(a__ ) assert len(a__ ) == len(a__ ) return ref_ids def UpperCAmelCase_( a__ ): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : List[str] = f.readlines() SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in data if len(a__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE : List[str] = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE : int = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE : int = prepare_ref(a__ , a__ , a__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Tuple = [json.dumps(a__ ) + '''\n''' for ref in ref_ids] f.writelines(a__ ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') a__ : int = parser.parse_args() main(args)
313
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : Optional[Any] = '''▁''' a__ : Tuple = {'''vocab_file''': '''spiece.model'''} a__ : Tuple = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } a__ : Union[str, Any] = { '''google/reformer-crime-and-punishment''': 5_2_4_2_8_8, } class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Tuple = VOCAB_FILES_NAMES snake_case__ : Tuple = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple="</s>" , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : List[Any]=[] , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Optional[int] , ) -> None: __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) @property def UpperCAmelCase_ ( self : Dict ) -> str: return self.sp_model.get_piece_size() def UpperCAmelCase_ ( self : List[Any] ) -> Dict[str, int]: __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : str ) -> List[str]: return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : Union[str, Any] ) -> Optional[int]: return self.sp_model.piece_to_id(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Any ) -> List[str]: if index < self.sp_model.get_piece_size(): __SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(UpperCAmelCase__ ) return token def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : List[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase__ ) + token __SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(UpperCAmelCase__ ) out_string += self.sp_model.decode(UpperCAmelCase__ ) return out_string.strip() def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , "wb" ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,)
54
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Tuple = '''1''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''f32le''' SCREAMING_SNAKE_CASE : List[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(a__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.communicate(a__ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error SCREAMING_SNAKE_CASE : Optional[Any] = output_stream[0] SCREAMING_SNAKE_CASE : Any = np.frombuffer(a__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def UpperCAmelCase_( a__ , a__ , a__ = "f32le" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{sampling_rate}""" SCREAMING_SNAKE_CASE : Dict = '''1''' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Dict = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : Dict = '''alsa''' SCREAMING_SNAKE_CASE : Any = '''default''' elif system == "Darwin": SCREAMING_SNAKE_CASE : Union[str, Any] = '''avfoundation''' SCREAMING_SNAKE_CASE : Optional[int] = ''':0''' elif system == "Windows": SCREAMING_SNAKE_CASE : int = '''dshow''' SCREAMING_SNAKE_CASE : Any = '''default''' SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[Any] = _ffmpeg_stream(a__ , a__ ) for item in iterator: yield item def UpperCAmelCase_( a__ , a__ , a__ = None , a__ = None , a__ = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : Tuple = stream_chunk_s else: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s SCREAMING_SNAKE_CASE : Union[str, Any] = ffmpeg_microphone(a__ , a__ , format_for_conversion=a__ ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[int] = np.intaa SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Any = np.floataa SCREAMING_SNAKE_CASE : Union[str, Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: SCREAMING_SNAKE_CASE : Optional[Any] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(a__ , (int, float) ): SCREAMING_SNAKE_CASE : List[Any] = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : int = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=a__ ) for item in chunk_bytes_iter(a__ , a__ , stride=(stride_left, stride_right) , stream=a__ ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : Dict = np.frombuffer(item['''raw'''] , dtype=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_( a__ , a__ , a__ , a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = b'''''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(a__ ) < chunk_len: SCREAMING_SNAKE_CASE : List[str] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(a__ ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : str = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : List[str] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: SCREAMING_SNAKE_CASE : List[str] = False yield item SCREAMING_SNAKE_CASE : Dict = stride_left SCREAMING_SNAKE_CASE : int = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(a__ ) > stride_left: SCREAMING_SNAKE_CASE : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : Union[str, Any] = False yield item def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2**24 # 16Mo try: with subprocess.Popen(a__ , stdout=subprocess.PIPE , bufsize=a__ ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : str = ffmpeg_process.stdout.read(a__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
313
