code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase: str = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Union[str, Any] = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowercase: List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
227
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __a ( unittest.TestCase ): _a : List[str] = JukeboxTokenizer _a : List[Any] = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
329
0
'''simple docstring''' import string def a__ ( lowercase : str ) -> None: """simple docstring""" for key in range(len(string.ascii_uppercase ) ): _UpperCamelCase = '''''' for symbol in message: if symbol in string.ascii_uppercase: _UpperCamelCase = string.ascii_uppercase.find(a__ ) _UpperCamelCase = num - key if num < 0: _UpperCamelCase = num + len(string.ascii_uppercase ) _UpperCamelCase = translated + string.ascii_uppercase[num] else: _UpperCamelCase = translated + symbol print(F"""Decryption using Key #{key}: {translated}""" ) def a__ ( ) -> None: """simple docstring""" _UpperCamelCase = input('''Encrypted message: ''' ) _UpperCamelCase = message.upper() decrypt(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
324
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase__ :Optional[int] = logging.getLogger(__name__) def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=a__ , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=a__ , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=a__ , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=a__ , default=1_0_0_0 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=a__ , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=a__ , type=a__ , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=a__ , default=5_1_2 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=a__ , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) _UpperCAmelCase = parser.parse_args() return args def lowerCAmelCase__ ( a__: Union[str, Any] ) -> List[Any]: '''simple docstring''' def fn(a__: str ): return tokenizer(examples['text'] ) return fn def lowerCAmelCase__ ( a__: List[str] ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for i in range(len(tokenized_data['input_ids'] ) ): _UpperCAmelCase = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } _UpperCAmelCase = tf.train.Features(feature=a__ ) _UpperCAmelCase = tf.train.Example(features=a__ ) _UpperCAmelCase = example.SerializeToString() records.append(a__ ) return records def lowerCAmelCase__ ( a__: Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: _UpperCAmelCase = min(len(a__ ) , args.limit ) _UpperCAmelCase = dataset.select(range(a__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _UpperCAmelCase = os.path.join(args.output_dir , args.split ) if not os.path.exists(a__ ): os.makedirs(a__ ) else: _UpperCAmelCase = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. _UpperCAmelCase = tokenize_function(a__ ) _UpperCAmelCase = dataset.map(a__ , batched=a__ , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(a__: Optional[int] ): # Concatenate all texts. _UpperCAmelCase = {k: sum(examples[k] , [] ) for k in examples.keys()} _UpperCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _UpperCAmelCase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _UpperCAmelCase = { k: [t[i : i + args.max_length] for i in range(0 , a__ , args.max_length )] for k, t in concatenated_examples.items() } return result _UpperCAmelCase = dataset_tokenized.map(a__ , batched=a__ , batch_size=1_0_0_0 , num_proc=4 ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 for shard in range(0 , len(a__ ) , args.shard_size ): _UpperCAmelCase = grouped_dataset[shard : shard + args.shard_size] _UpperCAmelCase = len(dataset_snapshot['input_ids'] ) _UpperCAmelCase = os.path.join(a__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) _UpperCAmelCase = get_serialized_examples(a__ ) with tf.io.TFRecordWriter(a__ ) as out_file: for i in range(len(a__ ) ): _UpperCAmelCase = serialized_examples[i] out_file.write(a__ ) print('Wrote file {} containing {} records'.format(a__ , a__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , 'w' ) as f: print(F'''Total {args.split} records: {total_records}''' , file=a__ ) if __name__ == "__main__": lowerCAmelCase__ :str = parse_args() main(args)
329
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( a , a=False , a=False , a=False ) -> str: __A : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _SCREAMING_SNAKE_CASE ( a , a ) -> List[Any]: for i in range(config.num_hidden_layers ): __A : Tuple = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __A : Dict = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) __A : List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __A : int = in_proj_weight[ : config.hidden_size, : ] __A : Tuple = in_proj_bias[: config.hidden_size] __A : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __A : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __A : Any = in_proj_weight[ -config.hidden_size :, : ] __A : Optional[Any] = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE ( a ) -> Optional[int]: __A : Dict = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a__ , a__ ) def _SCREAMING_SNAKE_CASE ( a , a , a ) -> Dict: __A : str = dct.pop(a__ ) __A : Optional[int] = val @torch.no_grad() def _SCREAMING_SNAKE_CASE ( a , a ) -> List[Any]: __A : Tuple = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=a__ ) __A : Optional[int] = False __A : List[str] = False __A : Union[str, Any] = False __A : List[str] = False if "vqa" in checkpoint_url: __A : Tuple = True __A : str = 31_29 __A : Dict = 'huggingface/label-files' __A : List[Any] = 'vqa2-id2label.json' __A : List[str] = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) __A : List[str] = {int(a__ ): v for k, v in idalabel.items()} __A : Tuple = idalabel __A : str = {v: k for k, v in idalabel.items()} __A : List[Any] = ViltForQuestionAnswering(a__ ) elif "nlvr" in checkpoint_url: __A : Union[str, Any] = True __A : Dict = 2 __A : str = {0: 'False', 1: 'True'} __A : Any = {v: k for k, v in config.idalabel.items()} __A : int = 3 __A : List[str] = ViltForImagesAndTextClassification(a__ ) elif "irtr" in checkpoint_url: __A : Optional[int] = True __A : Optional[Any] = ViltForImageAndTextRetrieval(a__ ) elif "mlm_itm" in checkpoint_url: __A : Union[str, Any] = True __A : str = ViltForMaskedLM(a__ ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys __A : Tuple = torch.hub.load_state_dict_from_url(a__ , map_location='cpu' )['state_dict'] __A : Tuple = create_rename_keys(a__ , a__ , a__ , a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ ) if mlm_model or irtr_model: __A : Optional[Any] = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(a__ , a__ ) # load state dict into HuggingFace model model.eval() if mlm_model: __A , __A : Tuple = model.load_state_dict(a__ , strict=a__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a__ ) # Define processor __A : Any = ViltImageProcessor(size=3_84 ) __A : Optional[Any] = BertTokenizer.from_pretrained('bert-base-uncased' ) __A : Any = ViltProcessor(a__ , a__ ) # Forward pass on example inputs (image + text) if nlvr_model: __A : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a__ ).raw ) __A : Any = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=a__ ).raw ) __A : List[str] = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) __A : Union[str, Any] = processor(a__ , a__ , return_tensors='pt' ) __A : Union[str, Any] = processor(a__ , a__ , return_tensors='pt' ) __A : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: __A : List[str] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=a__ ).raw ) if mlm_model: __A : Dict = 'a bunch of [MASK] laying on a [MASK].' else: __A : int = 'How many cats are there?' __A : Dict = processor(a__ , a__ , return_tensors='pt' ) __A : Union[str, Any] = model(**a__ ) # Verify outputs if mlm_model: __A : Optional[int] = torch.Size([1, 11, 3_05_22] ) __A : Dict = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a__ , atol=1e-4 ) # verify masked token prediction equals "cats" __A : Union[str, Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: __A : Any = torch.Size([1, 31_29] ) __A : List[str] = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a__ , atol=1e-4 ) # verify vqa prediction equals "2" __A : Tuple = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: __A : List[str] = torch.Size([1, 2] ) __A : List[str] = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a__ ).mkdir(exist_ok=a__ ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
280
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any]=1_0 ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for _ in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCAmelCase__ ( a__: List[str] , a__: Any=1_0 ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = [] for step in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(a__ , 'schedule.bin' ) torch.save(scheduler.state_dict() , a__ ) _UpperCAmelCase = torch.load(a__ ) scheduler.load_state_dict(a__ ) return lrs @require_torch class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = Adafactor( params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=_SCREAMING_SNAKE_CASE , scale_parameter=_SCREAMING_SNAKE_CASE , warmup_init=_SCREAMING_SNAKE_CASE , ) for _ in range(1000 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __a ( unittest.TestCase ): _a : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None _a : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _a : List[Any] = 10 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE , msg=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _UpperCAmelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _UpperCAmelCase , _UpperCAmelCase = data _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _UpperCAmelCase = unwrap_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListAlmostEqual( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule _UpperCAmelCase = unwrap_and_save_reload_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , msg=f'''failed for {scheduler_func} in save and reload''' ) class __a : def __init__( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = fn def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @classmethod def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
329
0
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = '''https://openaipublic.azureedge.net/jukebox/models/''' _UpperCamelCase = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def a_ ( _lowerCAmelCase ) -> Dict: if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: __lowerCamelCase : Optional[Any] = key.replace('.model.1.bias' ,'.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: __lowerCamelCase : str = key.replace('.model.1.weight' ,'.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: __lowerCamelCase : List[str] = key.replace('.model.3.bias' ,'.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: __lowerCamelCase : Dict = key.replace('.model.3.weight' ,'.conv1d_2.weight' ) if "conditioner_blocks.0." in key: __lowerCamelCase : str = key.replace('conditioner_blocks.0' ,'conditioner_blocks' ) if "prime_prior" in key: __lowerCamelCase : Union[str, Any] = key.replace('prime_prior' ,'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __lowerCamelCase : Tuple = key.replace('.emb.' ,'.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' ,'.codebook' ) if "y_emb." in key: return key.replace('y_emb.' ,'metadata_embedding.' ) if "x_emb.emb." in key: __lowerCamelCase : Union[str, Any] = key.replace('0.x_emb.emb' ,'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' ,'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' ,'.layer_norm' ) if "_ln" in key: return key.replace('_ln' ,'_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' ,'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' ,'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' ,'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' ,'embed_tokens' ) return key def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Union[str, Any]: __lowerCamelCase : int = {} import re __lowerCamelCase : List[Any] = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) __lowerCamelCase : Optional[Any] = re.compile( r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __lowerCamelCase : Optional[int] = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) __lowerCamelCase : str = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) __lowerCamelCase : Tuple = re.compile( r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __lowerCamelCase : Optional[Any] = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) __lowerCamelCase : Optional[Any] = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) __lowerCamelCase : Any = re.compile( r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __lowerCamelCase : str = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(a__ ): __lowerCamelCase : Optional[int] = re_encoder_block_conv_in.match(a__ ) __lowerCamelCase : Optional[int] = regex_match.groups() __lowerCamelCase : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) __lowerCamelCase : str = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' __lowerCamelCase : Dict = re_encoder_block_conv_in.sub(a__ ,a__ ) elif re_encoder_block_resnet.fullmatch(a__ ): __lowerCamelCase : Dict = re_encoder_block_resnet.match(a__ ) __lowerCamelCase : int = regex_match.groups() __lowerCamelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) __lowerCamelCase : List[Any] = {'1': 1, '3': 2}[groups[-2]] __lowerCamelCase : Dict = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' __lowerCamelCase : Tuple = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __lowerCamelCase : Optional[int] = prefix + resnet_block __lowerCamelCase : str = re_encoder_block_resnet.sub(a__ ,a__ ) elif re_encoder_block_proj_out.fullmatch(a__ ): __lowerCamelCase : str = re_encoder_block_proj_out.match(a__ ) __lowerCamelCase : Optional[int] = regex_match.groups() __lowerCamelCase : List[Any] = F'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' __lowerCamelCase : Union[str, Any] = re_encoder_block_proj_out.sub(a__ ,a__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(a__ ): __lowerCamelCase : Union[str, Any] = re_decoder_block_conv_out.match(a__ ) __lowerCamelCase : Optional[int] = regex_match.groups() __lowerCamelCase : int = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowerCamelCase : Optional[int] = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' __lowerCamelCase : Any = re_decoder_block_conv_out.sub(a__ ,a__ ) elif re_decoder_block_resnet.fullmatch(a__ ): __lowerCamelCase : Union[str, Any] = re_decoder_block_resnet.match(a__ ) __lowerCamelCase : List[str] = regex_match.groups() __lowerCamelCase : str = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowerCamelCase : Optional[Any] = {'1': 1, '3': 2}[groups[-2]] __lowerCamelCase : Dict = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' __lowerCamelCase : Optional[int] = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __lowerCamelCase : Tuple = prefix + resnet_block __lowerCamelCase : int = re_decoder_block_resnet.sub(a__ ,a__ ) elif re_decoder_block_proj_in.fullmatch(a__ ): __lowerCamelCase : Optional[Any] = re_decoder_block_proj_in.match(a__ ) __lowerCamelCase : Dict = regex_match.groups() __lowerCamelCase : Dict = F'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' __lowerCamelCase : str = re_decoder_block_proj_in.sub(a__ ,a__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(a__ ): __lowerCamelCase : Optional[Any] = re_prior_cond_conv_out.match(a__ ) __lowerCamelCase : Optional[int] = regex_match.groups() __lowerCamelCase : Optional[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowerCamelCase : str = F'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' __lowerCamelCase : Optional[int] = re_prior_cond_conv_out.sub(a__ ,a__ ) elif re_prior_cond_resnet.fullmatch(a__ ): __lowerCamelCase : Union[str, Any] = re_prior_cond_resnet.match(a__ ) __lowerCamelCase : str = regex_match.groups() __lowerCamelCase : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowerCamelCase : str = {'1': 1, '3': 2}[groups[-2]] __lowerCamelCase : Optional[Any] = F'conditioner_blocks.upsampler.upsample_block.