code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = {'''vocab_file''': '''spiece.model'''} _SCREAMING_SNAKE_CASE : int = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } _SCREAMING_SNAKE_CASE : Any = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = ["input_ids", "attention_mask"] a = [] def __init__( self : str , __lowerCamelCase : Any , __lowerCamelCase : Any="<unk>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Tuple="</s>" , __lowerCamelCase : List[Any]="<pad>" , __lowerCamelCase : Dict="[SEP]" , __lowerCamelCase : Union[str, Any]="[MASK]" , __lowerCamelCase : Union[str, Any]="[CLS]" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Optional[Any] , ) -> None: SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sep_token=__lowerCamelCase , mask_token=__lowerCamelCase , cls_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def lowercase_ ( self : Union[str, Any] ) -> str: return self.sp_model.get_piece_size() def lowercase_ ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self : List[Any] , __lowerCamelCase : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self : Dict , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def lowercase_ ( self : Any , __lowerCamelCase : str ) -> List[str]: return self.sp_model.piece_to_id(__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.sp_model.IdToPiece(__lowerCamelCase ) return token def lowercase_ ( self : Tuple , __lowerCamelCase : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = '''''' SCREAMING_SNAKE_CASE__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = [] else: current_sub_tokens.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def lowercase_ ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : bool = False , __lowerCamelCase : bool = None , __lowerCamelCase : bool = True , **__lowerCamelCase : Optional[Any] , ) -> str: SCREAMING_SNAKE_CASE__ = kwargs.pop('''use_source_tokenizer''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.convert_ids_to_tokens(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = [] sub_texts.append(__lowerCamelCase ) else: current_sub_text.append(__lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: SCREAMING_SNAKE_CASE__ = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(__lowerCamelCase ) ) else: SCREAMING_SNAKE_CASE__ = ''''''.join(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE__ = self.clean_up_tokenization(__lowerCamelCase ) return clean_text else: return text def lowercase_ ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def lowercase_ ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def lowercase_ ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
314
import numpy as np from PIL import Image def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image _SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
1
# Function to print upper half of diamond (pyramid) def UpperCAmelCase_ ( _A ): '''simple docstring''' for i in range(0 , _A ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def UpperCAmelCase_ ( _A ): '''simple docstring''' for i in range(_A , 0 , -1 ): for _ in range(_A , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def UpperCAmelCase_ ( _A ): '''simple docstring''' if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(_A ) # upper half reverse_floyd(_A ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') _SCREAMING_SNAKE_CASE : Tuple = 1 while K: _SCREAMING_SNAKE_CASE : List[str] = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) _SCREAMING_SNAKE_CASE : List[Any] = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
314
from __future__ import annotations def UpperCAmelCase_ ( _A , _A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = word_bank or [] # create a table SCREAMING_SNAKE_CASE__ = len(_A ) + 1 SCREAMING_SNAKE_CASE__ = [] for _ in range(_A ): table.append([] ) # seed value SCREAMING_SNAKE_CASE__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(_A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_A )] == word: SCREAMING_SNAKE_CASE__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_A )]: combination.reverse() return table[len(_A )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
314
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = RoCBertTokenizer a = None a = False a = True a = filter_non_english def lowercase_ ( self : List[Any] ) -> Any: super().setUp() SCREAMING_SNAKE_CASE__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = {} for i, value in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(__lowerCamelCase , __lowerCamelCase , ensure_ascii=__lowerCamelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(__lowerCamelCase , __lowerCamelCase , ensure_ascii=__lowerCamelCase ) def lowercase_ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(__lowerCamelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__lowerCamelCase ) , [5, 6, 2, 5, 7, 8] ) def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase_ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def lowercase_ ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase_ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase_ ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase_ ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase_ ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = RoCBertBasicTokenizer(do_lower_case=__lowerCamelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def lowercase_ ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] SCREAMING_SNAKE_CASE__ = {} for i, token in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = RoCBertWordpieceTokenizer(vocab=__lowerCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def lowercase_ ( self : List[str] ) -> int: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def lowercase_ ( self : Tuple ) -> Optional[int]: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def lowercase_ ( self : str ) -> Tuple: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def lowercase_ ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__lowerCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__lowerCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def lowercase_ ( self : Dict ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' SCREAMING_SNAKE_CASE__ = tokenizer_r.encode_plus( __lowerCamelCase , return_attention_mask=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = tokenizer_r.do_lower_case if hasattr(__lowerCamelCase , '''do_lower_case''' ) else False SCREAMING_SNAKE_CASE__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def lowercase_ ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ = ['''的''', '''人''', '''有'''] SCREAMING_SNAKE_CASE__ = ''''''.join(__lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_p.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_r.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_r.convert_ids_to_tokens(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_p.convert_ids_to_tokens(__lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_r.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_p.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_r.convert_ids_to_tokens(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer_p.convert_ids_to_tokens(__lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE__ = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(__lowerCamelCase ) ] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowercase_ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('''你好''' , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('''你是谁''' , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase_ ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE__ = '''你好,你是谁''' SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_shape_ids(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_pronunciation_ids(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.prepare_for_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
314
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( _A = "AAPL" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' SCREAMING_SNAKE_CASE__ = BeautifulSoup(requests.get(_A ).text , '''html.parser''' ) SCREAMING_SNAKE_CASE__ = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
314
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : Tuple , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Any ) -> None: warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
314
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A__ ): """simple docstring""" a = (UnCLIPScheduler,) def lowercase_ ( self : List[str] , **__lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCamelCase ) return config def lowercase_ ( self : Dict ) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase_ ( self : str ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Tuple: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase_ ( self : int ) -> str: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5 def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''learned_range''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=__lowerCamelCase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=__lowerCamelCase ) - -0.0010011 < 1e-5 def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def lowercase_ ( self : int ) -> Tuple: pass def lowercase_ ( self : Dict ) -> Union[str, Any]: pass
314
1
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCAmelCase_ ( _A ): '''simple docstring''' if isinstance(_A , collections.abc.Iterable ): return x return (x, x) @require_tf class UpperCAmelCase__ : """simple docstring""" def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int ) -> int: pass def lowercase_ ( self : List[Any] ) -> str: pass def lowercase_ ( self : Optional[int] ) -> str: pass def lowercase_ ( self : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TFVisionTextDualEncoderModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def lowercase_ ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase_ ( self : str , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = {'''vision_model''': vision_model, '''text_model''': text_model} SCREAMING_SNAKE_CASE__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TFVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = after_output[0].numpy() SCREAMING_SNAKE_CASE__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCamelCase , 1e-5 ) def lowercase_ ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model( input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = output.vision_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ = to_atuple(vision_model.config.image_size ) SCREAMING_SNAKE_CASE__ = to_atuple(vision_model.config.patch_size ) SCREAMING_SNAKE_CASE__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) SCREAMING_SNAKE_CASE__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) SCREAMING_SNAKE_CASE__ = output.text_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase_ ( self : Dict , __lowerCamelCase : np.ndarray , __lowerCamelCase : np.ndarray , __lowerCamelCase : float ) -> Dict: SCREAMING_SNAKE_CASE__ = np.abs((a - b) ).max() self.assertLessEqual(__lowerCamelCase , __lowerCamelCase , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def lowercase_ ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__lowerCamelCase ) def lowercase_ ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() self.check_save_load(**__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__lowerCamelCase ) @slow def lowercase_ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_pretrained_model_and_inputs() SCREAMING_SNAKE_CASE__ = model_a(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TFVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model_a(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = after_outputs[0].numpy() SCREAMING_SNAKE_CASE__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCamelCase , 1e-5 ) @require_tf class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' ) SCREAMING_SNAKE_CASE__ = 13 SCREAMING_SNAKE_CASE__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) SCREAMING_SNAKE_CASE__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = TFViTModel(__lowerCamelCase , name='''vision_model''' ) SCREAMING_SNAKE_CASE__ = TFBertModel(__lowerCamelCase , name='''text_model''' ) return vision_model, text_model def lowercase_ ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = TFViTModelTester(self ) SCREAMING_SNAKE_CASE__ = TFBertModelTester(self ) SCREAMING_SNAKE_CASE__ = vit_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = vision_config_and_inputs ( ( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ), ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Tuple ) -> str: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. SCREAMING_SNAKE_CASE__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' ) SCREAMING_SNAKE_CASE__ = 13 SCREAMING_SNAKE_CASE__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) SCREAMING_SNAKE_CASE__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowercase_ ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : str=None , **__lowerCamelCase : int ) -> Optional[int]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model( input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = output.vision_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) SCREAMING_SNAKE_CASE__ = to_atuple(vision_model.config.image_size ) SCREAMING_SNAKE_CASE__ = to_atuple(vision_model.config.patch_size ) SCREAMING_SNAKE_CASE__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) SCREAMING_SNAKE_CASE__ = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) SCREAMING_SNAKE_CASE__ = output.text_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TFDeiTModel(__lowerCamelCase , name='''vision_model''' ) SCREAMING_SNAKE_CASE__ = TFRobertaModel(__lowerCamelCase , name='''text_model''' ) return vision_model, text_model def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = TFDeiTModelTester(self ) SCREAMING_SNAKE_CASE__ = TFRobertaModelTester(self ) SCREAMING_SNAKE_CASE__ = vit_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = vision_config_and_inputs ( ( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ), ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' ) SCREAMING_SNAKE_CASE__ = 13 SCREAMING_SNAKE_CASE__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) SCREAMING_SNAKE_CASE__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) SCREAMING_SNAKE_CASE__ = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowercase_ ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TFCLIPVisionModel(__lowerCamelCase , name='''vision_model''' ) SCREAMING_SNAKE_CASE__ = TFBertModel(__lowerCamelCase , name='''text_model''' ) return vision_model, text_model def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TFCLIPVisionModelTester(self ) SCREAMING_SNAKE_CASE__ = TFBertModelTester(self ) SCREAMING_SNAKE_CASE__ = clip_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = vision_config_and_inputs ( ( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ), ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE__ = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__lowerCamelCase , padding=__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) SCREAMING_SNAKE_CASE__ = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __lowerCamelCase , atol=1e-3 ) )
314
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = mock_training_loop_function('''hello''' ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def lowercase_ ( self : str ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : Optional[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
314
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=32 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : List[str]=10 , __lowerCamelCase : Optional[int]=[10, 20, 30, 40] , __lowerCamelCase : List[Any]=[1, 1, 2, 1] , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : str=True , __lowerCamelCase : Tuple="relu" , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : Dict=None , ) -> List[str]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = embeddings_size SCREAMING_SNAKE_CASE__ = hidden_sizes SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = len(__lowerCamelCase ) def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values def lowercase_ ( self : List[Any] ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase_ ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = FlaxRegNetModel(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase_ ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = FlaxRegNetForImageClassification(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a = False a = False a = False def lowercase_ ( self : Dict ) -> None: SCREAMING_SNAKE_CASE__ = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : Dict ) -> Optional[Any]: return def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowercase_ ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def lowercase_ ( self : List[str] ) -> List[Any]: pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def lowercase_ ( self : Dict ) -> List[Any]: pass def lowercase_ ( self : Any ) -> Dict: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def lowercase_ ( self : List[str] ) -> Any: def check_hidden_states_output(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE__ = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Any ) -> Any: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase ) @jax.jit def model_jitted(__lowerCamelCase : List[Any] , **__lowerCamelCase : Dict ): return model(pixel_values=__lowerCamelCase , **__lowerCamelCase ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE__ = model_jitted(**__lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE__ = model_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self : List[str] ) -> str: return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def lowercase_ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE__ = (1, 1000) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
314
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[str] , **__lowerCamelCase : Dict ) -> List[str]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Any , **__lowerCamelCase : List[str] ) -> Any: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[int] , **__lowerCamelCase : int ) -> Dict: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
1
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _SCREAMING_SNAKE_CASE : Union[str, Any] = getLogger(__name__) _SCREAMING_SNAKE_CASE : str = '''cuda''' if torch.cuda.is_available() else '''cpu''' def UpperCAmelCase_ ( _A , _A , _A , _A = 8 , _A = DEFAULT_DEVICE , _A=False , _A="summarization" , _A=None , **_A , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Path(_A ).open('''w''' , encoding='''utf-8''' ) SCREAMING_SNAKE_CASE__ = str(_A ) SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained(_A ).to(_A ) if fpaa: SCREAMING_SNAKE_CASE__ = model.half() SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(_A ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. SCREAMING_SNAKE_CASE__ = time.time() # update config with task specific params use_task_specific_params(_A , _A ) if prefix is None: SCREAMING_SNAKE_CASE__ = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(_A , _A ) ) ): SCREAMING_SNAKE_CASE__ = [prefix + text for text in examples_chunk] SCREAMING_SNAKE_CASE__ = tokenizer(_A , return_tensors='''pt''' , truncation=_A , padding='''longest''' ).to(_A ) SCREAMING_SNAKE_CASE__ = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_A , ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() SCREAMING_SNAKE_CASE__ = int(time.time() - start_time ) # seconds SCREAMING_SNAKE_CASE__ = len(_A ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def UpperCAmelCase_ ( ): '''simple docstring''' return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def UpperCAmelCase_ ( _A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=_A , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=_A , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=_A , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=_A , required=_A , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=_A , required=_A , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=_A , required=_A , default=_A , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=_A , required=_A , default=_A , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=_A , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=_A , default=8 , required=_A , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=_A , default=-1 , required=_A , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=_A , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = parser.parse_known_args() SCREAMING_SNAKE_CASE__ = parse_numeric_n_bool_cl_kwargs(_A ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) SCREAMING_SNAKE_CASE__ = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: SCREAMING_SNAKE_CASE__ = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_A ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) SCREAMING_SNAKE_CASE__ = generate_summaries_or_translations( _A , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_A , ) if args.reference_path is None: return {} # Compute scores SCREAMING_SNAKE_CASE__ = calculate_bleu if '''translation''' in args.task else calculate_rouge SCREAMING_SNAKE_CASE__ = [x.rstrip() for x in open(args.save_path ).readlines()] SCREAMING_SNAKE_CASE__ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_A )] SCREAMING_SNAKE_CASE__ = score_fn(_A , _A ) scores.update(_A ) if args.dump_args: scores.update(_A ) if args.info: SCREAMING_SNAKE_CASE__ = args.info if verbose: print(_A ) if args.score_path is not None: json.dump(_A , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
314
def UpperCAmelCase_ ( _A ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
314
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : int = 32 , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073] , __lowerCamelCase : Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711] , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[int]=7 , __lowerCamelCase : Dict=30 , __lowerCamelCase : Union[str, Any]=400 , __lowerCamelCase : List[Any]=3 , ) -> str: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size if size is not None else {'''shortest_edge''': 288} SCREAMING_SNAKE_CASE__ = size_divisor SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = do_center_crop SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_pad SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution def lowercase_ ( self : str ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str]=False ) -> str: if not batched: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] SCREAMING_SNAKE_CASE__ = size / min(__lowerCamelCase , __lowerCamelCase ) if h < w: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = size, scale * w else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = scale * h, size SCREAMING_SNAKE_CASE__ = int((1333 / 800) * size ) if max(__lowerCamelCase , __lowerCamelCase ) > max_size: SCREAMING_SNAKE_CASE__ = max_size / max(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = newh * scale SCREAMING_SNAKE_CASE__ = neww * scale SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = int(newh + 0.5 ), int(neww + 0.5 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = BridgeTowerImageProcessor if is_vision_available() else None def lowercase_ ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE__ = BridgeTowerImageProcessingTester(self ) @property def lowercase_ ( self : Any ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : str ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size_divisor''' ) ) def lowercase_ ( self : Dict ) -> Union[str, Any]: pass def lowercase_ ( self : int ) -> Dict: # Initialize image processor SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[Any] ) -> List[str]: # Initialize image processor SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Tuple ) -> Any: # Initialize image processor SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
314
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _SCREAMING_SNAKE_CASE : Any = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_A )[0] @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_51: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE__ = data.reshape(_A , _A , _A , 1 ) return data @deprecated(_A , '''Please use tf.one_hot on tensors.''' ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = labels_dense.shape[0] SCREAMING_SNAKE_CASE__ = numpy.arange(_A ) * num_classes SCREAMING_SNAKE_CASE__ = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE__ = 1 return labels_one_hot @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A , _A=False , _A=10 ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_49: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(_A ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_A , _A ) return labels class UpperCAmelCase__ : """simple docstring""" @deprecated( __lowerCamelCase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=False , __lowerCamelCase : Dict=False , __lowerCamelCase : List[str]=dtypes.floataa , __lowerCamelCase : List[str]=True , __lowerCamelCase : Any=None , ) -> List[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = random_seed.get_seed(__lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE__ = dtypes.as_dtype(__lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: SCREAMING_SNAKE_CASE__ = 1_0000 SCREAMING_SNAKE_CASE__ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' SCREAMING_SNAKE_CASE__ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE__ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE__ = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE__ = numpy.multiply(__lowerCamelCase , 1.0 / 255.0 ) SCREAMING_SNAKE_CASE__ = images SCREAMING_SNAKE_CASE__ = labels SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 @property def lowercase_ ( self : Tuple ) -> List[str]: return self._images @property def lowercase_ ( self : List[Any] ) -> Tuple: return self._labels @property def lowercase_ ( self : Tuple ) -> Tuple: return self._num_examples @property def lowercase_ ( self : Optional[int] ) -> int: return self._epochs_completed def lowercase_ ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Union[str, Any]=True ) -> str: if fake_data: SCREAMING_SNAKE_CASE__ = [1] * 784 SCREAMING_SNAKE_CASE__ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowerCamelCase )], [fake_label for _ in range(__lowerCamelCase )], ) SCREAMING_SNAKE_CASE__ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perma] SCREAMING_SNAKE_CASE__ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE__ = self._num_examples - start SCREAMING_SNAKE_CASE__ = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE__ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perm] SCREAMING_SNAKE_CASE__ = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = batch_size - rest_num_examples SCREAMING_SNAKE_CASE__ = self._index_in_epoch SCREAMING_SNAKE_CASE__ = self._images[start:end] SCREAMING_SNAKE_CASE__ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE__ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_A , '''Please write your own downloading logic.''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if not gfile.Exists(_A ): gfile.MakeDirs(_A ) SCREAMING_SNAKE_CASE__ = os.path.join(_A , _A ) if not gfile.Exists(_A ): urllib.request.urlretrieve(_A , _A ) # noqa: S310 with gfile.GFile(_A ) as f: SCREAMING_SNAKE_CASE__ = f.size() print('''Successfully downloaded''' , _A , _A , '''bytes.''' ) return filepath @deprecated( _A , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def UpperCAmelCase_ ( _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=50_00 , _A=None , _A=DEFAULT_SOURCE_URL , ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_A , one_hot=_A , dtype=_A , seed=_A ) SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() return _Datasets(train=_A , validation=_A , test=_A ) if not source_url: # empty string check SCREAMING_SNAKE_CASE__ = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE__ = '''train-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''train-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) if not 0 <= validation_size <= len(_A ): SCREAMING_SNAKE_CASE__ = ( '''Validation size should be between 0 and ''' F'''{len(_A )}. Received: {validation_size}.''' ) raise ValueError(_A ) SCREAMING_SNAKE_CASE__ = train_images[:validation_size] SCREAMING_SNAKE_CASE__ = train_labels[:validation_size] SCREAMING_SNAKE_CASE__ = train_images[validation_size:] SCREAMING_SNAKE_CASE__ = train_labels[validation_size:] SCREAMING_SNAKE_CASE__ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) return _Datasets(train=_A , validation=_A , test=_A )
314
1
import copy import re class UpperCAmelCase__ : """simple docstring""" a = "hp" a = {} a = None @classmethod def lowercase_ ( cls : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = prefix SCREAMING_SNAKE_CASE__ = defaults cls.build_naming_info() @staticmethod def lowercase_ ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ) -> List[str]: if len(__lowerCamelCase ) == 0: return "" SCREAMING_SNAKE_CASE__ = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__lowerCamelCase ) + 1 ): SCREAMING_SNAKE_CASE__ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: SCREAMING_SNAKE_CASE__ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE__ = '''''' while integer != 0: SCREAMING_SNAKE_CASE__ = chr(ord('''A''' ) + integer % 10 ) + s integer //= 10 return s SCREAMING_SNAKE_CASE__ = 0 while True: SCREAMING_SNAKE_CASE__ = word + '''#''' + int_to_alphabetic(__lowerCamelCase ) if sword in info["reverse_short_word"]: continue else: SCREAMING_SNAKE_CASE__ = sword break SCREAMING_SNAKE_CASE__ = short_word SCREAMING_SNAKE_CASE__ = word return short_word @staticmethod def lowercase_ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = param_name.split('''_''' ) SCREAMING_SNAKE_CASE__ = [TrialShortNamer.shortname_for_word(__lowerCamelCase , __lowerCamelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name SCREAMING_SNAKE_CASE__ = ['''''', '''_'''] for separator in separators: SCREAMING_SNAKE_CASE__ = separator.join(__lowerCamelCase ) if shortname not in info["reverse_short_param"]: SCREAMING_SNAKE_CASE__ = shortname SCREAMING_SNAKE_CASE__ = param_name return shortname return param_name @staticmethod def lowercase_ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = TrialShortNamer.shortname_for_key(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = short_name SCREAMING_SNAKE_CASE__ = param_name @classmethod def lowercase_ ( cls : Tuple ) -> Tuple: if cls.NAMING_INFO is not None: return SCREAMING_SNAKE_CASE__ = { '''short_word''': {}, '''reverse_short_word''': {}, '''short_param''': {}, '''reverse_short_param''': {}, } SCREAMING_SNAKE_CASE__ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = info @classmethod def lowercase_ ( cls : Union[str, Any] , __lowerCamelCase : Union[str, Any] ) -> str: cls.build_naming_info() assert cls.PREFIX is not None SCREAMING_SNAKE_CASE__ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue SCREAMING_SNAKE_CASE__ = cls.NAMING_INFO['''short_param'''][k] if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = 1 if v else 0 SCREAMING_SNAKE_CASE__ = '''''' if isinstance(__lowerCamelCase , (int, float) ) else '''-''' SCREAMING_SNAKE_CASE__ = f'''{key}{sep}{v}''' name.append(__lowerCamelCase ) return "_".join(__lowerCamelCase ) @classmethod def lowercase_ ( cls : Optional[int] , __lowerCamelCase : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = repr[len(cls.PREFIX ) + 1 :] if repr == "": SCREAMING_SNAKE_CASE__ = [] else: SCREAMING_SNAKE_CASE__ = repr.split('''_''' ) SCREAMING_SNAKE_CASE__ = {} for value in values: if "-" in value: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = value.split('''-''' ) else: SCREAMING_SNAKE_CASE__ = re.sub('''[0-9.]''' , '''''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = float(re.sub('''[^0-9.]''' , '''''' , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = cls.NAMING_INFO['''reverse_short_param'''][p_k] SCREAMING_SNAKE_CASE__ = p_v for k in cls.DEFAULTS: if k not in parameters: SCREAMING_SNAKE_CASE__ = cls.DEFAULTS[k] return parameters
314
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase_ ( _A ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' return max(metric_fn(_A , _A ) for gt in ground_truths ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE__ = pd.read_csv(_A , sep='''\t''' , header=_A ) for answer_list in data[1]: SCREAMING_SNAKE_CASE__ = ast.literal_eval(_A ) answers.append(_A ) else: SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [[reference] for reference in references] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for prediction, ground_truths in zip(_A , _A ): total += 1 em += metric_max_over_ground_truths(_A , _A , _A ) fa += metric_max_over_ground_truths(_A , _A , _A ) SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total SCREAMING_SNAKE_CASE__ = 1_0_0.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = args.k SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for hypo, reference in zip(_A , _A ): SCREAMING_SNAKE_CASE__ = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE__ = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' def strip_title(_A ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[:-1] return title SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.rag.question_encoder(_A ) SCREAMING_SNAKE_CASE__ = question_enc_outputs[0] SCREAMING_SNAKE_CASE__ = rag_model.retriever( _A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE__ = [] for docs in all_docs: SCREAMING_SNAKE_CASE__ = [strip_title(_A ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_A ) ) return provenance_strings def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A ) SCREAMING_SNAKE_CASE__ = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE__ = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.generate( # rag_model overwrites generate _A , attention_mask=_A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.generator_tokenizer.batch_decode(_A , skip_special_tokens=_A ) if args.print_predictions: for q, a in zip(_A , _A ): logger.info('''Q: {} - A: {}'''.format(_A , _A ) ) return answers def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_A , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_A , choices=['''exact''', '''compressed''', '''legacy'''] , type=_A , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_A , type=_A , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_A , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_A , type=_A , required=_A , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_A , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_A , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_A , type=_A , required=_A , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_A , type=_A , required=_A , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_A , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_A , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_A , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_A , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_A , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=_A , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} if args.model_type is None: SCREAMING_SNAKE_CASE__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE__ = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE__ = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE__ = args.index_path else: SCREAMING_SNAKE_CASE__ = BartForConditionalGeneration SCREAMING_SNAKE_CASE__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _A ) SCREAMING_SNAKE_CASE__ = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE__ = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_A , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_A ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagRetriever.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , retriever=_A , **_A ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , **_A ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE__ = [] for line in tqdm(_A ): questions.append(line.strip() ) if len(_A ) == args.eval_batch_size: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE__ = [] if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) ) preds_file.flush() score_fn(_A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = get_args() main(args)
314
1
from ...configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE : Optional[Any] = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "tapas" def __init__( self : int , __lowerCamelCase : Optional[Any]=3_0522 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Union[str, Any]=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=1024 , __lowerCamelCase : Union[str, Any]=[3, 256, 256, 2, 256, 256, 10] , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[str]=1e-12 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[Any]=10.0 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=1.0 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=1.0 , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : List[str]="ratio" , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[Any]=64 , __lowerCamelCase : Any=32 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : str , ) -> str: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_sizes SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE__ = positive_label_weight SCREAMING_SNAKE_CASE__ = num_aggregation_labels SCREAMING_SNAKE_CASE__ = aggregation_loss_weight SCREAMING_SNAKE_CASE__ = use_answer_as_supervision SCREAMING_SNAKE_CASE__ = answer_loss_importance SCREAMING_SNAKE_CASE__ = use_normalized_answer_loss SCREAMING_SNAKE_CASE__ = huber_loss_delta SCREAMING_SNAKE_CASE__ = temperature SCREAMING_SNAKE_CASE__ = aggregation_temperature SCREAMING_SNAKE_CASE__ = use_gumbel_for_cells SCREAMING_SNAKE_CASE__ = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE__ = average_approximation_function SCREAMING_SNAKE_CASE__ = cell_selection_preference SCREAMING_SNAKE_CASE__ = answer_loss_cutoff SCREAMING_SNAKE_CASE__ = max_num_rows SCREAMING_SNAKE_CASE__ = max_num_columns SCREAMING_SNAKE_CASE__ = average_logits_per_cell SCREAMING_SNAKE_CASE__ = select_one_column SCREAMING_SNAKE_CASE__ = allow_empty_column_selection SCREAMING_SNAKE_CASE__ = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE__ = reset_position_index_per_cell SCREAMING_SNAKE_CASE__ = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE__ = aggregation_labels SCREAMING_SNAKE_CASE__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = {int(__lowerCamelCase ): v for k, v in aggregation_labels.items()}
314
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , __lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=1 / 255 , __lowerCamelCase : Dict=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad def lowercase_ ( self : Tuple ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=False ) -> Optional[int]: if not batched: SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = YolosImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = YolosImageProcessingTester(self ) @property def lowercase_ ( self : Tuple ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) def lowercase_ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Optional[int]: pass def lowercase_ ( self : int ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Tuple ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[str] ) -> Optional[Any]: # Initialize image_processings SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE__ = self.image_processing_class(do_resize=__lowerCamelCase , do_normalize=__lowerCamelCase , do_rescale=__lowerCamelCase ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE__ = image_processing_a.pad(__lowerCamelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = image_processing_a(__lowerCamelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: # prepare image and target SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''image_id''': 3_9769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) ) @slow def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: # prepare image, target and masks_path SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} SCREAMING_SNAKE_CASE__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE__ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) )
314
1