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ : Any = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = XGLMTokenizer _lowerCamelCase = XGLMTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def snake_case ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = XGLMTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = "<pad>" lowerCamelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(UpperCamelCase ) , 1008 ) def snake_case ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = XGLMTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowerCamelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def snake_case ( self ): """simple docstring""" return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def snake_case ( self ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase , f.name ) lowerCamelCase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase ) lowerCamelCase_ = pickle.dumps(UpperCamelCase ) pickle.loads(UpperCamelCase ) def snake_case ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = "I was born in 92000, and this is falsé." lowerCamelCase_ = tokenizer.tokenize(UpperCamelCase ) lowerCamelCase_ = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowerCamelCase_ = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(UpperCamelCase ) lowerCamelCase_ = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = "Hello World!" lowerCamelCase_ = [2, 3_1227, 4447, 35] self.assertListEqual(UpperCamelCase , self.big_tokenizer.encode(UpperCamelCase ) ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off lowerCamelCase_ = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase , self.big_tokenizer.encode(UpperCamelCase ) ) @slow def snake_case ( self ): """simple docstring""" # fmt: off lowerCamelCase_ = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name="facebook/xglm-564M" , padding=UpperCamelCase , )
55
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
0
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a ( _lowerCamelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class a ( unittest.TestCase ): @property def A_ ( self : List[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A_ ( self : Union[str, Any] ): snake_case_ = ort.SessionOptions() snake_case_ = False return options def A_ ( self : Tuple ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) snake_case_ = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=lowercase_ , feature_extractor=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ = '''A red cat sitting on a park bench''' snake_case_ = np.random.RandomState(0 ) snake_case_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , ) snake_case_ = output.images snake_case_ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) snake_case_ = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A_ ( self : Tuple ): snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) snake_case_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) snake_case_ = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) snake_case_ = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ = '''A red cat sitting on a park bench''' snake_case_ = np.random.RandomState(0 ) snake_case_ = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , ) snake_case_ = output.images snake_case_ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) snake_case_ = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
56
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'deformable_detr' __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[int] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = backbone SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = dilation # deformable attributes SCREAMING_SNAKE_CASE : str = num_feature_levels SCREAMING_SNAKE_CASE : Optional[Any] = encoder_n_points SCREAMING_SNAKE_CASE : Any = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : List[str] = two_stage_num_proposals SCREAMING_SNAKE_CASE : Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : Union[str, Any] = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Dict = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : str = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : Optional[int] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->int: return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) ->int: return self.d_model def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
313
0
"""simple docstring""" import numpy # List of input, output pairs A : Any = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) A : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) A : Union[str, Any] = [2, 4, 1, 5] A : int = len(train_data) A : Dict = 0.009 def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase="train" ): '''simple docstring''' return calculate_hypothesis_value(_UpperCamelCase , _UpperCamelCase ) - output( _UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 0 for i in range(len(_UpperCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=m ): '''simple docstring''' __lowerCAmelCase = 0 for i in range(_UpperCamelCase ): if index == -1: summation_value += _error(_UpperCamelCase ) else: summation_value += _error(_UpperCamelCase ) * train_data[i][0][index] return summation_value def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = summation_of_cost_derivative(_UpperCamelCase , _UpperCamelCase ) / m return cost_derivative_value def _lowerCamelCase ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __lowerCAmelCase = 0.00_00_02 __lowerCAmelCase = 0 __lowerCAmelCase = 0 while True: j += 1 __lowerCAmelCase = [0, 0, 0, 0] for i in range(0 , len(_UpperCamelCase ) ): __lowerCAmelCase = get_cost_derivative(i - 1 ) __lowerCAmelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _UpperCamelCase , _UpperCamelCase , atol=_UpperCamelCase , rtol=_UpperCamelCase , ): break __lowerCAmelCase = temp_parameter_vector print(("Number of iterations:", j) ) def _lowerCamelCase ( ): '''simple docstring''' for i in range(len(_UpperCamelCase ) ): print(("Actual output value:", output(_UpperCamelCase , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(_UpperCamelCase , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