{block_index}.' __lowerCamelCase : Union[str, Any] = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __lowerCamelCase : List[Any] = prefix + resnet_block __lowerCamelCase : Optional[Any] = re_prior_cond_resnet.sub(a__ ,a__ ) elif re_prior_cond_proj_in.fullmatch(a__ ): __lowerCamelCase : Union[str, Any] = re_prior_cond_proj_in.match(a__ ) __lowerCamelCase : List[str] = regex_match.groups() __lowerCamelCase : str = F'conditioner_blocks.upsampler.proj_in.{groups[-1]}' __lowerCamelCase : List[Any] = re_prior_cond_proj_in.sub(a__ ,a__ ) # keep original key else: __lowerCamelCase : Tuple = original_key __lowerCamelCase : Optional[int] = replace_key(a__ ) if F'{key_prefix}.{key}' not in model_state_dict or key is None: print(F'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[F'{key_prefix}.{key}'].shape: __lowerCamelCase : Dict = model_state_dict[F'{key_prefix}.{key}'] print(F'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) __lowerCamelCase : int = original_key __lowerCamelCase : Any = original_key __lowerCamelCase : Dict = value return new_dict @torch.no_grad() def a_ ( _lowerCAmelCase=None ,_lowerCAmelCase=None ) -> Tuple: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): __lowerCamelCase : Any = requests.get(F'{PREFIX}{file}' ,allow_redirects=a__ ) os.makedirs(F'{pytorch_dump_folder_path}/' ,exist_ok=a__ ) open(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ,'wb' ).write(r.content ) __lowerCamelCase : Any = MODEL_MAPPING[model_name.split('/' )[-1]] __lowerCamelCase : str = JukeboxConfig.from_pretrained(a__ ) __lowerCamelCase : List[Any] = JukeboxModel(a__ ) __lowerCamelCase : Any = [] __lowerCamelCase : List[str] = {} for i, dict_name in enumerate(a__ ): __lowerCamelCase : Dict = torch.load(F'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['model'] __lowerCamelCase : List[str] = {} for k in old_dic.keys(): if k.endswith('.b' ): __lowerCamelCase : int = old_dic[k] elif k.endswith('.w' ): __lowerCamelCase : Optional[Any] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __lowerCamelCase : int = old_dic[k] else: __lowerCamelCase : Tuple = old_dic[k] __lowerCamelCase : Any = 'vqvae' if i == 0 else F'priors.{3 - i}' __lowerCamelCase : List[Any] = fix_jukebox_keys(a__ ,model.state_dict() ,a__ ,a__ ) weight_dict.append(a__ ) __lowerCamelCase : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(a__ ) for i in range(len(a__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(a__ ).mkdir(exist_ok=a__ ) with open(F'{pytorch_dump_folder_path}/mapping.json' ,'w' ) as txtfile: json.dump(a__ ,a__ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(a__ ) return weight_dict if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) _UpperCamelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
208
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ :Any = logging.get_logger(__name__) def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any] , a__: Dict , a__: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = original_name.split('.' )[0] _UpperCAmelCase = key.split('.' ) _UpperCAmelCase = int(key_list[key_list.index(a__ ) - 2] ) _UpperCAmelCase = int(key_list[key_list.index(a__ ) - 1] ) _UpperCAmelCase = orig_block_num - offset _UpperCAmelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCAmelCase__ ( a__: Tuple ) -> int: '''simple docstring''' _UpperCAmelCase = OrderedDict() _UpperCAmelCase , _UpperCAmelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): _UpperCAmelCase = key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCAmelCase = key[: key.find('proj' )] _UpperCAmelCase = key.replace(a__ , F'''patch_embeddings.{total_embed_found}.''' ) _UpperCAmelCase = key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCAmelCase = 'poolformer.encoder.' + key if "mlp.fc1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm1' , 'before_norm' ) if "norm2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: _UpperCAmelCase = key.replace('head' , 'classifier' ) _UpperCAmelCase = value return new_state_dict def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw ) return image @torch.no_grad() def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict , a__: Any ) -> Dict: '''simple docstring''' _UpperCAmelCase = PoolFormerConfig() # set attributes based on model_name _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = model_name[-3:] _UpperCAmelCase = 1_0_0_0 _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = (1, 1_0_0_0) # set config attributes _UpperCAmelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(a__ ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCAmelCase = [2, 2, 6, 2] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 0.9 elif size == "s24": _UpperCAmelCase = [4, 4, 1_2, 4] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 0.9 elif size == "s36": _UpperCAmelCase = [6, 6, 1_8, 6] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.9 elif size == "m36": _UpperCAmelCase = [6, 6, 1_8, 6] _UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.95 elif size == "m48": _UpperCAmelCase = [8, 8, 2_4, 8] _UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ ) # Prepare image _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=a__ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCAmelCase = torch.load(a__ , map_location=torch.device('cpu' ) ) # rename keys _UpperCAmelCase = rename_keys(a__ ) # create HuggingFace model and load state dict _UpperCAmelCase = PoolFormerForImageClassification(a__ ) model.load_state_dict(a__ ) model.eval() # Define image processor _UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ ) _UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass _UpperCAmelCase = model(a__ ) _UpperCAmelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCAmelCase = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": _UpperCAmelCase = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": _UpperCAmelCase = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": _UpperCAmelCase = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": _UpperCAmelCase = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , a__ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ :str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ :Dict = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __lowerCAmelCase ( a__ , a__=False ) -> Any: try: __a = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __a = default else: # KEY is set, convert it to True or False. try: __a = strtobool(a__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value A : Tuple = parse_flag_from_env('RUN_SLOW', default=False) def __lowerCAmelCase ( a__ ) -> int: return unittest.skip('''Test was skipped''' )(a__ ) def __lowerCAmelCase ( a__ ) -> Any: return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(a__ ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(a__ ) def __lowerCAmelCase ( a__ ) -> int: return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(a__ ) def __lowerCAmelCase ( a__ ) -> Union[str, Any]: return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(a__ ) def __lowerCAmelCase ( a__ ) -> Dict: return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(a__ ) def __lowerCAmelCase ( a__ ) -> Any: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(a__ ) def __lowerCAmelCase ( a__ ) -> List[str]: return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(a__ ) def __lowerCAmelCase ( a__ ) -> Tuple: return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(a__ ) def __lowerCAmelCase ( a__ ) -> List[Any]: return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(a__ ) def __lowerCAmelCase ( a__ ) -> List[str]: return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(a__ ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(a__ ) def __lowerCAmelCase ( a__ ) -> List[Any]: return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(a__ ) def __lowerCAmelCase ( a__ ) -> Tuple: return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(a__ ) def __lowerCAmelCase ( a__ ) -> int: return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(a__ ) def __lowerCAmelCase ( a__ ) -> List[Any]: return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(a__ ) def __lowerCAmelCase ( a__=None , a__=None ) -> str: if test_case is None: return partial(a__ , version=a__ ) return unittest.skipUnless(is_torch_version('''>=''' , a__ ) , F"""test requires torch version >= {version}""" )(a__ ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(a__ ) def __lowerCAmelCase ( a__ ) -> Any: return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(a__ ) def __lowerCAmelCase ( a__ ) -> str: return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(a__ ) A : Optional[int] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __lowerCAmelCase ( a__ ) -> Optional[Any]: return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(a__ ) class __A( unittest.TestCase ): snake_case_ = True @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> int: '''simple docstring''' __a = tempfile.mkdtemp() @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Any: '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_SCREAMING_SNAKE_CASE ) class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = mocks if isinstance(_SCREAMING_SNAKE_CASE , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __lowerCAmelCase ( a__ ) -> str: __a = AcceleratorState() __a = tensor[None].clone().to(state.device ) __a = gather(a__ ).cpu() __a = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , a__ ): return False return True class __A: def __init__( self , _snake_case , _snake_case , _snake_case ) -> int: '''simple docstring''' __a = returncode __a = stdout __a = stderr async def __lowerCAmelCase ( a__ , a__ ) -> Dict: while True: __a = await stream.readline() if line: callback(a__ ) else: break async def __lowerCAmelCase ( a__ , a__=None , a__=None , a__=None , a__=False , a__=False ) -> _RunOutput: if echo: print('''\nRunning: ''' , ''' '''.join(a__ ) ) __a = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=a__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=a__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __a = [] __a = [] def tee(a__ , a__ , a__ , a__="" ): __a = line.decode('''utf-8''' ).rstrip() sink.append(a__ ) if not quiet: print(a__ , a__ , file=a__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda a__ : tee(a__ , a__ , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda a__ : tee(a__ , a__ , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=a__ , ) return _RunOutput(await p.wait() , a__ , a__ ) def __lowerCAmelCase ( a__ , a__=None , a__=None , a__=180 , a__=False , a__=True ) -> _RunOutput: __a = asyncio.get_event_loop() __a = loop.run_until_complete( _stream_subprocess(a__ , env=a__ , stdin=a__ , timeout=a__ , quiet=a__ , echo=a__ ) ) __a = ''' '''.join(a__ ) if result.returncode > 0: __a = '''\n'''.join(result.stderr ) raise RuntimeError( F"""\'{cmd_str}\' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class __A( a ): pass def __lowerCAmelCase ( a__ , a__=False ) -> List[str]: try: __a = subprocess.check_output(a__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(a__ , '''decode''' ): __a = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{' '.join(a__ )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
6
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = process _UpperCAmelCase = params def __len__( self ) -> Union[str, Any]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = self.dataset[i] _UpperCAmelCase = self.process(_SCREAMING_SNAKE_CASE , **self.params ) return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = loader _UpperCAmelCase = infer _UpperCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _UpperCAmelCase = None _UpperCAmelCase = loader_batch_size # Internal bookkeeping _UpperCAmelCase = None _UpperCAmelCase = None def __len__( self ) -> Any: """simple docstring""" return len(self.loader ) def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _UpperCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _UpperCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Convert ModelOutput to tuple first _UpperCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _UpperCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _UpperCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _UpperCAmelCase = self._loader_batch_data.__class__(_SCREAMING_SNAKE_CASE ) self._loader_batch_index += 1 return result def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _UpperCAmelCase = next(self.iterator ) _UpperCAmelCase = self.infer(_SCREAMING_SNAKE_CASE , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _UpperCAmelCase = processed _UpperCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __iter__( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) _UpperCAmelCase = None return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if self.subiterator is None: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _UpperCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) _UpperCAmelCase = next(self.subiterator ) return processed class __a ( UpperCAmelCase ): def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = False _UpperCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator while not is_last: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size _UpperCAmelCase = processed _UpperCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator else: _UpperCAmelCase = processed _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) return accumulator class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = key def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.dataset[i][self.key] class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = keya _UpperCAmelCase = keya def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