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase__ ( A__ ): """simple docstring""" @require_torch def lowercase_ ( self : Optional[Any] ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE__ = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' SCREAMING_SNAKE_CASE__ = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' SCREAMING_SNAKE_CASE__ = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE__ = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__lowerCamelCase ) BertModel.from_pretrained(__lowerCamelCase ) BertTokenizer.from_pretrained(__lowerCamelCase ) pipeline(task='''fill-mask''' , model=__lowerCamelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE__ = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE__ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE__ = '''1''' SCREAMING_SNAKE_CASE__ = subprocess.run(__lowerCamelCase , env=__lowerCamelCase , check=__lowerCamelCase , capture_output=__lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def lowercase_ ( self : Tuple ) -> int: # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE__ = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' SCREAMING_SNAKE_CASE__ = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' SCREAMING_SNAKE_CASE__ = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE__ = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__lowerCamelCase ) BertModel.from_pretrained(__lowerCamelCase ) BertTokenizer.from_pretrained(__lowerCamelCase ) pipeline(task='''fill-mask''' , model=__lowerCamelCase ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE__ = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE__ = self.get_env() SCREAMING_SNAKE_CASE__ = subprocess.run(__lowerCamelCase , env=__lowerCamelCase , check=__lowerCamelCase , capture_output=__lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def lowercase_ ( self : int ) -> List[str]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched SCREAMING_SNAKE_CASE__ = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' SCREAMING_SNAKE_CASE__ = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' SCREAMING_SNAKE_CASE__ = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE__ = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE__ = self.get_env() SCREAMING_SNAKE_CASE__ = subprocess.run(__lowerCamelCase , env=__lowerCamelCase , check=__lowerCamelCase , capture_output=__lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE__ = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE__ = '''1''' SCREAMING_SNAKE_CASE__ = subprocess.run(__lowerCamelCase , env=__lowerCamelCase , check=__lowerCamelCase , capture_output=__lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = ''' from transformers import pipeline ''' SCREAMING_SNAKE_CASE__ = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' SCREAMING_SNAKE_CASE__ = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' SCREAMING_SNAKE_CASE__ = self.get_env() SCREAMING_SNAKE_CASE__ = '''1''' SCREAMING_SNAKE_CASE__ = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] SCREAMING_SNAKE_CASE__ = subprocess.run(__lowerCamelCase , env=__lowerCamelCase , check=__lowerCamelCase , capture_output=__lowerCamelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def lowercase_ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = ''' from transformers import AutoModel ''' SCREAMING_SNAKE_CASE__ = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE__ = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed SCREAMING_SNAKE_CASE__ = self.get_env() SCREAMING_SNAKE_CASE__ = subprocess.run(__lowerCamelCase , env=__lowerCamelCase , check=__lowerCamelCase , capture_output=__lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE__ = '''1''' SCREAMING_SNAKE_CASE__ = subprocess.run(__lowerCamelCase , env=__lowerCamelCase , check=__lowerCamelCase , capture_output=__lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
314
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "roberta-prelayernorm" def __init__( self : Optional[Any] , __lowerCamelCase : List[Any]=5_0265 , __lowerCamelCase : str=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : List[Any]=1e-12 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]="absolute" , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=None , **__lowerCamelCase : Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = classifier_dropout class UpperCAmelCase__ ( A__ ): """simple docstring""" @property def lowercase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
314
1
def UpperCAmelCase_ ( _A = 1_00_00_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _A ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
314
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "lxmert" a = {} def __init__( self : Union[str, Any] , __lowerCamelCase : List[str]=3_0522 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Union[str, Any]=9500 , __lowerCamelCase : Union[str, Any]=1600 , __lowerCamelCase : Any=400 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=512 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Any=1e-12 , __lowerCamelCase : List[Any]=9 , __lowerCamelCase : Any=5 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : List[str]=6.67 , __lowerCamelCase : Dict=True , __lowerCamelCase : Any=True , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Any=True , **__lowerCamelCase : Optional[Any] , ) -> Any: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = num_qa_labels SCREAMING_SNAKE_CASE__ = num_object_labels SCREAMING_SNAKE_CASE__ = num_attr_labels SCREAMING_SNAKE_CASE__ = l_layers SCREAMING_SNAKE_CASE__ = x_layers SCREAMING_SNAKE_CASE__ = r_layers SCREAMING_SNAKE_CASE__ = visual_feat_dim SCREAMING_SNAKE_CASE__ = visual_pos_dim SCREAMING_SNAKE_CASE__ = visual_loss_normalizer SCREAMING_SNAKE_CASE__ = task_matched SCREAMING_SNAKE_CASE__ = task_mask_lm SCREAMING_SNAKE_CASE__ = task_obj_predict SCREAMING_SNAKE_CASE__ = task_qa SCREAMING_SNAKE_CASE__ = visual_obj_loss SCREAMING_SNAKE_CASE__ = visual_attr_loss SCREAMING_SNAKE_CASE__ = visual_feat_loss SCREAMING_SNAKE_CASE__ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__lowerCamelCase )
314
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A__ ): """simple docstring""" a = ["keras_nlp"] def __init__( self : str , *__lowerCamelCase : List[str] , **__lowerCamelCase : Optional[int] ) -> int: requires_backends(self , ['''keras_nlp'''] )
314
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } _SCREAMING_SNAKE_CASE : Optional[int] = { '''vinai/phobert-base''': 256, '''vinai/phobert-large''': 256, } def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set() SCREAMING_SNAKE_CASE__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ = char SCREAMING_SNAKE_CASE__ = set(_A ) return pairs class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , **__lowerCamelCase : Optional[int] , ) -> Union[str, Any]: super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = merges_file SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 3 self.add_from_file(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE__ = merges_handle.read().split('''\n''' )[:-1] SCREAMING_SNAKE_CASE__ = [tuple(merge.split()[:-1] ) for merge in merges] SCREAMING_SNAKE_CASE__ = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE__ = {} def lowercase_ ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowercase_ ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase_ ( self : Dict ) -> str: return len(self.encoder ) def lowercase_ ( self : List[Any] ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self : Any , __lowerCamelCase : Any ) -> Any: if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) SCREAMING_SNAKE_CASE__ = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE__ = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = bigram SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE__ = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE__ = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''@@ '''.join(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = word[:-4] SCREAMING_SNAKE_CASE__ = word return word def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = re.findall(r'''\S+\n?''' , __lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def lowercase_ ( self : str , __lowerCamelCase : Optional[int] ) -> Optional[int]: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowercase_ ( self : List[Any] , __lowerCamelCase : List[str] ) -> Dict: return self.decoder.get(__lowerCamelCase , self.unk_token ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = ''' '''.join(__lowerCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def lowercase_ ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.merges_file , __lowerCamelCase ) return out_vocab_file, out_merge_file def lowercase_ ( self : int , __lowerCamelCase : Tuple ) -> Optional[Any]: if isinstance(__lowerCamelCase , __lowerCamelCase ): try: with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return SCREAMING_SNAKE_CASE__ = f.readlines() for lineTmp in lines: SCREAMING_SNAKE_CASE__ = lineTmp.strip() SCREAMING_SNAKE_CASE__ = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) SCREAMING_SNAKE_CASE__ = line[:idx] SCREAMING_SNAKE_CASE__ = len(self.encoder )
314
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A__ ): """simple docstring""" a = (DDPMScheduler,) def lowercase_ ( self : Union[str, Any] , **__lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__lowerCamelCase ) return config def lowercase_ ( self : Any ) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase_ ( self : Any ) -> Tuple: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> int: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def lowercase_ ( self : int ) -> Union[str, Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowercase_ ( self : Dict ) -> List[str]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Dict: self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , ) def lowercase_ ( self : Any ) -> Optional[int]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> List[str]: for t in [0, 500, 999]: self.check_over_forward(time_step=__lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def lowercase_ ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for t in reversed(range(__lowerCamelCase ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def lowercase_ ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for t in reversed(range(__lowerCamelCase ) ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps for i, timestep in enumerate(__lowerCamelCase ): if i == len(__lowerCamelCase ) - 1: SCREAMING_SNAKE_CASE__ = -1 else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] SCREAMING_SNAKE_CASE__ = scheduler.previous_timestep(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = prev_t.item() self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [100, 87, 50, 51, 0] with self.assertRaises(__lowerCamelCase , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=__lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [100, 87, 50, 1, 0] SCREAMING_SNAKE_CASE__ = len(__lowerCamelCase ) with self.assertRaises(__lowerCamelCase , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=__lowerCamelCase , timesteps=__lowerCamelCase ) def lowercase_ ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [scheduler.config.num_train_timesteps] with self.assertRaises( __lowerCamelCase , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__lowerCamelCase )
314
from functools import reduce _SCREAMING_SNAKE_CASE : Any = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_ ( _A = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _A , _A : str(int(_A ) * int(_A ) ) , n[i : i + 13] ) ) for i in range(len(_A ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
314
1
class UpperCAmelCase__ ( A__ ): """simple docstring""" pass class UpperCAmelCase__ ( A__ ): """simple docstring""" pass class UpperCAmelCase__ : """simple docstring""" def __init__( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = [ [], [], [], ] def lowercase_ ( self : Any , __lowerCamelCase : int , __lowerCamelCase : int ) -> None: try: if len(self.queues[priority] ) >= 100: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(__lowerCamelCase ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def lowercase_ ( self : Dict ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__( self : Optional[int] ) -> str: return "\n".join(f'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = [] def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : int ) -> None: if len(self.queue ) == 100: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(__lowerCamelCase ) def lowercase_ ( self : Dict ) -> int: if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: SCREAMING_SNAKE_CASE__ = min(self.queue ) self.queue.remove(__lowerCamelCase ) return data def __str__( self : str ) -> str: return str(self.queue ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
314
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ) -> str: super().__init__() # make sure scheduler can always be converted to DDIM SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self : List[Any] , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: SCREAMING_SNAKE_CASE__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) SCREAMING_SNAKE_CASE__ = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE__ = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , eta=__lowerCamelCase , use_clipped_model_output=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
314
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "levit" def __init__( self : Optional[int] , __lowerCamelCase : int=224 , __lowerCamelCase : int=3 , __lowerCamelCase : str=3 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Any=1 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Dict=[128, 256, 384] , __lowerCamelCase : str=[4, 8, 12] , __lowerCamelCase : List[str]=[4, 4, 4] , __lowerCamelCase : str=[16, 16, 16] , __lowerCamelCase : Dict=0 , __lowerCamelCase : Dict=[2, 2, 2] , __lowerCamelCase : Optional[Any]=[2, 2, 2] , __lowerCamelCase : Any=0.02 , **__lowerCamelCase : Union[str, Any] , ) -> Optional[Any]: super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = kernel_size SCREAMING_SNAKE_CASE__ = stride SCREAMING_SNAKE_CASE__ = padding SCREAMING_SNAKE_CASE__ = hidden_sizes SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = key_dim SCREAMING_SNAKE_CASE__ = drop_path_rate SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = attention_ratio SCREAMING_SNAKE_CASE__ = mlp_ratio SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCAmelCase__ ( A__ ): """simple docstring""" a = version.parse("1.11" ) @property def lowercase_ ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase_ ( self : Optional[int] ) -> float: return 1e-4
314
from ...configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE : Optional[Any] = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "tapas" def __init__( self : int , __lowerCamelCase : Optional[Any]=3_0522 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Union[str, Any]=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=1024 , __lowerCamelCase : Union[str, Any]=[3, 256, 256, 2, 256, 256, 10] , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[str]=1e-12 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[Any]=10.0 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=1.0 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=1.0 , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : List[str]="ratio" , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[Any]=64 , __lowerCamelCase : Any=32 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : str , ) -> str: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_sizes SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE__ = positive_label_weight SCREAMING_SNAKE_CASE__ = num_aggregation_labels SCREAMING_SNAKE_CASE__ = aggregation_loss_weight SCREAMING_SNAKE_CASE__ = use_answer_as_supervision SCREAMING_SNAKE_CASE__ = answer_loss_importance SCREAMING_SNAKE_CASE__ = use_normalized_answer_loss SCREAMING_SNAKE_CASE__ = huber_loss_delta SCREAMING_SNAKE_CASE__ = temperature SCREAMING_SNAKE_CASE__ = aggregation_temperature SCREAMING_SNAKE_CASE__ = use_gumbel_for_cells SCREAMING_SNAKE_CASE__ = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE__ = average_approximation_function SCREAMING_SNAKE_CASE__ = cell_selection_preference SCREAMING_SNAKE_CASE__ = answer_loss_cutoff SCREAMING_SNAKE_CASE__ = max_num_rows SCREAMING_SNAKE_CASE__ = max_num_columns SCREAMING_SNAKE_CASE__ = average_logits_per_cell SCREAMING_SNAKE_CASE__ = select_one_column SCREAMING_SNAKE_CASE__ = allow_empty_column_selection SCREAMING_SNAKE_CASE__ = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE__ = reset_position_index_per_cell SCREAMING_SNAKE_CASE__ = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE__ = aggregation_labels SCREAMING_SNAKE_CASE__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = {int(__lowerCamelCase ): v for k, v in aggregation_labels.items()}
314
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = git.Repo(search_parent_directories=_A ) SCREAMING_SNAKE_CASE__ = { '''repo_id''': str(_A ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_A , '''git_log.json''' ) , '''w''' ) as f: json.dump(_A , _A , indent=4 ) def UpperCAmelCase_ ( _A ): '''simple docstring''' if params.n_gpu <= 0: SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = -1 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 SCREAMING_SNAKE_CASE__ = int(os.environ['''WORLD_SIZE'''] ) SCREAMING_SNAKE_CASE__ = int(os.environ['''N_GPU_NODE'''] ) SCREAMING_SNAKE_CASE__ = int(os.environ['''RANK'''] ) # number of nodes / node ID SCREAMING_SNAKE_CASE__ = params.world_size // params.n_gpu_per_node SCREAMING_SNAKE_CASE__ = params.global_rank // params.n_gpu_per_node SCREAMING_SNAKE_CASE__ = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode SCREAMING_SNAKE_CASE__ = params.node_id == 0 and params.local_rank == 0 SCREAMING_SNAKE_CASE__ = params.n_nodes > 1 # summary SCREAMING_SNAKE_CASE__ = F'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def UpperCAmelCase_ ( _A ): '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
314
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = 0 @slow def lowercase_ ( self : List[str] ) -> Any: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) def lowercase_ ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) # Check that tokenizer_type ≠ model_type SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Tuple ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> int: with pytest.raises(__lowerCamelCase ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Tuple: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowerCamelCase ) else: self.assertEqual(tokenizer.do_lower_case , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : Any ) -> str: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowerCamelCase , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : List[str] ) -> Tuple: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai SCREAMING_SNAKE_CASE__ = TOKENIZER_MAPPING.values() SCREAMING_SNAKE_CASE__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Any: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__lowerCamelCase ) , __lowerCamelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''Hello, world. How are you?''' SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Optional[int]: # Check we can load the tokenizer config of an online model. SCREAMING_SNAKE_CASE__ = get_tokenizer_config('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ = config.pop('''_commit_hash''' , __lowerCamelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowerCamelCase , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) self.assertDictEqual(__lowerCamelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : int ) -> str: try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : List[Any] ) -> List[Any]: try: AutoConfig.register('''custom''' , __lowerCamelCase ) # Can register in two steps AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowerCamelCase , slow_tokenizer_class=__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = BertTokenizerFast.from_pretrained(__lowerCamelCase ) bert_tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizerFast.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : List[str] ) -> str: class UpperCAmelCase__ ( A__ ): """simple docstring""" a = False class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NewTokenizer a = False try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Union[str, Any] ) -> Dict: with self.assertRaisesRegex( __lowerCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ) -> Optional[int]: with self.assertRaisesRegex( __lowerCamelCase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , revision='''aaaaaa''' ) def lowercase_ ( self : Any ) -> Optional[Any]: # Make sure we have cached the tokenizer. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
314
1
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def UpperCAmelCase_ ( _A ): '''simple docstring''' random.seed(_A ) np.random.seed(_A ) torch.manual_seed(_A ) torch.cuda.manual_seed_all(_A ) # ^^ safe to call this function even if cuda is not available class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : Iterable[torch.nn.Parameter] , __lowerCamelCase : float = 0.9999 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 0 , __lowerCamelCase : bool = False , __lowerCamelCase : Union[float, int] = 1.0 , __lowerCamelCase : Union[float, int] = 2 / 3 , __lowerCamelCase : Optional[Any] = None , __lowerCamelCase : Dict[str, Any] = None , **__lowerCamelCase : Dict , ) -> Tuple: if isinstance(__lowerCamelCase , torch.nn.Module ): SCREAMING_SNAKE_CASE__ = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , __lowerCamelCase , standard_warn=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility SCREAMING_SNAKE_CASE__ = True if kwargs.get('''max_value''' , __lowerCamelCase ) is not None: SCREAMING_SNAKE_CASE__ = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , __lowerCamelCase , standard_warn=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs['''max_value'''] if kwargs.get('''min_value''' , __lowerCamelCase ) is not None: SCREAMING_SNAKE_CASE__ = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , __lowerCamelCase , standard_warn=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs['''min_value'''] SCREAMING_SNAKE_CASE__ = list(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , __lowerCamelCase ) is not None: SCREAMING_SNAKE_CASE__ = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , __lowerCamelCase , standard_warn=__lowerCamelCase ) self.to(device=kwargs['''device'''] ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = decay SCREAMING_SNAKE_CASE__ = min_decay SCREAMING_SNAKE_CASE__ = update_after_step SCREAMING_SNAKE_CASE__ = use_ema_warmup SCREAMING_SNAKE_CASE__ = inv_gamma SCREAMING_SNAKE_CASE__ = power SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = None # set in `step()` SCREAMING_SNAKE_CASE__ = model_cls SCREAMING_SNAKE_CASE__ = model_config @classmethod def lowercase_ ( cls : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] ) -> "EMAModel": SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = model_cls.load_config(__lowerCamelCase , return_unused_kwargs=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model_cls.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = cls(model.parameters() , model_cls=__lowerCamelCase , model_config=model.config ) ema_model.load_state_dict(__lowerCamelCase ) return ema_model def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[str] ) -> Any: if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) SCREAMING_SNAKE_CASE__ = self.model_cls.from_config(self.model_config ) SCREAMING_SNAKE_CASE__ = self.state_dict() state_dict.pop('''shadow_params''' , __lowerCamelCase ) model.register_to_config(**__lowerCamelCase ) self.copy_to(model.parameters() ) model.save_pretrained(__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : int ) -> float: SCREAMING_SNAKE_CASE__ = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: SCREAMING_SNAKE_CASE__ = 1 - (1 + step / self.inv_gamma) ** -self.power else: SCREAMING_SNAKE_CASE__ = (1 + step) / (10 + step) SCREAMING_SNAKE_CASE__ = min(__lowerCamelCase , self.decay ) # make sure decay is not smaller than min_decay SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase_ ( self : str , __lowerCamelCase : Iterable[torch.nn.Parameter] ) -> Optional[int]: if isinstance(__lowerCamelCase , torch.nn.Module ): SCREAMING_SNAKE_CASE__ = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , __lowerCamelCase , standard_warn=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = parameters.parameters() SCREAMING_SNAKE_CASE__ = list(__lowerCamelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. SCREAMING_SNAKE_CASE__ = self.get_decay(self.optimization_step ) SCREAMING_SNAKE_CASE__ = decay SCREAMING_SNAKE_CASE__ = 1 - decay SCREAMING_SNAKE_CASE__ = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __lowerCamelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): SCREAMING_SNAKE_CASE__ = deepspeed.zero.GatheredParameters(__lowerCamelCase , modifier_rank=__lowerCamelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__lowerCamelCase ) def lowercase_ ( self : Any , __lowerCamelCase : Iterable[torch.nn.Parameter] ) -> None: SCREAMING_SNAKE_CASE__ = list(__lowerCamelCase ) for s_param, param in zip(self.shadow_params , __lowerCamelCase ): param.data.copy_(s_param.to(param.device ).data ) def lowercase_ ( self : Any , __lowerCamelCase : str=None , __lowerCamelCase : Tuple=None ) -> None: SCREAMING_SNAKE_CASE__ = [ p.to(device=__lowerCamelCase , dtype=__lowerCamelCase ) if p.is_floating_point() else p.to(device=__lowerCamelCase ) for p in self.shadow_params ] def lowercase_ ( self : Dict ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase_ ( self : int , __lowerCamelCase : Iterable[torch.nn.Parameter] ) -> None: SCREAMING_SNAKE_CASE__ = [param.detach().cpu().clone() for param in parameters] def lowercase_ ( self : str , __lowerCamelCase : Iterable[torch.nn.Parameter] ) -> None: if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , __lowerCamelCase ): param.data.copy_(c_param.data ) # Better memory-wise. SCREAMING_SNAKE_CASE__ = None def lowercase_ ( self : Optional[int] , __lowerCamelCase : dict ) -> None: SCREAMING_SNAKE_CASE__ = copy.deepcopy(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) SCREAMING_SNAKE_CASE__ = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , __lowerCamelCase ): raise ValueError('''Invalid min_decay''' ) SCREAMING_SNAKE_CASE__ = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , __lowerCamelCase ): raise ValueError('''Invalid optimization_step''' ) SCREAMING_SNAKE_CASE__ = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , __lowerCamelCase ): raise ValueError('''Invalid update_after_step''' ) SCREAMING_SNAKE_CASE__ = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , __lowerCamelCase ): raise ValueError('''Invalid use_ema_warmup''' ) SCREAMING_SNAKE_CASE__ = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) SCREAMING_SNAKE_CASE__ = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) SCREAMING_SNAKE_CASE__ = state_dict.get('''shadow_params''' , __lowerCamelCase ) if shadow_params is not None: SCREAMING_SNAKE_CASE__ = shadow_params if not isinstance(self.shadow_params , __lowerCamelCase ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(__lowerCamelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
314
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Dict , **__lowerCamelCase : Dict ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[Any] , **__lowerCamelCase : Dict ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : str ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = KandinskyVaaControlnetPipeline a = ["image_embeds", "negative_image_embeds", "hint"] a = ["image_embeds", "negative_image_embeds", "hint"] a = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a = False @property def lowercase_ ( self : Optional[Any] ) -> str: return 32 @property def lowercase_ ( self : Optional[Any] ) -> List[str]: return 32 @property def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: return self.time_input_dim @property def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: return self.time_input_dim * 4 @property def lowercase_ ( self : Optional[int] ) -> int: return 100 @property def lowercase_ ( self : List[str] ) -> Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE__ = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowercase_ ( self : Optional[int] ) -> int: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase_ ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = self.dummy_unet SCREAMING_SNAKE_CASE__ = self.dummy_movq SCREAMING_SNAKE_CASE__ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowercase_ ( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int]=0 ) -> Tuple: SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCamelCase ) # create hint SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) if str(__lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def lowercase_ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = '''cpu''' SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : str ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : str ) -> int: SCREAMING_SNAKE_CASE__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) SCREAMING_SNAKE_CASE__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) SCREAMING_SNAKE_CASE__ = torch.from_numpy(np.array(__lowerCamelCase ) ).float() / 255.0 SCREAMING_SNAKE_CASE__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''A robot, 4k photo''' SCREAMING_SNAKE_CASE__ = torch.Generator(device='''cuda''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE__ = torch.Generator(device='''cuda''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipeline( image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , hint=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
314
from ... import PretrainedConfig _SCREAMING_SNAKE_CASE : Dict = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP a = "nezha" def __init__( self : Optional[Any] , __lowerCamelCase : str=2_1128 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Tuple=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : int=1e-12 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : Any , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = max_relative_position SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = classifier_dropout SCREAMING_SNAKE_CASE__ = use_cache
314
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger('''transformers.models.encodec''') _SCREAMING_SNAKE_CASE : List[str] = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } _SCREAMING_SNAKE_CASE : Optional[Any] = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } _SCREAMING_SNAKE_CASE : Dict = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } _SCREAMING_SNAKE_CASE : int = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } _SCREAMING_SNAKE_CASE : int = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } _SCREAMING_SNAKE_CASE : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _SCREAMING_SNAKE_CASE : Tuple = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _SCREAMING_SNAKE_CASE : List[str] = [] _SCREAMING_SNAKE_CASE : Dict = [] def UpperCAmelCase_ ( _A , _A , _A , _A , _A ): '''simple docstring''' for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE__ = getattr(_A , _A ) if weight_type is not None: SCREAMING_SNAKE_CASE__ = getattr(_A , _A ).shape else: SCREAMING_SNAKE_CASE__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ = value elif weight_type == "running_mean": SCREAMING_SNAKE_CASE__ = value elif weight_type == "running_var": SCREAMING_SNAKE_CASE__ = value elif weight_type == "num_batches_tracked": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_ih_l0": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_hh_l0": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias_ih_l0": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias_hh_l0": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_ih_l1": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_hh_l1": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias_ih_l1": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias_hh_l1": SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] if model_name == "encodec_24khz" or "encodec_32khz": SCREAMING_SNAKE_CASE__ = MAPPING_24K elif model_name == "encodec_48khz": SCREAMING_SNAKE_CASE__ = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(_A , _A ): logger.info(F'''{name} was ignored''' ) continue SCREAMING_SNAKE_CASE__ = False for key, mapped_key in MAPPING.items(): if "*" in key: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = key.split('''.*.''' ) if prefix in name and suffix in name: SCREAMING_SNAKE_CASE__ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue SCREAMING_SNAKE_CASE__ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ = name.split(_A )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE__ = mapped_key.replace('''*''' , _A ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE__ = '''weight_v''' elif "weight_ih_l0" in name: SCREAMING_SNAKE_CASE__ = '''weight_ih_l0''' elif "weight_hh_l0" in name: SCREAMING_SNAKE_CASE__ = '''weight_hh_l0''' elif "bias_ih_l0" in name: SCREAMING_SNAKE_CASE__ = '''bias_ih_l0''' elif "bias_hh_l0" in name: SCREAMING_SNAKE_CASE__ = '''bias_hh_l0''' elif "weight_ih_l1" in name: SCREAMING_SNAKE_CASE__ = '''weight_ih_l1''' elif "weight_hh_l1" in name: SCREAMING_SNAKE_CASE__ = '''weight_hh_l1''' elif "bias_ih_l1" in name: SCREAMING_SNAKE_CASE__ = '''bias_ih_l1''' elif "bias_hh_l1" in name: SCREAMING_SNAKE_CASE__ = '''bias_hh_l1''' elif "bias" in name: SCREAMING_SNAKE_CASE__ = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE__ = '''weight''' elif "running_mean" in name: SCREAMING_SNAKE_CASE__ = '''running_mean''' elif "running_var" in name: SCREAMING_SNAKE_CASE__ = '''running_var''' elif "num_batches_tracked" in name: SCREAMING_SNAKE_CASE__ = '''num_batches_tracked''' else: SCREAMING_SNAKE_CASE__ = None set_recursively(_A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def UpperCAmelCase_ ( _A , _A , _A , _A=None , _A=None , ): '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE__ = EncodecConfig.from_pretrained(_A ) else: SCREAMING_SNAKE_CASE__ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": SCREAMING_SNAKE_CASE__ = [8, 5, 4, 4] SCREAMING_SNAKE_CASE__ = [2.2] SCREAMING_SNAKE_CASE__ = 64 SCREAMING_SNAKE_CASE__ = 3_20_00 SCREAMING_SNAKE_CASE__ = 20_48 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False elif model_name == "encodec_48khz": SCREAMING_SNAKE_CASE__ = [8, 5, 4, 2] SCREAMING_SNAKE_CASE__ = [3.0, 6.0, 1_2.0, 2_4.0] SCREAMING_SNAKE_CASE__ = 4_80_00 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = '''time_group_norm''' SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = 1.0 SCREAMING_SNAKE_CASE__ = 0.0_1 else: raise ValueError(F'''Unknown model name: {model_name}''' ) SCREAMING_SNAKE_CASE__ = EncodecModel(_A ) SCREAMING_SNAKE_CASE__ = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_A ) SCREAMING_SNAKE_CASE__ = torch.load(_A ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights SCREAMING_SNAKE_CASE__ = original_checkpoint['''best_state'''] recursively_load_weights(_A , _A , _A ) model.save_pretrained(_A ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(_A ) model.push_to_hub(_A ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
314
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_INIT_CONFIGURATION a = RoFormerTokenizer def __init__( self : Tuple , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : str=True , __lowerCamelCase : Tuple="[UNK]" , __lowerCamelCase : int="[SEP]" , __lowerCamelCase : Union[str, Any]="[PAD]" , __lowerCamelCase : Optional[int]="[CLS]" , __lowerCamelCase : int="[MASK]" , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Dict , ) -> Dict: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents ): SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = strip_accents SCREAMING_SNAKE_CASE__ = pre_tok_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = do_lower_case def __getstate__( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return state def __setstate__( self : int , __lowerCamelCase : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = d SCREAMING_SNAKE_CASE__ = self.__dict__['''_tokenizer'''].get_vocab() SCREAMING_SNAKE_CASE__ = PreTokenizer.custom(JiebaPreTokenizer(__lowerCamelCase ) ) def lowercase_ ( self : int , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : int , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=False , **__lowerCamelCase : Tuple , ) -> int: SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return super().save_pretrained(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
314
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _SCREAMING_SNAKE_CASE : List[str] = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex _SCREAMING_SNAKE_CASE : Optional[Any] = 10 _SCREAMING_SNAKE_CASE : Optional[Any] = 256 def UpperCAmelCase_ ( _A ): '''simple docstring''' if len(_A ) < MIN_NUM_TOKENS: return None SCREAMING_SNAKE_CASE__ = MinHash(num_perm=_A ) for token in set(_A ): min_hash.update(token.encode() ) return min_hash def UpperCAmelCase_ ( _A ): '''simple docstring''' return {t for t in NON_ALPHA.split(_A ) if len(t.strip() ) > 0} class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , *, __lowerCamelCase : float = 0.85 , ) -> Tuple: SCREAMING_SNAKE_CASE__ = duplication_jaccard_threshold SCREAMING_SNAKE_CASE__ = NUM_PERM SCREAMING_SNAKE_CASE__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) SCREAMING_SNAKE_CASE__ = defaultdict(__lowerCamelCase ) def lowercase_ ( self : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : MinHash ) -> None: SCREAMING_SNAKE_CASE__ = self._index.query(__lowerCamelCase ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__lowerCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> List[List[Dict]]: SCREAMING_SNAKE_CASE__ = [] for base, duplicates in self._duplicate_clusters.items(): SCREAMING_SNAKE_CASE__ = [base] + list(__lowerCamelCase ) # reformat the cluster to be a list of dict SCREAMING_SNAKE_CASE__ = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__lowerCamelCase ) return duplicate_clusters def lowercase_ ( self : Optional[int] , __lowerCamelCase : int ) -> None: SCREAMING_SNAKE_CASE__ = self.get_duplicate_clusters() with open(__lowerCamelCase , '''w''' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = element SCREAMING_SNAKE_CASE__ = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCAmelCase_ ( _A ): '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_A , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = DuplicationIndex(duplication_jaccard_threshold=_A ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_A ) ) , max_queue_size=1_00 ) ): di.add(_A , _A ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_tokens(_A ) SCREAMING_SNAKE_CASE__ = get_tokens(_A ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _SCREAMING_SNAKE_CASE : int = None def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for elementa in cluster: SCREAMING_SNAKE_CASE__ = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: SCREAMING_SNAKE_CASE__ = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_A , _A ) >= jaccard_threshold: elementa["copies"] += 1 break else: SCREAMING_SNAKE_CASE__ = 1 extremes.append(_A ) return extremes def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' global _shared_dataset SCREAMING_SNAKE_CASE__ = dataset SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = partial(_find_cluster_extremes_shared , jaccard_threshold=_A ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _A , _A , ) , total=len(_A ) , ): extremes_list.append(_A ) return extremes_list def UpperCAmelCase_ ( _A , _A = 0.8_5 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = make_duplicate_clusters(_A , _A ) SCREAMING_SNAKE_CASE__ = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = find_extremes(_A , _A , _A ) for extremes in extremes_clusters: for element in extremes: SCREAMING_SNAKE_CASE__ = element SCREAMING_SNAKE_CASE__ = duplicate_indices - set(extreme_dict.keys() ) SCREAMING_SNAKE_CASE__ = dataset.filter(lambda _A , _A : idx not in remove_indices , with_indices=_A ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: SCREAMING_SNAKE_CASE__ = element['''base_index'''] in extreme_dict if element["is_extreme"]: SCREAMING_SNAKE_CASE__ = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(_A )}''' ) print(F'''Number of duplicate clusters: {len(_A )}''' ) print(F'''Files in duplicate cluster: {len(_A )}''' ) print(F'''Unique files in duplicate cluster: {len(_A )}''' ) print(F'''Filtered dataset size: {len(_A )}''' ) return ds_filter, duplicate_clusters
314
from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "trajectory_transformer" a = ["past_key_values"] a = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , __lowerCamelCase : Any=100 , __lowerCamelCase : str=5 , __lowerCamelCase : int=1 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : List[Any]=249 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : Dict=17 , __lowerCamelCase : str=25 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Dict=128 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=0.0006 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Tuple=1e-12 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Tuple=5_0256 , __lowerCamelCase : Dict=5_0256 , **__lowerCamelCase : str , ) -> Dict: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = action_weight SCREAMING_SNAKE_CASE__ = reward_weight SCREAMING_SNAKE_CASE__ = value_weight SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = block_size SCREAMING_SNAKE_CASE__ = action_dim SCREAMING_SNAKE_CASE__ = observation_dim SCREAMING_SNAKE_CASE__ = transition_dim SCREAMING_SNAKE_CASE__ = learning_rate SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kaiming_initializer_range SCREAMING_SNAKE_CASE__ = use_cache super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
314
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE : int = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
def UpperCAmelCase_ ( _A = 1_00_00_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) SCREAMING_SNAKE_CASE__ = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
314
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCAmelCase_ ( _A ): '''simple docstring''' if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE__ = version.parse(accelerate.__version__ ).base_version if version.parse(_A ) < version.parse('''0.17.0''' ): return method def wrapper(self , *_A , **_A ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *_A , **_A ) return wrapper
314