57
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = (EulerDiscreteScheduler,) __SCREAMING_SNAKE_CASE : Optional[int] = 10 def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**_lowerCamelCase ) return config def __lowerCAmelCase ( self ) ->Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Any = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : List[str] = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : Dict = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase , use_karras_sigmas=_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : int = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = output.prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
313
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
58
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : Dict = logging.get_logger(__name__) a__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a__ : Optional[int] = { '''allenai/led-base-16384''': 16_384, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[Any] = '''post_processor''' SCREAMING_SNAKE_CASE : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Any = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[Any] = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict: SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
313
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowerCamelCase = """true""" def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any=82 , __lowerCamelCase : int=16 ): set_seed(42 ) snake_case : Optional[int] = RegressionModel() snake_case : Optional[Any] = deepcopy(__lowerCamelCase ) snake_case : Any = RegressionDataset(length=__lowerCamelCase ) snake_case : List[Any] = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase ) model.to(accelerator.device ) snake_case , snake_case : Tuple = accelerator.prepare(__lowerCamelCase , __lowerCamelCase ) return model, ddp_model, dataloader def UpperCamelCase ( __lowerCamelCase : Accelerator , __lowerCamelCase : List[str]=False ): snake_case : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) snake_case : Any = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(__lowerCamelCase : Optional[Any] ): snake_case : List[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs with accelerator.main_process_first(): snake_case : Optional[Any] = dataset.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) snake_case : Dict = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__lowerCamelCase : Any ): if use_longest: return tokenizer.pad(__lowerCamelCase , padding="longest" , return_tensors="pt" ) return tokenizer.pad(__lowerCamelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=16 ) def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict ): snake_case : Optional[Any] = Accelerator(dispatch_batches=__lowerCamelCase , split_batches=__lowerCamelCase ) snake_case : List[str] = get_dataloader(__lowerCamelCase , not dispatch_batches ) snake_case : List[Any] = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=__lowerCamelCase ) snake_case , snake_case : str = accelerator.prepare(__lowerCamelCase , __lowerCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): snake_case : Optional[Any] = [] for batch in dataloader: snake_case , snake_case : Optional[int] = batch.values() with torch.no_grad(): snake_case : List[Any] = model(__lowerCamelCase ) snake_case , snake_case : Union[str, Any] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) snake_case , snake_case : str = [], [] for logit, targ in logits_and_targets: logits.append(__lowerCamelCase ) targs.append(__lowerCamelCase ) snake_case , snake_case : Union[str, Any] = torch.cat(__lowerCamelCase ), torch.cat(__lowerCamelCase ) return logits, targs def UpperCamelCase ( __lowerCamelCase : Accelerator , __lowerCamelCase : Any=82 , __lowerCamelCase : int=False , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=16 ): snake_case , snake_case , snake_case : Optional[Any] = get_basic_setup(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) snake_case , snake_case : Dict = generate_predictions(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) assert ( len(__lowerCamelCase ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowerCamelCase )}""" def UpperCamelCase ( __lowerCamelCase : bool = False , __lowerCamelCase : bool = False ): snake_case : Union[str, Any] = evaluate.load("glue" , "mrpc" ) snake_case , snake_case : int = get_mrpc_setup(__lowerCamelCase , __lowerCamelCase ) # First do baseline snake_case , snake_case , snake_case : List[str] = setup["no"] model.to(__lowerCamelCase ) model.eval() for batch in dataloader: batch.to(__lowerCamelCase ) with torch.inference_mode(): snake_case : int = model(**__lowerCamelCase ) snake_case : Optional[int] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowerCamelCase , references=batch["labels"] ) snake_case : Tuple = metric.compute() # Then do distributed snake_case , snake_case , snake_case : Optional[int] = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): snake_case : str = model(**__lowerCamelCase ) snake_case : List[Any] = outputs.logits.argmax(dim=-1 ) snake_case : Optional[int] = batch["labels"] snake_case , snake_case : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowerCamelCase , references=__lowerCamelCase ) snake_case : Optional[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def UpperCamelCase ( ): snake_case : List[Any] = Accelerator(split_batches=__lowerCamelCase , dispatch_batches=__lowerCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(__lowerCamelCase , __lowerCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: snake_case : Optional[Any] = Accelerator(split_batches=__lowerCamelCase , dispatch_batches=__lowerCamelCase ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(__lowerCamelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) snake_case : Optional[int] = Accelerator() test_torch_metrics(__lowerCamelCase , 512 ) accelerator.state._reset_state() def UpperCamelCase ( __lowerCamelCase : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
59
from __future__ import annotations import math def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if len(a__ ) != 2 or len(a[0] ) != 2 or len(a__ ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) SCREAMING_SNAKE_CASE : Dict = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(a__ ) ) ] def UpperCAmelCase_( a__ ): """simple docstring""" if len(a__ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) SCREAMING_SNAKE_CASE : str = len(a__ ) SCREAMING_SNAKE_CASE : Any = matrix_length // 2 SCREAMING_SNAKE_CASE : Tuple = [[a[i][j] for j in range(a__ , a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : Optional[int] = [ [a[i][j] for j in range(a__ , a__ )] for i in range(a__ , a__ ) ] SCREAMING_SNAKE_CASE : Optional[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ )] SCREAMING_SNAKE_CASE : List[Any] = [[a[i][j] for j in range(a__ )] for i in range(a__ , a__ )] return top_left, top_right, bot_left, bot_right def UpperCAmelCase_( a__ ): """simple docstring""" return len(a__ ), len(matrix[0] ) def UpperCAmelCase_( a__ ): """simple docstring""" print('''\n'''.join(str(a__ ) for line in matrix ) ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ ) == (2, 2): return default_matrix_multiplication(a__ , a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(a__ ) SCREAMING_SNAKE_CASE : Dict = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = actual_strassen(matrix_addition(a__ , a__ ) , a__ ) SCREAMING_SNAKE_CASE : int = actual_strassen(a__ , matrix_subtraction(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Any = actual_strassen(matrix_addition(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : Tuple = actual_strassen(matrix_subtraction(a__ , a__ ) , matrix_addition(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = matrix_addition(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = matrix_addition(a__ , a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = matrix_subtraction(matrix_subtraction(matrix_addition(a__ , a__ ) , a__ ) , a__ ) # construct the new matrix from our 4 quadrants SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(len(a__ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(a__ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if matrix_dimensions(a__ )[1] != matrix_dimensions(a__ )[0]: SCREAMING_SNAKE_CASE : Any = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(a__ ) SCREAMING_SNAKE_CASE : str = matrix_dimensions(a__ ) SCREAMING_SNAKE_CASE : Tuple = matrix_dimensions(a__ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] SCREAMING_SNAKE_CASE : str = max(*a__ , *a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(math.pow(2 , math.ceil(math.loga(a__ ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = matrixa SCREAMING_SNAKE_CASE : Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(a__ , a__ ) # Removing the additional zeros for i in range(0 , a__ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , a__ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a__ : Dict = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a__ : Union[str, Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
313
0
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _snake_case ( _snake_case : str = "" ): lowerCAmelCase : List[Any] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' lowerCAmelCase : Any = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) lowerCAmelCase : Tuple = soup.find_all('''td''' , attrs='''titleColumn''' ) lowerCAmelCase : List[Any] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_snake_case , _snake_case ) } def _snake_case ( _snake_case : str = "IMDb_Top_250_Movies.csv" ): lowerCAmelCase : Union[str, Any] = get_imdb_top_aaa_movies() with open(_snake_case , '''w''' , newline='''''' ) as out_file: lowerCAmelCase : Union[str, Any] = csv.writer(_snake_case ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
60
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False ) ->Any: SCREAMING_SNAKE_CASE : str = scheduler SCREAMING_SNAKE_CASE : List[str] = optimizers if isinstance(_lowerCamelCase , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE : Union[str, Any] = split_batches SCREAMING_SNAKE_CASE : List[Any] = step_with_optimizer SCREAMING_SNAKE_CASE : List[str] = GradientState() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE : List[str] = AcceleratorState().num_processes for _ in range(_lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) ->List[str]: return self.scheduler.state_dict() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: self.scheduler.load_state_dict(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: return self.scheduler.get_lr() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]: return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase )
313
0