329
0
from __future__ import annotations def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Union[str, Any] = len(a__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _lowerCAmelCase : Optional[int] = i + 1 else: _lowerCAmelCase : Tuple = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
36
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ :int = logging.get_logger(__name__) lowerCAmelCase__ :Optional[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class __a ( UpperCAmelCase ): _a : str = 'data2vec-text' def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class __a ( UpperCAmelCase ): @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
329
0
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=32 , __SCREAMING_SNAKE_CASE : List[Any]=4 , __SCREAMING_SNAKE_CASE : Optional[int]=[0, 1, 2, 3] , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=37 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=[1, 384, 24, 24] , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=None , ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = backbone_out_indices __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = backbone_featmap_shape __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = DPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCAmelCase__ = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = DPTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = True if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue __SCREAMING_SNAKE_CASE = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() __SCREAMING_SNAKE_CASE = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def UpperCAmelCase__ ( self : int ) -> Dict: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue __SCREAMING_SNAKE_CASE = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() __SCREAMING_SNAKE_CASE = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone __SCREAMING_SNAKE_CASE = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __SCREAMING_SNAKE_CASE = [f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" pass @slow def UpperCAmelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __SCREAMING_SNAKE_CASE = DPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = """add""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) __SCREAMING_SNAKE_CASE = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = outputs.predicted_depth # verify the predicted depth __SCREAMING_SNAKE_CASE = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
267
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['stem'] _UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : int = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _a : str = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} _a : Optional[int] = False _a : List[str] = False _a : List[str] = False _a : Optional[int] = False _a : Tuple = False def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 0 return t def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has''' f''' `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}.''' ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) @require_torch class __a ( unittest.TestCase , UpperCAmelCase ): _a : Any = (MaskFormerSwinBackbone,) if is_torch_available() else () _a : Any = MaskFormerSwinConfig def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
329
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar('T') class A_ ( Generic[T] ): def __init__(self :List[str] , _UpperCamelCase :List[str] )-> List[Any]: __A = data __A = None def __str__(self :Optional[int] )-> str: return f"""{self.data}""" class A_ ( Generic[T] ): def __init__(self :List[str] )-> None: __A = None def __iter__(self :Union[str, Any] )-> Iterator[T]: __A = self.top while node: yield node.data __A = node.next def __str__(self :List[str] )-> str: return "->".join([str(_SCREAMING_SNAKE_CASE ) for item in self] ) def __len__(self :Optional[Any] )-> int: return len(tuple(iter(self ) ) ) def _lowerCAmelCase (self :str )-> bool: return self.top is None def _lowerCAmelCase (self :Dict , _UpperCamelCase :List[Any] )-> None: __A = Node(_SCREAMING_SNAKE_CASE ) if not self.is_empty(): __A = self.top __A = node def _lowerCAmelCase (self :Dict )-> T: if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , _SCREAMING_SNAKE_CASE ) __A = self.top __A = self.top.next return pop_node.data def _lowerCAmelCase (self :str )-> T: if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def _lowerCAmelCase (self :Tuple )-> None: __A = None if __name__ == "__main__": from doctest import testmod testmod()
117
from collections.abc import Generator def lowerCAmelCase__ ( ) -> Generator[int, None, None]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = 0, 1 while True: _UpperCAmelCase , _UpperCAmelCase = b, a + b yield b def lowerCAmelCase__ ( a__: int = 1_0_0_0 ) -> int: '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = fibonacci_generator() while len(str(next(a__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
329
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def snake_case ( UpperCAmelCase )-> int: """simple docstring""" __A = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def snake_case ( UpperCAmelCase )-> Optional[int]: """simple docstring""" __A = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: __A = s_dict.pop(a__ ) elif "subsample" in key: __A = s_dict.pop(a__ ) def snake_case ( UpperCAmelCase )-> List[str]: """simple docstring""" __A , __A = emb.weight.shape __A = nn.Linear(a__ , a__ , bias=a__ ) __A = emb.weight.data return lin_layer def snake_case ( UpperCAmelCase , UpperCAmelCase )-> Tuple: """simple docstring""" __A = torch.load(a__ , map_location='cpu' ) __A = mam_aaa['args'] __A = mam_aaa['model'] __A = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(a__ ) rename_keys(a__ ) __A = state_dict['decoder.embed_tokens.weight'].shape[0] __A = args.share_decoder_input_output_embed __A = [int(a__ ) for i in args.conv_kernel_sizes.split(',' )] __A = SpeechaTextConfig( vocab_size=a__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(a__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=a__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=a__ , num_beams=5 , max_length=2_0_0 , use_cache=a__ , decoder_start_token_id=2 , early_stopping=a__ , ) __A = SpeechaTextForConditionalGeneration(a__ ) __A , __A = model.model.load_state_dict(a__ , strict=a__ ) if len(a__ ) > 0 and not set(a__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f' but all the following weights are missing {missing}' ) if tie_embeds: __A = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __A = lm_head_weights model.save_pretrained(a__ ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") a__ : List[Any] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
161
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 30} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize_and_center_crop _UpperCAmelCase = size _UpperCAmelCase = crop_pct _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
329
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
187
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20} _UpperCAmelCase = do_thumbnail _UpperCAmelCase = do_align_axis _UpperCAmelCase = do_pad _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : List[str] = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_thumbnail' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
329
0
def _a ( a :int , a :int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) a = str(bin(a__ ) )[2:] # remove the leading "0b" a = str(bin(a__ ) )[2:] # remove the leading "0b" a = max(len(a__ ) , len(a__ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(a__ ) , b_binary.zfill(a__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :Dict = logging.get_logger(__name__) lowerCAmelCase__ :Optional[int] = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class __a ( UpperCAmelCase ): _a : List[str] = 'openai-gpt' _a : int = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=40478 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = afn _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = summary_type _UpperCAmelCase = summary_use_proj _UpperCAmelCase = summary_activation _UpperCAmelCase = summary_first_dropout _UpperCAmelCase = summary_proj_to_labels super().__init__(**_SCREAMING_SNAKE_CASE )
329
0
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowercase: List[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , **lowerCamelCase_ ): """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__(self , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ (self , **lowerCamelCase_ ): """simple docstring""" a = {} if "candidate_labels" in kwargs: a = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: a = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="This is a sound of {}." ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if audio.startswith("http://" ) or audio.startswith("https://" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png a = requests.get(_SCREAMING_SNAKE_CASE ).content else: with open(_SCREAMING_SNAKE_CASE , "rb" ) as f: a = f.read() if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a = ffmpeg_read(_SCREAMING_SNAKE_CASE , self.feature_extractor.sampling_rate ) if not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): raise ValueError("We expect a numpy ndarray as input" ) if len(audio.shape ) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" ) a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt" ) a = candidate_labels a = [hypothesis_template.format(_SCREAMING_SNAKE_CASE ) for x in candidate_labels] a = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=_SCREAMING_SNAKE_CASE ) a = [text_inputs] return inputs def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = model_inputs.pop("candidate_labels" ) a = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , _SCREAMING_SNAKE_CASE ): a = text_inputs[0] else: # Batching case. a = text_inputs[0][0] a = self.model(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) a = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = model_outputs.pop("candidate_labels" ) a = model_outputs["logits"][0] if self.framework == "pt": a = logits.softmax(dim=0 ) a = probs.tolist() else: raise ValueError("`tf` framework not supported." ) a = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , key=lambda lowerCamelCase_ : -x[0] ) ] return result
227
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def lowerCAmelCase__ ( a__: Any , a__: Tuple , a__: Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = hf_hub_url(repo_id=a__ , path=a__ , revision=a__ ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a__ )}'''
329
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowercase__ : str = None lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : Tuple = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : Union[str, Any] = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } lowercase__ : Union[str, Any] = { '''facebook/nllb-large-en-ro''': 10_24, '''facebook/nllb-200-distilled-600M''': 10_24, } # fmt: off lowercase__ : Dict = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : List[Any] = VOCAB_FILES_NAMES _snake_case : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = ['input_ids', 'attention_mask'] _snake_case : Dict = NllbTokenizer _snake_case : List[int] = [] _snake_case : List[int] = [] def __init__( self : List[str] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[Any]="<s>" , lowerCAmelCase__ : Any="</s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Dict="<s>" , lowerCAmelCase__ : Tuple="<unk>" , lowerCAmelCase__ : Union[str, Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=False , **lowerCAmelCase__ : List[str] , ) -> Any: '''simple docstring''' _UpperCamelCase = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token _UpperCamelCase = legacy_behaviour super().__init__( vocab_file=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , legacy_behaviour=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) _UpperCamelCase = vocab_file _UpperCamelCase = False if not self.vocab_file else True _UpperCamelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) _UpperCamelCase = { lang_code: self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _UpperCamelCase = src_lang if src_lang is not None else '''eng_Latn''' _UpperCamelCase = self.convert_tokens_to_ids(self._src_lang ) _UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def snake_case__ ( self : str ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Any ) -> None: '''simple docstring''' _UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case__ ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , **lowerCAmelCase__ : Dict ) -> Tuple: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _UpperCamelCase = src_lang _UpperCamelCase = self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCamelCase = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) _UpperCamelCase = tgt_lang_id return inputs def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] = "eng_Latn" , lowerCAmelCase__ : Any = None , lowerCAmelCase__ : Any = "fra_Latn" , **lowerCAmelCase__ : Union[str, Any] , ) -> BatchEncoding: '''simple docstring''' _UpperCamelCase = src_lang _UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case__ ( self : str , lowerCAmelCase__ : Optional[Any] ) -> None: '''simple docstring''' _UpperCamelCase = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) if self.legacy_behaviour: _UpperCamelCase = [] _UpperCamelCase = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase = [self.cur_lang_code] _UpperCamelCase = [self.eos_token_id] _UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case__ ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> None: '''simple docstring''' _UpperCamelCase = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) if self.legacy_behaviour: _UpperCamelCase = [] _UpperCamelCase = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase = [self.cur_lang_code] _UpperCamelCase = [self.eos_token_id] _UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return _UpperCamelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
324
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase__ :Optional[int] = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int]=None ) -> Any: '''simple docstring''' require_version(deps[pkg] , a__ )
329
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase : List[str] = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