import numpy as np from PIL import Image def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image _SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _SCREAMING_SNAKE_CASE : Tuple = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} state_dict.pop('''pixel_mean''' , _A ) state_dict.pop('''pixel_std''' , _A ) SCREAMING_SNAKE_CASE__ = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE__ = key.replace(_A , _A ) if re.match(_A , _A ): SCREAMING_SNAKE_CASE__ = int(re.match(_A , _A ).group(2 ) ) if layer_nb == 0: SCREAMING_SNAKE_CASE__ = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: SCREAMING_SNAKE_CASE__ = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: SCREAMING_SNAKE_CASE__ = key.replace('''layers.2''' , '''proj_out''' ) SCREAMING_SNAKE_CASE__ = value SCREAMING_SNAKE_CASE__ = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def UpperCAmelCase_ ( _A , _A , _A , _A="ybelkada/segment-anything" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = hf_hub_download(_A , F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: SCREAMING_SNAKE_CASE__ = SamConfig() elif "sam_vit_l" in model_name: SCREAMING_SNAKE_CASE__ = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) SCREAMING_SNAKE_CASE__ = SamConfig( vision_config=_A , ) elif "sam_vit_h" in model_name: SCREAMING_SNAKE_CASE__ = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) SCREAMING_SNAKE_CASE__ = SamConfig( vision_config=_A , ) SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location='''cpu''' ) SCREAMING_SNAKE_CASE__ = replace_keys(_A ) SCREAMING_SNAKE_CASE__ = SamImageProcessor() SCREAMING_SNAKE_CASE__ = SamProcessor(image_processor=_A ) SCREAMING_SNAKE_CASE__ = SamModel(_A ) hf_model.load_state_dict(_A ) SCREAMING_SNAKE_CASE__ = hf_model.to('''cuda''' ) SCREAMING_SNAKE_CASE__ = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' SCREAMING_SNAKE_CASE__ = Image.open(requests.get(_A , stream=_A ).raw ).convert('''RGB''' ) SCREAMING_SNAKE_CASE__ = [[[4_00, 6_50]]] SCREAMING_SNAKE_CASE__ = [[1]] SCREAMING_SNAKE_CASE__ = processor(images=np.array(_A ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = hf_model(**_A ) SCREAMING_SNAKE_CASE__ = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 SCREAMING_SNAKE_CASE__ = processor( images=np.array(_A ) , input_points=_A , input_labels=_A , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = hf_model(**_A ) SCREAMING_SNAKE_CASE__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 SCREAMING_SNAKE_CASE__ = ((75, 2_75, 17_25, 8_50),) SCREAMING_SNAKE_CASE__ = processor(images=np.array(_A ) , input_boxes=_A , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = hf_model(**_A ) SCREAMING_SNAKE_CASE__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. SCREAMING_SNAKE_CASE__ = [[[4_00, 6_50], [8_00, 6_50]]] SCREAMING_SNAKE_CASE__ = [[1, 1]] SCREAMING_SNAKE_CASE__ = processor( images=np.array(_A ) , input_points=_A , input_labels=_A , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = hf_model(**_A ) SCREAMING_SNAKE_CASE__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() _SCREAMING_SNAKE_CASE : List[Any] = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
314
from __future__ import annotations def UpperCAmelCase_ ( _A , _A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = word_bank or [] # create a table SCREAMING_SNAKE_CASE__ = len(_A ) + 1 SCREAMING_SNAKE_CASE__ = [] for _ in range(_A ): table.append([] ) # seed value SCREAMING_SNAKE_CASE__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(_A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_A )] == word: SCREAMING_SNAKE_CASE__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_A )]: combination.reverse() return table[len(_A )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
314
1
from ...processing_utils import ProcessorMixin class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "WhisperFeatureExtractor" a = "WhisperTokenizer" def __init__( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ) -> Optional[Any]: super().__init__(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.feature_extractor SCREAMING_SNAKE_CASE__ = False def lowercase_ ( self : int , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Dict=True ) -> Optional[int]: return self.tokenizer.get_decoder_prompt_ids(task=__lowerCamelCase , language=__lowerCamelCase , no_timestamps=__lowerCamelCase ) def __call__( self : Dict , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Any ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''audio''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''sampling_rate''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''text''' , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: SCREAMING_SNAKE_CASE__ = args[0] SCREAMING_SNAKE_CASE__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: SCREAMING_SNAKE_CASE__ = self.feature_extractor(__lowerCamelCase , *__lowerCamelCase , sampling_rate=__lowerCamelCase , **__lowerCamelCase ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__lowerCamelCase , **__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE__ = encodings['''input_ids'''] return inputs def lowercase_ ( self : int , *__lowerCamelCase : List[str] , **__lowerCamelCase : List[Any] ) -> Any: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( self : Tuple , *__lowerCamelCase : Tuple , **__lowerCamelCase : str ) -> Dict: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Dict="np" ) -> Optional[Any]: return self.tokenizer.get_prompt_ids(__lowerCamelCase , return_tensors=__lowerCamelCase )
314
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( _A = "AAPL" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' SCREAMING_SNAKE_CASE__ = BeautifulSoup(requests.get(_A ).text , '''html.parser''' ) SCREAMING_SNAKE_CASE__ = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
314
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[Any]=None , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Optional[Any] ) -> Union[str, Any]: super().__init__(*__lowerCamelCase , **__lowerCamelCase ) if config is None: assert isinstance(self.model , __lowerCamelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) SCREAMING_SNAKE_CASE__ = self.model.config else: SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = data_args SCREAMING_SNAKE_CASE__ = self.config.tgt_vocab_size if isinstance(self.config , __lowerCamelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ''' padding..''' ) if self.args.label_smoothing == 0: SCREAMING_SNAKE_CASE__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss SCREAMING_SNAKE_CASE__ = label_smoothed_nll_loss def lowercase_ ( self : Dict , __lowerCamelCase : int ) -> str: if self.optimizer is None: SCREAMING_SNAKE_CASE__ = ['''bias''', '''LayerNorm.weight'''] SCREAMING_SNAKE_CASE__ = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] SCREAMING_SNAKE_CASE__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: SCREAMING_SNAKE_CASE__ = Adafactor SCREAMING_SNAKE_CASE__ = {'''scale_parameter''': False, '''relative_step''': False} else: SCREAMING_SNAKE_CASE__ = AdamW SCREAMING_SNAKE_CASE__ = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } SCREAMING_SNAKE_CASE__ = self.args.learning_rate if self.sharded_ddp: SCREAMING_SNAKE_CASE__ = OSS( params=__lowerCamelCase , optim=__lowerCamelCase , **__lowerCamelCase , ) else: SCREAMING_SNAKE_CASE__ = optimizer_cls(__lowerCamelCase , **__lowerCamelCase ) if self.lr_scheduler is None: SCREAMING_SNAKE_CASE__ = self._get_lr_scheduler(__lowerCamelCase ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def lowercase_ ( self : Dict , __lowerCamelCase : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": SCREAMING_SNAKE_CASE__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": SCREAMING_SNAKE_CASE__ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: SCREAMING_SNAKE_CASE__ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowerCamelCase ) return scheduler def lowercase_ ( self : int ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase_ ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase , use_cache=__lowerCamelCase )[0] SCREAMING_SNAKE_CASE__ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase , labels=__lowerCamelCase , use_cache=__lowerCamelCase )[:2] else: # compute label smoothed loss SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase , use_cache=__lowerCamelCase )[0] SCREAMING_SNAKE_CASE__ = torch.nn.functional.log_softmax(__lowerCamelCase , dim=-1 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.loss_fn(__lowerCamelCase , __lowerCamelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowercase_ ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = inputs.pop('''labels''' ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self._compute_loss(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return loss def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : nn.Module , __lowerCamelCase : Dict[str, Union[torch.Tensor, Any]] , __lowerCamelCase : bool , __lowerCamelCase : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: SCREAMING_SNAKE_CASE__ = self._prepare_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: SCREAMING_SNAKE_CASE__ = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **__lowerCamelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: SCREAMING_SNAKE_CASE__ = self._pad_tensors_to_max_len(__lowerCamelCase , gen_kwargs['''max_length'''] ) SCREAMING_SNAKE_CASE__ = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self._compute_loss(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) SCREAMING_SNAKE_CASE__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: SCREAMING_SNAKE_CASE__ = self._pad_tensors_to_max_len(__lowerCamelCase , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def lowercase_ ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> int: # If PAD token is not defined at least EOS token has to be defined SCREAMING_SNAKE_CASE__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f''' padded to `max_length`={max_length}''' ) SCREAMING_SNAKE_CASE__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) SCREAMING_SNAKE_CASE__ = tensor return padded_tensor
314
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A__ ): """simple docstring""" a = (UnCLIPScheduler,) def lowercase_ ( self : List[str] , **__lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCamelCase ) return config def lowercase_ ( self : Dict ) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase_ ( self : str ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Tuple: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase_ ( self : int ) -> str: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5 def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''learned_range''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=__lowerCamelCase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=__lowerCamelCase ) - -0.0010011 < 1e-5 def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def lowercase_ ( self : int ) -> Tuple: pass def lowercase_ ( self : Dict ) -> Union[str, Any]: pass
314
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = '''▁''' _SCREAMING_SNAKE_CASE : List[Any] = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } _SCREAMING_SNAKE_CASE : Any = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } _SCREAMING_SNAKE_CASE : Dict = { '''facebook/s2t-small-librispeech-asr''': 1024, } _SCREAMING_SNAKE_CASE : str = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] _SCREAMING_SNAKE_CASE : Optional[Any] = {'''mustc''': MUSTC_LANGS} class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = MAX_MODEL_INPUT_SIZES a = ["input_ids", "attention_mask"] a = [] def __init__( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : Tuple="</s>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : int="<unk>" , __lowerCamelCase : List[str]=False , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : str , ) -> None: SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_upper_case=__lowerCamelCase , do_lower_case=__lowerCamelCase , tgt_lang=__lowerCamelCase , lang_codes=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = do_upper_case SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = load_json(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ = spm_file SCREAMING_SNAKE_CASE__ = load_spm(__lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: SCREAMING_SNAKE_CASE__ = lang_codes SCREAMING_SNAKE_CASE__ = LANGUAGES[lang_codes] SCREAMING_SNAKE_CASE__ = [f'''<lang:{lang}>''' for lang in self.langs] SCREAMING_SNAKE_CASE__ = {lang: self.sp_model.PieceToId(f'''<lang:{lang}>''' ) for lang in self.langs} SCREAMING_SNAKE_CASE__ = self.lang_tokens SCREAMING_SNAKE_CASE__ = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: SCREAMING_SNAKE_CASE__ = {} @property def lowercase_ ( self : Union[str, Any] ) -> int: return len(self.encoder ) @property def lowercase_ ( self : Union[str, Any] ) -> str: return self._tgt_lang @tgt_lang.setter def lowercase_ ( self : List[Any] , __lowerCamelCase : str ) -> None: SCREAMING_SNAKE_CASE__ = new_tgt_lang self.set_tgt_lang_special_tokens(__lowerCamelCase ) def lowercase_ ( self : int , __lowerCamelCase : str ) -> None: SCREAMING_SNAKE_CASE__ = self.lang_code_to_id[tgt_lang] SCREAMING_SNAKE_CASE__ = [lang_code_id] def lowercase_ ( self : List[str] , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def lowercase_ ( self : List[Any] , __lowerCamelCase : str ) -> int: return self.encoder.get(__lowerCamelCase , self.encoder[self.unk_token] ) def lowercase_ ( self : Dict , __lowerCamelCase : int ) -> str: return self.decoder.get(__lowerCamelCase , self.unk_token ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: SCREAMING_SNAKE_CASE__ = self.sp_model.decode(__lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " SCREAMING_SNAKE_CASE__ = [] else: current_sub_tokens.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.sp_model.decode(__lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCamelCase )) + ([0] * len(__lowerCamelCase )) + suffix_ones def lowercase_ ( self : Any ) -> Dict: SCREAMING_SNAKE_CASE__ = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self : List[str] , __lowerCamelCase : Dict ) -> None: SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = Path(__lowerCamelCase ) assert save_dir.is_dir(), f'''{save_directory} should be a directory''' SCREAMING_SNAKE_CASE__ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (str(__lowerCamelCase ), str(__lowerCamelCase )) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = sentencepiece.SentencePieceProcessor(**_A ) spm.Load(str(_A ) ) return spm def UpperCAmelCase_ ( _A ): '''simple docstring''' with open(_A , '''r''' ) as f: return json.load(_A ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' with open(_A , '''w''' ) as f: json.dump(_A , _A , indent=2 )
314
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = mock_training_loop_function('''hello''' ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def lowercase_ ( self : str ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : Optional[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
314
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A__ ): """simple docstring""" a = (UnCLIPScheduler,) def lowercase_ ( self : List[str] , **__lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCamelCase ) return config def lowercase_ ( self : Dict ) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase_ ( self : str ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Tuple: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase_ ( self : int ) -> str: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5 def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''learned_range''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=__lowerCamelCase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=__lowerCamelCase ) - -0.0010011 < 1e-5 def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def lowercase_ ( self : int ) -> Tuple: pass def lowercase_ ( self : Dict ) -> Union[str, Any]: pass
314
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[str] , **__lowerCamelCase : Dict ) -> List[str]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Any , **__lowerCamelCase : List[str] ) -> Any: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[int] , **__lowerCamelCase : int ) -> Dict: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Tuple = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
def UpperCAmelCase_ ( _A ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
314
1
from __future__ import annotations from collections import namedtuple def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
314
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _SCREAMING_SNAKE_CASE : Any = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_A )[0] @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_51: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE__ = data.reshape(_A , _A , _A , 1 ) return data @deprecated(_A , '''Please use tf.one_hot on tensors.''' ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = labels_dense.shape[0] SCREAMING_SNAKE_CASE__ = numpy.arange(_A ) * num_classes SCREAMING_SNAKE_CASE__ = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE__ = 1 return labels_one_hot @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A , _A=False , _A=10 ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_49: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(_A ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_A , _A ) return labels class UpperCAmelCase__ : """simple docstring""" @deprecated( __lowerCamelCase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=False , __lowerCamelCase : Dict=False , __lowerCamelCase : List[str]=dtypes.floataa , __lowerCamelCase : List[str]=True , __lowerCamelCase : Any=None , ) -> List[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = random_seed.get_seed(__lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE__ = dtypes.as_dtype(__lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: SCREAMING_SNAKE_CASE__ = 1_0000 SCREAMING_SNAKE_CASE__ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' SCREAMING_SNAKE_CASE__ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE__ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE__ = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE__ = numpy.multiply(__lowerCamelCase , 1.0 / 255.0 ) SCREAMING_SNAKE_CASE__ = images SCREAMING_SNAKE_CASE__ = labels SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 @property def lowercase_ ( self : Tuple ) -> List[str]: return self._images @property def lowercase_ ( self : List[Any] ) -> Tuple: return self._labels @property def lowercase_ ( self : Tuple ) -> Tuple: return self._num_examples @property def lowercase_ ( self : Optional[int] ) -> int: return self._epochs_completed def lowercase_ ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Union[str, Any]=True ) -> str: if fake_data: SCREAMING_SNAKE_CASE__ = [1] * 784 SCREAMING_SNAKE_CASE__ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowerCamelCase )], [fake_label for _ in range(__lowerCamelCase )], ) SCREAMING_SNAKE_CASE__ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perma] SCREAMING_SNAKE_CASE__ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE__ = self._num_examples - start SCREAMING_SNAKE_CASE__ = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE__ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perm] SCREAMING_SNAKE_CASE__ = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = batch_size - rest_num_examples SCREAMING_SNAKE_CASE__ = self._index_in_epoch SCREAMING_SNAKE_CASE__ = self._images[start:end] SCREAMING_SNAKE_CASE__ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE__ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_A , '''Please write your own downloading logic.''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if not gfile.Exists(_A ): gfile.MakeDirs(_A ) SCREAMING_SNAKE_CASE__ = os.path.join(_A , _A ) if not gfile.Exists(_A ): urllib.request.urlretrieve(_A , _A ) # noqa: S310 with gfile.GFile(_A ) as f: SCREAMING_SNAKE_CASE__ = f.size() print('''Successfully downloaded''' , _A , _A , '''bytes.''' ) return filepath @deprecated( _A , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def UpperCAmelCase_ ( _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=50_00 , _A=None , _A=DEFAULT_SOURCE_URL , ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_A , one_hot=_A , dtype=_A , seed=_A ) SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() return _Datasets(train=_A , validation=_A , test=_A ) if not source_url: # empty string check SCREAMING_SNAKE_CASE__ = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE__ = '''train-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''train-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) if not 0 <= validation_size <= len(_A ): SCREAMING_SNAKE_CASE__ = ( '''Validation size should be between 0 and ''' F'''{len(_A )}. Received: {validation_size}.''' ) raise ValueError(_A ) SCREAMING_SNAKE_CASE__ = train_images[:validation_size] SCREAMING_SNAKE_CASE__ = train_labels[:validation_size] SCREAMING_SNAKE_CASE__ = train_images[validation_size:] SCREAMING_SNAKE_CASE__ = train_labels[validation_size:] SCREAMING_SNAKE_CASE__ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) return _Datasets(train=_A , validation=_A , test=_A )
314
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "roberta-prelayernorm" def __init__( self : Optional[Any] , __lowerCamelCase : List[Any]=5_0265 , __lowerCamelCase : str=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : List[Any]=1e-12 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]="absolute" , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=None , **__lowerCamelCase : Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = classifier_dropout class UpperCAmelCase__ ( A__ ): """simple docstring""" @property def lowercase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
314
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase_ ( _A ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' return max(metric_fn(_A , _A ) for gt in ground_truths ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE__ = pd.read_csv(_A , sep='''\t''' , header=_A ) for answer_list in data[1]: SCREAMING_SNAKE_CASE__ = ast.literal_eval(_A ) answers.append(_A ) else: SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [[reference] for reference in references] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for prediction, ground_truths in zip(_A , _A ): total += 1 em += metric_max_over_ground_truths(_A , _A , _A ) fa += metric_max_over_ground_truths(_A , _A , _A ) SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total SCREAMING_SNAKE_CASE__ = 1_0_0.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = args.k SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for hypo, reference in zip(_A , _A ): SCREAMING_SNAKE_CASE__ = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE__ = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' def strip_title(_A ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[:-1] return title SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.rag.question_encoder(_A ) SCREAMING_SNAKE_CASE__ = question_enc_outputs[0] SCREAMING_SNAKE_CASE__ = rag_model.retriever( _A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE__ = [] for docs in all_docs: SCREAMING_SNAKE_CASE__ = [strip_title(_A ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_A ) ) return provenance_strings def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A ) SCREAMING_SNAKE_CASE__ = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE__ = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.generate( # rag_model overwrites generate _A , attention_mask=_A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.generator_tokenizer.batch_decode(_A , skip_special_tokens=_A ) if args.print_predictions: for q, a in zip(_A , _A ): logger.info('''Q: {} - A: {}'''.format(_A , _A ) ) return answers def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_A , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_A , choices=['''exact''', '''compressed''', '''legacy'''] , type=_A , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_A , type=_A , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_A , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_A , type=_A , required=_A , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_A , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_A , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_A , type=_A , required=_A , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_A , type=_A , required=_A , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_A , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_A , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_A , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_A , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_A , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=_A , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} if args.model_type is None: SCREAMING_SNAKE_CASE__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE__ = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE__ = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE__ = args.index_path else: SCREAMING_SNAKE_CASE__ = BartForConditionalGeneration SCREAMING_SNAKE_CASE__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _A ) SCREAMING_SNAKE_CASE__ = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE__ = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_A , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_A ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagRetriever.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , retriever=_A , **_A ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , **_A ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE__ = [] for line in tqdm(_A ): questions.append(line.strip() ) if len(_A ) == args.eval_batch_size: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE__ = [] if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) ) preds_file.flush() score_fn(_A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = get_args() main(args)
314
1
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = old_name if "patch_embed" in old_name: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = old_name.split('''.''' ) if layer == "0": SCREAMING_SNAKE_CASE__ = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": SCREAMING_SNAKE_CASE__ = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": SCREAMING_SNAKE_CASE__ = old_name.replace('''3''' , '''convolution2''' ) else: SCREAMING_SNAKE_CASE__ = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''' , _A ): SCREAMING_SNAKE_CASE__ = R'''\b\d{2}\b''' if bool(re.search(_A , _A ) ): SCREAMING_SNAKE_CASE__ = re.search(R'''\d\.\d\d.''' , _A ).group() else: SCREAMING_SNAKE_CASE__ = re.search(R'''\d\.\d.''' , _A ).group() if int(match[0] ) < 6: SCREAMING_SNAKE_CASE__ = old_name.replace(_A , '''''' ) SCREAMING_SNAKE_CASE__ = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) SCREAMING_SNAKE_CASE__ = '''intermediate_stages.''' + trimmed_name else: SCREAMING_SNAKE_CASE__ = old_name.replace(_A , '''''' ) if int(match[2] ) < num_meta4D_last_stage: SCREAMING_SNAKE_CASE__ = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: SCREAMING_SNAKE_CASE__ = str(int(match[2] ) - num_meta4D_last_stage ) SCREAMING_SNAKE_CASE__ = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: SCREAMING_SNAKE_CASE__ = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: SCREAMING_SNAKE_CASE__ = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: SCREAMING_SNAKE_CASE__ = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: SCREAMING_SNAKE_CASE__ = trimmed_name.replace('''fc2''' , '''linear_out''' ) SCREAMING_SNAKE_CASE__ = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''' , _A ): SCREAMING_SNAKE_CASE__ = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: SCREAMING_SNAKE_CASE__ = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): SCREAMING_SNAKE_CASE__ = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): SCREAMING_SNAKE_CASE__ = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: SCREAMING_SNAKE_CASE__ = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: SCREAMING_SNAKE_CASE__ = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: SCREAMING_SNAKE_CASE__ = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: SCREAMING_SNAKE_CASE__ = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": SCREAMING_SNAKE_CASE__ = new_name.replace('''norm''' , '''layernorm''' ) SCREAMING_SNAKE_CASE__ = '''efficientformer.''' + new_name else: SCREAMING_SNAKE_CASE__ = '''efficientformer.encoder.''' + new_name return new_name def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' for key in checkpoint.copy().keys(): SCREAMING_SNAKE_CASE__ = checkpoint.pop(_A ) SCREAMING_SNAKE_CASE__ = val return checkpoint def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ = Image.open(requests.get(_A , stream=_A ).raw ) return image def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE__ = EfficientFormerConfig.from_json_file(_A ) SCREAMING_SNAKE_CASE__ = EfficientFormerForImageClassificationWithTeacher(_A ) SCREAMING_SNAKE_CASE__ = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) SCREAMING_SNAKE_CASE__ = config.depths[-1] - config.num_metaad_blocks + 1 SCREAMING_SNAKE_CASE__ = convert_torch_checkpoint(_A , _A ) model.load_state_dict(_A ) model.eval() SCREAMING_SNAKE_CASE__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = 2_56 SCREAMING_SNAKE_CASE__ = 2_24 SCREAMING_SNAKE_CASE__ = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) SCREAMING_SNAKE_CASE__ = processor(images=_A , return_tensors='''pt''' ).pixel_values # original processing pipeline SCREAMING_SNAKE_CASE__ = Compose( [ Resize(_A , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(_A ), ToTensor(), Normalize(_A , _A ), ] ) SCREAMING_SNAKE_CASE__ = image_transforms(_A ).unsqueeze(0 ) assert torch.allclose(_A , _A ) SCREAMING_SNAKE_CASE__ = model(_A ) SCREAMING_SNAKE_CASE__ = outputs.logits SCREAMING_SNAKE_CASE__ = (1, 10_00) if "l1" in model_name: SCREAMING_SNAKE_CASE__ = torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :10] , _A , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: SCREAMING_SNAKE_CASE__ = torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :10] , _A , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: SCREAMING_SNAKE_CASE__ = torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(_A ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add model''' , use_temp_dir=_A , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='''Add image processor''' , use_temp_dir=_A , ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
314
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , __lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=1 / 255 , __lowerCamelCase : Dict=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad def lowercase_ ( self : Tuple ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=False ) -> Optional[int]: if not batched: SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = YolosImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = YolosImageProcessingTester(self ) @property def lowercase_ ( self : Tuple ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) def lowercase_ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Optional[int]: pass def lowercase_ ( self : int ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Tuple ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[str] ) -> Optional[Any]: # Initialize image_processings SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE__ = self.image_processing_class(do_resize=__lowerCamelCase , do_normalize=__lowerCamelCase , do_rescale=__lowerCamelCase ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE__ = image_processing_a.pad(__lowerCamelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = image_processing_a(__lowerCamelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: # prepare image and target SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''image_id''': 3_9769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) ) @slow def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: # prepare image, target and masks_path SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} SCREAMING_SNAKE_CASE__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE__ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) )
314
1
_SCREAMING_SNAKE_CASE : int = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } _SCREAMING_SNAKE_CASE : Tuple = {value: key for key, value in encode_dict.items()} def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def UpperCAmelCase_ ( _A ): '''simple docstring''' if set(_A ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) SCREAMING_SNAKE_CASE__ = '''''' for word in coded.split(): while len(_A ) != 0: decoded += decode_dict[word[:5]] SCREAMING_SNAKE_CASE__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
314
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "roberta-prelayernorm" def __init__( self : Optional[Any] , __lowerCamelCase : List[Any]=5_0265 , __lowerCamelCase : str=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : List[Any]=1e-12 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]="absolute" , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=None , **__lowerCamelCase : Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = classifier_dropout class UpperCAmelCase__ ( A__ ): """simple docstring""" @property def lowercase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
314
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _SCREAMING_SNAKE_CASE : Any = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_A )[0] @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_51: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE__ = data.reshape(_A , _A , _A , 1 ) return data @deprecated(_A , '''Please use tf.one_hot on tensors.''' ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = labels_dense.shape[0] SCREAMING_SNAKE_CASE__ = numpy.arange(_A ) * num_classes SCREAMING_SNAKE_CASE__ = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE__ = 1 return labels_one_hot @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A , _A=False , _A=10 ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_49: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(_A ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_A , _A ) return labels class UpperCAmelCase__ : """simple docstring""" @deprecated( __lowerCamelCase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=False , __lowerCamelCase : Dict=False , __lowerCamelCase : List[str]=dtypes.floataa , __lowerCamelCase : List[str]=True , __lowerCamelCase : Any=None , ) -> List[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = random_seed.get_seed(__lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE__ = dtypes.as_dtype(__lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: SCREAMING_SNAKE_CASE__ = 1_0000 SCREAMING_SNAKE_CASE__ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' SCREAMING_SNAKE_CASE__ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE__ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE__ = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE__ = numpy.multiply(__lowerCamelCase , 1.0 / 255.0 ) SCREAMING_SNAKE_CASE__ = images SCREAMING_SNAKE_CASE__ = labels SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 @property def lowercase_ ( self : Tuple ) -> List[str]: return self._images @property def lowercase_ ( self : List[Any] ) -> Tuple: return self._labels @property def lowercase_ ( self : Tuple ) -> Tuple: return self._num_examples @property def lowercase_ ( self : Optional[int] ) -> int: return self._epochs_completed def lowercase_ ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Union[str, Any]=True ) -> str: if fake_data: SCREAMING_SNAKE_CASE__ = [1] * 784 SCREAMING_SNAKE_CASE__ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowerCamelCase )], [fake_label for _ in range(__lowerCamelCase )], ) SCREAMING_SNAKE_CASE__ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perma] SCREAMING_SNAKE_CASE__ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE__ = self._num_examples - start SCREAMING_SNAKE_CASE__ = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE__ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perm] SCREAMING_SNAKE_CASE__ = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = batch_size - rest_num_examples SCREAMING_SNAKE_CASE__ = self._index_in_epoch SCREAMING_SNAKE_CASE__ = self._images[start:end] SCREAMING_SNAKE_CASE__ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE__ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_A , '''Please write your own downloading logic.''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if not gfile.Exists(_A ): gfile.MakeDirs(_A ) SCREAMING_SNAKE_CASE__ = os.path.join(_A , _A ) if not gfile.Exists(_A ): urllib.request.urlretrieve(_A , _A ) # noqa: S310 with gfile.GFile(_A ) as f: SCREAMING_SNAKE_CASE__ = f.size() print('''Successfully downloaded''' , _A , _A , '''bytes.''' ) return filepath @deprecated( _A , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def UpperCAmelCase_ ( _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=50_00 , _A=None , _A=DEFAULT_SOURCE_URL , ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_A , one_hot=_A , dtype=_A , seed=_A ) SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() return _Datasets(train=_A , validation=_A , test=_A ) if not source_url: # empty string check SCREAMING_SNAKE_CASE__ = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE__ = '''train-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''train-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) if not 0 <= validation_size <= len(_A ): SCREAMING_SNAKE_CASE__ = ( '''Validation size should be between 0 and ''' F'''{len(_A )}. Received: {validation_size}.''' ) raise ValueError(_A ) SCREAMING_SNAKE_CASE__ = train_images[:validation_size] SCREAMING_SNAKE_CASE__ = train_labels[:validation_size] SCREAMING_SNAKE_CASE__ = train_images[validation_size:] SCREAMING_SNAKE_CASE__ = train_labels[validation_size:] SCREAMING_SNAKE_CASE__ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) return _Datasets(train=_A , validation=_A , test=_A )
314
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "lxmert" a = {} def __init__( self : Union[str, Any] , __lowerCamelCase : List[str]=3_0522 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Union[str, Any]=9500 , __lowerCamelCase : Union[str, Any]=1600 , __lowerCamelCase : Any=400 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=512 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Any=1e-12 , __lowerCamelCase : List[Any]=9 , __lowerCamelCase : Any=5 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : List[str]=6.67 , __lowerCamelCase : Dict=True , __lowerCamelCase : Any=True , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Any=True , **__lowerCamelCase : Optional[Any] , ) -> Any: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = num_qa_labels SCREAMING_SNAKE_CASE__ = num_object_labels SCREAMING_SNAKE_CASE__ = num_attr_labels SCREAMING_SNAKE_CASE__ = l_layers SCREAMING_SNAKE_CASE__ = x_layers SCREAMING_SNAKE_CASE__ = r_layers SCREAMING_SNAKE_CASE__ = visual_feat_dim SCREAMING_SNAKE_CASE__ = visual_pos_dim SCREAMING_SNAKE_CASE__ = visual_loss_normalizer SCREAMING_SNAKE_CASE__ = task_matched SCREAMING_SNAKE_CASE__ = task_mask_lm SCREAMING_SNAKE_CASE__ = task_obj_predict SCREAMING_SNAKE_CASE__ = task_qa SCREAMING_SNAKE_CASE__ = visual_obj_loss SCREAMING_SNAKE_CASE__ = visual_attr_loss SCREAMING_SNAKE_CASE__ = visual_feat_loss SCREAMING_SNAKE_CASE__ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__lowerCamelCase )
314
1
def UpperCAmelCase_ ( _A ): '''simple docstring''' if num < 0: return False SCREAMING_SNAKE_CASE__ = num SCREAMING_SNAKE_CASE__ = 0 while num > 0: SCREAMING_SNAKE_CASE__ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
314
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } _SCREAMING_SNAKE_CASE : Optional[int] = { '''vinai/phobert-base''': 256, '''vinai/phobert-large''': 256, } def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set() SCREAMING_SNAKE_CASE__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ = char SCREAMING_SNAKE_CASE__ = set(_A ) return pairs class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , **__lowerCamelCase : Optional[int] , ) -> Union[str, Any]: super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = merges_file SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 3 self.add_from_file(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE__ = merges_handle.read().split('''\n''' )[:-1] SCREAMING_SNAKE_CASE__ = [tuple(merge.split()[:-1] ) for merge in merges] SCREAMING_SNAKE_CASE__ = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE__ = {} def lowercase_ ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowercase_ ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase_ ( self : Dict ) -> str: return len(self.encoder ) def lowercase_ ( self : List[Any] ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self : Any , __lowerCamelCase : Any ) -> Any: if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) SCREAMING_SNAKE_CASE__ = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE__ = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = bigram SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE__ = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE__ = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''@@ '''.join(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = word[:-4] SCREAMING_SNAKE_CASE__ = word return word def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = re.findall(r'''\S+\n?''' , __lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def lowercase_ ( self : str , __lowerCamelCase : Optional[int] ) -> Optional[int]: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowercase_ ( self : List[Any] , __lowerCamelCase : List[str] ) -> Dict: return self.decoder.get(__lowerCamelCase , self.unk_token ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = ''' '''.join(__lowerCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def lowercase_ ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.merges_file , __lowerCamelCase ) return out_vocab_file, out_merge_file def lowercase_ ( self : int , __lowerCamelCase : Tuple ) -> Optional[Any]: if isinstance(__lowerCamelCase , __lowerCamelCase ): try: with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return SCREAMING_SNAKE_CASE__ = f.readlines() for lineTmp in lines: SCREAMING_SNAKE_CASE__ = lineTmp.strip() SCREAMING_SNAKE_CASE__ = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) SCREAMING_SNAKE_CASE__ = line[:idx] SCREAMING_SNAKE_CASE__ = len(self.encoder )
314
1
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for line in lines: SCREAMING_SNAKE_CASE__ = re.sub(R'''#.*''' , '''''' , _A ) # remove comments if line: filtered_lines.append(_A ) SCREAMING_SNAKE_CASE__ = '''\n'''.join(_A ) # Make a hash from all this code SCREAMING_SNAKE_CASE__ = full_str.encode('''utf-8''' ) return shaaaa(_A ).hexdigest() # get importable module names and hash for caching _SCREAMING_SNAKE_CASE : int = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _SCREAMING_SNAKE_CASE : Dict = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _SCREAMING_SNAKE_CASE : str = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name _SCREAMING_SNAKE_CASE : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
314