280
from __future__ import annotations def lowerCAmelCase__ ( a__: dict , a__: str ) -> set[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = set(a__ ), [start] while stack: _UpperCAmelCase = stack.pop() explored.add(a__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a__ ) return explored lowerCAmelCase__ :Tuple = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
329
0
'''simple docstring''' import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _UpperCamelCase = get_logger(__name__) _UpperCamelCase = R''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class lowerCamelCase_ : """simple docstring""" @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__( self : Dict , _a : List[Any] , _a : int ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCamelCase_ : """simple docstring""" @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__( self : List[str] , _a : int , _a : Tuple ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @add_start_docstrings(_SCREAMING_SNAKE_CASE ) def __call__( self : Optional[Any] , _a : str , _a : Union[str, Any] , _a : Optional[Any] , **_a : Optional[int] ) -> jnp.ndarray: for processor in self: __lowerCamelCase : Any = inspect.signature(processor.__call__ ).parameters if len(_SCREAMING_SNAKE_CASE ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys() )} for ' f'{processor.__class__} are passed to the logits processor.' ) __lowerCamelCase : Tuple = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: __lowerCamelCase : List[Any] = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return scores class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : Optional[int] , _a : Optional[Any] ) -> Optional[int]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' ) __lowerCamelCase : Optional[Any] = temperature def __call__( self : Union[str, Any] , _a : List[Any] , _a : Any , _a : Tuple ) -> jnp.ndarray: __lowerCamelCase : int = scores / self.temperature return scores class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : Any , _a : int , _a : Tuple = -float('Inf' ) , _a : List[Any] = 1 ) -> str: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) __lowerCamelCase : Any = top_p __lowerCamelCase : str = filter_value __lowerCamelCase : Optional[Any] = min_tokens_to_keep def __call__( self : Optional[int] , _a : str , _a : Any , _a : List[str] ) -> jnp.ndarray: __lowerCamelCase ,__lowerCamelCase : Any = lax.top_k(_SCREAMING_SNAKE_CASE , scores.shape[-1] ) __lowerCamelCase : Optional[Any] = jnp.full_like(_SCREAMING_SNAKE_CASE , self.filter_value ) __lowerCamelCase : Optional[int] = jax.nn.softmax(_SCREAMING_SNAKE_CASE , axis=-1 ).cumsum(axis=-1 ) __lowerCamelCase : Tuple = cumulative_probs < self.top_p # include the token that is higher than top_p as well __lowerCamelCase : Dict = jnp.roll(_SCREAMING_SNAKE_CASE , 1 ) score_mask |= score_mask.at[:, 0].set(_SCREAMING_SNAKE_CASE ) # min tokens to keep __lowerCamelCase : int = score_mask.at[:, : self.min_tokens_to_keep].set(_SCREAMING_SNAKE_CASE ) __lowerCamelCase : Tuple = jnp.where(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCamelCase : Dict = jax.lax.sort_key_val(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[-1] return next_scores class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : str , _a : Union[str, Any] , _a : Optional[Any] = -float('Inf' ) , _a : Optional[Any] = 1 ) -> Optional[int]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' ) __lowerCamelCase : List[str] = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCamelCase : str = filter_value def __call__( self : int , _a : List[str] , _a : List[str] , _a : Dict ) -> jnp.ndarray: __lowerCamelCase ,__lowerCamelCase : Union[str, Any] = scores.shape __lowerCamelCase : Tuple = jnp.full(batch_size * vocab_size , self.filter_value ) __lowerCamelCase : List[str] = min(self.top_k , scores.shape[-1] ) # Safety check __lowerCamelCase ,__lowerCamelCase : Dict = lax.top_k(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[Any] = jnp.broadcast_to((jnp.arange(_SCREAMING_SNAKE_CASE ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __lowerCamelCase : Optional[Any] = topk_scores.flatten() __lowerCamelCase : Dict = topk_indices.flatten() + shift __lowerCamelCase : int = next_scores_flat.at[topk_indices_flat].set(_SCREAMING_SNAKE_CASE ) __lowerCamelCase : int = next_scores_flat.reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return next_scores class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : Optional[Any] , _a : Optional[int] ) -> Tuple: __lowerCamelCase : Union[str, Any] = bos_token_id def __call__( self : str , _a : int , _a : Optional[Any] , _a : Any ) -> jnp.ndarray: __lowerCamelCase : Any = jnp.full(scores.shape , -float('inf' ) ) __lowerCamelCase : int = 1 - jnp.bool_(cur_len - 1 ) __lowerCamelCase : Union[str, Any] = jnp.where(_SCREAMING_SNAKE_CASE , new_scores.at[:, self.bos_token_id].set(0 ) , _SCREAMING_SNAKE_CASE ) return scores class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : List[Any] , _a : str , _a : Any ) -> Optional[Any]: __lowerCamelCase : int = max_length __lowerCamelCase : Dict = eos_token_id def __call__( self : str , _a : Tuple , _a : List[Any] , _a : List[Any] ) -> jnp.ndarray: __lowerCamelCase : Any = jnp.full(scores.shape , -float('inf' ) ) __lowerCamelCase : int = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __lowerCamelCase : Any = jnp.where(_SCREAMING_SNAKE_CASE , new_scores.at[:, self.eos_token_id].set(0 ) , _SCREAMING_SNAKE_CASE ) return scores class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : int , _a : List[Any] , _a : Dict ) -> List[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) __lowerCamelCase : List[str] = min_length __lowerCamelCase : Optional[int] = eos_token_id def __call__( self : List[str] , _a : Optional[Any] , _a : str , _a : Any ) -> jnp.ndarray: __lowerCamelCase : Tuple = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __lowerCamelCase : int = jnp.where(_SCREAMING_SNAKE_CASE , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , _SCREAMING_SNAKE_CASE ) return scores class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : Union[str, Any] , _a : List[str] , _a : Union[str, Any] ) -> Tuple: __lowerCamelCase : Optional[int] = list(_SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[Any] = begin_index def __call__( self : Optional[int] , _a : Tuple , _a : Any , _a : Union[str, Any] ) -> Any: __lowerCamelCase : Dict = 1 - jnp.bool_(cur_len - self.begin_index ) __lowerCamelCase : List[str] = jnp.where(_SCREAMING_SNAKE_CASE , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , _SCREAMING_SNAKE_CASE ) return scores class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : Union[str, Any] , _a : Any ) -> int: __lowerCamelCase : Any = list(_SCREAMING_SNAKE_CASE ) def __call__( self : Any , _a : Optional[Any] , _a : Union[str, Any] , _a : List[str] ) -> jnp.ndarray: __lowerCamelCase : Optional[int] = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : int , _a : Any ) -> Optional[int]: __lowerCamelCase : Dict = dict(_SCREAMING_SNAKE_CASE ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __lowerCamelCase : List[str] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __lowerCamelCase : Union[str, Any] = force_token_array.at[index].set(_SCREAMING_SNAKE_CASE ) __lowerCamelCase : str = jnp.intaa(_SCREAMING_SNAKE_CASE ) def __call__( self : Tuple , _a : str , _a : List[Any] , _a : List[Any] ) -> jnp.ndarray: def _force_token(_a : Any ): __lowerCamelCase : Any = scores.shape[0] __lowerCamelCase : str = self.force_token_array[generation_idx] __lowerCamelCase : int = jnp.ones_like(_SCREAMING_SNAKE_CASE , dtype=scores.dtype ) * -float('inf' ) __lowerCamelCase : Optional[Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __lowerCamelCase : Union[str, Any] = lax.dynamic_update_slice(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (0, current_token) ) return new_scores __lowerCamelCase : Any = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_SCREAMING_SNAKE_CASE ) , lambda: scores , ) , ) return scores class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : List[Any] , _a : str , _a : Dict , _a : str ) -> List[Any]: __lowerCamelCase : Any = generate_config.eos_token_id __lowerCamelCase : List[Any] = generate_config.no_timestamps_token_id __lowerCamelCase : Optional[int] = generate_config.no_timestamps_token_id + 1 __lowerCamelCase : Optional[Any] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_SCREAMING_SNAKE_CASE , 'max_initial_timestamp_index' ): __lowerCamelCase : str = generate_config.max_initial_timestamp_index else: __lowerCamelCase : Optional[Any] = model_config.vocab_size if self.max_initial_timestamp_index is None: __lowerCamelCase : List[str] = model_config.vocab_size def __call__( self : List[Any] , _a : Optional[Any] , _a : Optional[Any] , _a : Dict ) -> int: __lowerCamelCase : Optional[int] = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(_a : Dict , _a : int ): __lowerCamelCase : int = jnp.where((cur_len - self.begin_index) >= 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCamelCase : Dict = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _SCREAMING_SNAKE_CASE , ) __lowerCamelCase : str = jnp.where((cur_len - self.begin_index) < 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[str] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) return jnp.where( _SCREAMING_SNAKE_CASE , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , _SCREAMING_SNAKE_CASE , ) __lowerCamelCase : Union[str, Any] = jax.vmap(_SCREAMING_SNAKE_CASE )(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCamelCase : int = jnp.where(cur_len == self.begin_index , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCamelCase : Union[str, Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _SCREAMING_SNAKE_CASE , ) __lowerCamelCase : Tuple = self.timestamp_begin + self.max_initial_timestamp_index __lowerCamelCase : List[Any] = jnp.where( _SCREAMING_SNAKE_CASE , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , _SCREAMING_SNAKE_CASE , ) # if sum of probability over timestamps is above any other token, sample timestamp __lowerCamelCase : Any = jax.nn.log_softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) def handle_cumulative_probs(_a : Any , _a : str ): __lowerCamelCase : Optional[int] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __lowerCamelCase : Dict = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , _SCREAMING_SNAKE_CASE , ) __lowerCamelCase : Tuple = jax.vmap(_SCREAMING_SNAKE_CASE )(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return scores
208
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(_SCREAMING_SNAKE_CASE , os.listdir(_SCREAMING_SNAKE_CASE )[0] , 'snapshots' ) )] _UpperCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 4 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3 assert np.abs(np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1 _UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_SCREAMING_SNAKE_CASE ) == num_samples def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = scheduler.create_state() _UpperCAmelCase = scheduler_state _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , use_memory_efficient_attention=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
329
0
def __lowerCAmelCase ( a__ ) -> int: if not isinstance(a__ , a__ ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
6
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase__ :int = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class __a ( UpperCAmelCase ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = {} if prompt is not None: _UpperCAmelCase = prompt if generate_kwargs is not None: _UpperCAmelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _UpperCAmelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) _UpperCAmelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" _UpperCAmelCase = load_image(_SCREAMING_SNAKE_CASE ) if prompt is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( f'''Received an invalid text input, got - {type(_SCREAMING_SNAKE_CASE )} - but expected a single string. ''' 'Note also that one single text can be provided for conditional image to text generation.' ) _UpperCAmelCase = self.model.config.model_type if model_type == "git": _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids _UpperCAmelCase = [self.tokenizer.cls_token_id] + input_ids _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _UpperCAmelCase = None return model_inputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[str]: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _SCREAMING_SNAKE_CASE ) and all(x is None for x in model_inputs['input_ids'] ) ): _UpperCAmelCase = None if generate_kwargs is None: _UpperCAmelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _UpperCAmelCase = model_inputs.pop(self.model.main_input_name ) _UpperCAmelCase = self.model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return model_outputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = [] for output_ids in model_outputs: _UpperCAmelCase = { 'generated_text': self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , ) } records.append(_SCREAMING_SNAKE_CASE ) return records
329
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
36
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowerCAmelCase__ ( *a__: str , a__: Optional[Union[Dict, Any]] = None , a__: Dict=True , a__: Any=2 ) -> Union[str, Any]: '''simple docstring''' from .. import __version__ _UpperCAmelCase = take_from _UpperCAmelCase = () if not isinstance(args[0] , a__ ): _UpperCAmelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) _UpperCAmelCase = None if isinstance(a__ , a__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(a__ ),) _UpperCAmelCase = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(a__ , a__ ): values += (getattr(a__ , a__ ),) _UpperCAmelCase = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: _UpperCAmelCase = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: _UpperCAmelCase = warning + ' ' if standard_warn else '' warnings.warn(warning + message , a__ , stacklevel=a__ ) if isinstance(a__ , a__ ) and len(a__ ) > 0: _UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCAmelCase = call_frame.filename _UpperCAmelCase = call_frame.lineno _UpperCAmelCase = call_frame.function _UpperCAmelCase , _UpperCAmelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(a__ ) == 0: return elif len(a__ ) == 1: return values[0] return values
329
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Any = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = 'mra' def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int=50_265 , __SCREAMING_SNAKE_CASE : int=768 , __SCREAMING_SNAKE_CASE : Optional[Any]=12 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : Tuple=3_072 , __SCREAMING_SNAKE_CASE : List[str]="gelu" , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , __SCREAMING_SNAKE_CASE : int=0.02 , __SCREAMING_SNAKE_CASE : Tuple=1E-5 , __SCREAMING_SNAKE_CASE : List[Any]="absolute" , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : Optional[Any]="full" , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : List[str]=1 , __SCREAMING_SNAKE_CASE : int=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , **__SCREAMING_SNAKE_CASE : Tuple , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = block_per_row __SCREAMING_SNAKE_CASE = approx_mode __SCREAMING_SNAKE_CASE = initial_prior_first_n_blocks __SCREAMING_SNAKE_CASE = initial_prior_diagonal_n_blocks
267
import math lowerCAmelCase__ :Optional[int] = 1_0 lowerCAmelCase__ :Optional[Any] = 7 lowerCAmelCase__ :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def lowerCAmelCase__ ( a__: int = 2_0 ) -> str: '''simple docstring''' _UpperCAmelCase = math.comb(a__ , a__ ) _UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) _UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
329
0
snake_case__ : str = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on snake_case__ : str = {value: key for key, value in MORSE_CODE_DICT.items()} def _a ( lowerCamelCase: str ) -> str: '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _a ( lowerCamelCase: str ) -> str: '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def _a ( ) -> None: '''simple docstring''' __A = '''Morse code here!''' print(a__ ) __A = encrypt(a__ ) print(a__ ) __A = decrypt(a__ ) print(a__ ) if __name__ == "__main__": main()
117
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ :str = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Union[str, Any] = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
329
0
'''simple docstring''' from string import ascii_uppercase a__ : Any = {char: i for i, char in enumerate(ascii_uppercase)} a__ : Optional[int] = dict(enumerate(ascii_uppercase)) def snake_case ( UpperCAmelCase , UpperCAmelCase )-> str: """simple docstring""" __A = len(a__ ) __A = 0 while True: if x == i: __A = 0 if len(a__ ) == len(a__ ): break key += key[i] i += 1 return key def snake_case ( UpperCAmelCase , UpperCAmelCase )-> str: """simple docstring""" __A = '' __A = 0 for letter in message: if letter == " ": cipher_text += " " else: __A = (dicta[letter] - dicta[key_new[i]]) % 2_6 i += 1 cipher_text += dicta[x] return cipher_text def snake_case ( UpperCAmelCase , UpperCAmelCase )-> str: """simple docstring""" __A = '' __A = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __A = (dicta[letter] + dicta[key_new[i]] + 2_6) % 2_6 i += 1 or_txt += dicta[x] return or_txt def snake_case ( )-> None: """simple docstring""" __A = 'THE GERMAN ATTACK' __A = 'SECRET' __A = generate_key(a__ , a__ ) __A = cipher_text(a__ , a__ ) print(f'Encrypted Text = {s}' ) print(f'Original Text = {original_text(a__ , a__ )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
161
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCAmelCase__ ( a__: Tuple , a__: Optional[Any] , a__: Any ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = AutoConfig.from_pretrained(a__ ) _UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=a__ ) _UpperCAmelCase = checkpoints.load_tax_checkpoint(a__ ) _UpperCAmelCase = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": _UpperCAmelCase = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": _UpperCAmelCase = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): _UpperCAmelCase = F'''layers_{str(a__ )}''' # Self-Attention _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCAmelCase = flax_model.params['encoder']['block'][str(a__ )]['layer'] _UpperCAmelCase = tax_attention_key _UpperCAmelCase = tax_attention_out _UpperCAmelCase = tax_attention_query _UpperCAmelCase = tax_attention_value _UpperCAmelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_global_layer_norm if split_mlp_wi: _UpperCAmelCase = tax_mlp_wi_a _UpperCAmelCase = tax_mlp_wi_a else: _UpperCAmelCase = tax_mlp_wi _UpperCAmelCase = tax_mlp_wo _UpperCAmelCase = tax_mlp_layer_norm _UpperCAmelCase = flax_model_encoder_layer_block # Only for layer 0: _UpperCAmelCase = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_encoder_global_rel_embedding # Assigning _UpperCAmelCase = tax_model['target']['encoder']['encoder_norm']['scale'] _UpperCAmelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _UpperCAmelCase = F'''layers_{str(a__ )}''' # Self-Attention _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] _UpperCAmelCase = tax_enc_dec_attention_module['key']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['out']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['query']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCAmelCase = flax_model.params['decoder']['block'][str(a__ )]['layer'] _UpperCAmelCase = tax_attention_key _UpperCAmelCase = tax_attention_out _UpperCAmelCase = tax_attention_query _UpperCAmelCase = tax_attention_value _UpperCAmelCase = tax_pre_attention_layer_norm _UpperCAmelCase = tax_enc_dec_attention_key _UpperCAmelCase = tax_enc_dec_attention_out _UpperCAmelCase = tax_enc_dec_attention_query _UpperCAmelCase = tax_enc_dec_attention_value _UpperCAmelCase = tax_cross_layer_norm if split_mlp_wi: _UpperCAmelCase = tax_mlp_wi_a _UpperCAmelCase = tax_mlp_wi_a else: _UpperCAmelCase = tax_mlp_wi _UpperCAmelCase = tax_mlp_wo _UpperCAmelCase = txa_mlp_layer_norm _UpperCAmelCase = flax_model_decoder_layer_block # Decoder Normalization _UpperCAmelCase = tax_model['target']['decoder']['decoder_norm']['scale'] _UpperCAmelCase = txa_decoder_norm # Only for layer 0: _UpperCAmelCase = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_decoder_rel_embedding # Token Embeddings _UpperCAmelCase = tax_model['target']['token_embedder']['embedding'] _UpperCAmelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _UpperCAmelCase = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(a__ ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": lowerCAmelCase__ :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowerCAmelCase__ :List[str] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
329
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowerCamelCase__ ( _A ): # picklable for multiprocessing '''simple docstring''' return x.sum() def lowerCamelCase__ ( _A ): # picklable for multiprocessing '''simple docstring''' return i + 1 @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def snake_case__ ( self : List[Any] ): """simple docstring""" snake_case_ = {} snake_case_ = [] snake_case_ = 1 snake_case_ = [1, 2] snake_case_ = {"a": 1, "b": 2} snake_case_ = {"a": [1, 2], "b": [3, 4]} snake_case_ = {"a": {"1": 1}, "b": 2} snake_case_ = {"a": 1, "b": 2, "c": 3, "d": 4} snake_case_ = {} snake_case_ = [] snake_case_ = 2 snake_case_ = [2, 3] snake_case_ = {"a": 2, "b": 3} snake_case_ = {"a": [2, 3], "b": [4, 5]} snake_case_ = {"a": {"1": 2}, "b": 3} snake_case_ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) snake_case_ = 2 self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) snake_case_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} snake_case_ = {"a": 2, "b": 0, "c": 2} snake_case_ = { "a": np.eye(2 ).astype(_SCREAMING_SNAKE_CASE ), "b": np.zeros(3 ).astype(_SCREAMING_SNAKE_CASE ), "c": np.ones(2 ).astype(_SCREAMING_SNAKE_CASE ), } self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # can't pickle a local lambda map_nested(lambda __lowercase : x + 1 , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = {"a": 1, "b": 2} snake_case_ = {"a": 3, "b": 4} snake_case_ = {"a": 5, "b": 6} snake_case_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Dict ): """simple docstring""" class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = 'bar' snake_case_ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(_SCREAMING_SNAKE_CASE , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: snake_case_ = {f"{i}": i for i in range(a__ )} snake_case_ = map_nested(lambda _A : x + 10 , a__ , num_proc=a__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @require_tf def snake_case__ ( self : Any ): """simple docstring""" import tensorflow as tf from tensorflow.keras import layers snake_case_ = layers.Dense(2 ) def gen_random_output(): snake_case_ = tf.random.uniform((1, 3) ) return model(_SCREAMING_SNAKE_CASE ).numpy() with temp_seed(42 , set_tensorflow=_SCREAMING_SNAKE_CASE ): snake_case_ = gen_random_output() with temp_seed(42 , set_tensorflow=_SCREAMING_SNAKE_CASE ): snake_case_ = gen_random_output() snake_case_ = gen_random_output() np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def snake_case__ ( self : int ): """simple docstring""" import torch def gen_random_output(): snake_case_ = torch.nn.Linear(3 , 2 ) snake_case_ = torch.rand(1 , 3 ) return model(_SCREAMING_SNAKE_CASE ).detach().numpy() with temp_seed(42 , set_pytorch=_SCREAMING_SNAKE_CASE ): snake_case_ = gen_random_output() with temp_seed(42 , set_pytorch=_SCREAMING_SNAKE_CASE ): snake_case_ = gen_random_output() snake_case_ = gen_random_output() np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def snake_case__ ( self : Tuple ): """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): snake_case_ = gen_random_output() with temp_seed(42 ): snake_case_ = gen_random_output() snake_case_ = gen_random_output() np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = NestedDataStructure(a__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = NestedDataStructure(a__ ).flatten() assert output == expected_output def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = A(x=1 , y="foobar" ) snake_case_ = {"x": 1, "y": "foobar"} assert asdict(a__ ) == expected_output snake_case_ = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} snake_case_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(a__ ) == expected_output with pytest.raises(a__ ): asdict([1, A(x=10 , y="foo" )] ) def lowerCamelCase__ ( _A ): '''simple docstring''' return text.split() def lowerCamelCase__ ( _A ): '''simple docstring''' yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowerCamelCase__ ( ): '''simple docstring''' with Pool(2 ) as pool: snake_case_ = list(iflatmap_unordered(a__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(a__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: snake_case_ = list(iflatmap_unordered(a__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(a__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: snake_case_ = [] for yield_time, content in iflatmap_unordered( a__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(a__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(a__ ) == 4
187
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :List[Any] = logging.get_logger(__name__) lowerCAmelCase__ :Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __a ( UpperCAmelCase ): _a : str = 'ctrl' _a : Tuple = ['past_key_values'] _a : List[Any] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=246534 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=8192 , _SCREAMING_SNAKE_CASE=48 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = dff _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache super().__init__(**_SCREAMING_SNAKE_CASE )
329
0
import datasets UpperCAmelCase__ = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' UpperCAmelCase__ = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' UpperCAmelCase__ = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def _a ( a :str , a :Dict ) -> Any: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Any ) ->Any: """simple docstring""" return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Dict: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size['shortest_edge'] * h / w ) _UpperCAmelCase = self.size['shortest_edge'] elif w > h: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = int(self.size['shortest_edge'] * w / h ) else: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = self.size['shortest_edge'] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : str = DeformableDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DeformableDetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_rescale' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'image_id': 39769, 'annotations': target} # encode them _UpperCAmelCase = DeformableDetrImageProcessor() _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) ) @slow def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} _UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic' ) _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify masks _UpperCAmelCase = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
329
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = 'char' __A = 'bpe' __A = 'wp' _lowercase: Optional[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = ['image_processor', 'char_tokenizer'] __A = 'ViTImageProcessor' __A = 'MgpstrTokenizer' def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ): """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _SCREAMING_SNAKE_CASE , ) a = kwargs.pop("feature_extractor" ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) a = tokenizer a = AutoTokenizer.from_pretrained("gpt2" ) a = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __call__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ): """simple docstring""" if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: a = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None: a = self.char_tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is None: return inputs elif images is None: return encodings else: a = encodings["input_ids"] return inputs def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a , a , a = sequences a = char_preds.size(0 ) a , a = self._decode_helper(_SCREAMING_SNAKE_CASE , "char" ) a , a = self._decode_helper(_SCREAMING_SNAKE_CASE , "bpe" ) a , a = self._decode_helper(_SCREAMING_SNAKE_CASE , "wp" ) a = [] a = [] for i in range(_SCREAMING_SNAKE_CASE ): a = [char_scores[i], bpe_scores[i], wp_scores[i]] a = [char_strs[i], bpe_strs[i], wp_strs[i]] a = scores.index(max(_SCREAMING_SNAKE_CASE ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) a = {} a = final_strs a = final_scores a = char_strs a = bpe_strs a = wp_strs return out def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if format == DecodeType.CHARACTER: a = self.char_decode a = 1 a = "[s]" elif format == DecodeType.BPE: a = self.bpe_decode a = 2 a = "#" elif format == DecodeType.WORDPIECE: a = self.wp_decode a = 102 a = "[SEP]" else: raise ValueError(F'''Format {format} is not supported.''' ) a , a = [], [] a = pred_logits.size(0 ) a = pred_logits.size(1 ) a , a = pred_logits.topk(1 , dim=-1 , largest=_SCREAMING_SNAKE_CASE , sorted=_SCREAMING_SNAKE_CASE ) a = preds_index.view(-1 , _SCREAMING_SNAKE_CASE )[:, 1:] a = decoder(_SCREAMING_SNAKE_CASE ) a , a = torch.nn.functional.softmax(_SCREAMING_SNAKE_CASE , dim=2 ).max(dim=2 ) a = preds_max_prob[:, 1:] for index in range(_SCREAMING_SNAKE_CASE ): a = preds_str[index].find(_SCREAMING_SNAKE_CASE ) a = preds_str[index][:pred_eos] a = preds_index[index].cpu().tolist() a = pred_index.index(_SCREAMING_SNAKE_CASE ) if eos_token in pred_index else -1 a = preds_max_prob[index][: pred_eos_index + 1] a = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(_SCREAMING_SNAKE_CASE ) conf_scores.append(_SCREAMING_SNAKE_CASE ) return dec_strs, conf_scores def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE )] return decode_strs def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" return self.bpe_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE )] return decode_strs