from functools import reduce _SCREAMING_SNAKE_CASE : Any = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_ ( _A = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _A , _A : str(int(_A ) * int(_A ) ) , n[i : i + 13] ) ) for i in range(len(_A ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
314
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" a = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) SCREAMING_SNAKE_CASE__ = VideoClassificationPipeline(model=__lowerCamelCase , image_processor=__lowerCamelCase , top_k=2 ) SCREAMING_SNAKE_CASE__ = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def lowercase_ ( self : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : str ) -> Dict: for example in examples: SCREAMING_SNAKE_CASE__ = video_classifier(__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [ {'''score''': ANY(__lowerCamelCase ), '''label''': ANY(__lowerCamelCase )}, {'''score''': ANY(__lowerCamelCase ), '''label''': ANY(__lowerCamelCase )}, ] , ) @require_torch def lowercase_ ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' SCREAMING_SNAKE_CASE__ = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) SCREAMING_SNAKE_CASE__ = pipeline( '''video-classification''' , model=__lowerCamelCase , feature_extractor=__lowerCamelCase , frame_sampling_rate=4 ) SCREAMING_SNAKE_CASE__ = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) SCREAMING_SNAKE_CASE__ = video_classifier(__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] , ) SCREAMING_SNAKE_CASE__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def lowercase_ ( self : Any ) -> Dict: pass
314
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ) -> str: super().__init__() # make sure scheduler can always be converted to DDIM SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self : List[Any] , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: SCREAMING_SNAKE_CASE__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) SCREAMING_SNAKE_CASE__ = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE__ = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , eta=__lowerCamelCase , use_clipped_model_output=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
314
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
314
from ...configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE : Optional[Any] = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "tapas" def __init__( self : int , __lowerCamelCase : Optional[Any]=3_0522 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Union[str, Any]=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=1024 , __lowerCamelCase : Union[str, Any]=[3, 256, 256, 2, 256, 256, 10] , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[str]=1e-12 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[Any]=10.0 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=1.0 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=1.0 , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : List[str]="ratio" , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[Any]=64 , __lowerCamelCase : Any=32 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : str , ) -> str: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_sizes SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE__ = positive_label_weight SCREAMING_SNAKE_CASE__ = num_aggregation_labels SCREAMING_SNAKE_CASE__ = aggregation_loss_weight SCREAMING_SNAKE_CASE__ = use_answer_as_supervision SCREAMING_SNAKE_CASE__ = answer_loss_importance SCREAMING_SNAKE_CASE__ = use_normalized_answer_loss SCREAMING_SNAKE_CASE__ = huber_loss_delta SCREAMING_SNAKE_CASE__ = temperature SCREAMING_SNAKE_CASE__ = aggregation_temperature SCREAMING_SNAKE_CASE__ = use_gumbel_for_cells SCREAMING_SNAKE_CASE__ = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE__ = average_approximation_function SCREAMING_SNAKE_CASE__ = cell_selection_preference SCREAMING_SNAKE_CASE__ = answer_loss_cutoff SCREAMING_SNAKE_CASE__ = max_num_rows SCREAMING_SNAKE_CASE__ = max_num_columns SCREAMING_SNAKE_CASE__ = average_logits_per_cell SCREAMING_SNAKE_CASE__ = select_one_column SCREAMING_SNAKE_CASE__ = allow_empty_column_selection SCREAMING_SNAKE_CASE__ = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE__ = reset_position_index_per_cell SCREAMING_SNAKE_CASE__ = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE__ = aggregation_labels SCREAMING_SNAKE_CASE__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = {int(__lowerCamelCase ): v for k, v in aggregation_labels.items()}
314
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) _SCREAMING_SNAKE_CASE : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def UpperCAmelCase_ ( _A ): '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: SCREAMING_SNAKE_CASE__ = model_type_to_module_name(_A ) SCREAMING_SNAKE_CASE__ = importlib.import_module(F'''.{module_name}''' , '''transformers.models''' ) try: return getattr(_A , _A ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_A , '''__name__''' , _A ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. SCREAMING_SNAKE_CASE__ = importlib.import_module('''transformers''' ) if hasattr(_A , _A ): return getattr(_A , _A ) return None def UpperCAmelCase_ ( _A , _A = None , _A = False , _A = False , _A = None , _A = None , _A = None , _A = False , **_A , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_file_from_repo( _A , _A , cache_dir=_A , force_download=_A , resume_download=_A , proxies=_A , use_auth_token=_A , revision=_A , local_files_only=_A , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_A , encoding='''utf-8''' ) as reader: return json.load(_A ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[str] ) -> Any: raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__lowerCamelCase ) def lowercase_ ( cls : int , __lowerCamelCase : Optional[int] , **__lowerCamelCase : int ) -> List[str]: SCREAMING_SNAKE_CASE__ = kwargs.pop('''config''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''trust_remote_code''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = FeatureExtractionMixin.get_feature_extractor_dict(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = config_dict.get('''feature_extractor_type''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): SCREAMING_SNAKE_CASE__ = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # It could be in `config.feature_extractor_type`` SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , '''feature_extractor_type''' , __lowerCamelCase ) if hasattr(__lowerCamelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: SCREAMING_SNAKE_CASE__ = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: SCREAMING_SNAKE_CASE__ = feature_extractor_class_from_name(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = feature_extractor_auto_map is not None SCREAMING_SNAKE_CASE__ = feature_extractor_class is not None or type(__lowerCamelCase ) in FEATURE_EXTRACTOR_MAPPING SCREAMING_SNAKE_CASE__ = resolve_trust_remote_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if has_remote_code and trust_remote_code: SCREAMING_SNAKE_CASE__ = get_class_from_dynamic_module( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''code_revision''' , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__lowerCamelCase ) in FEATURE_EXTRACTOR_MAPPING: SCREAMING_SNAKE_CASE__ = FEATURE_EXTRACTOR_MAPPING[type(__lowerCamelCase )] return feature_extractor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) raise ValueError( f'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' f'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowercase_ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ) -> Union[str, Any]: FEATURE_EXTRACTOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase )
314
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = 0 @slow def lowercase_ ( self : List[str] ) -> Any: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) def lowercase_ ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) # Check that tokenizer_type ≠ model_type SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Tuple ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> int: with pytest.raises(__lowerCamelCase ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Tuple: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowerCamelCase ) else: self.assertEqual(tokenizer.do_lower_case , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : Any ) -> str: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowerCamelCase , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : List[str] ) -> Tuple: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai SCREAMING_SNAKE_CASE__ = TOKENIZER_MAPPING.values() SCREAMING_SNAKE_CASE__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Any: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__lowerCamelCase ) , __lowerCamelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''Hello, world. How are you?''' SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Optional[int]: # Check we can load the tokenizer config of an online model. SCREAMING_SNAKE_CASE__ = get_tokenizer_config('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ = config.pop('''_commit_hash''' , __lowerCamelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowerCamelCase , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) self.assertDictEqual(__lowerCamelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : int ) -> str: try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : List[Any] ) -> List[Any]: try: AutoConfig.register('''custom''' , __lowerCamelCase ) # Can register in two steps AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowerCamelCase , slow_tokenizer_class=__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = BertTokenizerFast.from_pretrained(__lowerCamelCase ) bert_tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizerFast.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : List[str] ) -> str: class UpperCAmelCase__ ( A__ ): """simple docstring""" a = False class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NewTokenizer a = False try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Union[str, Any] ) -> Dict: with self.assertRaisesRegex( __lowerCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ) -> Optional[int]: with self.assertRaisesRegex( __lowerCamelCase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , revision='''aaaaaa''' ) def lowercase_ ( self : Any ) -> Optional[Any]: # Make sure we have cached the tokenizer. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
314
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCAmelCase_ ( _A , _A , **_A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_config(_A ) model.save_pretrained(_A ) AutoTokenizer.from_pretrained(_A ).save_pretrained(_A ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
314
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Dict , **__lowerCamelCase : Dict ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[Any] , **__lowerCamelCase : Dict ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : str ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def UpperCAmelCase_ ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_A ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def UpperCAmelCase_ ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def UpperCAmelCase_ ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_A ): http_head('''https://huggingface.co''' )
314
from ... import PretrainedConfig _SCREAMING_SNAKE_CASE : Dict = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP a = "nezha" def __init__( self : Optional[Any] , __lowerCamelCase : str=2_1128 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Tuple=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : int=1e-12 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : Any , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = max_relative_position SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = classifier_dropout SCREAMING_SNAKE_CASE__ = use_cache
314
1
_SCREAMING_SNAKE_CASE : List[str] = 65521 def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 0 for plain_chr in plain_text: SCREAMING_SNAKE_CASE__ = (a + ord(_A )) % MOD_ADLER SCREAMING_SNAKE_CASE__ = (b + a) % MOD_ADLER return (b << 16) | a
314
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_INIT_CONFIGURATION a = RoFormerTokenizer def __init__( self : Tuple , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : str=True , __lowerCamelCase : Tuple="[UNK]" , __lowerCamelCase : int="[SEP]" , __lowerCamelCase : Union[str, Any]="[PAD]" , __lowerCamelCase : Optional[int]="[CLS]" , __lowerCamelCase : int="[MASK]" , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Dict , ) -> Dict: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents ): SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = strip_accents SCREAMING_SNAKE_CASE__ = pre_tok_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = do_lower_case def __getstate__( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return state def __setstate__( self : int , __lowerCamelCase : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = d SCREAMING_SNAKE_CASE__ = self.__dict__['''_tokenizer'''].get_vocab() SCREAMING_SNAKE_CASE__ = PreTokenizer.custom(JiebaPreTokenizer(__lowerCamelCase ) ) def lowercase_ ( self : int , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : int , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=False , **__lowerCamelCase : Tuple , ) -> int: SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return super().save_pretrained(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
314
1
from __future__ import annotations def UpperCAmelCase_ ( _A ): # This function is recursive '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else SCREAMING_SNAKE_CASE__ = array[0] SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = [] while not is_found and i < array_length: if array[i] < pivot: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = [element for element in array[i:] if element >= array[i]] SCREAMING_SNAKE_CASE__ = longest_subsequence(_A ) if len(_A ) > len(_A ): SCREAMING_SNAKE_CASE__ = temp_array else: i += 1 SCREAMING_SNAKE_CASE__ = [element for element in array[1:] if element >= pivot] SCREAMING_SNAKE_CASE__ = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
314
from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "trajectory_transformer" a = ["past_key_values"] a = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , __lowerCamelCase : Any=100 , __lowerCamelCase : str=5 , __lowerCamelCase : int=1 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : List[Any]=249 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : Dict=17 , __lowerCamelCase : str=25 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Dict=128 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=0.0006 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Tuple=1e-12 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Tuple=5_0256 , __lowerCamelCase : Dict=5_0256 , **__lowerCamelCase : str , ) -> Dict: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = action_weight SCREAMING_SNAKE_CASE__ = reward_weight SCREAMING_SNAKE_CASE__ = value_weight SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = block_size SCREAMING_SNAKE_CASE__ = action_dim SCREAMING_SNAKE_CASE__ = observation_dim SCREAMING_SNAKE_CASE__ = transition_dim SCREAMING_SNAKE_CASE__ = learning_rate SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kaiming_initializer_range SCREAMING_SNAKE_CASE__ = use_cache super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
314
1
import numpy class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : numpy.ndarray , __lowerCamelCase : numpy.ndarray ) -> None: SCREAMING_SNAKE_CASE__ = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. SCREAMING_SNAKE_CASE__ = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. SCREAMING_SNAKE_CASE__ = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. SCREAMING_SNAKE_CASE__ = numpy.random.rand(3 , 1 ) # Real output values provided. SCREAMING_SNAKE_CASE__ = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. SCREAMING_SNAKE_CASE__ = numpy.zeros(output_array.shape ) def lowercase_ ( self : List[str] ) -> numpy.ndarray: SCREAMING_SNAKE_CASE__ = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. SCREAMING_SNAKE_CASE__ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. SCREAMING_SNAKE_CASE__ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowercase_ ( self : List[Any] ) -> None: SCREAMING_SNAKE_CASE__ = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) SCREAMING_SNAKE_CASE__ = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) SCREAMING_SNAKE_CASE__ = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowercase_ ( self : Tuple , __lowerCamelCase : numpy.ndarray , __lowerCamelCase : int , __lowerCamelCase : bool ) -> None: for iteration in range(1 , iterations + 1 ): SCREAMING_SNAKE_CASE__ = self.feedforward() self.back_propagation() if give_loss: SCREAMING_SNAKE_CASE__ = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def lowercase_ ( self : Dict , __lowerCamelCase : numpy.ndarray ) -> int: SCREAMING_SNAKE_CASE__ = input_arr SCREAMING_SNAKE_CASE__ = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) SCREAMING_SNAKE_CASE__ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) SCREAMING_SNAKE_CASE__ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase_ ( _A ): '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase_ ( _A ): '''simple docstring''' return (value) * (1 - (value)) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. SCREAMING_SNAKE_CASE__ = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. SCREAMING_SNAKE_CASE__ = TwoHiddenLayerNeuralNetwork( input_array=_A , output_array=_A ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_A , iterations=10 , give_loss=_A ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
314
def UpperCAmelCase_ ( _A = 1_00_00_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) SCREAMING_SNAKE_CASE__ = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
314
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCAmelCase_ ( _A ): '''simple docstring''' if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def UpperCAmelCase_ ( _A ): '''simple docstring''' for char in word: SCREAMING_SNAKE_CASE__ = ord(_A ) if not _is_chinese_char(_A ): return 0 return 1 def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set() for token in tokens: SCREAMING_SNAKE_CASE__ = len(_A ) > 1 and is_chinese(_A ) if chinese_word: word_set.add(_A ) SCREAMING_SNAKE_CASE__ = list(_A ) return word_list def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE__ = max([len(_A ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE__ = bert_tokens SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = 0, len(_A ) while start < end: SCREAMING_SNAKE_CASE__ = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE__ = min(end - start , _A ) for i in range(_A , 1 , -1 ): SCREAMING_SNAKE_CASE__ = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE__ = '''##''' + bert_word[j] SCREAMING_SNAKE_CASE__ = start + i SCREAMING_SNAKE_CASE__ = False break if single_word: start += 1 return bert_word def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for i in range(0 , len(_A ) , 1_00 ): SCREAMING_SNAKE_CASE__ = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] SCREAMING_SNAKE_CASE__ = [get_chinese_word(_A ) for r in res] ltp_res.extend(_A ) assert len(_A ) == len(_A ) SCREAMING_SNAKE_CASE__ = [] for i in range(0 , len(_A ) , 1_00 ): SCREAMING_SNAKE_CASE__ = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=_A , truncation=_A , max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(_A ) == len(_A ) SCREAMING_SNAKE_CASE__ = [] for input_ids, chinese_word in zip(_A , _A ): SCREAMING_SNAKE_CASE__ = [] for id in input_ids: SCREAMING_SNAKE_CASE__ = bert_tokenizer._convert_id_to_token(_A ) input_tokens.append(_A ) SCREAMING_SNAKE_CASE__ = add_sub_symbol(_A , _A ) SCREAMING_SNAKE_CASE__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_A ): if token[:2] == "##": SCREAMING_SNAKE_CASE__ = token[2:] # save chinese tokens' pos if len(_A ) == 1 and _is_chinese_char(ord(_A ) ): ref_id.append(_A ) ref_ids.append(_A ) assert len(_A ) == len(_A ) return ref_ids def UpperCAmelCase_ ( _A ): '''simple docstring''' with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE__ = f.readlines() SCREAMING_SNAKE_CASE__ = [line.strip() for line in data if len(_A ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE__ = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE__ = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE__ = prepare_ref(_A , _A , _A ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE__ = [json.dumps(_A ) + '''\n''' for ref in ref_ids] f.writelines(_A ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') _SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() main(args)
314
import numpy as np from PIL import Image def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image _SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _SCREAMING_SNAKE_CASE : Optional[int] = HUGGINGFACE_HUB_CACHE _SCREAMING_SNAKE_CASE : List[str] = '''config.json''' _SCREAMING_SNAKE_CASE : Optional[int] = '''diffusion_pytorch_model.bin''' _SCREAMING_SNAKE_CASE : Any = '''diffusion_flax_model.msgpack''' _SCREAMING_SNAKE_CASE : Dict = '''model.onnx''' _SCREAMING_SNAKE_CASE : Any = '''diffusion_pytorch_model.safetensors''' _SCREAMING_SNAKE_CASE : Optional[Any] = '''weights.pb''' _SCREAMING_SNAKE_CASE : Optional[Any] = '''https://huggingface.co''' _SCREAMING_SNAKE_CASE : List[str] = default_cache_path _SCREAMING_SNAKE_CASE : Union[str, Any] = '''diffusers_modules''' _SCREAMING_SNAKE_CASE : List[Any] = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) _SCREAMING_SNAKE_CASE : Dict = ['''fp16''', '''non-ema'''] _SCREAMING_SNAKE_CASE : Any = '''.self_attn'''
314
from __future__ import annotations def UpperCAmelCase_ ( _A , _A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = word_bank or [] # create a table SCREAMING_SNAKE_CASE__ = len(_A ) + 1 SCREAMING_SNAKE_CASE__ = [] for _ in range(_A ): table.append([] ) # seed value SCREAMING_SNAKE_CASE__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(_A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_A )] == word: SCREAMING_SNAKE_CASE__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_A )]: combination.reverse() return table[len(_A )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
314
1
import sys import turtle def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def UpperCAmelCase_ ( _A , _A , _A , _A , ): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_A , get_mid(_A , _A ) , get_mid(_A , _A ) , depth - 1 ) triangle(_A , get_mid(_A , _A ) , get_mid(_A , _A ) , depth - 1 ) triangle(_A , get_mid(_A , _A ) , get_mid(_A , _A ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) _SCREAMING_SNAKE_CASE : Optional[Any] = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') _SCREAMING_SNAKE_CASE : Tuple = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
314
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( _A = "AAPL" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' SCREAMING_SNAKE_CASE__ = BeautifulSoup(requests.get(_A ).text , '''html.parser''' ) SCREAMING_SNAKE_CASE__ = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
314
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _SCREAMING_SNAKE_CASE : Optional[Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : Optional[int] = [] _SCREAMING_SNAKE_CASE : List[str] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} _SCREAMING_SNAKE_CASE : str = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", '''emoji''': True, }, } ] _SCREAMING_SNAKE_CASE : Dict = 0 for log in Path().glob('''*.log'''): _SCREAMING_SNAKE_CASE : Optional[int] = 0 with open(log, '''r''') as f: for line in f: _SCREAMING_SNAKE_CASE : str = json.loads(line) if line.get('''nodeid''', '''''') != "": _SCREAMING_SNAKE_CASE : Any = line['''nodeid'''] if line.get('''duration''', None) is not None: _SCREAMING_SNAKE_CASE : Optional[int] = F"{line['duration']:.4f}" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _SCREAMING_SNAKE_CASE : Dict = [] log.unlink() _SCREAMING_SNAKE_CASE : Dict = '''''' _SCREAMING_SNAKE_CASE : List[str] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : str = {} for test in failed_tests: _SCREAMING_SNAKE_CASE : Any = test[0].split('''::''') _SCREAMING_SNAKE_CASE : str = data[0].split('''/''')[-1] if data[0] not in filesafailed: _SCREAMING_SNAKE_CASE : List[str] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _SCREAMING_SNAKE_CASE : str = [test[0] for test in failed_table] _SCREAMING_SNAKE_CASE : int = list(set(files)) # Count number of instances in failed_tests _SCREAMING_SNAKE_CASE : str = [] for file in individual_files: table.append([file, len(filesafailed[file])]) _SCREAMING_SNAKE_CASE : List[Any] = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: _SCREAMING_SNAKE_CASE : List[str] = '''Too many failed tests, please see the full report in the Action results.''' _SCREAMING_SNAKE_CASE : int = len(err) + 10 _SCREAMING_SNAKE_CASE : Union[str, Any] = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: _SCREAMING_SNAKE_CASE : List[str] = '''No failed tests! 🤗''' print(F"## {message}") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient _SCREAMING_SNAKE_CASE : Optional[int] = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": _SCREAMING_SNAKE_CASE : Dict = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) _SCREAMING_SNAKE_CASE : int = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) _SCREAMING_SNAKE_CASE : str = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) _SCREAMING_SNAKE_CASE : int = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) _SCREAMING_SNAKE_CASE : Optional[Any] = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _SCREAMING_SNAKE_CASE : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: _SCREAMING_SNAKE_CASE : Tuple = row[0] else: _SCREAMING_SNAKE_CASE : str = '''''' _SCREAMING_SNAKE_CASE : Any = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
314
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A__ ): """simple docstring""" a = (UnCLIPScheduler,) def lowercase_ ( self : List[str] , **__lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCamelCase ) return config def lowercase_ ( self : Dict ) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase_ ( self : str ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Tuple: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase_ ( self : int ) -> str: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5 def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''learned_range''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=__lowerCamelCase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=__lowerCamelCase ) - -0.0010011 < 1e-5 def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def lowercase_ ( self : int ) -> Tuple: pass def lowercase_ ( self : Dict ) -> Union[str, Any]: pass
314
1
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers _SCREAMING_SNAKE_CASE : str = float('''nan''') class UpperCAmelCase__ : """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = sys.stdout SCREAMING_SNAKE_CASE__ = open(__lowerCamelCase , '''a''' ) def __getattr__( self : Any , __lowerCamelCase : Any ) -> str: return getattr(self.stdout , __lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : List[Any] ) -> Any: self.stdout.write(__lowerCamelCase ) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , __lowerCamelCase , 0 , re.M ) ) def UpperCAmelCase_ ( _A=80 , _A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] # deal with critical env vars SCREAMING_SNAKE_CASE__ = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: SCREAMING_SNAKE_CASE__ = os.environ.get(_A , _A ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) SCREAMING_SNAKE_CASE__ = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(_A ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = '''''' while len(_A ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_A ) == 0 or len(_A ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_A ) SCREAMING_SNAKE_CASE__ = '''''' return "\\\n".join(_A ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own SCREAMING_SNAKE_CASE__ = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir SCREAMING_SNAKE_CASE__ = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def UpperCAmelCase_ ( _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 1_0.3_1, 1_0_0.2, 5_5.6_6_6_6, 2_2_2.2_2_2_2_2_2_2_2] )} , ) SCREAMING_SNAKE_CASE__ = subprocess.run(_A , capture_output=_A , text=_A ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams SCREAMING_SNAKE_CASE__ = variation.replace(''' ''' , '''-''' ) with open(Path(_A ) / F'''log.{prefix}.stdout.txt''' , '''w''' ) as f: f.write(result.stdout ) with open(Path(_A ) / F'''log.{prefix}.stderr.txt''' , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE__ = json.load(_A ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def UpperCAmelCase_ ( _A , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = F'''{id}: {variation:<{longest_variation_len}}''' SCREAMING_SNAKE_CASE__ = F'''{preamble}: ''' SCREAMING_SNAKE_CASE__ = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_A ) , desc=_A , leave=_A ): SCREAMING_SNAKE_CASE__ = process_run_single( _A , _A , _A , _A , _A , _A , _A ) SCREAMING_SNAKE_CASE__ = single_run_metrics[target_metric_key] if not math.isnan(_A ): metrics.append(_A ) results.append(_A ) outcome += "✓" else: outcome += "✘" SCREAMING_SNAKE_CASE__ = F'''\33[2K\r{outcome}''' if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} SCREAMING_SNAKE_CASE__ = round(mean_metrics[target_metric_key] , 2 ) SCREAMING_SNAKE_CASE__ = F'''{outcome} {mean_target}''' if len(_A ) > 1: results_str += F''' {tuple(round(_A , 2 ) for x in results )}''' print(_A ) SCREAMING_SNAKE_CASE__ = variation return mean_metrics else: print(_A ) return {variation_key: variation, target_metric_key: nan} def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def UpperCAmelCase_ ( _A , _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = pd.DataFrame(_A ) SCREAMING_SNAKE_CASE__ = '''variation''' SCREAMING_SNAKE_CASE__ = '''diff_%''' SCREAMING_SNAKE_CASE__ = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan SCREAMING_SNAKE_CASE__ = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_A ): # as a fallback, use the minimal value as the sentinel SCREAMING_SNAKE_CASE__ = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_A ): SCREAMING_SNAKE_CASE__ = df.apply( lambda _A : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns SCREAMING_SNAKE_CASE__ = [variation_key, target_metric_key, diff_key, *report_metric_keys] SCREAMING_SNAKE_CASE__ = df.reindex(_A , axis='''columns''' ) # reorder cols # capitalize SCREAMING_SNAKE_CASE__ = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible SCREAMING_SNAKE_CASE__ = df.rename(lambda _A : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) SCREAMING_SNAKE_CASE__ = df.rename(lambda _A : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) SCREAMING_SNAKE_CASE__ = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_A , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_A , floatfmt='''.2f''' )] print('''\n\n'''.join(_A ) ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=_A , type=_A , required=_A , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=_A , type=_A , nargs='''+''' , required=_A , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=_A , type=_A , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=_A , type=_A , required=_A , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=_A , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=_A , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=_A , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=_A , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = args.output_dir Path(_A ).mkdir(exist_ok=_A ) SCREAMING_SNAKE_CASE__ = get_base_command(_A , _A ) # split each dimension into its --foo variations SCREAMING_SNAKE_CASE__ = [list(map(str.strip , re.split(R'''\|''' , _A ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty SCREAMING_SNAKE_CASE__ = list(map(str.strip , map(''' '''.join , itertools.product(*_A ) ) ) ) SCREAMING_SNAKE_CASE__ = max(len(_A ) for x in variations ) # split wanted keys SCREAMING_SNAKE_CASE__ = args.report_metric_keys.split() # capture prints into a log file for convenience SCREAMING_SNAKE_CASE__ = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) SCREAMING_SNAKE_CASE__ = Tee(_A ) print(F'''\n*** Running {len(_A )} benchmarks:''' ) print(F'''Base command: {" ".join(_A )}''' ) SCREAMING_SNAKE_CASE__ = '''variation''' SCREAMING_SNAKE_CASE__ = [] for id, variation in enumerate(tqdm(_A , desc='''Total completion: ''' , leave=_A ) ): SCREAMING_SNAKE_CASE__ = base_cmd + variation.split() results.append( process_run( id + 1 , _A , _A , _A , _A , args.target_metric_key , _A , args.repeat_times , _A , args.verbose , ) ) process_results(_A , args.target_metric_key , _A , args.base_variation , _A ) if __name__ == "__main__": main()
314
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = mock_training_loop_function('''hello''' ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def lowercase_ ( self : str ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : Optional[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
314
1
def UpperCAmelCase_ ( _A = 10**9 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value SCREAMING_SNAKE_CASE__ = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"{solution() = }")
314
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[str] , **__lowerCamelCase : Dict ) -> List[str]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Any , **__lowerCamelCase : List[str] ) -> Any: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[int] , **__lowerCamelCase : int ) -> Dict: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
1
def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) SCREAMING_SNAKE_CASE__ = hex_num[0] == '''-''' if is_negative: SCREAMING_SNAKE_CASE__ = hex_num[1:] try: SCREAMING_SNAKE_CASE__ = int(_A , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) SCREAMING_SNAKE_CASE__ = '''''' while int_num > 0: SCREAMING_SNAKE_CASE__ = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
314
def UpperCAmelCase_ ( _A ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
314
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : Tuple=7 , __lowerCamelCase : int=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : int=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : Optional[Any]=32 , __lowerCamelCase : Any=2 , __lowerCamelCase : Any=4 , __lowerCamelCase : List[Any]=37 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : int=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Dict=3 , __lowerCamelCase : str=4 , __lowerCamelCase : Dict=None , ) -> Tuple: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = 13 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = 99 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 37 SCREAMING_SNAKE_CASE__ = '''gelu''' SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 512 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 0.02 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = None def lowercase_ ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = TFRoFormerModel(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE__ = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = TFRoFormerForCausalLM(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase_ ( self : Any , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TFRoFormerForMaskedLM(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFRoFormerForSequenceClassification(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = TFRoFormerForMultipleChoice(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = TFRoFormerForTokenClassification(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : int ) -> Dict: SCREAMING_SNAKE_CASE__ = TFRoFormerForQuestionAnswering(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ), ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" a = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) a = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) a = False a = False def lowercase_ ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] ) -> Union[str, Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase_ ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = TFRoFormerModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowercase_ ( self : Optional[Any] ) -> str: self.config_tester.run_common_tests() def lowercase_ ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowercase_ ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowercase_ ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowercase_ ( self : Any ) -> Dict: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) SCREAMING_SNAKE_CASE__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase )[0] # TODO Replace vocab size SCREAMING_SNAKE_CASE__ = 5_0000 SCREAMING_SNAKE_CASE__ = [1, 6, vocab_size] self.assertEqual(output.shape , __lowerCamelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. SCREAMING_SNAKE_CASE__ = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" a = 1e-4 def lowercase_ ( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = tf.constant([[4, 10]] ) SCREAMING_SNAKE_CASE__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) SCREAMING_SNAKE_CASE__ = emba(input_ids.shape ) SCREAMING_SNAKE_CASE__ = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , atol=self.tolerance ) def lowercase_ ( self : str ) -> int: SCREAMING_SNAKE_CASE__ = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) SCREAMING_SNAKE_CASE__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) SCREAMING_SNAKE_CASE__ = emba.weight[:3, :5] tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" a = 1e-4 def lowercase_ ( self : Any ) -> int: # 2,12,16,64 SCREAMING_SNAKE_CASE__ = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 SCREAMING_SNAKE_CASE__ = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 SCREAMING_SNAKE_CASE__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) SCREAMING_SNAKE_CASE__ = embed_positions([2, 16, 768] )[None, None, :, :] SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) SCREAMING_SNAKE_CASE__ = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __lowerCamelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __lowerCamelCase , atol=self.tolerance )
314
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _SCREAMING_SNAKE_CASE : Any = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_A )[0] @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_51: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE__ = data.reshape(_A , _A , _A , 1 ) return data @deprecated(_A , '''Please use tf.one_hot on tensors.''' ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = labels_dense.shape[0] SCREAMING_SNAKE_CASE__ = numpy.arange(_A ) * num_classes SCREAMING_SNAKE_CASE__ = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE__ = 1 return labels_one_hot @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A , _A=False , _A=10 ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_49: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(_A ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_A , _A ) return labels class UpperCAmelCase__ : """simple docstring""" @deprecated( __lowerCamelCase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=False , __lowerCamelCase : Dict=False , __lowerCamelCase : List[str]=dtypes.floataa , __lowerCamelCase : List[str]=True , __lowerCamelCase : Any=None , ) -> List[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = random_seed.get_seed(__lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE__ = dtypes.as_dtype(__lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: SCREAMING_SNAKE_CASE__ = 1_0000 SCREAMING_SNAKE_CASE__ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' SCREAMING_SNAKE_CASE__ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE__ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE__ = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE__ = numpy.multiply(__lowerCamelCase , 1.0 / 255.0 ) SCREAMING_SNAKE_CASE__ = images SCREAMING_SNAKE_CASE__ = labels SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 @property def lowercase_ ( self : Tuple ) -> List[str]: return self._images @property def lowercase_ ( self : List[Any] ) -> Tuple: return self._labels @property def lowercase_ ( self : Tuple ) -> Tuple: return self._num_examples @property def lowercase_ ( self : Optional[int] ) -> int: return self._epochs_completed def lowercase_ ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Union[str, Any]=True ) -> str: if fake_data: SCREAMING_SNAKE_CASE__ = [1] * 784 SCREAMING_SNAKE_CASE__ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowerCamelCase )], [fake_label for _ in range(__lowerCamelCase )], ) SCREAMING_SNAKE_CASE__ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perma] SCREAMING_SNAKE_CASE__ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE__ = self._num_examples - start SCREAMING_SNAKE_CASE__ = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE__ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perm] SCREAMING_SNAKE_CASE__ = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = batch_size - rest_num_examples SCREAMING_SNAKE_CASE__ = self._index_in_epoch SCREAMING_SNAKE_CASE__ = self._images[start:end] SCREAMING_SNAKE_CASE__ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE__ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_A , '''Please write your own downloading logic.''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if not gfile.Exists(_A ): gfile.MakeDirs(_A ) SCREAMING_SNAKE_CASE__ = os.path.join(_A , _A ) if not gfile.Exists(_A ): urllib.request.urlretrieve(_A , _A ) # noqa: S310 with gfile.GFile(_A ) as f: SCREAMING_SNAKE_CASE__ = f.size() print('''Successfully downloaded''' , _A , _A , '''bytes.''' ) return filepath @deprecated( _A , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def UpperCAmelCase_ ( _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=50_00 , _A=None , _A=DEFAULT_SOURCE_URL , ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_A , one_hot=_A , dtype=_A , seed=_A ) SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() return _Datasets(train=_A , validation=_A , test=_A ) if not source_url: # empty string check SCREAMING_SNAKE_CASE__ = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE__ = '''train-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''train-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) if not 0 <= validation_size <= len(_A ): SCREAMING_SNAKE_CASE__ = ( '''Validation size should be between 0 and ''' F'''{len(_A )}. Received: {validation_size}.''' ) raise ValueError(_A ) SCREAMING_SNAKE_CASE__ = train_images[:validation_size] SCREAMING_SNAKE_CASE__ = train_labels[:validation_size] SCREAMING_SNAKE_CASE__ = train_images[validation_size:] SCREAMING_SNAKE_CASE__ = train_labels[validation_size:] SCREAMING_SNAKE_CASE__ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) return _Datasets(train=_A , validation=_A , test=_A )