227
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __a ( unittest.TestCase ): _a : List[str] = JukeboxTokenizer _a : List[Any] = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
329
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : str , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = 32 _UpperCamelCase = 2 _UpperCamelCase = 4 _UpperCamelCase = 37 _UpperCamelCase = '''gelu''' _UpperCamelCase = 0.1 _UpperCamelCase = 0.1 _UpperCamelCase = 512 _UpperCamelCase = 16 _UpperCamelCase = 2 _UpperCamelCase = 0.02 _UpperCamelCase = 3 _UpperCamelCase = 4 _UpperCamelCase = None def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = TFDistilBertModel(config=_SCREAMING_SNAKE_CASE ) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) _UpperCamelCase = [input_ids, input_mask] _UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] ) -> str: '''simple docstring''' _UpperCamelCase = TFDistilBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFDistilBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) _UpperCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } _UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any ) -> Any: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFDistilBertForSequenceClassification(_SCREAMING_SNAKE_CASE ) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.num_choices _UpperCamelCase = TFDistilBertForMultipleChoice(_SCREAMING_SNAKE_CASE ) _UpperCamelCase = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } _UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFDistilBertForTokenClassification(_SCREAMING_SNAKE_CASE ) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : List[Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _snake_case : int = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Dict = False _snake_case : List[Any] = False def snake_case__ ( self : Optional[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = TFDistilBertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , dim=37 ) def snake_case__ ( self : List[str] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Optional[Any] ) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Optional[Any] ) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : str ) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Dict ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def snake_case__ ( self : Optional[Any] ) -> Any: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _UpperCamelCase = TFDistilBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCamelCase = model(_SCREAMING_SNAKE_CASE )[0] _UpperCamelCase = [1, 6, 768] self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) _UpperCamelCase = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 )
324
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase__ :Optional[int] = logging.getLogger(__name__) def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=a__ , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=a__ , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=a__ , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=a__ , default=1_0_0_0 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=a__ , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=a__ , type=a__ , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=a__ , default=5_1_2 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=a__ , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) _UpperCAmelCase = parser.parse_args() return args def lowerCAmelCase__ ( a__: Union[str, Any] ) -> List[Any]: '''simple docstring''' def fn(a__: str ): return tokenizer(examples['text'] ) return fn def lowerCAmelCase__ ( a__: List[str] ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for i in range(len(tokenized_data['input_ids'] ) ): _UpperCAmelCase = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } _UpperCAmelCase = tf.train.Features(feature=a__ ) _UpperCAmelCase = tf.train.Example(features=a__ ) _UpperCAmelCase = example.SerializeToString() records.append(a__ ) return records def lowerCAmelCase__ ( a__: Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: _UpperCAmelCase = min(len(a__ ) , args.limit ) _UpperCAmelCase = dataset.select(range(a__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _UpperCAmelCase = os.path.join(args.output_dir , args.split ) if not os.path.exists(a__ ): os.makedirs(a__ ) else: _UpperCAmelCase = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. _UpperCAmelCase = tokenize_function(a__ ) _UpperCAmelCase = dataset.map(a__ , batched=a__ , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(a__: Optional[int] ): # Concatenate all texts. _UpperCAmelCase = {k: sum(examples[k] , [] ) for k in examples.keys()} _UpperCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _UpperCAmelCase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _UpperCAmelCase = { k: [t[i : i + args.max_length] for i in range(0 , a__ , args.max_length )] for k, t in concatenated_examples.items() } return result _UpperCAmelCase = dataset_tokenized.map(a__ , batched=a__ , batch_size=1_0_0_0 , num_proc=4 ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 for shard in range(0 , len(a__ ) , args.shard_size ): _UpperCAmelCase = grouped_dataset[shard : shard + args.shard_size] _UpperCAmelCase = len(dataset_snapshot['input_ids'] ) _UpperCAmelCase = os.path.join(a__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) _UpperCAmelCase = get_serialized_examples(a__ ) with tf.io.TFRecordWriter(a__ ) as out_file: for i in range(len(a__ ) ): _UpperCAmelCase = serialized_examples[i] out_file.write(a__ ) print('Wrote file {} containing {} records'.format(a__ , a__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , 'w' ) as f: print(F'''Total {args.split} records: {total_records}''' , file=a__ ) if __name__ == "__main__": lowerCAmelCase__ :str = parse_args() main(args)
329
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def _SCREAMING_SNAKE_CASE ( a ) -> str: __A : str = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F"""{test_file} instead.""" ) __A : List[str] = components[-1] if not test_fn.endswith('py' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) __A : List[Any] = components[:-1] + [test_fn.replace('.py' , '' )] __A : List[Any] = '.'.join(a__ ) return test_module_path def _SCREAMING_SNAKE_CASE ( a ) -> Union[str, Any]: __A : Tuple = get_module_path(a__ ) __A : Dict = importlib.import_module(a__ ) return test_module def _SCREAMING_SNAKE_CASE ( a ) -> int: __A : Tuple = [] __A : str = get_test_module(a__ ) for attr in dir(a__ ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(a__ , a__ ) ) # sort with class names return sorted(a__ , key=lambda a : x.__name__ ) def _SCREAMING_SNAKE_CASE ( a ) -> Optional[int]: __A : Optional[int] = [] __A : int = get_test_module(a__ ) for attr in dir(a__ ): __A : Dict = getattr(a__ , a__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __A : str = getattr(a__ , 'all_model_classes' , [] ) if len(a__ ) > 0: test_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a : x.__name__ ) def _SCREAMING_SNAKE_CASE ( a ) -> List[str]: __A : Optional[Any] = get_test_classes(a__ ) __A : Optional[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(a__ , key=lambda a : x.__name__ ) def _SCREAMING_SNAKE_CASE ( a ) -> Dict: __A : Dict = test_class() if hasattr(a__ , 'setUp' ): test.setUp() __A : List[str] = None if hasattr(a__ , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __A : Optional[int] = test.model_tester.__class__ return model_tester def _SCREAMING_SNAKE_CASE ( a , a ) -> str: __A : str = get_test_classes(a__ ) __A : List[str] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a : x.__name__ ) def _SCREAMING_SNAKE_CASE ( a , a ) -> Any: __A : List[Any] = get_test_classes_for_model(a__ , a__ ) __A : Dict = [] for test_class in test_classes: __A : Optional[int] = get_model_tester_from_test_class(a__ ) if tester_class is not None: tester_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a : x.__name__ ) def _SCREAMING_SNAKE_CASE ( a ) -> int: __A : List[str] = get_test_classes(a__ ) __A : Dict = {test_class: get_model_tester_from_test_class(a__ ) for test_class in test_classes} return test_tester_mapping def _SCREAMING_SNAKE_CASE ( a ) -> int: __A : Union[str, Any] = get_model_classes(a__ ) __A : List[str] = { model_class: get_test_classes_for_model(a__ , a__ ) for model_class in model_classes } return model_test_mapping def _SCREAMING_SNAKE_CASE ( a ) -> Union[str, Any]: __A : str = get_model_classes(a__ ) __A : Any = { model_class: get_tester_classes_for_model(a__ , a__ ) for model_class in model_classes } return model_to_tester_mapping def _SCREAMING_SNAKE_CASE ( a ) -> str: if isinstance(a__ , a__ ): return o elif isinstance(a__ , a__ ): return o.__name__ elif isinstance(a__ , (list, tuple) ): return [to_json(a__ ) for x in o] elif isinstance(a__ , a__ ): return {to_json(a__ ): to_json(a__ ) for k, v in o.items()} else: return o
280
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any]=1_0 ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for _ in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCAmelCase__ ( a__: List[str] , a__: Any=1_0 ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = [] for step in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(a__ , 'schedule.bin' ) torch.save(scheduler.state_dict() , a__ ) _UpperCAmelCase = torch.load(a__ ) scheduler.load_state_dict(a__ ) return lrs @require_torch class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = Adafactor( params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=_SCREAMING_SNAKE_CASE , scale_parameter=_SCREAMING_SNAKE_CASE , warmup_init=_SCREAMING_SNAKE_CASE , ) for _ in range(1000 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __a ( unittest.TestCase ): _a : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None _a : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _a : List[Any] = 10 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE , msg=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _UpperCAmelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _UpperCAmelCase , _UpperCAmelCase = data _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _UpperCAmelCase = unwrap_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListAlmostEqual( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule _UpperCAmelCase = unwrap_and_save_reload_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , msg=f'''failed for {scheduler_func} in save and reload''' ) class __a : def __init__( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = fn def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @classmethod def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
329
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _UpperCamelCase = pytest.mark.integration @pytest.mark.parametrize('path' ,['paws', 'csv'] ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Any: inspect_dataset(a__ ,a__ ) __lowerCamelCase : Optional[int] = path + '.py' assert script_name in os.listdir(a__ ) assert "__pycache__" not in os.listdir(a__ ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' ,['accuracy'] ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> str: inspect_metric(a__ ,a__ ) __lowerCamelCase : Optional[int] = path + '.py' assert script_name in os.listdir(a__ ) assert "__pycache__" not in os.listdir(a__ ) @pytest.mark.parametrize( 'path, config_name, expected_splits' ,[ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> str: __lowerCamelCase : Optional[int] = get_dataset_config_info(a__ ,config_name=a__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' ,[ ('paws', None, ValueError), ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Optional[int]: with pytest.raises(a__ ): get_dataset_config_info(a__ ,config_name=a__ ) @pytest.mark.parametrize( 'path, expected' ,[ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> int: __lowerCamelCase : Any = get_dataset_config_names(a__ ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' ,[ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> List[Any]: __lowerCamelCase : Union[str, Any] = get_dataset_infos(a__ ) assert list(infos.keys() ) == expected_configs __lowerCamelCase : List[Any] = expected_configs[0] assert expected_config in infos __lowerCamelCase : List[str] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' ,[ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Dict: __lowerCamelCase : Optional[Any] = get_dataset_infos(a__ ) assert expected_config in infos __lowerCamelCase : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' ,[ ('paws', None, ValueError), ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> List[Any]: with pytest.raises(a__ ): get_dataset_split_names(a__ ,config_name=a__ )
208