314
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Optional[Any] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : int = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase_ ( _A ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' return max(metric_fn(_A , _A ) for gt in ground_truths ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE__ = pd.read_csv(_A , sep='''\t''' , header=_A ) for answer_list in data[1]: SCREAMING_SNAKE_CASE__ = ast.literal_eval(_A ) answers.append(_A ) else: SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [[reference] for reference in references] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for prediction, ground_truths in zip(_A , _A ): total += 1 em += metric_max_over_ground_truths(_A , _A , _A ) fa += metric_max_over_ground_truths(_A , _A , _A ) SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total SCREAMING_SNAKE_CASE__ = 1_0_0.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = args.k SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for hypo, reference in zip(_A , _A ): SCREAMING_SNAKE_CASE__ = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE__ = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' def strip_title(_A ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[:-1] return title SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.rag.question_encoder(_A ) SCREAMING_SNAKE_CASE__ = question_enc_outputs[0] SCREAMING_SNAKE_CASE__ = rag_model.retriever( _A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE__ = [] for docs in all_docs: SCREAMING_SNAKE_CASE__ = [strip_title(_A ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_A ) ) return provenance_strings def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A ) SCREAMING_SNAKE_CASE__ = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE__ = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.generate( # rag_model overwrites generate _A , attention_mask=_A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.generator_tokenizer.batch_decode(_A , skip_special_tokens=_A ) if args.print_predictions: for q, a in zip(_A , _A ): logger.info('''Q: {} - A: {}'''.format(_A , _A ) ) return answers def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_A , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_A , choices=['''exact''', '''compressed''', '''legacy'''] , type=_A , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_A , type=_A , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_A , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_A , type=_A , required=_A , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_A , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_A , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_A , type=_A , required=_A , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_A , type=_A , required=_A , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_A , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_A , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_A , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_A , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_A , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=_A , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} if args.model_type is None: SCREAMING_SNAKE_CASE__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE__ = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE__ = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE__ = args.index_path else: SCREAMING_SNAKE_CASE__ = BartForConditionalGeneration SCREAMING_SNAKE_CASE__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _A ) SCREAMING_SNAKE_CASE__ = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE__ = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_A , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_A ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagRetriever.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , retriever=_A , **_A ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , **_A ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE__ = [] for line in tqdm(_A ): questions.append(line.strip() ) if len(_A ) == args.eval_batch_size: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE__ = [] if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) ) preds_file.flush() score_fn(_A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = get_args() main(args)
314
1
def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(_A ) SCREAMING_SNAKE_CASE__ = [] for i in range(len(_A ) - pat_len + 1 ): SCREAMING_SNAKE_CASE__ = True for j in range(_A ): if s[i + j] != pattern[j]: SCREAMING_SNAKE_CASE__ = False break if match_found: position.append(_A ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
314
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , __lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=1 / 255 , __lowerCamelCase : Dict=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad def lowercase_ ( self : Tuple ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=False ) -> Optional[int]: if not batched: SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = YolosImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = YolosImageProcessingTester(self ) @property def lowercase_ ( self : Tuple ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) def lowercase_ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Optional[int]: pass def lowercase_ ( self : int ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Tuple ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[str] ) -> Optional[Any]: # Initialize image_processings SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE__ = self.image_processing_class(do_resize=__lowerCamelCase , do_normalize=__lowerCamelCase , do_rescale=__lowerCamelCase ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE__ = image_processing_a.pad(__lowerCamelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = image_processing_a(__lowerCamelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: # prepare image and target SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''image_id''': 3_9769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) ) @slow def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: # prepare image, target and masks_path SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} SCREAMING_SNAKE_CASE__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE__ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) )
314
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE : List[str] = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : int = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "roberta-prelayernorm" def __init__( self : Optional[Any] , __lowerCamelCase : List[Any]=5_0265 , __lowerCamelCase : str=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : List[Any]=1e-12 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]="absolute" , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=None , **__lowerCamelCase : Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = classifier_dropout class UpperCAmelCase__ ( A__ ): """simple docstring""" @property def lowercase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
314
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE : str = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys _SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "lxmert" a = {} def __init__( self : Union[str, Any] , __lowerCamelCase : List[str]=3_0522 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Union[str, Any]=9500 , __lowerCamelCase : Union[str, Any]=1600 , __lowerCamelCase : Any=400 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=512 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Any=1e-12 , __lowerCamelCase : List[Any]=9 , __lowerCamelCase : Any=5 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : List[str]=6.67 , __lowerCamelCase : Dict=True , __lowerCamelCase : Any=True , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Any=True , **__lowerCamelCase : Optional[Any] , ) -> Any: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = num_qa_labels SCREAMING_SNAKE_CASE__ = num_object_labels SCREAMING_SNAKE_CASE__ = num_attr_labels SCREAMING_SNAKE_CASE__ = l_layers SCREAMING_SNAKE_CASE__ = x_layers SCREAMING_SNAKE_CASE__ = r_layers SCREAMING_SNAKE_CASE__ = visual_feat_dim SCREAMING_SNAKE_CASE__ = visual_pos_dim SCREAMING_SNAKE_CASE__ = visual_loss_normalizer SCREAMING_SNAKE_CASE__ = task_matched SCREAMING_SNAKE_CASE__ = task_mask_lm SCREAMING_SNAKE_CASE__ = task_obj_predict SCREAMING_SNAKE_CASE__ = task_qa SCREAMING_SNAKE_CASE__ = visual_obj_loss SCREAMING_SNAKE_CASE__ = visual_attr_loss SCREAMING_SNAKE_CASE__ = visual_feat_loss SCREAMING_SNAKE_CASE__ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__lowerCamelCase )
314
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any]=13 , __lowerCamelCase : Tuple=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=True , __lowerCamelCase : Optional[Any]=99 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Union[str, Any]=5 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Union[str, Any]=37 , __lowerCamelCase : int="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : int=512 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : str=2 , __lowerCamelCase : str=0.02 , __lowerCamelCase : List[str]=4 , ) -> Tuple: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_attention_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_choices def lowercase_ ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = True a = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE__ = FlaxBertModelTester(self ) @slow def lowercase_ ( self : int ) -> Dict: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. SCREAMING_SNAKE_CASE__ = FlaxBertModel.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase )
314
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } _SCREAMING_SNAKE_CASE : Optional[int] = { '''vinai/phobert-base''': 256, '''vinai/phobert-large''': 256, } def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set() SCREAMING_SNAKE_CASE__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ = char SCREAMING_SNAKE_CASE__ = set(_A ) return pairs class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , **__lowerCamelCase : Optional[int] , ) -> Union[str, Any]: super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = merges_file SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 3 self.add_from_file(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE__ = merges_handle.read().split('''\n''' )[:-1] SCREAMING_SNAKE_CASE__ = [tuple(merge.split()[:-1] ) for merge in merges] SCREAMING_SNAKE_CASE__ = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE__ = {} def lowercase_ ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowercase_ ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase_ ( self : Dict ) -> str: return len(self.encoder ) def lowercase_ ( self : List[Any] ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self : Any , __lowerCamelCase : Any ) -> Any: if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) SCREAMING_SNAKE_CASE__ = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE__ = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = bigram SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE__ = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE__ = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''@@ '''.join(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = word[:-4] SCREAMING_SNAKE_CASE__ = word return word def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = re.findall(r'''\S+\n?''' , __lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def lowercase_ ( self : str , __lowerCamelCase : Optional[int] ) -> Optional[int]: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowercase_ ( self : List[Any] , __lowerCamelCase : List[str] ) -> Dict: return self.decoder.get(__lowerCamelCase , self.unk_token ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = ''' '''.join(__lowerCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def lowercase_ ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.merges_file , __lowerCamelCase ) return out_vocab_file, out_merge_file def lowercase_ ( self : int , __lowerCamelCase : Tuple ) -> Optional[Any]: if isinstance(__lowerCamelCase , __lowerCamelCase ): try: with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return SCREAMING_SNAKE_CASE__ = f.readlines() for lineTmp in lines: SCREAMING_SNAKE_CASE__ = lineTmp.strip() SCREAMING_SNAKE_CASE__ = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) SCREAMING_SNAKE_CASE__ = line[:idx] SCREAMING_SNAKE_CASE__ = len(self.encoder )
314
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _SCREAMING_SNAKE_CASE : Optional[Any] = '''\ ''' _SCREAMING_SNAKE_CASE : str = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' _SCREAMING_SNAKE_CASE : Dict = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self : int ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def lowercase_ ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int = 16 , __lowerCamelCase : bool = True , __lowerCamelCase : Any=None ) -> Dict: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": SCREAMING_SNAKE_CASE__ = '''cuda''' else: SCREAMING_SNAKE_CASE__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: SCREAMING_SNAKE_CASE__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__lowerCamelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" SCREAMING_SNAKE_CASE__ = model.config.max_length - 1 else: SCREAMING_SNAKE_CASE__ = model.config.max_length SCREAMING_SNAKE_CASE__ = tokenizer( __lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors='''pt''' , return_attention_mask=__lowerCamelCase , ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = encodings['''input_ids'''] SCREAMING_SNAKE_CASE__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(__lowerCamelCase ) , __lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ = min(start_index + batch_size , len(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = encoded_texts[start_index:end_index] SCREAMING_SNAKE_CASE__ = attn_masks[start_index:end_index] if add_start_token: SCREAMING_SNAKE_CASE__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) SCREAMING_SNAKE_CASE__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__lowerCamelCase ), attn_mask] , dim=1 ) SCREAMING_SNAKE_CASE__ = encoded_batch with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase ).logits SCREAMING_SNAKE_CASE__ = out_logits[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE__ = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE__ = attn_mask[..., 1:].contiguous() SCREAMING_SNAKE_CASE__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , __lowerCamelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__lowerCamelCase )}
314
from functools import reduce _SCREAMING_SNAKE_CASE : Any = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_ ( _A = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _A , _A : str(int(_A ) * int(_A ) ) , n[i : i + 13] ) ) for i in range(len(_A ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
314
1
import os import pytest from transformers.dynamic_module_utils import get_imports _SCREAMING_SNAKE_CASE : Optional[int] = ''' import os ''' _SCREAMING_SNAKE_CASE : Optional[Any] = ''' def foo(): import os return False ''' _SCREAMING_SNAKE_CASE : str = ''' def foo(): def bar(): if True: import os return False return bar() ''' _SCREAMING_SNAKE_CASE : Optional[Any] = ''' import os try: import bar except ImportError: raise ValueError() ''' _SCREAMING_SNAKE_CASE : Optional[Any] = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' _SCREAMING_SNAKE_CASE : int = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' _SCREAMING_SNAKE_CASE : int = ''' import os try: import bar except ImportError as e: raise ValueError() ''' _SCREAMING_SNAKE_CASE : Union[str, Any] = ''' import os try: import bar except: raise ValueError() ''' _SCREAMING_SNAKE_CASE : Union[str, Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' _SCREAMING_SNAKE_CASE : Union[str, Any] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' _SCREAMING_SNAKE_CASE : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , _A ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = os.path.join(_A , '''test_file.py''' ) with open(_A , '''w''' ) as _tmp_file: _tmp_file.write(_A ) SCREAMING_SNAKE_CASE__ = get_imports(_A ) assert parsed_imports == ["os"]
314
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ) -> str: super().__init__() # make sure scheduler can always be converted to DDIM SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self : List[Any] , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: SCREAMING_SNAKE_CASE__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) SCREAMING_SNAKE_CASE__ = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE__ = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , eta=__lowerCamelCase , use_clipped_model_output=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
314
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[Any]=7 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Dict=30 , __lowerCamelCase : int=400 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Any=True , __lowerCamelCase : Any=[0.5, 0.5, 0.5] , __lowerCamelCase : str=[0.5, 0.5, 0.5] , __lowerCamelCase : List[Any]=True , __lowerCamelCase : int=1 / 255 , __lowerCamelCase : Tuple=True , ) -> Any: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad def lowercase_ ( self : List[Any] ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=False ) -> Optional[int]: if not batched: SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = DetaImageProcessingTester(self ) @property def lowercase_ ( self : Dict ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) def lowercase_ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Dict: pass def lowercase_ ( self : Any ) -> Any: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[str] ) -> Union[str, Any]: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Tuple ) -> List[str]: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : Tuple ) -> Optional[Any]: # prepare image and target SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''image_id''': 3_9769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE__ = DetaImageProcessor() SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) ) @slow def lowercase_ ( self : Optional[int] ) -> int: # prepare image, target and masks_path SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} SCREAMING_SNAKE_CASE__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE__ = DetaImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE__ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) )
314
from ...configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE : Optional[Any] = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "tapas" def __init__( self : int , __lowerCamelCase : Optional[Any]=3_0522 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Union[str, Any]=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=1024 , __lowerCamelCase : Union[str, Any]=[3, 256, 256, 2, 256, 256, 10] , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[str]=1e-12 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[Any]=10.0 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=1.0 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=1.0 , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : List[str]="ratio" , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[Any]=64 , __lowerCamelCase : Any=32 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : str , ) -> str: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_sizes SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE__ = positive_label_weight SCREAMING_SNAKE_CASE__ = num_aggregation_labels SCREAMING_SNAKE_CASE__ = aggregation_loss_weight SCREAMING_SNAKE_CASE__ = use_answer_as_supervision SCREAMING_SNAKE_CASE__ = answer_loss_importance SCREAMING_SNAKE_CASE__ = use_normalized_answer_loss SCREAMING_SNAKE_CASE__ = huber_loss_delta SCREAMING_SNAKE_CASE__ = temperature SCREAMING_SNAKE_CASE__ = aggregation_temperature SCREAMING_SNAKE_CASE__ = use_gumbel_for_cells SCREAMING_SNAKE_CASE__ = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE__ = average_approximation_function SCREAMING_SNAKE_CASE__ = cell_selection_preference SCREAMING_SNAKE_CASE__ = answer_loss_cutoff SCREAMING_SNAKE_CASE__ = max_num_rows SCREAMING_SNAKE_CASE__ = max_num_columns SCREAMING_SNAKE_CASE__ = average_logits_per_cell SCREAMING_SNAKE_CASE__ = select_one_column SCREAMING_SNAKE_CASE__ = allow_empty_column_selection SCREAMING_SNAKE_CASE__ = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE__ = reset_position_index_per_cell SCREAMING_SNAKE_CASE__ = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE__ = aggregation_labels SCREAMING_SNAKE_CASE__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = {int(__lowerCamelCase ): v for k, v in aggregation_labels.items()}
314
1
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class UpperCAmelCase__ ( A__ ): """simple docstring""" a = CLIPConfig a = ["CLIPEncoderLayer"] def __init__( self : Optional[Any] , __lowerCamelCase : CLIPConfig ) -> str: super().__init__(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CLIPVisionModelWithProjection(config.vision_config ) SCREAMING_SNAKE_CASE__ = nn.Linear(config.vision_config.projection_dim , 1 ) SCREAMING_SNAKE_CASE__ = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowercase_ ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple=0.5 , __lowerCamelCase : Any=0.5 ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.vision_model(__lowerCamelCase )[0] SCREAMING_SNAKE_CASE__ = self.p_head(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nsfw_detected.flatten() SCREAMING_SNAKE_CASE__ = nsfw_detected > p_threshold SCREAMING_SNAKE_CASE__ = nsfw_detected.tolist() if any(__lowerCamelCase ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(__lowerCamelCase ): if nsfw_detected_: SCREAMING_SNAKE_CASE__ = np.zeros(images[idx].shape ) SCREAMING_SNAKE_CASE__ = self.w_head(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = watermark_detected.flatten() SCREAMING_SNAKE_CASE__ = watermark_detected > w_threshold SCREAMING_SNAKE_CASE__ = watermark_detected.tolist() if any(__lowerCamelCase ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(__lowerCamelCase ): if watermark_detected_: SCREAMING_SNAKE_CASE__ = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
314
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = 0 @slow def lowercase_ ( self : List[str] ) -> Any: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) def lowercase_ ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) # Check that tokenizer_type ≠ model_type SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Tuple ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> int: with pytest.raises(__lowerCamelCase ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Tuple: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowerCamelCase ) else: self.assertEqual(tokenizer.do_lower_case , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : Any ) -> str: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowerCamelCase , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : List[str] ) -> Tuple: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai SCREAMING_SNAKE_CASE__ = TOKENIZER_MAPPING.values() SCREAMING_SNAKE_CASE__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Any: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__lowerCamelCase ) , __lowerCamelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''Hello, world. How are you?''' SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Optional[int]: # Check we can load the tokenizer config of an online model. SCREAMING_SNAKE_CASE__ = get_tokenizer_config('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ = config.pop('''_commit_hash''' , __lowerCamelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowerCamelCase , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) self.assertDictEqual(__lowerCamelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : int ) -> str: try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : List[Any] ) -> List[Any]: try: AutoConfig.register('''custom''' , __lowerCamelCase ) # Can register in two steps AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowerCamelCase , slow_tokenizer_class=__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = BertTokenizerFast.from_pretrained(__lowerCamelCase ) bert_tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizerFast.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : List[str] ) -> str: class UpperCAmelCase__ ( A__ ): """simple docstring""" a = False class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NewTokenizer a = False try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Union[str, Any] ) -> Dict: with self.assertRaisesRegex( __lowerCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ) -> Optional[int]: with self.assertRaisesRegex( __lowerCamelCase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , revision='''aaaaaa''' ) def lowercase_ ( self : Any ) -> Optional[Any]: # Make sure we have cached the tokenizer. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
314
1
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): SCREAMING_SNAKE_CASE__ = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): SCREAMING_SNAKE_CASE__ = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 SCREAMING_SNAKE_CASE__ = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] SCREAMING_SNAKE_CASE__ = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(_A )-1}''' ) if "norm" in key: SCREAMING_SNAKE_CASE__ = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 SCREAMING_SNAKE_CASE__ = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] SCREAMING_SNAKE_CASE__ = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(_A )-1}''' ) if "layer_norm1" in key: SCREAMING_SNAKE_CASE__ = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: SCREAMING_SNAKE_CASE__ = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 SCREAMING_SNAKE_CASE__ = key[key.find('''block''' ) + len('''block''' )] SCREAMING_SNAKE_CASE__ = key.replace(F'''block{idx}''' , F'''block.{int(_A )-1}''' ) if "attn.q" in key: SCREAMING_SNAKE_CASE__ = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: SCREAMING_SNAKE_CASE__ = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: SCREAMING_SNAKE_CASE__ = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: SCREAMING_SNAKE_CASE__ = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: SCREAMING_SNAKE_CASE__ = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: SCREAMING_SNAKE_CASE__ = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: SCREAMING_SNAKE_CASE__ = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) SCREAMING_SNAKE_CASE__ = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 SCREAMING_SNAKE_CASE__ = key[key.find('''linear_c''' ) + len('''linear_c''' )] SCREAMING_SNAKE_CASE__ = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(_A )-1}''' ) if "bot_conv" in key: SCREAMING_SNAKE_CASE__ = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: SCREAMING_SNAKE_CASE__ = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: SCREAMING_SNAKE_CASE__ = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: SCREAMING_SNAKE_CASE__ = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: SCREAMING_SNAKE_CASE__ = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: SCREAMING_SNAKE_CASE__ = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: SCREAMING_SNAKE_CASE__ = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): SCREAMING_SNAKE_CASE__ = key.replace('''module.last_layer_depth''' , '''head.head''' ) SCREAMING_SNAKE_CASE__ = value return new_state_dict def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) SCREAMING_SNAKE_CASE__ = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = kv_weight[ : config.hidden_sizes[i], : ] SCREAMING_SNAKE_CASE__ = kv_bias[: config.hidden_sizes[i]] SCREAMING_SNAKE_CASE__ = kv_weight[ config.hidden_sizes[i] :, : ] SCREAMING_SNAKE_CASE__ = kv_bias[config.hidden_sizes[i] :] def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ = Image.open(requests.get(_A , stream=_A ).raw ) return image @torch.no_grad() def UpperCAmelCase_ ( _A , _A , _A=False , _A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) SCREAMING_SNAKE_CASE__ = GLPNImageProcessor() # prepare image SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=_A , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict SCREAMING_SNAKE_CASE__ = torch.load(_A , map_location=torch.device('''cpu''' ) ) # rename keys SCREAMING_SNAKE_CASE__ = rename_keys(_A ) # key and value matrices need special treatment read_in_k_v(_A , _A ) # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE__ = GLPNForDepthEstimation(_A ) model.load_state_dict(_A ) model.eval() # forward pass SCREAMING_SNAKE_CASE__ = model(_A ) SCREAMING_SNAKE_CASE__ = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: SCREAMING_SNAKE_CASE__ = torch.tensor( [[4.4_1_4_7, 4.0_8_7_3, 4.0_6_7_3], [3.7_8_9_0, 3.2_8_8_1, 3.1_5_2_5], [3.7_6_7_4, 3.5_4_2_3, 3.4_9_1_3]] ) elif "kitti" in model_name: SCREAMING_SNAKE_CASE__ = torch.tensor( [[3.4_2_9_1, 2.7_8_6_5, 2.5_1_5_1], [3.2_8_4_1, 2.7_0_2_1, 2.3_5_0_2], [3.1_1_4_7, 2.4_6_2_5, 2.2_4_8_1]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) SCREAMING_SNAKE_CASE__ = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _A , atol=1e-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_A , ) image_processor.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_A , ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) parser.add_argument( '''--model_name''', default='''glpn-kitti''', type=str, help='''Name of the model in case you\'re pushing to the hub.''', ) _SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
314
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Dict , **__lowerCamelCase : Dict ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[Any] , **__lowerCamelCase : Dict ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : str ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
1
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class UpperCAmelCase__ ( A__ ): """simple docstring""" a = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="<unk>" , __lowerCamelCase : Any="<pad>" , __lowerCamelCase : Optional[int]=125 , __lowerCamelCase : int=None , **__lowerCamelCase : Optional[int] , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE__ = [f'''<extra_id_{i}>''' for i in range(__lowerCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens SCREAMING_SNAKE_CASE__ = len(set(filter(lambda __lowerCamelCase : bool('''extra_id''' in str(__lowerCamelCase ) ) , __lowerCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token super().__init__( eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , extra_ids=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = extra_ids SCREAMING_SNAKE_CASE__ = 2**8 # utf is 8 bits # define special tokens dict SCREAMING_SNAKE_CASE__ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } SCREAMING_SNAKE_CASE__ = len(self.special_tokens_encoder ) SCREAMING_SNAKE_CASE__ = len(__lowerCamelCase ) for i, token in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = self.vocab_size + i - n SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.special_tokens_encoder.items()} @property def lowercase_ ( self : Any ) -> Tuple: return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def lowercase_ ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__lowerCamelCase )) + [1] return ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[int] ) -> List[int]: if len(__lowerCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def lowercase_ ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase_ ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = self._add_eos_if_not_present(__lowerCamelCase ) if token_ids_a is None: return token_ids_a else: SCREAMING_SNAKE_CASE__ = self._add_eos_if_not_present(__lowerCamelCase ) return token_ids_a + token_ids_a def lowercase_ ( self : Tuple , __lowerCamelCase : str ) -> List[str]: SCREAMING_SNAKE_CASE__ = [chr(__lowerCamelCase ) for i in text.encode('''utf-8''' )] return tokens def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Tuple ) -> List[Any]: if token in self.special_tokens_encoder: SCREAMING_SNAKE_CASE__ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: SCREAMING_SNAKE_CASE__ = self.added_tokens_encoder[token] elif len(__lowerCamelCase ) != 1: SCREAMING_SNAKE_CASE__ = self.unk_token_id else: SCREAMING_SNAKE_CASE__ = ord(__lowerCamelCase ) + self._num_special_tokens return token_id def lowercase_ ( self : Optional[int] , __lowerCamelCase : int ) -> List[Any]: if index in self.special_tokens_decoder: SCREAMING_SNAKE_CASE__ = self.special_tokens_decoder[index] else: SCREAMING_SNAKE_CASE__ = chr(index - self._num_special_tokens ) return token def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = B'''''' for token in tokens: if token in self.special_tokens_decoder: SCREAMING_SNAKE_CASE__ = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: SCREAMING_SNAKE_CASE__ = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: SCREAMING_SNAKE_CASE__ = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: SCREAMING_SNAKE_CASE__ = token.encode('''utf-8''' ) else: SCREAMING_SNAKE_CASE__ = bytes([ord(__lowerCamelCase )] ) bstring += tok_string SCREAMING_SNAKE_CASE__ = bstring.decode('''utf-8''' , errors='''ignore''' ) return string def lowercase_ ( self : int , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: return ()
314
from ... import PretrainedConfig _SCREAMING_SNAKE_CASE : Dict = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP a = "nezha" def __init__( self : Optional[Any] , __lowerCamelCase : str=2_1128 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Tuple=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : int=1e-12 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : Any , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = max_relative_position SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = classifier_dropout SCREAMING_SNAKE_CASE__ = use_cache
314
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : int=13 , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : List[str]=False , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Dict=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Tuple=33 , __lowerCamelCase : int=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : int=37 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Any=4 , __lowerCamelCase : List[Any]=None , ) -> int: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Dict ) -> int: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = EsmModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ) -> str: SCREAMING_SNAKE_CASE__ = EsmForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = EsmForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ),( SCREAMING_SNAKE_CASE__ ), ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" a = False a = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) a = () a = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) a = True def lowercase_ ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = EsmModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowercase_ ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ = type self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def lowercase_ ( self : List[str] ) -> Optional[int]: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = EsmModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def lowercase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE__ = EsmEmbeddings(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) SCREAMING_SNAKE_CASE__ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) SCREAMING_SNAKE_CASE__ = create_position_ids_from_input_ids(__lowerCamelCase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowerCamelCase , __lowerCamelCase ) ) ) def lowercase_ ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE__ = EsmEmbeddings(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.empty(2 , 4 , 30 ) SCREAMING_SNAKE_CASE__ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] SCREAMING_SNAKE_CASE__ = torch.as_tensor([expected_single_positions, expected_single_positions] ) SCREAMING_SNAKE_CASE__ = embeddings.create_position_ids_from_inputs_embeds(__lowerCamelCase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowerCamelCase , __lowerCamelCase ) ) ) @unittest.skip('''Esm does not support embedding resizing''' ) def lowercase_ ( self : Optional[Any] ) -> Dict: pass @unittest.skip('''Esm does not support embedding resizing''' ) def lowercase_ ( self : int ) -> List[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase_ ( self : Any ) -> List[str]: pass @require_torch class UpperCAmelCase__ ( A__ ): """simple docstring""" @slow def lowercase_ ( self : Any ) -> Tuple: with torch.no_grad(): SCREAMING_SNAKE_CASE__ = EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase )[0] SCREAMING_SNAKE_CASE__ = 33 SCREAMING_SNAKE_CASE__ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) ) @slow def lowercase_ ( self : Any ) -> Dict: with torch.no_grad(): SCREAMING_SNAKE_CASE__ = EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
314
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_INIT_CONFIGURATION a = RoFormerTokenizer def __init__( self : Tuple , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : str=True , __lowerCamelCase : Tuple="[UNK]" , __lowerCamelCase : int="[SEP]" , __lowerCamelCase : Union[str, Any]="[PAD]" , __lowerCamelCase : Optional[int]="[CLS]" , __lowerCamelCase : int="[MASK]" , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Dict , ) -> Dict: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents ): SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = strip_accents SCREAMING_SNAKE_CASE__ = pre_tok_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = do_lower_case def __getstate__( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return state def __setstate__( self : int , __lowerCamelCase : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = d SCREAMING_SNAKE_CASE__ = self.__dict__['''_tokenizer'''].get_vocab() SCREAMING_SNAKE_CASE__ = PreTokenizer.custom(JiebaPreTokenizer(__lowerCamelCase ) ) def lowercase_ ( self : int , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : int , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=False , **__lowerCamelCase : Tuple , ) -> int: SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return super().save_pretrained(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
314
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _SCREAMING_SNAKE_CASE : Any = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. _SCREAMING_SNAKE_CASE : Tuple = direct_transformers_import(PATH_TO_TRANSFORMERS) _SCREAMING_SNAKE_CASE : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Any = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'''config.{attribute}''' in modeling_source or F'''getattr(config, "{attribute}"''' in modeling_source or F'''getattr(self.config, "{attribute}"''' in modeling_source ): SCREAMING_SNAKE_CASE__ = True # Deal with multi-line cases elif ( re.search( RF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , _A , ) is not None ): SCREAMING_SNAKE_CASE__ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: SCREAMING_SNAKE_CASE__ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files SCREAMING_SNAKE_CASE__ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] SCREAMING_SNAKE_CASE__ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed SCREAMING_SNAKE_CASE__ = True if not attribute_used: SCREAMING_SNAKE_CASE__ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: SCREAMING_SNAKE_CASE__ = True elif attribute in ["tie_word_embeddings"] and default_value is False: SCREAMING_SNAKE_CASE__ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: SCREAMING_SNAKE_CASE__ = True elif attribute.endswith('''_token_id''' ): SCREAMING_SNAKE_CASE__ = True # configuration class specific cases if not case_allowed: SCREAMING_SNAKE_CASE__ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) SCREAMING_SNAKE_CASE__ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = dict(inspect.signature(config_class.__init__ ).parameters ) SCREAMING_SNAKE_CASE__ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] SCREAMING_SNAKE_CASE__ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass SCREAMING_SNAKE_CASE__ = {} if len(config_class.attribute_map ) > 0: SCREAMING_SNAKE_CASE__ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files SCREAMING_SNAKE_CASE__ = inspect.getsourcefile(_A ) SCREAMING_SNAKE_CASE__ = os.path.dirname(_A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. SCREAMING_SNAKE_CASE__ = [os.path.join(_A , _A ) for fn in os.listdir(_A ) if fn.startswith('''modeling_''' )] # Get the source code strings SCREAMING_SNAKE_CASE__ = [] for path in modeling_paths: if os.path.isfile(_A ): with open(_A ) as fp: modeling_sources.append(fp.read() ) SCREAMING_SNAKE_CASE__ = [] for config_param, default_value in zip(_A , _A ): # `attributes` here is all the variant names for `config_param` SCREAMING_SNAKE_CASE__ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_A , _A , _A , _A ): unused_attributes.append(attributes[0] ) return sorted(_A ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) SCREAMING_SNAKE_CASE__ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _A : inspect.isclass(_A ) and issubclass(_A , _A ) and inspect.getmodule(_A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: SCREAMING_SNAKE_CASE__ = check_config_attributes_being_used(_A ) if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = unused_attributes if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F'''{name}: {attributes}\n''' raise ValueError(_A ) if __name__ == "__main__": check_config_attributes()