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ :Any = logging.get_logger(__name__) def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any] , a__: Dict , a__: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = original_name.split('.' )[0] _UpperCAmelCase = key.split('.' ) _UpperCAmelCase = int(key_list[key_list.index(a__ ) - 2] ) _UpperCAmelCase = int(key_list[key_list.index(a__ ) - 1] ) _UpperCAmelCase = orig_block_num - offset _UpperCAmelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCAmelCase__ ( a__: Tuple ) -> int: '''simple docstring''' _UpperCAmelCase = OrderedDict() _UpperCAmelCase , _UpperCAmelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): _UpperCAmelCase = key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCAmelCase = key[: key.find('proj' )] _UpperCAmelCase = key.replace(a__ , F'''patch_embeddings.{total_embed_found}.''' ) _UpperCAmelCase = key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCAmelCase = 'poolformer.encoder.' + key if "mlp.fc1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm1' , 'before_norm' ) if "norm2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: _UpperCAmelCase = key.replace('head' , 'classifier' ) _UpperCAmelCase = value return new_state_dict def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw ) return image @torch.no_grad() def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict , a__: Any ) -> Dict: '''simple docstring''' _UpperCAmelCase = PoolFormerConfig() # set attributes based on model_name _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = model_name[-3:] _UpperCAmelCase = 1_0_0_0 _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = (1, 1_0_0_0) # set config attributes _UpperCAmelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(a__ ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCAmelCase = [2, 2, 6, 2] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 0.9 elif size == "s24": _UpperCAmelCase = [4, 4, 1_2, 4] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 0.9 elif size == "s36": _UpperCAmelCase = [6, 6, 1_8, 6] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.9 elif size == "m36": _UpperCAmelCase = [6, 6, 1_8, 6] _UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.95 elif size == "m48": _UpperCAmelCase = [8, 8, 2_4, 8] _UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ ) # Prepare image _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=a__ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCAmelCase = torch.load(a__ , map_location=torch.device('cpu' ) ) # rename keys _UpperCAmelCase = rename_keys(a__ ) # create HuggingFace model and load state dict _UpperCAmelCase = PoolFormerForImageClassification(a__ ) model.load_state_dict(a__ ) model.eval() # Define image processor _UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ ) _UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass _UpperCAmelCase = model(a__ ) _UpperCAmelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCAmelCase = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": _UpperCAmelCase = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": _UpperCAmelCase = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": _UpperCAmelCase = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": _UpperCAmelCase = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , a__ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ :str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ :Dict = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __A( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=400 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=True , _snake_case=[0.5, 0.5, 0.5] , _snake_case=[0.5, 0.5, 0.5] , ) -> Optional[Any]: '''simple docstring''' __a = parent __a = batch_size __a = num_channels __a = image_size __a = min_resolution __a = max_resolution __a = do_resize __a = size if size is not None else {'''height''': 18, '''width''': 20} __a = do_thumbnail __a = do_align_axis __a = do_pad __a = do_normalize __a = image_mean __a = image_std def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __A( a , unittest.TestCase ): snake_case_ = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_pad''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''image_std''' ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __a = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' pass @is_flaky() def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __a = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
6
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = process _UpperCAmelCase = params def __len__( self ) -> Union[str, Any]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = self.dataset[i] _UpperCAmelCase = self.process(_SCREAMING_SNAKE_CASE , **self.params ) return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = loader _UpperCAmelCase = infer _UpperCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _UpperCAmelCase = None _UpperCAmelCase = loader_batch_size # Internal bookkeeping _UpperCAmelCase = None _UpperCAmelCase = None def __len__( self ) -> Any: """simple docstring""" return len(self.loader ) def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _UpperCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _UpperCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Convert ModelOutput to tuple first _UpperCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _UpperCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _UpperCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _UpperCAmelCase = self._loader_batch_data.__class__(_SCREAMING_SNAKE_CASE ) self._loader_batch_index += 1 return result def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _UpperCAmelCase = next(self.iterator ) _UpperCAmelCase = self.infer(_SCREAMING_SNAKE_CASE , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _UpperCAmelCase = processed _UpperCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __iter__( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) _UpperCAmelCase = None return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if self.subiterator is None: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _UpperCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) _UpperCAmelCase = next(self.subiterator ) return processed class __a ( UpperCAmelCase ): def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = False _UpperCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator while not is_last: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size _UpperCAmelCase = processed _UpperCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator else: _UpperCAmelCase = processed _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) return accumulator class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = key def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.dataset[i][self.key] class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = keya _UpperCAmelCase = keya def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
329
0
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : str = 2 while i * i <= n: _lowerCAmelCase : Optional[int] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def A ( ): '''simple docstring''' _lowerCAmelCase : int = 1 _lowerCAmelCase : Dict = 1 while True: i += 1 t_num += i if count_divisors(a__ ) > 500: break return t_num if __name__ == "__main__": print(solution())
36
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ :int = logging.get_logger(__name__) lowerCAmelCase__ :Optional[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class __a ( UpperCAmelCase ): _a : str = 'data2vec-text' def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class __a ( UpperCAmelCase ): @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
329
0
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AudioLDMPipeline lowerCAmelCase__ = TEXT_TO_AUDIO_PARAMS lowerCAmelCase__ = TEXT_TO_AUDIO_BATCH_PARAMS lowerCAmelCase__ = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , projection_dim=32 , ) __SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) __SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16_000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int]=0 ) -> Any: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = AudioLDMPipeline(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe.to(_SCREAMING_SNAKE_CASE ) audioldm_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(_SCREAMING_SNAKE_CASE ) == 256 __SCREAMING_SNAKE_CASE = audio[:10] __SCREAMING_SNAKE_CASE = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Tuple ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = AudioLDMPipeline(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe.to(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe.to(_SCREAMING_SNAKE_CASE ) audioldm_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 3 * [inputs["""prompt"""]] # forward __SCREAMING_SNAKE_CASE = audioldm_pipe(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.audios[0] __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 3 * [inputs.pop("""prompt""" )] __SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( _SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , ) __SCREAMING_SNAKE_CASE = text_inputs["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( _SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __SCREAMING_SNAKE_CASE = F.normalize(_SCREAMING_SNAKE_CASE , dim=-1 ) __SCREAMING_SNAKE_CASE = prompt_embeds # forward __SCREAMING_SNAKE_CASE = audioldm_pipe(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = AudioLDMPipeline(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe.to(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe.to(_SCREAMING_SNAKE_CASE ) audioldm_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 3 * ["""this is a negative prompt"""] __SCREAMING_SNAKE_CASE = negative_prompt __SCREAMING_SNAKE_CASE = 3 * [inputs["""prompt"""]] # forward __SCREAMING_SNAKE_CASE = audioldm_pipe(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.audios[0] __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 3 * [inputs.pop("""prompt""" )] __SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: __SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( _SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , ) __SCREAMING_SNAKE_CASE = text_inputs["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( _SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state __SCREAMING_SNAKE_CASE = F.normalize(_SCREAMING_SNAKE_CASE , dim=-1 ) embeds.append(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = embeds # forward __SCREAMING_SNAKE_CASE = audioldm_pipe(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AudioLDMPipeline(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe.to(_SCREAMING_SNAKE_CASE ) audioldm_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """egg cracking""" __SCREAMING_SNAKE_CASE = audioldm_pipe(**_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(_SCREAMING_SNAKE_CASE ) == 256 __SCREAMING_SNAKE_CASE = audio[:10] __SCREAMING_SNAKE_CASE = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : int ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AudioLDMPipeline(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe.to(_SCREAMING_SNAKE_CASE ) audioldm_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) __SCREAMING_SNAKE_CASE = audioldm_pipe(_SCREAMING_SNAKE_CASE , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = audioldm_pipe(_SCREAMING_SNAKE_CASE , num_inference_steps=2 , num_waveforms_per_prompt=_SCREAMING_SNAKE_CASE ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_SCREAMING_SNAKE_CASE ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = AudioLDMPipeline(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe.to(_SCREAMING_SNAKE_CASE ) audioldm_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(_SCREAMING_SNAKE_CASE ) / vocoder_sampling_rate == 0.016 __SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(_SCREAMING_SNAKE_CASE ) / vocoder_sampling_rate == 0.032 def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = AudioLDMPipeline(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe.to(_SCREAMING_SNAKE_CASE ) audioldm_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ["""hey"""] __SCREAMING_SNAKE_CASE = audioldm_pipe(_SCREAMING_SNAKE_CASE , num_inference_steps=1 ) __SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 256) __SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 __SCREAMING_SNAKE_CASE = SpeechTaHifiGan(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe(_SCREAMING_SNAKE_CASE , num_inference_steps=1 ) __SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=_SCREAMING_SNAKE_CASE ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_SCREAMING_SNAKE_CASE ) @slow class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any="cpu" , __SCREAMING_SNAKE_CASE : Dict=torch.floataa , __SCREAMING_SNAKE_CASE : str=0 ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = np.random.RandomState(_SCREAMING_SNAKE_CASE ).standard_normal((1, 8, 128, 16) ) __SCREAMING_SNAKE_CASE = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def UpperCAmelCase__ ( self : Any ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __SCREAMING_SNAKE_CASE = audioldm_pipe.to(_SCREAMING_SNAKE_CASE ) audioldm_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_inputs(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 25 __SCREAMING_SNAKE_CASE = audioldm_pipe(**_SCREAMING_SNAKE_CASE ).audios[0] assert audio.ndim == 1 assert len(_SCREAMING_SNAKE_CASE ) == 81_920 __SCREAMING_SNAKE_CASE = audio[77_230:77_240] __SCREAMING_SNAKE_CASE = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) __SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __SCREAMING_SNAKE_CASE = audioldm_pipe.to(_SCREAMING_SNAKE_CASE ) audioldm_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_inputs(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = audioldm_pipe(**_SCREAMING_SNAKE_CASE ).audios[0] assert audio.ndim == 1 assert len(_SCREAMING_SNAKE_CASE ) == 81_920 __SCREAMING_SNAKE_CASE = audio[27_780:27_790] __SCREAMING_SNAKE_CASE = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) __SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
267
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['stem'] _UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : int = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _a : str = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} _a : Optional[int] = False _a : List[str] = False _a : List[str] = False _a : Optional[int] = False _a : Tuple = False def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 0 return t def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has''' f''' `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}.''' ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) @require_torch class __a ( unittest.TestCase , UpperCAmelCase ): _a : Any = (MaskFormerSwinBackbone,) if is_torch_available() else () _a : Any = MaskFormerSwinConfig def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
329