314
from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "trajectory_transformer" a = ["past_key_values"] a = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , __lowerCamelCase : Any=100 , __lowerCamelCase : str=5 , __lowerCamelCase : int=1 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : List[Any]=249 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : Dict=17 , __lowerCamelCase : str=25 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Dict=128 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=0.0006 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Tuple=1e-12 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Tuple=5_0256 , __lowerCamelCase : Dict=5_0256 , **__lowerCamelCase : str , ) -> Dict: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = action_weight SCREAMING_SNAKE_CASE__ = reward_weight SCREAMING_SNAKE_CASE__ = value_weight SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = block_size SCREAMING_SNAKE_CASE__ = action_dim SCREAMING_SNAKE_CASE__ = observation_dim SCREAMING_SNAKE_CASE__ = transition_dim SCREAMING_SNAKE_CASE__ = learning_rate SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kaiming_initializer_range SCREAMING_SNAKE_CASE__ = use_cache super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
314
1
import math def UpperCAmelCase_ ( _A ): '''simple docstring''' assert isinstance(_A , _A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False SCREAMING_SNAKE_CASE__ = range(3 , int(math.sqrt(_A ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def UpperCAmelCase_ ( _A , _A=1 , **_A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = factor * value SCREAMING_SNAKE_CASE__ = value while not is_prime(_A ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_A ) return value
314
def UpperCAmelCase_ ( _A = 1_00_00_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) SCREAMING_SNAKE_CASE__ = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
314
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class UpperCAmelCase__ ( A__ ): """simple docstring""" a = 42 class UpperCAmelCase__ ( A__ , A__ ): """simple docstring""" @register_to_config def __init__( self : Any , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 20 , __lowerCamelCase : int = 768 , __lowerCamelCase : Dict=77 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : str = "silu" , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "linear" , __lowerCamelCase : Optional[str] = "prd" , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = attention_head_dim SCREAMING_SNAKE_CASE__ = num_attention_heads * attention_head_dim SCREAMING_SNAKE_CASE__ = additional_embeddings SCREAMING_SNAKE_CASE__ = time_embed_dim or inner_dim SCREAMING_SNAKE_CASE__ = embedding_proj_dim or embedding_dim SCREAMING_SNAKE_CASE__ = clip_embed_dim or embedding_dim SCREAMING_SNAKE_CASE__ = Timesteps(__lowerCamelCase , __lowerCamelCase , 0 ) SCREAMING_SNAKE_CASE__ = TimestepEmbedding(__lowerCamelCase , __lowerCamelCase , out_dim=__lowerCamelCase , act_fn=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase ) if embedding_proj_norm_type is None: SCREAMING_SNAKE_CASE__ = None elif embedding_proj_norm_type == "layer": SCREAMING_SNAKE_CASE__ = nn.LayerNorm(__lowerCamelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase ) if encoder_hid_proj_type is None: SCREAMING_SNAKE_CASE__ = None elif encoder_hid_proj_type == "linear": SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowerCamelCase ) ) if added_emb_type == "prd": SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.zeros(1 , 1 , __lowerCamelCase ) ) elif added_emb_type is None: SCREAMING_SNAKE_CASE__ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) SCREAMING_SNAKE_CASE__ = nn.ModuleList( [ BasicTransformerBlock( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dropout=__lowerCamelCase , activation_fn='''gelu''' , attention_bias=__lowerCamelCase , ) for d in range(__lowerCamelCase ) ] ) if norm_in_type == "layer": SCREAMING_SNAKE_CASE__ = nn.LayerNorm(__lowerCamelCase ) elif norm_in_type is None: SCREAMING_SNAKE_CASE__ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) SCREAMING_SNAKE_CASE__ = nn.LayerNorm(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) SCREAMING_SNAKE_CASE__ = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , __lowerCamelCase , persistent=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.zeros(1 , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.zeros(1 , __lowerCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self : Dict ) -> Dict[str, AttentionProcessor]: SCREAMING_SNAKE_CASE__ = {} def fn_recursive_add_processors(__lowerCamelCase : str , __lowerCamelCase : torch.nn.Module , __lowerCamelCase : Dict[str, AttentionProcessor] ): if hasattr(__lowerCamelCase , '''set_processor''' ): SCREAMING_SNAKE_CASE__ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , __lowerCamelCase , __lowerCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return processors def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = len(self.attn_processors.keys() ) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(__lowerCamelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__lowerCamelCase : str , __lowerCamelCase : torch.nn.Module , __lowerCamelCase : Union[str, Any] ): if hasattr(__lowerCamelCase , '''set_processor''' ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): module.set_processor(__lowerCamelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , __lowerCamelCase , __lowerCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: self.set_attn_processor(AttnProcessor() ) def lowercase_ ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Union[torch.Tensor, float, int] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[torch.BoolTensor] = None , __lowerCamelCase : bool = True , ) -> List[Any]: SCREAMING_SNAKE_CASE__ = hidden_states.shape[0] SCREAMING_SNAKE_CASE__ = timestep if not torch.is_tensor(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__lowerCamelCase ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE__ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE__ = timesteps * torch.ones(__lowerCamelCase , dtype=timesteps.dtype , device=timesteps.device ) SCREAMING_SNAKE_CASE__ = self.time_proj(__lowerCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. SCREAMING_SNAKE_CASE__ = timesteps_projected.to(dtype=self.dtype ) SCREAMING_SNAKE_CASE__ = self.time_embedding(__lowerCamelCase ) if self.embedding_proj_norm is not None: SCREAMING_SNAKE_CASE__ = self.embedding_proj_norm(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.embedding_proj(__lowerCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: SCREAMING_SNAKE_CASE__ = self.encoder_hidden_states_proj(__lowerCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) SCREAMING_SNAKE_CASE__ = self.proj_in(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.positional_embedding.to(hidden_states.dtype ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 if encoder_hidden_states is not None: additional_embeds.append(__lowerCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: SCREAMING_SNAKE_CASE__ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: SCREAMING_SNAKE_CASE__ = hidden_states[:, None, :] SCREAMING_SNAKE_CASE__ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: SCREAMING_SNAKE_CASE__ = self.prd_embedding.to(hidden_states.dtype ).expand(__lowerCamelCase , -1 , -1 ) additional_embeds.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.cat( __lowerCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens SCREAMING_SNAKE_CASE__ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: SCREAMING_SNAKE_CASE__ = F.pad( __lowerCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) SCREAMING_SNAKE_CASE__ = hidden_states + positional_embeddings if attention_mask is not None: SCREAMING_SNAKE_CASE__ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 SCREAMING_SNAKE_CASE__ = F.pad(__lowerCamelCase , (0, self.additional_embeddings) , value=0.0 ) SCREAMING_SNAKE_CASE__ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) SCREAMING_SNAKE_CASE__ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: SCREAMING_SNAKE_CASE__ = self.norm_in(__lowerCamelCase ) for block in self.transformer_blocks: SCREAMING_SNAKE_CASE__ = block(__lowerCamelCase , attention_mask=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.norm_out(__lowerCamelCase ) if self.prd_embedding is not None: SCREAMING_SNAKE_CASE__ = hidden_states[:, -1] else: SCREAMING_SNAKE_CASE__ = hidden_states[:, additional_embeddings_len:] SCREAMING_SNAKE_CASE__ = self.proj_to_clip_embeddings(__lowerCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__lowerCamelCase ) def lowercase_ ( self : Dict , __lowerCamelCase : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
314
import numpy as np from PIL import Image def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image _SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = '''▁''' _SCREAMING_SNAKE_CASE : int = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _SCREAMING_SNAKE_CASE : List[str] = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } _SCREAMING_SNAKE_CASE : List[str] = { '''facebook/m2m100_418M''': 1024, } # fmt: off _SCREAMING_SNAKE_CASE : Tuple = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_VOCAB_FILES_MAP a = ["input_ids", "attention_mask"] a = [] a = [] def __init__( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : str="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : int="<pad>" , __lowerCamelCase : Dict="<unk>" , __lowerCamelCase : List[Any]="m2m100" , __lowerCamelCase : Optional[Dict[str, Any]] = None , __lowerCamelCase : List[Any]=8 , **__lowerCamelCase : List[str] , ) -> None: SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE__ = language_codes SCREAMING_SNAKE_CASE__ = FAIRSEQ_LANGUAGE_CODES[language_codes] SCREAMING_SNAKE_CASE__ = {lang_code: f'''__{lang_code}__''' for lang_code in fairseq_language_code} SCREAMING_SNAKE_CASE__ = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__lowerCamelCase ) for lang_code in fairseq_language_code if self.get_lang_token(__lowerCamelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , language_codes=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = load_json(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ = spm_file SCREAMING_SNAKE_CASE__ = load_spm(__lowerCamelCase , self.sp_model_kwargs ) SCREAMING_SNAKE_CASE__ = len(self.encoder ) SCREAMING_SNAKE_CASE__ = { self.get_lang_token(__lowerCamelCase ): self.encoder_size + i for i, lang_code in enumerate(__lowerCamelCase ) } SCREAMING_SNAKE_CASE__ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__lowerCamelCase )} SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.lang_token_to_id.items()} SCREAMING_SNAKE_CASE__ = src_lang if src_lang is not None else '''en''' SCREAMING_SNAKE_CASE__ = tgt_lang SCREAMING_SNAKE_CASE__ = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) SCREAMING_SNAKE_CASE__ = num_madeup_words @property def lowercase_ ( self : int ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowercase_ ( self : List[str] ) -> str: return self._src_lang @src_lang.setter def lowercase_ ( self : int , __lowerCamelCase : str ) -> None: SCREAMING_SNAKE_CASE__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase_ ( self : str , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : Any ) -> List[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__lowerCamelCase , self.encoder[self.unk_token] ) def lowercase_ ( self : str , __lowerCamelCase : int ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__lowerCamelCase , self.unk_token ) def lowercase_ ( self : List[Any] , __lowerCamelCase : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCamelCase ) + token SCREAMING_SNAKE_CASE__ = [] else: current_sub_tokens.append(__lowerCamelCase ) out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCamelCase )) + ([0] * len(__lowerCamelCase )) + suffix_ones def lowercase_ ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self : List[str] , __lowerCamelCase : Dict ) -> None: SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = Path(__lowerCamelCase ) if not save_dir.is_dir(): raise OSError(f'''{save_directory} should be a directory''' ) SCREAMING_SNAKE_CASE__ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (str(__lowerCamelCase ), str(__lowerCamelCase )) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str = "en" , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : str = "ro" , **__lowerCamelCase : Dict , ) -> BatchEncoding: SCREAMING_SNAKE_CASE__ = src_lang SCREAMING_SNAKE_CASE__ = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( self : int , __lowerCamelCase : int , __lowerCamelCase : Optional[str] , __lowerCamelCase : Optional[str] , **__lowerCamelCase : Any ) -> int: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE__ = src_lang SCREAMING_SNAKE_CASE__ = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_lang_id(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tgt_lang_id return inputs def lowercase_ ( self : int ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def lowercase_ ( self : int ) -> List[Any]: self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase_ ( self : List[str] , __lowerCamelCase : str ) -> None: SCREAMING_SNAKE_CASE__ = self.get_lang_token(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.lang_token_to_id[lang_token] SCREAMING_SNAKE_CASE__ = [self.cur_lang_id] SCREAMING_SNAKE_CASE__ = [self.eos_token_id] def lowercase_ ( self : List[Any] , __lowerCamelCase : str ) -> None: SCREAMING_SNAKE_CASE__ = self.get_lang_token(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.lang_token_to_id[lang_token] SCREAMING_SNAKE_CASE__ = [self.cur_lang_id] SCREAMING_SNAKE_CASE__ = [self.eos_token_id] def lowercase_ ( self : int , __lowerCamelCase : str ) -> str: return self.lang_code_to_token[lang] def lowercase_ ( self : int , __lowerCamelCase : str ) -> int: SCREAMING_SNAKE_CASE__ = self.get_lang_token(__lowerCamelCase ) return self.lang_token_to_id[lang_token] def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = sentencepiece.SentencePieceProcessor(**_A ) spm.Load(str(_A ) ) return spm def UpperCAmelCase_ ( _A ): '''simple docstring''' with open(_A , '''r''' ) as f: return json.load(_A ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' with open(_A , '''w''' ) as f: json.dump(_A , _A , indent=2 )
314
from __future__ import annotations def UpperCAmelCase_ ( _A , _A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = word_bank or [] # create a table SCREAMING_SNAKE_CASE__ = len(_A ) + 1 SCREAMING_SNAKE_CASE__ = [] for _ in range(_A ): table.append([] ) # seed value SCREAMING_SNAKE_CASE__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(_A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_A )] == word: SCREAMING_SNAKE_CASE__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_A )]: combination.reverse() return table[len(_A )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
314
1
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ) -> str: super().__init__() # make sure scheduler can always be converted to DDIM SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self : List[Any] , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: SCREAMING_SNAKE_CASE__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) SCREAMING_SNAKE_CASE__ = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE__ = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , eta=__lowerCamelCase , use_clipped_model_output=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
314
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( _A = "AAPL" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' SCREAMING_SNAKE_CASE__ = BeautifulSoup(requests.get(_A ).text , '''html.parser''' ) SCREAMING_SNAKE_CASE__ = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
314
1
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = '''https://openaipublic.azureedge.net/jukebox/models/''' _SCREAMING_SNAKE_CASE : int = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def UpperCAmelCase_ ( _A ): '''simple docstring''' if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: SCREAMING_SNAKE_CASE__ = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: SCREAMING_SNAKE_CASE__ = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: SCREAMING_SNAKE_CASE__ = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: SCREAMING_SNAKE_CASE__ = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: SCREAMING_SNAKE_CASE__ = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: SCREAMING_SNAKE_CASE__ = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: SCREAMING_SNAKE_CASE__ = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: SCREAMING_SNAKE_CASE__ = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} import re SCREAMING_SNAKE_CASE__ = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) SCREAMING_SNAKE_CASE__ = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) SCREAMING_SNAKE_CASE__ = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) SCREAMING_SNAKE_CASE__ = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) SCREAMING_SNAKE_CASE__ = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) SCREAMING_SNAKE_CASE__ = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) SCREAMING_SNAKE_CASE__ = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) SCREAMING_SNAKE_CASE__ = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) SCREAMING_SNAKE_CASE__ = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_A ): SCREAMING_SNAKE_CASE__ = re_encoder_block_conv_in.match(_A ) SCREAMING_SNAKE_CASE__ = regex_match.groups() SCREAMING_SNAKE_CASE__ = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE__ = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' SCREAMING_SNAKE_CASE__ = re_encoder_block_conv_in.sub(_A , _A ) elif re_encoder_block_resnet.fullmatch(_A ): SCREAMING_SNAKE_CASE__ = re_encoder_block_resnet.match(_A ) SCREAMING_SNAKE_CASE__ = regex_match.groups() SCREAMING_SNAKE_CASE__ = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE__ = {'''1''': 1, '''3''': 2}[groups[-2]] SCREAMING_SNAKE_CASE__ = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' SCREAMING_SNAKE_CASE__ = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' SCREAMING_SNAKE_CASE__ = prefix + resnet_block SCREAMING_SNAKE_CASE__ = re_encoder_block_resnet.sub(_A , _A ) elif re_encoder_block_proj_out.fullmatch(_A ): SCREAMING_SNAKE_CASE__ = re_encoder_block_proj_out.match(_A ) SCREAMING_SNAKE_CASE__ = regex_match.groups() SCREAMING_SNAKE_CASE__ = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' SCREAMING_SNAKE_CASE__ = re_encoder_block_proj_out.sub(_A , _A ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_A ): SCREAMING_SNAKE_CASE__ = re_decoder_block_conv_out.match(_A ) SCREAMING_SNAKE_CASE__ = regex_match.groups() SCREAMING_SNAKE_CASE__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE__ = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' SCREAMING_SNAKE_CASE__ = re_decoder_block_conv_out.sub(_A , _A ) elif re_decoder_block_resnet.fullmatch(_A ): SCREAMING_SNAKE_CASE__ = re_decoder_block_resnet.match(_A ) SCREAMING_SNAKE_CASE__ = regex_match.groups() SCREAMING_SNAKE_CASE__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE__ = {'''1''': 1, '''3''': 2}[groups[-2]] SCREAMING_SNAKE_CASE__ = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' SCREAMING_SNAKE_CASE__ = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' SCREAMING_SNAKE_CASE__ = prefix + resnet_block SCREAMING_SNAKE_CASE__ = re_decoder_block_resnet.sub(_A , _A ) elif re_decoder_block_proj_in.fullmatch(_A ): SCREAMING_SNAKE_CASE__ = re_decoder_block_proj_in.match(_A ) SCREAMING_SNAKE_CASE__ = regex_match.groups() SCREAMING_SNAKE_CASE__ = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' SCREAMING_SNAKE_CASE__ = re_decoder_block_proj_in.sub(_A , _A ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_A ): SCREAMING_SNAKE_CASE__ = re_prior_cond_conv_out.match(_A ) SCREAMING_SNAKE_CASE__ = regex_match.groups() SCREAMING_SNAKE_CASE__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE__ = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' SCREAMING_SNAKE_CASE__ = re_prior_cond_conv_out.sub(_A , _A ) elif re_prior_cond_resnet.fullmatch(_A ): SCREAMING_SNAKE_CASE__ = re_prior_cond_resnet.match(_A ) SCREAMING_SNAKE_CASE__ = regex_match.groups() SCREAMING_SNAKE_CASE__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE__ = {'''1''': 1, '''3''': 2}[groups[-2]] SCREAMING_SNAKE_CASE__ = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' SCREAMING_SNAKE_CASE__ = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' SCREAMING_SNAKE_CASE__ = prefix + resnet_block SCREAMING_SNAKE_CASE__ = re_prior_cond_resnet.sub(_A , _A ) elif re_prior_cond_proj_in.fullmatch(_A ): SCREAMING_SNAKE_CASE__ = re_prior_cond_proj_in.match(_A ) SCREAMING_SNAKE_CASE__ = regex_match.groups() SCREAMING_SNAKE_CASE__ = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' SCREAMING_SNAKE_CASE__ = re_prior_cond_proj_in.sub(_A , _A ) # keep original key else: SCREAMING_SNAKE_CASE__ = original_key SCREAMING_SNAKE_CASE__ = replace_key(_A ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: SCREAMING_SNAKE_CASE__ = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) SCREAMING_SNAKE_CASE__ = original_key SCREAMING_SNAKE_CASE__ = original_key SCREAMING_SNAKE_CASE__ = value return new_dict @torch.no_grad() def UpperCAmelCase_ ( _A=None , _A=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): SCREAMING_SNAKE_CASE__ = requests.get(F'''{PREFIX}{file}''' , allow_redirects=_A ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=_A ) open(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , '''wb''' ).write(r.content ) SCREAMING_SNAKE_CASE__ = MODEL_MAPPING[model_name.split('''/''' )[-1]] SCREAMING_SNAKE_CASE__ = JukeboxConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ = JukeboxModel(_A ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = {} for i, dict_name in enumerate(_A ): SCREAMING_SNAKE_CASE__ = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )['''model'''] SCREAMING_SNAKE_CASE__ = {} for k in old_dic.keys(): if k.endswith('''.b''' ): SCREAMING_SNAKE_CASE__ = old_dic[k] elif k.endswith('''.w''' ): SCREAMING_SNAKE_CASE__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: SCREAMING_SNAKE_CASE__ = old_dic[k] else: SCREAMING_SNAKE_CASE__ = old_dic[k] SCREAMING_SNAKE_CASE__ = '''vqvae''' if i == 0 else F'''priors.{3 - i}''' SCREAMING_SNAKE_CASE__ = fix_jukebox_keys(_A , model.state_dict() , _A , _A ) weight_dict.append(_A ) SCREAMING_SNAKE_CASE__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(_A ) for i in range(len(_A ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_A ).mkdir(exist_ok=_A ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(_A , _A ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_A ) return weight_dict if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
314
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A__ ): """simple docstring""" a = (UnCLIPScheduler,) def lowercase_ ( self : List[str] , **__lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCamelCase ) return config def lowercase_ ( self : Dict ) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase_ ( self : str ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Tuple: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase_ ( self : int ) -> str: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5 def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''learned_range''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=__lowerCamelCase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=__lowerCamelCase ) - -0.0010011 < 1e-5 def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def lowercase_ ( self : int ) -> Tuple: pass def lowercase_ ( self : Dict ) -> Union[str, Any]: pass
314
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "t5" a = ["past_key_values"] a = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Union[str, Any] , __lowerCamelCase : str=3_2128 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : List[Any]=2048 , __lowerCamelCase : Optional[Any]=6 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[str]=8 , __lowerCamelCase : int=32 , __lowerCamelCase : Dict=128 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Dict=1e-6 , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : str="relu" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : Union[str, Any]=1 , **__lowerCamelCase : List[Any] , ) -> Dict: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = d_kv SCREAMING_SNAKE_CASE__ = d_ff SCREAMING_SNAKE_CASE__ = num_layers SCREAMING_SNAKE_CASE__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ = relative_attention_max_distance SCREAMING_SNAKE_CASE__ = dropout_rate SCREAMING_SNAKE_CASE__ = layer_norm_epsilon SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = feed_forward_proj SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = self.feed_forward_proj.split('''-''' ) SCREAMING_SNAKE_CASE__ = act_info[-1] SCREAMING_SNAKE_CASE__ = act_info[0] == '''gated''' if len(__lowerCamelCase ) > 1 and act_info[0] != "gated" or len(__lowerCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE__ = '''gelu_new''' super().__init__( pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase , ) class UpperCAmelCase__ ( A__ ): """simple docstring""" @property def lowercase_ ( self : Any ) -> Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE__ = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: SCREAMING_SNAKE_CASE__ = '''past_encoder_sequence + sequence''' SCREAMING_SNAKE_CASE__ = {0: '''batch'''} SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''decoder_sequence'''} SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction='''inputs''' ) return common_inputs @property def lowercase_ ( self : Tuple ) -> int: return 13
314
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = mock_training_loop_function('''hello''' ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def lowercase_ ( self : str ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : Optional[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
314
1
import math from collections.abc import Callable def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = xa SCREAMING_SNAKE_CASE__ = xa while True: if x_n == x_na or function(_A ) == function(_A ): raise ZeroDivisionError('''float division by zero, could not find root''' ) SCREAMING_SNAKE_CASE__ = x_na - ( function(_A ) / ((function(_A ) - function(_A )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na SCREAMING_SNAKE_CASE__ = x_na SCREAMING_SNAKE_CASE__ = x_na def UpperCAmelCase_ ( _A ): '''simple docstring''' return math.pow(_A , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
314
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[str] , **__lowerCamelCase : Dict ) -> List[str]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Any , **__lowerCamelCase : List[str] ) -> Any: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[int] , **__lowerCamelCase : int ) -> Dict: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : Optional[Any] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') _SCREAMING_SNAKE_CASE : Dict = get_tests_dir('''fixtures/vocab.json''') _SCREAMING_SNAKE_CASE : List[str] = get_tests_dir('''fixtures''') class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" a = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def lowercase_ ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = 0 def lowercase_ ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaConfig() SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[str] ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : int ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor(__lowerCamelCase , __lowerCamelCase ) # save in new folder processor.save_pretrained(__lowerCamelCase ) # drop `processor_class` in tokenizer with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.load(__lowerCamelCase ) config_dict.pop('''processor_class''' ) with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''w''' ) as f: f.write(json.dumps(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor(__lowerCamelCase , __lowerCamelCase ) # save in new folder processor.save_pretrained(__lowerCamelCase ) # drop `processor_class` in feature extractor with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.load(__lowerCamelCase ) config_dict.pop('''processor_class''' ) with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''w''' ) as f: f.write(json.dumps(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(__lowerCamelCase ) # copy relevant files copyfile(__lowerCamelCase , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , '''w''' ) as f: f.write('''{}''' ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) SCREAMING_SNAKE_CASE__ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) SCREAMING_SNAKE_CASE__ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Tuple ) -> Optional[int]: try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoProcessor.register(__lowerCamelCase , __lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoProcessor.register(__lowerCamelCase , __lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE__ = CustomFeatureExtractor.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = os.path.join(__lowerCamelCase , '''vocab.txt''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = CustomTokenizer(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomProcessor(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : str ) -> Optional[int]: class UpperCAmelCase__ ( A__ ): """simple docstring""" a = False class UpperCAmelCase__ ( A__ ): """simple docstring""" a = False class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "AutoFeatureExtractor" a = "AutoTokenizer" a = False try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoFeatureExtractor.register(__lowerCamelCase , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoProcessor.register(__lowerCamelCase , __lowerCamelCase ) # If remote code is not set, the default is to use local classes. SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def lowercase_ ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" a = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowercase_ ( cls : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = TOKEN HfFolder.save_token(__lowerCamelCase ) @classmethod def lowercase_ ( cls : str ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def lowercase_ ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ = WavaVecaProcessor.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowerCamelCase , '''test-processor''' ) , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(new_processor.feature_extractor , __lowerCamelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = WavaVecaProcessor.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowerCamelCase , '''test-processor-org''' ) , push_to_hub=__lowerCamelCase , use_auth_token=self._token , organization='''valid_org''' , ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowerCamelCase , getattr(new_processor.feature_extractor , __lowerCamelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowercase_ ( self : int ) -> Any: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE__ = CustomFeatureExtractor.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = os.path.join(__lowerCamelCase , '''vocab.txt''' ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = CustomTokenizer(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomProcessor(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) SCREAMING_SNAKE_CASE__ = Repository(__lowerCamelCase , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(__lowerCamelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__lowerCamelCase , '''tokenizer_config.json''' ) ) as f: SCREAMING_SNAKE_CASE__ = json.load(__lowerCamelCase ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowerCamelCase , '''custom_processing.py''' ) ) ) repo.push_to_hub() SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=__lowerCamelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
314
def UpperCAmelCase_ ( _A ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
314
1
def UpperCAmelCase_ ( _A = 3 , _A = 7 , _A = 1_00_00_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 for current_denominator in range(1 , limit + 1 ): SCREAMING_SNAKE_CASE__ = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: SCREAMING_SNAKE_CASE__ = current_numerator SCREAMING_SNAKE_CASE__ = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
314
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _SCREAMING_SNAKE_CASE : Any = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_A )[0] @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_51: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE__ = data.reshape(_A , _A , _A , 1 ) return data @deprecated(_A , '''Please use tf.one_hot on tensors.''' ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = labels_dense.shape[0] SCREAMING_SNAKE_CASE__ = numpy.arange(_A ) * num_classes SCREAMING_SNAKE_CASE__ = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE__ = 1 return labels_one_hot @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A , _A=False , _A=10 ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_49: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(_A ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_A , _A ) return labels class UpperCAmelCase__ : """simple docstring""" @deprecated( __lowerCamelCase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=False , __lowerCamelCase : Dict=False , __lowerCamelCase : List[str]=dtypes.floataa , __lowerCamelCase : List[str]=True , __lowerCamelCase : Any=None , ) -> List[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = random_seed.get_seed(__lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE__ = dtypes.as_dtype(__lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: SCREAMING_SNAKE_CASE__ = 1_0000 SCREAMING_SNAKE_CASE__ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' SCREAMING_SNAKE_CASE__ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE__ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE__ = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE__ = numpy.multiply(__lowerCamelCase , 1.0 / 255.0 ) SCREAMING_SNAKE_CASE__ = images SCREAMING_SNAKE_CASE__ = labels SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 @property def lowercase_ ( self : Tuple ) -> List[str]: return self._images @property def lowercase_ ( self : List[Any] ) -> Tuple: return self._labels @property def lowercase_ ( self : Tuple ) -> Tuple: return self._num_examples @property def lowercase_ ( self : Optional[int] ) -> int: return self._epochs_completed def lowercase_ ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Union[str, Any]=True ) -> str: if fake_data: SCREAMING_SNAKE_CASE__ = [1] * 784 SCREAMING_SNAKE_CASE__ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowerCamelCase )], [fake_label for _ in range(__lowerCamelCase )], ) SCREAMING_SNAKE_CASE__ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perma] SCREAMING_SNAKE_CASE__ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE__ = self._num_examples - start SCREAMING_SNAKE_CASE__ = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE__ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perm] SCREAMING_SNAKE_CASE__ = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = batch_size - rest_num_examples SCREAMING_SNAKE_CASE__ = self._index_in_epoch SCREAMING_SNAKE_CASE__ = self._images[start:end] SCREAMING_SNAKE_CASE__ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE__ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_A , '''Please write your own downloading logic.''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if not gfile.Exists(_A ): gfile.MakeDirs(_A ) SCREAMING_SNAKE_CASE__ = os.path.join(_A , _A ) if not gfile.Exists(_A ): urllib.request.urlretrieve(_A , _A ) # noqa: S310 with gfile.GFile(_A ) as f: SCREAMING_SNAKE_CASE__ = f.size() print('''Successfully downloaded''' , _A , _A , '''bytes.''' ) return filepath @deprecated( _A , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def UpperCAmelCase_ ( _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=50_00 , _A=None , _A=DEFAULT_SOURCE_URL , ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_A , one_hot=_A , dtype=_A , seed=_A ) SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() return _Datasets(train=_A , validation=_A , test=_A ) if not source_url: # empty string check SCREAMING_SNAKE_CASE__ = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE__ = '''train-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''train-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) if not 0 <= validation_size <= len(_A ): SCREAMING_SNAKE_CASE__ = ( '''Validation size should be between 0 and ''' F'''{len(_A )}. Received: {validation_size}.''' ) raise ValueError(_A ) SCREAMING_SNAKE_CASE__ = train_images[:validation_size] SCREAMING_SNAKE_CASE__ = train_labels[:validation_size] SCREAMING_SNAKE_CASE__ = train_images[validation_size:] SCREAMING_SNAKE_CASE__ = train_labels[validation_size:] SCREAMING_SNAKE_CASE__ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) return _Datasets(train=_A , validation=_A , test=_A )
314
1
from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "trajectory_transformer" a = ["past_key_values"] a = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , __lowerCamelCase : Any=100 , __lowerCamelCase : str=5 , __lowerCamelCase : int=1 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : List[Any]=249 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : Dict=17 , __lowerCamelCase : str=25 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Dict=128 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=0.0006 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Tuple=1e-12 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Tuple=5_0256 , __lowerCamelCase : Dict=5_0256 , **__lowerCamelCase : str , ) -> Dict: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = action_weight SCREAMING_SNAKE_CASE__ = reward_weight SCREAMING_SNAKE_CASE__ = value_weight SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = block_size SCREAMING_SNAKE_CASE__ = action_dim SCREAMING_SNAKE_CASE__ = observation_dim SCREAMING_SNAKE_CASE__ = transition_dim SCREAMING_SNAKE_CASE__ = learning_rate SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kaiming_initializer_range SCREAMING_SNAKE_CASE__ = use_cache super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
314
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase_ ( _A ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' return max(metric_fn(_A , _A ) for gt in ground_truths ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE__ = pd.read_csv(_A , sep='''\t''' , header=_A ) for answer_list in data[1]: SCREAMING_SNAKE_CASE__ = ast.literal_eval(_A ) answers.append(_A ) else: SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [[reference] for reference in references] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for prediction, ground_truths in zip(_A , _A ): total += 1 em += metric_max_over_ground_truths(_A , _A , _A ) fa += metric_max_over_ground_truths(_A , _A , _A ) SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total SCREAMING_SNAKE_CASE__ = 1_0_0.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = args.k SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for hypo, reference in zip(_A , _A ): SCREAMING_SNAKE_CASE__ = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE__ = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' def strip_title(_A ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[:-1] return title SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.rag.question_encoder(_A ) SCREAMING_SNAKE_CASE__ = question_enc_outputs[0] SCREAMING_SNAKE_CASE__ = rag_model.retriever( _A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE__ = [] for docs in all_docs: SCREAMING_SNAKE_CASE__ = [strip_title(_A ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_A ) ) return provenance_strings def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A ) SCREAMING_SNAKE_CASE__ = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE__ = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.generate( # rag_model overwrites generate _A , attention_mask=_A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.generator_tokenizer.batch_decode(_A , skip_special_tokens=_A ) if args.print_predictions: for q, a in zip(_A , _A ): logger.info('''Q: {} - A: {}'''.format(_A , _A ) ) return answers def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_A , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_A , choices=['''exact''', '''compressed''', '''legacy'''] , type=_A , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_A , type=_A , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_A , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_A , type=_A , required=_A , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_A , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_A , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_A , type=_A , required=_A , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_A , type=_A , required=_A , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_A , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_A , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_A , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_A , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_A , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=_A , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} if args.model_type is None: SCREAMING_SNAKE_CASE__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE__ = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE__ = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE__ = args.index_path else: SCREAMING_SNAKE_CASE__ = BartForConditionalGeneration SCREAMING_SNAKE_CASE__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _A ) SCREAMING_SNAKE_CASE__ = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE__ = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_A , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_A ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagRetriever.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , retriever=_A , **_A ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , **_A ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE__ = [] for line in tqdm(_A ): questions.append(line.strip() ) if len(_A ) == args.eval_batch_size: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE__ = [] if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) ) preds_file.flush() score_fn(_A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = get_args() main(args)
314
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys _SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , __lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=1 / 255 , __lowerCamelCase : Dict=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad def lowercase_ ( self : Tuple ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=False ) -> Optional[int]: if not batched: SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = YolosImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = YolosImageProcessingTester(self ) @property def lowercase_ ( self : Tuple ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) def lowercase_ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Optional[int]: pass def lowercase_ ( self : int ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Tuple ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[str] ) -> Optional[Any]: # Initialize image_processings SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE__ = self.image_processing_class(do_resize=__lowerCamelCase , do_normalize=__lowerCamelCase , do_rescale=__lowerCamelCase ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE__ = image_processing_a.pad(__lowerCamelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = image_processing_a(__lowerCamelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: # prepare image and target SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''image_id''': 3_9769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) ) @slow def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: # prepare image, target and masks_path SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} SCREAMING_SNAKE_CASE__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE__ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) )
314
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def UpperCAmelCase_ ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join SCREAMING_SNAKE_CASE__ = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , _A ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def UpperCAmelCase_ ( ): '''simple docstring''' assert _test_patching.open is open SCREAMING_SNAKE_CASE__ = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , _A ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , _A ): pass def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , _A ) is None with patch_submodule(_test_patching , '''len''' , _A ): assert _test_patching.len is mock assert _test_patching.len is len def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''__test_patch_submodule_start_and_stop_mock__''' SCREAMING_SNAKE_CASE__ = patch_submodule(_test_patching , '''open''' , _A ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def UpperCAmelCase_ ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join SCREAMING_SNAKE_CASE__ = '''__test_patch_submodule_successive_join__''' SCREAMING_SNAKE_CASE__ = '''__test_patch_submodule_successive_dirname__''' SCREAMING_SNAKE_CASE__ = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , _A ): with patch_submodule(_test_patching , '''os.rename''' , _A ): with patch_submodule(_test_patching , '''os.path.dirname''' , _A ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , _A ): with patch_submodule(_test_patching , '''os.path.join''' , _A ): with patch_submodule(_test_patching , '''os.path.dirname''' , _A ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , _A ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , _A ): pass
314
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "roberta-prelayernorm" def __init__( self : Optional[Any] , __lowerCamelCase : List[Any]=5_0265 , __lowerCamelCase : str=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : List[Any]=1e-12 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]="absolute" , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=None , **__lowerCamelCase : Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = classifier_dropout class UpperCAmelCase__ ( A__ ): """simple docstring""" @property def lowercase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
314
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = mock_training_loop_function('''hello''' ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def lowercase_ ( self : str ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : Optional[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
314
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "lxmert" a = {} def __init__( self : Union[str, Any] , __lowerCamelCase : List[str]=3_0522 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Union[str, Any]=9500 , __lowerCamelCase : Union[str, Any]=1600 , __lowerCamelCase : Any=400 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=512 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Any=1e-12 , __lowerCamelCase : List[Any]=9 , __lowerCamelCase : Any=5 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : List[str]=6.67 , __lowerCamelCase : Dict=True , __lowerCamelCase : Any=True , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Any=True , **__lowerCamelCase : Optional[Any] , ) -> Any: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = num_qa_labels SCREAMING_SNAKE_CASE__ = num_object_labels SCREAMING_SNAKE_CASE__ = num_attr_labels SCREAMING_SNAKE_CASE__ = l_layers SCREAMING_SNAKE_CASE__ = x_layers SCREAMING_SNAKE_CASE__ = r_layers SCREAMING_SNAKE_CASE__ = visual_feat_dim SCREAMING_SNAKE_CASE__ = visual_pos_dim SCREAMING_SNAKE_CASE__ = visual_loss_normalizer SCREAMING_SNAKE_CASE__ = task_matched SCREAMING_SNAKE_CASE__ = task_mask_lm SCREAMING_SNAKE_CASE__ = task_obj_predict SCREAMING_SNAKE_CASE__ = task_qa SCREAMING_SNAKE_CASE__ = visual_obj_loss SCREAMING_SNAKE_CASE__ = visual_attr_loss SCREAMING_SNAKE_CASE__ = visual_feat_loss SCREAMING_SNAKE_CASE__ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__lowerCamelCase )
314
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _SCREAMING_SNAKE_CASE : Optional[int] = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } _SCREAMING_SNAKE_CASE : Optional[int] = { '''vinai/phobert-base''': 256, '''vinai/phobert-large''': 256, } def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set() SCREAMING_SNAKE_CASE__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ = char SCREAMING_SNAKE_CASE__ = set(_A ) return pairs class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , **__lowerCamelCase : Optional[int] , ) -> Union[str, Any]: super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = merges_file SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 3 self.add_from_file(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE__ = merges_handle.read().split('''\n''' )[:-1] SCREAMING_SNAKE_CASE__ = [tuple(merge.split()[:-1] ) for merge in merges] SCREAMING_SNAKE_CASE__ = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE__ = {} def lowercase_ ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowercase_ ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase_ ( self : Dict ) -> str: return len(self.encoder ) def lowercase_ ( self : List[Any] ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self : Any , __lowerCamelCase : Any ) -> Any: if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) SCREAMING_SNAKE_CASE__ = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE__ = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = bigram SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE__ = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE__ = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''@@ '''.join(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = word[:-4] SCREAMING_SNAKE_CASE__ = word return word def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = re.findall(r'''\S+\n?''' , __lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def lowercase_ ( self : str , __lowerCamelCase : Optional[int] ) -> Optional[int]: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowercase_ ( self : List[Any] , __lowerCamelCase : List[str] ) -> Dict: return self.decoder.get(__lowerCamelCase , self.unk_token ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = ''' '''.join(__lowerCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def lowercase_ ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.merges_file , __lowerCamelCase ) return out_vocab_file, out_merge_file def lowercase_ ( self : int , __lowerCamelCase : Tuple ) -> Optional[Any]: if isinstance(__lowerCamelCase , __lowerCamelCase ): try: with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return SCREAMING_SNAKE_CASE__ = f.readlines() for lineTmp in lines: SCREAMING_SNAKE_CASE__ = lineTmp.strip() SCREAMING_SNAKE_CASE__ = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) SCREAMING_SNAKE_CASE__ = line[:idx] SCREAMING_SNAKE_CASE__ = len(self.encoder )
314
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''glpn''' def __init__( self : List[str] , __UpperCAmelCase : str=3 , __UpperCAmelCase : str=4 , __UpperCAmelCase : Dict=[2, 2, 2, 2] , __UpperCAmelCase : Optional[Any]=[8, 4, 2, 1] , __UpperCAmelCase : Dict=[32, 64, 160, 256] , __UpperCAmelCase : Any=[7, 3, 3, 3] , __UpperCAmelCase : Union[str, Any]=[4, 2, 2, 2] , __UpperCAmelCase : Optional[Any]=[1, 2, 5, 8] , __UpperCAmelCase : int=[4, 4, 4, 4] , __UpperCAmelCase : str="gelu" , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[Any]=1e-6 , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : Union[str, Any]=10 , __UpperCAmelCase : List[Any]=-1 , **__UpperCAmelCase : Optional[int] , ) ->Dict: """simple docstring""" super().__init__(**__UpperCAmelCase ) a = num_channels a = num_encoder_blocks a = depths a = sr_ratios a = hidden_sizes a = patch_sizes a = strides a = mlp_ratios a = num_attention_heads a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = drop_path_rate a = layer_norm_eps a = decoder_hidden_size a = max_depth a = head_in_index
0
from functools import reduce _SCREAMING_SNAKE_CASE : Any = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_ ( _A = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _A , _A : str(int(_A ) * int(_A ) ) , n[i : i + 13] ) ) for i in range(len(_A ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
314
0
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __A ( UpperCamelCase__ ): def __init__(self : int , __a : Distribution , __a : Dict=None , __a : int=None , __a : Any=0 ): UpperCAmelCase_ = 1.0 if scale is None else scale UpperCAmelCase_ = 0.0 if loc is None else loc super().__init__(__a , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__a )] ) @property def _lowercase (self : Union[str, Any] ): return self.base_dist.mean * self.scale + self.loc @property def _lowercase (self : List[Any] ): return self.base_dist.variance * self.scale**2 @property def _lowercase (self : List[Any] ): return self.variance.sqrt() class __A ( nn.Module ): def __init__(self : Optional[int] , __a : int , __a : Dict[str, int] , __a : Callable[..., Tuple[torch.Tensor]] , **__a : List[str] ): super().__init__(**__a ) UpperCAmelCase_ = args_dim UpperCAmelCase_ = nn.ModuleList([nn.Linear(__a , __a ) for dim in args_dim.values()] ) UpperCAmelCase_ = domain_map def _lowercase (self : List[str] , __a : torch.Tensor ): UpperCAmelCase_ = [proj(__a ) for proj in self.proj] return self.domain_map(*__a ) class __A ( nn.Module ): def __init__(self : Union[str, Any] , __a : List[str] ): super().__init__() UpperCAmelCase_ = function def _lowercase (self : Optional[int] , __a : List[str] , *__a : Optional[int] ): return self.function(__a , *__a ) class __A : a__ : type a__ : int a__ : Dict[str, int] def __init__(self : List[Any] , __a : int = 1 ): UpperCAmelCase_ = dim UpperCAmelCase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def _lowercase (self : Any , __a : Any ): if self.dim == 1: return self.distribution_class(*__a ) else: return Independent(self.distribution_class(*__a ) , 1 ) def _lowercase (self : List[str] , __a : Union[str, Any] , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , ): UpperCAmelCase_ = self._base_distribution(__a ) if loc is None and scale is None: return distr else: return AffineTransformed(__a , loc=__a , scale=__a , event_dim=self.event_dim ) @property def _lowercase (self : Any ): return () if self.dim == 1 else (self.dim,) @property def _lowercase (self : Dict ): return len(self.event_shape ) @property def _lowercase (self : Tuple ): return 0.0 def _lowercase (self : List[str] , __a : int ): return ParameterProjection( in_features=__a , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _lowercase (self : Optional[int] , *__a : torch.Tensor ): raise NotImplementedError() @staticmethod def _lowercase (__a : torch.Tensor ): return (x + torch.sqrt(torch.square(__a ) + 4.0 )) / 2.0 class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} a__ : type = StudentT @classmethod def _lowercase (cls : Union[str, Any] , __a : torch.Tensor , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCAmelCase_ = 2.0 + cls.squareplus(__a ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"loc": 1, "scale": 1} a__ : type = Normal @classmethod def _lowercase (cls : Tuple , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __A ( UpperCamelCase__ ): a__ : Dict[str, int] = {"total_count": 1, "logits": 1} a__ : type = NegativeBinomial @classmethod def _lowercase (cls : Optional[Any] , __a : torch.Tensor , __a : torch.Tensor ): UpperCAmelCase_ = cls.squareplus(__a ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _lowercase (self : List[str] , __a : str ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=__a , logits=__a ) else: return Independent(self.distribution_class(total_count=__a , logits=__a ) , 1 ) def _lowercase (self : Optional[Any] , __a : int , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None ): UpperCAmelCase_ , UpperCAmelCase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
1
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ) -> str: super().__init__() # make sure scheduler can always be converted to DDIM SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self : List[Any] , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: SCREAMING_SNAKE_CASE__ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) SCREAMING_SNAKE_CASE__ = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE__ = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , eta=__lowerCamelCase , use_clipped_model_output=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
314
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> float: """simple docstring""" lowercase__ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: lowercase__ = 1 - (matter_density + radiation_density + dark_energy) lowercase__ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase__ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCamelCase : int = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
2
from ...configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE : Optional[Any] = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "tapas" def __init__( self : int , __lowerCamelCase : Optional[Any]=3_0522 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Union[str, Any]=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=1024 , __lowerCamelCase : Union[str, Any]=[3, 256, 256, 2, 256, 256, 10] , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[str]=1e-12 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[Any]=10.0 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=1.0 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=1.0 , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : List[str]="ratio" , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[Any]=64 , __lowerCamelCase : Any=32 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : str , ) -> str: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_sizes SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE__ = positive_label_weight SCREAMING_SNAKE_CASE__ = num_aggregation_labels SCREAMING_SNAKE_CASE__ = aggregation_loss_weight SCREAMING_SNAKE_CASE__ = use_answer_as_supervision SCREAMING_SNAKE_CASE__ = answer_loss_importance SCREAMING_SNAKE_CASE__ = use_normalized_answer_loss SCREAMING_SNAKE_CASE__ = huber_loss_delta SCREAMING_SNAKE_CASE__ = temperature SCREAMING_SNAKE_CASE__ = aggregation_temperature SCREAMING_SNAKE_CASE__ = use_gumbel_for_cells SCREAMING_SNAKE_CASE__ = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE__ = average_approximation_function SCREAMING_SNAKE_CASE__ = cell_selection_preference SCREAMING_SNAKE_CASE__ = answer_loss_cutoff SCREAMING_SNAKE_CASE__ = max_num_rows SCREAMING_SNAKE_CASE__ = max_num_columns SCREAMING_SNAKE_CASE__ = average_logits_per_cell SCREAMING_SNAKE_CASE__ = select_one_column SCREAMING_SNAKE_CASE__ = allow_empty_column_selection SCREAMING_SNAKE_CASE__ = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE__ = reset_position_index_per_cell SCREAMING_SNAKE_CASE__ = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE__ = aggregation_labels SCREAMING_SNAKE_CASE__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = {int(__lowerCamelCase ): v for k, v in aggregation_labels.items()}
314
0
'''simple docstring''' import operator as op lowercase : List[Any] = 'scaler.pt' lowercase : Dict = 'pytorch_model' lowercase : int = 'random_states' lowercase : List[str] = 'optimizer' lowercase : List[Any] = 'scheduler' lowercase : int = 'pytorch_model.bin' lowercase : Optional[int] = 'pytorch_model.bin.index.json' lowercase : str = 'model.safetensors' lowercase : List[str] = 'model.safetensors.index.json' lowercase : Optional[int] = '1.10.2' lowercase : Optional[Any] = 'py38' lowercase : List[Any] = '4.17.0' lowercase : Tuple = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] lowercase : Optional[Any] = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] lowercase : Dict = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] lowercase : int = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] lowercase : str = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] lowercase : int = '2.0.1' lowercase : int = ['pdsh', 'standard', 'openmpi', 'mvapich'] lowercase : Union[str, Any] = ['default', 'reduce-overhead', 'max-autotune'] lowercase : str = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 lowercase : int = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] lowercase : List[Any] = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] lowercase : Optional[Any] = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
3
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = 0 @slow def lowercase_ ( self : List[str] ) -> Any: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) def lowercase_ ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) # Check that tokenizer_type ≠ model_type SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Tuple ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> int: with pytest.raises(__lowerCamelCase ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Tuple: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowerCamelCase ) else: self.assertEqual(tokenizer.do_lower_case , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : Any ) -> str: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowerCamelCase , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : List[str] ) -> Tuple: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai SCREAMING_SNAKE_CASE__ = TOKENIZER_MAPPING.values() SCREAMING_SNAKE_CASE__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Any: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__lowerCamelCase ) , __lowerCamelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''Hello, world. How are you?''' SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Optional[int]: # Check we can load the tokenizer config of an online model. SCREAMING_SNAKE_CASE__ = get_tokenizer_config('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ = config.pop('''_commit_hash''' , __lowerCamelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowerCamelCase , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) self.assertDictEqual(__lowerCamelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : int ) -> str: try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : List[Any] ) -> List[Any]: try: AutoConfig.register('''custom''' , __lowerCamelCase ) # Can register in two steps AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowerCamelCase , slow_tokenizer_class=__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = BertTokenizerFast.from_pretrained(__lowerCamelCase ) bert_tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizerFast.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : List[str] ) -> str: class UpperCAmelCase__ ( A__ ): """simple docstring""" a = False class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NewTokenizer a = False try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Union[str, Any] ) -> Dict: with self.assertRaisesRegex( __lowerCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ) -> Optional[int]: with self.assertRaisesRegex( __lowerCamelCase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , revision='''aaaaaa''' ) def lowercase_ ( self : Any ) -> Optional[Any]: # Make sure we have cached the tokenizer. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
314
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): def __init__( self : str , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any ) -> None: warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
4
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Dict , **__lowerCamelCase : Dict ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[Any] , **__lowerCamelCase : Dict ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : str ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = '''▁''' UpperCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCAmelCase__ = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } UpperCAmelCase__ = { '''xlm-roberta-base''': 512, '''xlm-roberta-large''': 512, '''xlm-roberta-large-finetuned-conll02-dutch''': 512, '''xlm-roberta-large-finetuned-conll02-spanish''': 512, '''xlm-roberta-large-finetuned-conll03-english''': 512, '''xlm-roberta-large-finetuned-conll03-german''': 512, } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] def __init__(self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowercase =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token _lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) _lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) _lowercase =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowercase ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowercase =1 _lowercase =len(self.sp_model ) + self.fairseq_offset _lowercase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ) -> Optional[int]: _lowercase =self.__dict__.copy() _lowercase =None _lowercase =self.sp_model.serialized_model_proto() return state def __setstate__(self , UpperCAmelCase ) -> List[str]: _lowercase =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowercase ={} _lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase =[self.cls_token_id] _lowercase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: _lowercase =[self.sep_token_id] _lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __A (self ) -> List[Any]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def __A (self ) -> Any: _lowercase ={self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A (self , UpperCAmelCase ) -> List[str]: return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def __A (self , UpperCAmelCase ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowercase =self.sp_model.PieceToId(UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __A (self , UpperCAmelCase ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __A (self , UpperCAmelCase ) -> List[Any]: _lowercase =''''''.join(UpperCAmelCase ).replace(UpperCAmelCase , ''' ''' ).strip() return out_string def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowercase =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , '''wb''' ) as fi: _lowercase =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
5
from ... import PretrainedConfig _SCREAMING_SNAKE_CASE : Dict = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP a = "nezha" def __init__( self : Optional[Any] , __lowerCamelCase : str=2_1128 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Tuple=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : int=1e-12 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : Any , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = max_relative_position SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = classifier_dropout SCREAMING_SNAKE_CASE__ = use_cache
314
0
from ..utils import DummyObject, requires_backends class __A( metaclass=a ): snake_case_ = ['''speech'''] def __init__( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' requires_backends(self , ['''speech'''] ) class __A( metaclass=a ): snake_case_ = ['''speech'''] def __init__( self , *_snake_case , **_snake_case ) -> Dict: '''simple docstring''' requires_backends(self , ['''speech'''] )
6
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } _SCREAMING_SNAKE_CASE : List[str] = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_INIT_CONFIGURATION a = RoFormerTokenizer def __init__( self : Tuple , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : str=True , __lowerCamelCase : Tuple="[UNK]" , __lowerCamelCase : int="[SEP]" , __lowerCamelCase : Union[str, Any]="[PAD]" , __lowerCamelCase : Optional[int]="[CLS]" , __lowerCamelCase : int="[MASK]" , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Dict , ) -> Dict: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents ): SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = strip_accents SCREAMING_SNAKE_CASE__ = pre_tok_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = do_lower_case def __getstate__( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return state def __setstate__( self : int , __lowerCamelCase : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = d SCREAMING_SNAKE_CASE__ = self.__dict__['''_tokenizer'''].get_vocab() SCREAMING_SNAKE_CASE__ = PreTokenizer.custom(JiebaPreTokenizer(__lowerCamelCase ) ) def lowercase_ ( self : int , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : int , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=False , **__lowerCamelCase : Tuple , ) -> int: SCREAMING_SNAKE_CASE__ = BertPreTokenizer() return super().save_pretrained(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
314
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = Dict[str, Any] lowercase_ = List[Prediction] @add_end_docstrings(_UpperCAmelCase ) class A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[int],*lowercase_ : Union[str, Any],**lowercase_ : Tuple )-> int: '''simple docstring''' super().__init__(*lowercase_,**lowercase_ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self,'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def snake_case__ ( self : Union[str, Any],**lowercase_ : int )-> Any: '''simple docstring''' A__ = {} if "threshold" in kwargs: A__ = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self : List[str],*lowercase_ : int,**lowercase_ : Union[str, Any] )-> Union[Predictions, List[Prediction]]: '''simple docstring''' return super().__call__(*lowercase_,**lowercase_ ) def snake_case__ ( self : Tuple,lowercase_ : Any )-> List[Any]: '''simple docstring''' A__ = load_image(lowercase_ ) A__ = torch.IntTensor([[image.height, image.width]] ) A__ = self.image_processor(images=[image],return_tensors='pt' ) if self.tokenizer is not None: A__ = self.tokenizer(text=inputs['words'],boxes=inputs['boxes'],return_tensors='pt' ) A__ = target_size return inputs def snake_case__ ( self : Dict,lowercase_ : int )-> str: '''simple docstring''' A__ = model_inputs.pop('target_size' ) A__ = self.model(**lowercase_ ) A__ = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: A__ = model_inputs['bbox'] return model_outputs def snake_case__ ( self : List[str],lowercase_ : Tuple,lowercase_ : Union[str, Any]=0.9 )-> List[str]: '''simple docstring''' A__ = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A__ , A__ = target_size[0].tolist() def unnormalize(lowercase_ : List[str] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1_0_0_0), (height * bbox[1] / 1_0_0_0), (width * bbox[2] / 1_0_0_0), (height * bbox[3] / 1_0_0_0), ] ) ) A__ , A__ = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A__ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A__ = [unnormalize(lowercase_ ) for bbox in model_outputs['bbox'].squeeze(0 )] A__ = ['score', 'label', 'box'] A__ = [dict(zip(lowercase_,lowercase_ ) ) for vals in zip(scores.tolist(),lowercase_,lowercase_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A__ = self.image_processor.post_process_object_detection(lowercase_,lowercase_,lowercase_ ) A__ = raw_annotations[0] A__ = raw_annotation['scores'] A__ = raw_annotation['labels'] A__ = raw_annotation['boxes'] A__ = scores.tolist() A__ = [self.model.config.idalabel[label.item()] for label in labels] A__ = [self._get_bounding_box(lowercase_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A__ = ['score', 'label', 'box'] A__ = [ dict(zip(lowercase_,lowercase_ ) ) for vals in zip(raw_annotation['scores'],raw_annotation['labels'],raw_annotation['boxes'] ) ] return annotation def snake_case__ ( self : Optional[int],lowercase_ : "torch.Tensor" )-> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) A__ , A__ , A__ , A__ = box.int().tolist() A__ = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
7
from ....configuration_utils import PretrainedConfig from ....utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "trajectory_transformer" a = ["past_key_values"] a = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , __lowerCamelCase : Any=100 , __lowerCamelCase : str=5 , __lowerCamelCase : int=1 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : List[Any]=249 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : Dict=17 , __lowerCamelCase : str=25 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Dict=128 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=0.0006 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Tuple=1e-12 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Tuple=5_0256 , __lowerCamelCase : Dict=5_0256 , **__lowerCamelCase : str , ) -> Dict: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = action_weight SCREAMING_SNAKE_CASE__ = reward_weight SCREAMING_SNAKE_CASE__ = value_weight SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = block_size SCREAMING_SNAKE_CASE__ = action_dim SCREAMING_SNAKE_CASE__ = observation_dim SCREAMING_SNAKE_CASE__ = transition_dim SCREAMING_SNAKE_CASE__ = learning_rate SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_embd SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kaiming_initializer_range SCREAMING_SNAKE_CASE__ = use_cache super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
314
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowerCAmelCase_ = None lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowerCAmelCase_ = { '''camembert-base''': 5_12, } lowerCAmelCase_ = '''▁''' class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : Any = CamembertTokenizer def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=None , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Optional[int]="<s>" , _UpperCamelCase : Any="</s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : int="<s>" , _UpperCamelCase : Tuple="<unk>" , _UpperCamelCase : Any="<pad>" , _UpperCamelCase : Any="<mask>" , _UpperCamelCase : Optional[Any]=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCamelCase : Dict , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def snake_case__( self : Optional[int] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__( self : Union[str, Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ): copyfile(self.vocab_file , _UpperCamelCase ) return (out_vocab_file,)
8
def UpperCAmelCase_ ( _A = 1_00_00_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) SCREAMING_SNAKE_CASE__ = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
314
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] =logging.get_logger(__name__) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Any = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) __SCREAMING_SNAKE_CASE : Tuple = DetaConfig( backbone_config=lowercase__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=lowercase__ , with_box_refine=lowercase__ , two_stage=lowercase__ , ) # set labels __SCREAMING_SNAKE_CASE : Tuple = '''huggingface/label-files''' if "o365" in model_name: __SCREAMING_SNAKE_CASE : Dict = 366 __SCREAMING_SNAKE_CASE : Any = '''object365-id2label.json''' else: __SCREAMING_SNAKE_CASE : List[str] = 91 __SCREAMING_SNAKE_CASE : List[Any] = '''coco-detection-id2label.json''' __SCREAMING_SNAKE_CASE : List[str] = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type='''dataset''' ) ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Dict = {int(lowercase__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Optional[Any] = idalabel __SCREAMING_SNAKE_CASE : Optional[int] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : int = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = dct.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = val def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __SCREAMING_SNAKE_CASE : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Any = in_proj_weight[:dim, :] __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[: dim] __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : str = in_proj_bias[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[ -dim :, : ] __SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[-dim :] # fmt: on def _UpperCamelCase ( lowercase__ , lowercase__ ): # transformer decoder self-attention layers __SCREAMING_SNAKE_CASE : Any = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : Any = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Any = in_proj_weight[:hidden_size, :] __SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[:hidden_size] __SCREAMING_SNAKE_CASE : str = in_proj_weight[ hidden_size : hidden_size * 2, : ] __SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] __SCREAMING_SNAKE_CASE : int = in_proj_weight[-hidden_size:, :] __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-hidden_size:] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE : Optional[int] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = get_deta_config(lowercase__ ) # load original state dict if model_name == "deta-swin-large": __SCREAMING_SNAKE_CASE : Union[str, Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": __SCREAMING_SNAKE_CASE : Optional[Any] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(F'''Model name {model_name} not supported''' ) __SCREAMING_SNAKE_CASE : Dict = torch.load(lowercase__ , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(lowercase__ , param.shape ) # rename keys __SCREAMING_SNAKE_CASE : Optional[int] = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_swin_q_k_v(lowercase__ , config.backbone_config ) read_in_decoder_q_k_v(lowercase__ , lowercase__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = val if "input_proj" in key: __SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : str = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = val # finally, create HuggingFace model and load state dict __SCREAMING_SNAKE_CASE : List[str] = DetaForObjectDetection(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(lowercase__ ) # load image processor __SCREAMING_SNAKE_CASE : Union[str, Any] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image __SCREAMING_SNAKE_CASE : Tuple = prepare_img() __SCREAMING_SNAKE_CASE : Optional[Any] = processor(images=lowercase__ , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Optional[int] = encoding['''pixel_values'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = model(pixel_values.to(lowercase__ ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __SCREAMING_SNAKE_CASE : str = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(lowercase__ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(lowercase__ ) , atol=1e-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : List[str] =parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
import numpy as np from PIL import Image def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix SCREAMING_SNAKE_CASE__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.array(_A ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 # compute the shape of the output matrix SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape SCREAMING_SNAKE_CASE__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix SCREAMING_SNAKE_CASE__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image _SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
314
0
def lowerCAmelCase_ ( __a , __a , __a ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__a ) ) def lowerCAmelCase_ ( __a , __a , __a , __a ) -> bool: """simple docstring""" if index == len(__a ): return True # Recursive Step for i in range(__a ): if valid_coloring(graph[index] , __a , __a ): # Color current vertex lowerCamelCase__: int =i # Validate coloring if util_color(__a , __a , __a , index + 1 ): return True # Backtrack lowerCamelCase__: List[Any] =-1 return False def lowerCAmelCase_ ( __a , __a ) -> list[int]: """simple docstring""" lowerCamelCase__: Dict =[-1] * len(__a ) if util_color(__a , __a , __a , 0 ): return colored_vertices return []
10
from __future__ import annotations def UpperCAmelCase_ ( _A , _A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = word_bank or [] # create a table SCREAMING_SNAKE_CASE__ = len(_A ) + 1 SCREAMING_SNAKE_CASE__ = [] for _ in range(_A ): table.append([] ) # seed value SCREAMING_SNAKE_CASE__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(_A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_A )] == word: SCREAMING_SNAKE_CASE__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_A )]: combination.reverse() return table[len(_A )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
314
0
from math import factorial def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float ): if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) _A : Optional[Any] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _A : Dict = float(factorial(UpperCamelCase__ ) ) coefficient /= factorial(UpperCamelCase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
11
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( _A = "AAPL" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' SCREAMING_SNAKE_CASE__ = BeautifulSoup(requests.get(_A ).text , '''html.parser''' ) SCREAMING_SNAKE_CASE__ = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
314
0
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = test_results.split(""" """ ) __lowerCamelCase = 0 __lowerCamelCase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowerCamelCase = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(A__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = None __lowerCamelCase = False for line in failures_short_lines.split("""\n""" ): if re.search(R"""_ \[doctest\]""" , A__ ): __lowerCamelCase = True __lowerCamelCase = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): __lowerCamelCase = line __lowerCamelCase = False return failures class lowerCamelCase__: def __init__( self: int , UpperCamelCase_: str , UpperCamelCase_: Dict ): __lowerCamelCase = title __lowerCamelCase = doc_test_results["""time_spent"""].split(""",""" )[0] __lowerCamelCase = doc_test_results["""success"""] __lowerCamelCase = doc_test_results["""failures"""] __lowerCamelCase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowerCamelCase = doc_test_results @property def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = [self._time_spent] __lowerCamelCase = 0 for time in time_spent: __lowerCamelCase = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(UpperCamelCase_ ) == 1: __lowerCamelCase = [0, 0, time_parts[0]] __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return F'{int(UpperCamelCase_ )}h{int(UpperCamelCase_ )}m{int(UpperCamelCase_ )}s' @property def lowerCAmelCase__ ( self: List[str] ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ): return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[int] ): return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: str ): __lowerCamelCase = 40 __lowerCamelCase = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(UpperCamelCase_ , UpperCamelCase_ )} __lowerCamelCase = """""" for category, failures in category_failures.items(): if len(UpperCamelCase_ ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(UpperCamelCase_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( ): __lowerCamelCase = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(UpperCamelCase_ )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: int ): print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) __lowerCamelCase = F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else """All tests passed.""" __lowerCamelCase = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = """""" for key, value in failures.items(): __lowerCamelCase = value[:2_00] + """ [Truncated]""" if len(UpperCamelCase_ ) > 2_50 else value failures_text += F'*{key}*\n_{value}_\n\n' __lowerCamelCase = job_name __lowerCamelCase = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: __lowerCamelCase = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: List[Any] ): if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) __lowerCamelCase = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) __lowerCamelCase = sorted(self.doc_test_results.items() , key=lambda UpperCamelCase_ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): __lowerCamelCase = F'*Num failures* :{len(job_result["failed"] )} \n' __lowerCamelCase = job_result["""failures"""] __lowerCamelCase = self.get_reply_blocks(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , text=UpperCamelCase_ ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=F'Results for {job}' , blocks=UpperCamelCase_ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = os.environ["""GITHUB_RUN_ID"""] __lowerCamelCase = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' __lowerCamelCase = requests.get(A__ ).json() __lowerCamelCase = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) __lowerCamelCase = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(A__ ): __lowerCamelCase = requests.get(url + f'&page={i + 2}' ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , A__ ) return {} def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = {} if os.path.exists(A__ ): __lowerCamelCase = os.listdir(A__ ) for file in files: try: with open(os.path.join(A__ , A__ ) , encoding="""utf-8""" ) as f: __lowerCamelCase = f.read() except UnicodeDecodeError as e: raise ValueError(f'Could not open {os.path.join(A__ , A__ )}.' ) from e return _artifact def lowerCamelCase__ ( ): '''simple docstring''' class lowerCamelCase__: def __init__( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = name __lowerCamelCase = [] def __str__( self: List[str] ): return self.name def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str ): self.paths.append({"""name""": self.name, """path""": path} ) __lowerCamelCase = {} __lowerCamelCase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowerCamelCase = directory if artifact_name not in _available_artifacts: __lowerCamelCase = Artifact(A__ ) _available_artifacts[artifact_name].add_path(A__ ) return _available_artifacts if __name__ == "__main__": UpperCAmelCase_ = get_job_links() UpperCAmelCase_ = retrieve_available_artifacts() UpperCAmelCase_ = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' UpperCAmelCase_ = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job UpperCAmelCase_ = github_actions_job_links.get('run_doctests') UpperCAmelCase_ = available_artifacts['doc_tests_gpu_test_reports'].paths[0] UpperCAmelCase_ = retrieve_artifact(artifact_path['name']) if "stats" in artifact: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = handle_test_results(artifact['stats']) UpperCAmelCase_ = failed UpperCAmelCase_ = success UpperCAmelCase_ = time_spent[1:-1] + ', ' UpperCAmelCase_ = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): UpperCAmelCase_ = line.replace('FAILED ', '') UpperCAmelCase_ = line.split()[0].replace('\n', '') if "::" in line: UpperCAmelCase_ , UpperCAmelCase_ = line.split('::') else: UpperCAmelCase_ , UpperCAmelCase_ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): UpperCAmelCase_ = docs[file_regex] doc_test_results[category]["failed"].append(test) UpperCAmelCase_ = all_failures[test] if test in all_failures else 'N/A' UpperCAmelCase_ = failure break UpperCAmelCase_ = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
12
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( A__ ): """simple docstring""" a = (UnCLIPScheduler,) def lowercase_ ( self : List[str] , **__lowerCamelCase : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCamelCase ) return config def lowercase_ ( self : Dict ) -> Any: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase_ ( self : str ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Tuple: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase_ ( self : int ) -> str: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''fixed_small_log''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5 def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(variance_type='''learned_range''' ) SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=__lowerCamelCase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=__lowerCamelCase ) - -0.0010011 < 1e-5 def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) for i, t in enumerate(__lowerCamelCase ): # 1. predict noise residual SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , __lowerCamelCase ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def lowercase_ ( self : int ) -> Tuple: pass def lowercase_ ( self : Dict ) -> Union[str, Any]: pass
314
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __lowercase : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=13 , lowerCAmelCase__ : List[str]=32 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : List[Any]=16 , lowerCAmelCase__ : int=[1, 2, 1] , lowerCAmelCase__ : Optional[Any]=[2, 2, 4] , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : str=2.0 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : List[str]=1E-5 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Any=8 , lowerCAmelCase__ : List[str]=["stage1", "stage2", "stage3"] , lowerCAmelCase__ : Optional[int]=[1, 2, 3] , ): SCREAMING_SNAKE_CASE_: Optional[int] = parent SCREAMING_SNAKE_CASE_: Optional[int] = batch_size SCREAMING_SNAKE_CASE_: List[str] = image_size SCREAMING_SNAKE_CASE_: int = patch_size SCREAMING_SNAKE_CASE_: Optional[int] = num_channels SCREAMING_SNAKE_CASE_: Optional[Any] = embed_dim SCREAMING_SNAKE_CASE_: List[str] = depths SCREAMING_SNAKE_CASE_: Any = num_heads SCREAMING_SNAKE_CASE_: Any = window_size SCREAMING_SNAKE_CASE_: str = mlp_ratio SCREAMING_SNAKE_CASE_: Optional[Any] = qkv_bias SCREAMING_SNAKE_CASE_: Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_: Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Optional[int] = drop_path_rate SCREAMING_SNAKE_CASE_: Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_: int = use_absolute_embeddings SCREAMING_SNAKE_CASE_: Tuple = patch_norm SCREAMING_SNAKE_CASE_: Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE_: Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_: Optional[Any] = is_training SCREAMING_SNAKE_CASE_: List[str] = scope SCREAMING_SNAKE_CASE_: List[Any] = use_labels SCREAMING_SNAKE_CASE_: Any = type_sequence_label_size SCREAMING_SNAKE_CASE_: int = encoder_stride SCREAMING_SNAKE_CASE_: List[str] = out_features SCREAMING_SNAKE_CASE_: Optional[Any] = out_indices def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE_: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any]): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Optional[int] = MaskFormerSwinModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Tuple = model(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) SCREAMING_SNAKE_CASE_: Dict = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = MaskFormerSwinBackbone(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[Any] = model(lowerCAmelCase__) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [13, 16, 16, 16]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [16, 32, 64]) # verify ValueError with self.parent.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[Any] = ["stem"] SCREAMING_SNAKE_CASE_: Dict = MaskFormerSwinBackbone(config=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_: int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _UpperCAmelCase : List[Any] = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} _UpperCAmelCase : str = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Optional[int] = False def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Dict = MaskFormerSwinModelTester(self) SCREAMING_SNAKE_CASE_: Tuple = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" )) def _SCREAMING_SNAKE_CASE ( self : List[str]): pass def _SCREAMING_SNAKE_CASE ( self : Any): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__) @unittest.skip("Swin does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : Optional[int]): pass @unittest.skip("Swin does not support feedforward chunking") def _SCREAMING_SNAKE_CASE ( self : List[str]): pass def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: List[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def _SCREAMING_SNAKE_CASE ( self : List[Any]): pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def _SCREAMING_SNAKE_CASE ( self : Tuple): pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: List[Any] = outputs.hidden_states SCREAMING_SNAKE_CASE_: int = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) # Swin has a different seq_length SCREAMING_SNAKE_CASE_: Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_: str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: int = 3 SCREAMING_SNAKE_CASE_: Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE_: Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_: Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE_: Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def _SCREAMING_SNAKE_CASE ( self : Any): pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _SCREAMING_SNAKE_CASE ( self : str): pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _SCREAMING_SNAKE_CASE ( self : Any): pass def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = 0 return t def check_equivalence(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]={}): with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[Any] = model(**lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model(**lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__).to_tuple() def recursive_check(lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int]): if isinstance(lowerCAmelCase__ , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase__ , lowerCAmelCase__): recursive_check(lowerCAmelCase__ , lowerCAmelCase__) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(lowerCAmelCase__ , lowerCAmelCase__) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowerCAmelCase__) , set_nan_tensor_to_zero(lowerCAmelCase__) , atol=1E-5) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(lowerCAmelCase__).any()} and `inf`: {torch.isinf(lowerCAmelCase__)}. Dict has" F" `nan`: {torch.isnan(lowerCAmelCase__).any()} and `inf`: {torch.isinf(lowerCAmelCase__)}." ) , ) recursive_check(lowerCAmelCase__ , lowerCAmelCase__) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {"output_hidden_states": True}) SCREAMING_SNAKE_CASE_: List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {"output_hidden_states": True}) @require_torch class __lowercase ( unittest.TestCase , UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () _UpperCAmelCase : str = MaskFormerSwinConfig def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: List[Any] = MaskFormerSwinModelTester(self) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Any = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[str] = backbone_class(lowerCAmelCase__) backbone.to(lowerCAmelCase__) backbone.eval() SCREAMING_SNAKE_CASE_: Any = backbone(**lowerCAmelCase__) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowerCAmelCase__) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True SCREAMING_SNAKE_CASE_: str = backbone(**lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE_: Dict = backbone(**lowerCAmelCase__ , output_attentions=lowerCAmelCase__) self.assertIsNotNone(outputs.attentions)
13
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCAmelCase_ ( ): '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] ) -> Tuple: return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = mock_training_loop_function('''hello''' ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def lowercase_ ( self : str ) -> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : Optional[Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Dict ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def lowercase_ ( self : List[Any] ) -> List[str]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def lowercase_ ( self : Union[str, Any] ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Tuple ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def lowercase_ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
314
0
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration _lowerCamelCase : Tuple = pytest.mark.integration _lowerCamelCase : Union[str, Any] = {"""comet"""} _lowerCamelCase : Tuple = importlib.util.find_spec("""fairseq""") is not None _lowerCamelCase : Union[str, Any] = {"""code_eval"""} _lowerCamelCase : List[str] = os.name == """nt""" _lowerCamelCase : Union[str, Any] = {"""bertscore""", """frugalscore""", """perplexity"""} _lowerCamelCase : Union[str, Any] = importlib.util.find_spec("""transformers""") is not None def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" @wraps(lowercase_ ) def wrapper(self , lowercase_ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self , lowercase_ ) return wrapper def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" @wraps(lowercase_ ) def wrapper(self , lowercase_ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self , lowercase_ ) return wrapper def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" @wraps(lowercase_ ) def wrapper(self , lowercase_ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self , lowercase_ ) return wrapper def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" A__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @local class UpperCamelCase_ ( parameterized.TestCase ): '''simple docstring''' UpperCAmelCase__ = {} UpperCAmelCase__ = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''') @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''') def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Tuple) ->Any: '''simple docstring''' A__ = '''[...]''' A__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , UpperCAmelCase__)).module_path) A__ = datasets.load.import_main_class(metric_module.__name__ , dataset=UpperCAmelCase__) # check parameters A__ = inspect.signature(metric._compute).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values())) # no **kwargs # run doctest with self.patch_intensive_calls(UpperCAmelCase__ , metric_module.__name__): with self.use_local_metrics(): try: A__ = doctest.testmod(UpperCAmelCase__ , verbose=UpperCAmelCase__ , raise_on_error=UpperCAmelCase__) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @slow def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : List[str]) ->List[Any]: '''simple docstring''' A__ = '''[...]''' A__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , UpperCAmelCase__)).module_path) # run doctest with self.use_local_metrics(): A__ = doctest.testmod(UpperCAmelCase__ , verbose=UpperCAmelCase__ , raise_on_error=UpperCAmelCase__) self.assertEqual(results.failed , 0) self.assertGreater(results.attempted , 1) @contextmanager def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any]) ->int: '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCAmelCase__): yield else: yield @contextmanager def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' def load_local_metric(UpperCAmelCase__ : Dict , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : int): return load_metric(os.path.join('''metrics''' , UpperCAmelCase__) , *UpperCAmelCase__ , **UpperCAmelCase__) with patch('''datasets.load_metric''') as mock_load_metric: A__ = load_local_metric yield @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : List[str]) ->Optional[Any]: '''simple docstring''' def wrapper(UpperCAmelCase__ : Dict): A__ = contextmanager(UpperCAmelCase__) A__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : str) ->Any: '''simple docstring''' assert len(input_dict['''input_ids''']) == 2 return np.array([1.03, 1.04]) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: A__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: """simple docstring""" import torch def bert_cos_score_idf(lowercase_ , lowercase_ , *lowercase_ , **lowercase_ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowercase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: A__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: """simple docstring""" def load_from_checkpoint(lowercase_ ): class UpperCamelCase_ : '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : int) ->Tuple: '''simple docstring''' assert len(UpperCAmelCase__) == 2 A__ = [0.19, 0.92] return scores, sum(UpperCAmelCase__) / len(UpperCAmelCase__) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: A__ = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: A__ = load_from_checkpoint yield def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) A__ = '''ERROR''' A__ = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(lowercase_ , match=re.escape(lowercase_ ) ): metric.compute(predictions=[] , references=[] , scheme=lowercase_ )
14
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[str] , **__lowerCamelCase : Dict ) -> List[str]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Any , **__lowerCamelCase : List[str] ) -> Any: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[int] , **__lowerCamelCase : int ) -> Dict: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Dict ) -> Dict: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = AlignProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"question": Value("string" ), "context": Value("string" )} ) snake_case_ = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def UpperCamelCase_ ( self : Dict ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
15
def UpperCAmelCase_ ( _A ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
314
0
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Tuple[int, int]: def constraint_to_multiple_of(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0 , __lowerCamelCase=None ): lowercase__ : Dict = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowercase__ : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: lowercase__ : int = math.ceil(val / multiple ) * multiple return x lowercase__ : Dict = (output_size, output_size) if isinstance(__lowerCamelCase , __lowerCamelCase ) else output_size lowercase__ , lowercase__ : str = get_image_size(__lowerCamelCase ) lowercase__ , lowercase__ : str = output_size # determine new height and width lowercase__ : str = output_height / input_height lowercase__ : Any = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowercase__ : List[Any] = scale_width else: # fit height lowercase__ : int = scale_height lowercase__ : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__lowerCamelCase ) lowercase__ : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=__lowerCamelCase ) return (new_height, new_width) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = ["pixel_values"] def __init__( self : List[str] ,_snake_case : bool = True ,_snake_case : Dict[str, int] = None ,_snake_case : PILImageResampling = PILImageResampling.BILINEAR ,_snake_case : bool = False ,_snake_case : int = 1 ,_snake_case : bool = True ,_snake_case : Union[int, float] = 1 / 255 ,_snake_case : bool = True ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,**_snake_case : Tuple ,) -> None: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : List[str] = size if size is not None else {'''height''': 384, '''width''': 384} lowercase__ : Dict = get_size_dict(_snake_case ) lowercase__ : str = do_resize lowercase__ : List[Any] = size lowercase__ : Optional[Any] = keep_aspect_ratio lowercase__ : Optional[int] = ensure_multiple_of lowercase__ : Dict = resample lowercase__ : Union[str, Any] = do_rescale lowercase__ : Optional[int] = rescale_factor lowercase__ : Any = do_normalize lowercase__ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : np.ndarray ,_snake_case : Dict[str, int] ,_snake_case : bool = False ,_snake_case : int = 1 ,_snake_case : PILImageResampling = PILImageResampling.BICUBIC ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : Optional[int] ,) -> np.ndarray: """simple docstring""" lowercase__ : str = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowercase__ : List[str] = get_resize_output_image_size( _snake_case ,output_size=(size['''height'''], size['''width''']) ,keep_aspect_ratio=_snake_case ,multiple=_snake_case ,) return resize(_snake_case ,size=_snake_case ,resample=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : np.ndarray ,_snake_case : Union[int, float] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : int ,) -> Tuple: """simple docstring""" return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : np.ndarray ,_snake_case : Union[float, List[float]] ,_snake_case : Union[float, List[float]] ,_snake_case : Optional[Union[str, ChannelDimension]] = None ,**_snake_case : List[Any] ,) -> np.ndarray: """simple docstring""" return normalize(_snake_case ,mean=_snake_case ,std=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Any ,_snake_case : ImageInput ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : bool = None ,_snake_case : int = None ,_snake_case : PILImageResampling = None ,_snake_case : bool = None ,_snake_case : float = None ,_snake_case : bool = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[float, List[float]]] = None ,_snake_case : Optional[Union[str, TensorType]] = None ,_snake_case : ChannelDimension = ChannelDimension.FIRST ,**_snake_case : int ,) -> PIL.Image.Image: """simple docstring""" lowercase__ : Tuple = do_resize if do_resize is not None else self.do_resize lowercase__ : Dict = size if size is not None else self.size lowercase__ : Dict = get_size_dict(_snake_case ) lowercase__ : Union[str, Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowercase__ : Optional[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowercase__ : List[Any] = resample if resample is not None else self.resample lowercase__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase__ : Tuple = image_std if image_std is not None else self.image_std lowercase__ : int = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase__ : Tuple = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowercase__ : Dict = [self.resize(image=_snake_case ,size=_snake_case ,resample=_snake_case ) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_normalize: lowercase__ : str = [self.normalize(image=_snake_case ,mean=_snake_case ,std=_snake_case ) for image in images] lowercase__ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case ) def UpperCAmelCase ( self : Dict ,_snake_case : str ,_snake_case : List[Tuple] = None ) -> Tuple: """simple docstring""" lowercase__ : List[str] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_snake_case ) != len(_snake_case ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_snake_case ): lowercase__ : Optional[int] = target_sizes.numpy() lowercase__ : Tuple = [] for idx in range(len(_snake_case ) ): lowercase__ : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='''bilinear''' ,align_corners=_snake_case ) lowercase__ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_snake_case ) else: lowercase__ : Optional[Any] = logits.argmax(dim=1 ) lowercase__ : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
16
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _SCREAMING_SNAKE_CASE : Optional[int] = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _SCREAMING_SNAKE_CASE : Any = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_A )[0] @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_51: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE__ = data.reshape(_A , _A , _A , 1 ) return data @deprecated(_A , '''Please use tf.one_hot on tensors.''' ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = labels_dense.shape[0] SCREAMING_SNAKE_CASE__ = numpy.arange(_A ) * num_classes SCREAMING_SNAKE_CASE__ = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE__ = 1 return labels_one_hot @deprecated(_A , '''Please use tf.data to implement this functionality.''' ) def UpperCAmelCase_ ( _A , _A=False , _A=10 ): '''simple docstring''' print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_A ) as bytestream: SCREAMING_SNAKE_CASE__ = _readaa(_A ) if magic != 20_49: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) SCREAMING_SNAKE_CASE__ = _readaa(_A ) SCREAMING_SNAKE_CASE__ = bytestream.read(_A ) SCREAMING_SNAKE_CASE__ = numpy.frombuffer(_A , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_A , _A ) return labels class UpperCAmelCase__ : """simple docstring""" @deprecated( __lowerCamelCase , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=False , __lowerCamelCase : Dict=False , __lowerCamelCase : List[str]=dtypes.floataa , __lowerCamelCase : List[str]=True , __lowerCamelCase : Any=None , ) -> List[Any]: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = random_seed.get_seed(__lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE__ = dtypes.as_dtype(__lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: SCREAMING_SNAKE_CASE__ = 1_0000 SCREAMING_SNAKE_CASE__ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' SCREAMING_SNAKE_CASE__ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE__ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE__ = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE__ = numpy.multiply(__lowerCamelCase , 1.0 / 255.0 ) SCREAMING_SNAKE_CASE__ = images SCREAMING_SNAKE_CASE__ = labels SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 @property def lowercase_ ( self : Tuple ) -> List[str]: return self._images @property def lowercase_ ( self : List[Any] ) -> Tuple: return self._labels @property def lowercase_ ( self : Tuple ) -> Tuple: return self._num_examples @property def lowercase_ ( self : Optional[int] ) -> int: return self._epochs_completed def lowercase_ ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Union[str, Any]=True ) -> str: if fake_data: SCREAMING_SNAKE_CASE__ = [1] * 784 SCREAMING_SNAKE_CASE__ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__lowerCamelCase )], [fake_label for _ in range(__lowerCamelCase )], ) SCREAMING_SNAKE_CASE__ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perma] SCREAMING_SNAKE_CASE__ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE__ = self._num_examples - start SCREAMING_SNAKE_CASE__ = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE__ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE__ = numpy.arange(self._num_examples ) numpy.random.shuffle(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.images[perm] SCREAMING_SNAKE_CASE__ = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = batch_size - rest_num_examples SCREAMING_SNAKE_CASE__ = self._index_in_epoch SCREAMING_SNAKE_CASE__ = self._images[start:end] SCREAMING_SNAKE_CASE__ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE__ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_A , '''Please write your own downloading logic.''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if not gfile.Exists(_A ): gfile.MakeDirs(_A ) SCREAMING_SNAKE_CASE__ = os.path.join(_A , _A ) if not gfile.Exists(_A ): urllib.request.urlretrieve(_A , _A ) # noqa: S310 with gfile.GFile(_A ) as f: SCREAMING_SNAKE_CASE__ = f.size() print('''Successfully downloaded''' , _A , _A , '''bytes.''' ) return filepath @deprecated( _A , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def UpperCAmelCase_ ( _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=50_00 , _A=None , _A=DEFAULT_SOURCE_URL , ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_A , one_hot=_A , dtype=_A , seed=_A ) SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() SCREAMING_SNAKE_CASE__ = fake() return _Datasets(train=_A , validation=_A , test=_A ) if not source_url: # empty string check SCREAMING_SNAKE_CASE__ = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE__ = '''train-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''train-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE__ = '''t10k-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + train_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_images_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_images(_A ) SCREAMING_SNAKE_CASE__ = _maybe_download( _A , _A , source_url + test_labels_file ) with gfile.Open(_A , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = _extract_labels(_A , one_hot=_A ) if not 0 <= validation_size <= len(_A ): SCREAMING_SNAKE_CASE__ = ( '''Validation size should be between 0 and ''' F'''{len(_A )}. Received: {validation_size}.''' ) raise ValueError(_A ) SCREAMING_SNAKE_CASE__ = train_images[:validation_size] SCREAMING_SNAKE_CASE__ = train_labels[:validation_size] SCREAMING_SNAKE_CASE__ = train_images[validation_size:] SCREAMING_SNAKE_CASE__ = train_labels[validation_size:] SCREAMING_SNAKE_CASE__ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) SCREAMING_SNAKE_CASE__ = _DataSet(_A , _A , **_A ) return _Datasets(train=_A , validation=_A , test=_A )
314
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : List[Any] = "fnet" def __init__( self : Dict, UpperCAmelCase__ : Any=3_2_0_0_0, UpperCAmelCase__ : Any=7_6_8, UpperCAmelCase__ : Tuple=1_2, UpperCAmelCase__ : str=3_0_7_2, UpperCAmelCase__ : Optional[Any]="gelu_new", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : Optional[int]=5_1_2, UpperCAmelCase__ : List[str]=4, UpperCAmelCase__ : int=0.02, UpperCAmelCase__ : str=1E-12, UpperCAmelCase__ : int=False, UpperCAmelCase__ : Any=5_1_2, UpperCAmelCase__ : str=3, UpperCAmelCase__ : Union[str, Any]=1, UpperCAmelCase__ : Optional[Any]=2, **UpperCAmelCase__ : Any, ): super().__init__(pad_token_id=UpperCAmelCase__, bos_token_id=UpperCAmelCase__, eos_token_id=UpperCAmelCase__, **UpperCAmelCase__ ) __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = initializer_range __lowercase = type_vocab_size __lowercase = layer_norm_eps __lowercase = use_tpu_fourier_optimizations __lowercase = tpu_short_seq_length
17
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase_ ( _A ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' return max(metric_fn(_A , _A ) for gt in ground_truths ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE__ = pd.read_csv(_A , sep='''\t''' , header=_A ) for answer_list in data[1]: SCREAMING_SNAKE_CASE__ = ast.literal_eval(_A ) answers.append(_A ) else: SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [[reference] for reference in references] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for prediction, ground_truths in zip(_A , _A ): total += 1 em += metric_max_over_ground_truths(_A , _A , _A ) fa += metric_max_over_ground_truths(_A , _A , _A ) SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total SCREAMING_SNAKE_CASE__ = 1_0_0.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = args.k SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for hypo, reference in zip(_A , _A ): SCREAMING_SNAKE_CASE__ = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE__ = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' def strip_title(_A ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[:-1] return title SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.rag.question_encoder(_A ) SCREAMING_SNAKE_CASE__ = question_enc_outputs[0] SCREAMING_SNAKE_CASE__ = rag_model.retriever( _A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE__ = [] for docs in all_docs: SCREAMING_SNAKE_CASE__ = [strip_title(_A ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_A ) ) return provenance_strings def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A ) SCREAMING_SNAKE_CASE__ = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE__ = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.generate( # rag_model overwrites generate _A , attention_mask=_A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.generator_tokenizer.batch_decode(_A , skip_special_tokens=_A ) if args.print_predictions: for q, a in zip(_A , _A ): logger.info('''Q: {} - A: {}'''.format(_A , _A ) ) return answers def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_A , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_A , choices=['''exact''', '''compressed''', '''legacy'''] , type=_A , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_A , type=_A , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_A , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_A , type=_A , required=_A , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_A , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_A , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_A , type=_A , required=_A , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_A , type=_A , required=_A , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_A , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_A , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_A , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_A , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_A , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=_A , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} if args.model_type is None: SCREAMING_SNAKE_CASE__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE__ = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE__ = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE__ = args.index_path else: SCREAMING_SNAKE_CASE__ = BartForConditionalGeneration SCREAMING_SNAKE_CASE__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _A ) SCREAMING_SNAKE_CASE__ = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE__ = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_A , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_A ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagRetriever.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , retriever=_A , **_A ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , **_A ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE__ = [] for line in tqdm(_A ): questions.append(line.strip() ) if len(_A ) == args.eval_batch_size: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE__ = [] if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) ) preds_file.flush() score_fn(_A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = get_args() main(args)
314
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Optional[int] = logging.get_logger(__name__) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.load(lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights SCREAMING_SNAKE_CASE_ : int = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: SCREAMING_SNAKE_CASE_ : Optional[int] = sd.pop(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = sd[key] # We split QKV in separate Q,K,V SCREAMING_SNAKE_CASE_ : Optional[int] = key.replace(".qkv_proj." , ".q_proj." ) SCREAMING_SNAKE_CASE_ : Dict = key.replace(".qkv_proj." , ".k_proj." ) SCREAMING_SNAKE_CASE_ : Optional[Any] = key.replace(".qkv_proj." , ".v_proj." ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = torch.split(lowerCAmelCase , depth // 3 , dim=0 ) SCREAMING_SNAKE_CASE_ : int = q SCREAMING_SNAKE_CASE_ : List[Any] = k SCREAMING_SNAKE_CASE_ : Optional[int] = v del sd[key] return sd @torch.no_grad() def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int]=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = load_checkpoint(lowerCAmelCase ) if config is not None: SCREAMING_SNAKE_CASE_ : List[str] = OPTConfig.from_pretrained(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = OPTConfig() SCREAMING_SNAKE_CASE_ : Dict = OPTModel(lowerCAmelCase ).half().eval() model.load_state_dict(lowerCAmelCase ) # Check results Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') __lowerCamelCase : Optional[int] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
18
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Any=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , __lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=1 / 255 , __lowerCamelCase : Dict=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = do_pad def lowercase_ ( self : Tuple ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int=False ) -> Optional[int]: if not batched: SCREAMING_SNAKE_CASE__ = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.size else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE__ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE__ = [] for image in image_inputs: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE__ = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = YolosImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = YolosImageProcessingTester(self ) @property def lowercase_ ( self : Tuple ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase , '''size''' ) ) def lowercase_ ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Optional[int]: pass def lowercase_ ( self : int ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Tuple ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(__lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[str] ) -> Optional[Any]: # Initialize image_processings SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE__ = self.image_processing_class(do_resize=__lowerCamelCase , do_normalize=__lowerCamelCase , do_rescale=__lowerCamelCase ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors SCREAMING_SNAKE_CASE__ = image_processing_a.pad(__lowerCamelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ = image_processing_a(__lowerCamelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: # prepare image and target SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''image_id''': 3_9769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) ) @slow def lowercase_ ( self : Optional[Any] ) -> Optional[Any]: # prepare image, target and masks_path SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read() ) SCREAMING_SNAKE_CASE__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} SCREAMING_SNAKE_CASE__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE__ = YolosImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE__ = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE__ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE__ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCamelCase ) )
314
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __A =logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase ) -> Optional[Any]: lowerCamelCase_ = question_encoder lowerCamelCase_ = generator lowerCamelCase_ = self.question_encoder def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Optional[int]: if os.path.isfile(lowercase ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(lowercase , exist_ok=lowercase ) lowerCamelCase_ = os.path.join(lowercase , "question_encoder_tokenizer" ) lowerCamelCase_ = os.path.join(lowercase , "generator_tokenizer" ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def SCREAMING_SNAKE_CASE_( cls , lowercase , **lowercase ) -> Union[str, Any]: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer lowerCamelCase_ = kwargs.pop("config" , lowercase ) if config is None: lowerCamelCase_ = RagConfig.from_pretrained(lowercase ) lowerCamelCase_ = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) lowerCamelCase_ = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ) -> Dict: return self.current_tokenizer(*lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> List[Any]: return self.generator.batch_decode(*lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> List[str]: return self.generator.decode(*lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.question_encoder def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.generator def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ) -> BatchEncoding: warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , lowercase , ) if max_length is None: lowerCamelCase_ = self.current_tokenizer.model_max_length lowerCamelCase_ = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: lowerCamelCase_ = self.current_tokenizer.model_max_length lowerCamelCase_ = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) lowerCamelCase_ = labels["input_ids"] return model_inputs
19
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "roberta-prelayernorm" def __init__( self : Optional[Any] , __lowerCamelCase : List[Any]=5_0265 , __lowerCamelCase : str=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : List[Any]=1e-12 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]="absolute" , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=None , **__lowerCamelCase : Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = classifier_dropout class UpperCAmelCase__ ( A__ ): """simple docstring""" @property def lowercase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
314
0
from math import pi, sqrt def _snake_case( SCREAMING_SNAKE_CASE__ ) -> float: if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(SCREAMING_SNAKE_CASE__ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(SCREAMING_SNAKE_CASE__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _snake_case( ) -> None: assert gamma(0.5 ) == sqrt(SCREAMING_SNAKE_CASE__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() lowercase : Optional[Any] = 1.0 while num: lowercase : Dict = float(input("""Gamma of: """)) print(F'''gamma({num}) = {gamma(num)}''') print("""\nEnter 0 to exit...""")
20
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "lxmert" a = {} def __init__( self : Union[str, Any] , __lowerCamelCase : List[str]=3_0522 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Union[str, Any]=9500 , __lowerCamelCase : Union[str, Any]=1600 , __lowerCamelCase : Any=400 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=512 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Any=1e-12 , __lowerCamelCase : List[Any]=9 , __lowerCamelCase : Any=5 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : List[str]=6.67 , __lowerCamelCase : Dict=True , __lowerCamelCase : Any=True , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Any=True , **__lowerCamelCase : Optional[Any] , ) -> Any: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = num_qa_labels SCREAMING_SNAKE_CASE__ = num_object_labels SCREAMING_SNAKE_CASE__ = num_attr_labels SCREAMING_SNAKE_CASE__ = l_layers SCREAMING_SNAKE_CASE__ = x_layers SCREAMING_SNAKE_CASE__ = r_layers SCREAMING_SNAKE_CASE__ = visual_feat_dim SCREAMING_SNAKE_CASE__ = visual_pos_dim SCREAMING_SNAKE_CASE__ = visual_loss_normalizer SCREAMING_SNAKE_CASE__ = task_matched SCREAMING_SNAKE_CASE__ = task_mask_lm SCREAMING_SNAKE_CASE__ = task_obj_predict SCREAMING_SNAKE_CASE__ = task_qa SCREAMING_SNAKE_CASE__ = visual_obj_loss SCREAMING_SNAKE_CASE__ = visual_attr_loss SCREAMING_SNAKE_CASE__ = visual_feat_loss SCREAMING_SNAKE_CASE__ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**__lowerCamelCase )
314
0