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A_ : def __init__(self :Optional[int] , _UpperCamelCase :Optional[int] , _UpperCamelCase :int=13 , _UpperCamelCase :int=7 , _UpperCamelCase :List[str]=True , _UpperCamelCase :Optional[Any]=True , _UpperCamelCase :Union[str, Any]=True , _UpperCamelCase :int=True , _UpperCamelCase :List[Any]=99 , _UpperCamelCase :List[str]=32 , _UpperCamelCase :List[Any]=2 , _UpperCamelCase :Union[str, Any]=4 , _UpperCamelCase :int=37 , _UpperCamelCase :Optional[int]="gelu" , _UpperCamelCase :Union[str, Any]=0.1 , _UpperCamelCase :Tuple=0.1 , _UpperCamelCase :Optional[Any]=512 , _UpperCamelCase :Tuple=16 , _UpperCamelCase :Optional[int]=2 , _UpperCamelCase :Any=0.0_2 , _UpperCamelCase :List[str]=3 , _UpperCamelCase :Any=4 , _UpperCamelCase :List[Any]=None , )-> List[Any]: __A = parent __A = 13 __A = 7 __A = True __A = True __A = True __A = True __A = 99 __A = 384 __A = 2 __A = 4 __A = 37 __A = '''gelu''' __A = 0.1 __A = 0.1 __A = 512 __A = 16 __A = 2 __A = 0.0_2 __A = 3 __A = 4 __A = 128 __A = 2 __A = 9 __A = 1 __A = None def _lowerCAmelCase (self :Any )-> int: __A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A = ids_tensor([self.batch_size] , self.num_choices ) __A = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_SCREAMING_SNAKE_CASE , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase (self :Tuple , _UpperCamelCase :Any , _UpperCamelCase :str , _UpperCamelCase :Optional[Any] , _UpperCamelCase :List[str] , _UpperCamelCase :Tuple , _UpperCamelCase :Optional[Any] , _UpperCamelCase :str )-> int: __A = TFConvBertModel(config=_SCREAMING_SNAKE_CASE ) __A = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __A = [input_ids, input_mask] __A = model(_SCREAMING_SNAKE_CASE ) __A = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :List[Any] , _UpperCamelCase :Dict , _UpperCamelCase :Optional[Any] , _UpperCamelCase :Optional[int] , _UpperCamelCase :Dict , _UpperCamelCase :Optional[Any] , _UpperCamelCase :List[Any] )-> List[Any]: __A = TFConvBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) __A = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __A = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase (self :Optional[Any] , _UpperCamelCase :Optional[Any] , _UpperCamelCase :Optional[int] , _UpperCamelCase :List[str] , _UpperCamelCase :Optional[int] , _UpperCamelCase :Any , _UpperCamelCase :str , _UpperCamelCase :str )-> Optional[int]: __A = self.num_labels __A = TFConvBertForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) __A = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __A = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase (self :Tuple , _UpperCamelCase :List[str] , _UpperCamelCase :List[str] , _UpperCamelCase :int , _UpperCamelCase :Tuple , _UpperCamelCase :Optional[Any] , _UpperCamelCase :Dict , _UpperCamelCase :Optional[Any] )-> Optional[Any]: __A = self.num_choices __A = TFConvBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) __A = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) __A = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) __A = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) __A = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __A = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase (self :Dict , _UpperCamelCase :Union[str, Any] , _UpperCamelCase :Optional[Any] , _UpperCamelCase :str , _UpperCamelCase :List[str] , _UpperCamelCase :Tuple , _UpperCamelCase :Optional[Any] , _UpperCamelCase :List[str] )-> Any: __A = self.num_labels __A = TFConvBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) __A = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __A = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase (self :Dict , _UpperCamelCase :List[Any] , _UpperCamelCase :Tuple , _UpperCamelCase :List[str] , _UpperCamelCase :List[Any] , _UpperCamelCase :Tuple , _UpperCamelCase :str , _UpperCamelCase :Optional[int] )-> Optional[int]: __A = TFConvBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) __A = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __A = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase (self :List[str] )-> str: __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class A_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowerCAmelCase (self :Union[str, Any] )-> Optional[Any]: __A = TFConvBertModelTester(self ) __A = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _lowerCAmelCase (self :Any )-> List[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase (self :List[Any] )-> List[Any]: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase (self :Union[str, Any] )-> List[Any]: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase (self :Any )-> Union[str, Any]: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase (self :List[Any] )-> int: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase (self :Optional[Any] )-> Dict: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase (self :int )-> Tuple: __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def _lowerCAmelCase (self :str )-> Optional[Any]: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = True __A = True if hasattr(_SCREAMING_SNAKE_CASE , '''use_cache''' ): __A = True __A = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) __A = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __A = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __A = model_class(_SCREAMING_SNAKE_CASE ) __A = len(model(_SCREAMING_SNAKE_CASE ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE , saved_model=_SCREAMING_SNAKE_CASE ) __A = os.path.join(_SCREAMING_SNAKE_CASE , '''saved_model''' , '''1''' ) __A = tf.keras.models.load_model(_SCREAMING_SNAKE_CASE ) __A = model(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: __A = outputs['''encoder_hidden_states'''] __A = outputs['''encoder_attentions'''] else: __A = outputs['''hidden_states'''] __A = outputs['''attentions'''] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) __A = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowerCAmelCase (self :Dict )-> Any: __A = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase (self :Union[str, Any] )-> Optional[int]: __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = True __A = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) __A = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) __A = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) __A = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) def check_decoder_attentions_output(_UpperCamelCase :List[Any] ): __A = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(out_len % 2 , 0 ) __A = outputs.decoder_attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCamelCase :str ): __A = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A = True __A = False __A = model_class(_SCREAMING_SNAKE_CASE ) __A = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) __A = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: __A = model_class(_SCREAMING_SNAKE_CASE ) __A = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A = True __A = model_class(_SCREAMING_SNAKE_CASE ) __A = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine __A = True __A = True __A = model_class(_SCREAMING_SNAKE_CASE ) __A = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) @require_tf class A_ ( unittest.TestCase ): @slow def _lowerCAmelCase (self :Tuple )-> List[str]: __A = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) __A = tf.constant([[0, 1, 2, 3, 4, 5]] ) __A = model(_SCREAMING_SNAKE_CASE )[0] __A = [1, 6, 768] self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) __A = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 )
117
from collections.abc import Generator def lowerCAmelCase__ ( ) -> Generator[int, None, None]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = 0, 1 while True: _UpperCAmelCase , _UpperCAmelCase = b, a + b yield b def lowerCAmelCase__ ( a__: int = 1_0_0_0 ) -> int: '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = fibonacci_generator() while len(str(next(a__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
329
0
'''simple docstring''' from collections.abc import Callable def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> float: """simple docstring""" __A = a __A = b if function(a__ ) == 0: # one of the a or b is a root for the function return a elif function(a__ ) == 0: return b elif ( function(a__ ) * function(a__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: __A = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(a__ ) == 0: return mid elif function(a__ ) * function(a__ ) < 0: __A = mid else: __A = mid __A = start + (end - start) / 2.0 return mid def snake_case ( UpperCAmelCase )-> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
161
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 30} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize_and_center_crop _UpperCAmelCase = size _UpperCAmelCase = crop_pct _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
329
0
from __future__ import annotations from typing import Any class UpperCAmelCase : '''simple docstring''' def __init__( self : int , __lowercase : Any , __lowercase : Any , __lowercase : str = 0 ): """simple docstring""" snake_case_ , snake_case_ = row, column snake_case_ = [[default_value for c in range(_SCREAMING_SNAKE_CASE )] for r in range(_SCREAMING_SNAKE_CASE )] def __str__( self : Optional[Any] ): """simple docstring""" snake_case_ = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier snake_case_ = 0 for row_vector in self.array: for obj in row_vector: snake_case_ = max(_SCREAMING_SNAKE_CASE , len(str(_SCREAMING_SNAKE_CASE ) ) ) snake_case_ = f"%{max_element_length}s" # Make string and return def single_line(__lowercase : Dict ) -> str: nonlocal string_format_identifier snake_case_ = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_SCREAMING_SNAKE_CASE ) for row_vector in self.array ) return s def __repr__( self : str ): """simple docstring""" return str(self ) def snake_case__ ( self : Optional[Any] , __lowercase : str ): """simple docstring""" if not (isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and len(_SCREAMING_SNAKE_CASE ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Dict , __lowercase : List[Any] ): """simple docstring""" assert self.validate_indicies(_SCREAMING_SNAKE_CASE ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , __lowercase : Any , __lowercase : str ): """simple docstring""" assert self.validate_indicies(_SCREAMING_SNAKE_CASE ) snake_case_ = value def __add__( self : str , __lowercase : Tuple ): """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert self.row == another.row and self.column == another.column # Add snake_case_ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): snake_case_ = self[r, c] + another[r, c] return result def __neg__( self : str ): """simple docstring""" snake_case_ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): snake_case_ = -self[r, c] return result def __sub__( self : List[Any] , __lowercase : Optional[Any] ): """simple docstring""" return self + (-another) def __mul__( self : Any , __lowercase : List[str] ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ): # Scalar multiplication snake_case_ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): snake_case_ = self[r, c] * another return result elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Matrix multiplication assert self.column == another.row snake_case_ = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: snake_case_ = f"Unsupported type given for another ({type(_SCREAMING_SNAKE_CASE )})" raise TypeError(_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : List[Any] ): """simple docstring""" snake_case_ = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): snake_case_ = self[r, c] return result def snake_case__ ( self : Union[str, Any] , __lowercase : Dict , __lowercase : Union[str, Any] ): """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate snake_case_ = v.transpose() snake_case_ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = Matrix(3 , 3 , 0 ) for i in range(3 ): snake_case_ = 1 print(f"a^(-1) is {ainv}" ) # u, v snake_case_ = Matrix(3 , 1 , 0 ) snake_case_ , snake_case_ , snake_case_ = 1, 2, -3 snake_case_ = Matrix(3 , 1 , 0 ) snake_case_ , snake_case_ , snake_case_ = 4, -2, 5 print(f"u is {u}" ) print(f"v is {v}" ) print(f"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(f"(a + uv^T)^(-1) is {ainv.sherman_morrison(a__ , a__ )}" ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() testa()
187
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20} _UpperCAmelCase = do_thumbnail _UpperCAmelCase = do_align_axis _UpperCAmelCase = do_pad _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : List[str] = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_thumbnail' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
329
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase__ = logging.get_logger(__name__) class lowercase_ ( enum.Enum ): '''simple docstring''' __snake_case = 0 __snake_case = 1 @add_end_docstrings(lowercase ) class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = 'generated' def __init__( self : Dict , *__UpperCAmelCase : Any , **__UpperCAmelCase : str ) ->Optional[int]: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : int=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : int=None , **__UpperCAmelCase : Optional[int] , ) ->Optional[Any]: """simple docstring""" a = {} if truncation is not None: a = truncation a = generate_kwargs a = {} if return_tensors is not None and return_type is None: a = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: a = return_type if clean_up_tokenization_spaces is not None: a = clean_up_tokenization_spaces if stop_sequence is not None: a = self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) a = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowerCAmelCase ( self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : List[str] ) ->str: """simple docstring""" return True def __lowerCAmelCase ( self : str , *__UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] ) ->Union[str, Any]: """simple docstring""" a = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _SCREAMING_SNAKE_CASE ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) a = ([prefix + arg for arg in args[0]],) a = True elif isinstance(args[0] , _SCREAMING_SNAKE_CASE ): a = (prefix + args[0],) a = False else: raise ValueError( F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) a = self.tokenizer(*_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : str , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : str ) ->str: """simple docstring""" a = super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if ( isinstance(args[0] , _SCREAMING_SNAKE_CASE ) and all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for el in args[0] ) and all(len(_SCREAMING_SNAKE_CASE ) == 1 for res in result ) ): return [res[0] for res in result] return result def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str]=TruncationStrategy.DO_NOT_TRUNCATE , **__UpperCAmelCase : List[Any] ) ->Optional[Any]: """simple docstring""" a = self._parse_and_tokenize(_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return inputs def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[Any] ) ->List[Any]: """simple docstring""" if self.framework == "pt": a , a = model_inputs['''input_ids'''].shape elif self.framework == "tf": a , a = tf.shape(model_inputs['''input_ids'''] ).numpy() a = generate_kwargs.get('''min_length''' , self.model.config.min_length ) a = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_SCREAMING_SNAKE_CASE , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) a = self.model.generate(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) a = output_ids.shape[0] if self.framework == "pt": a = output_ids.reshape(_SCREAMING_SNAKE_CASE , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": a = tf.reshape(_SCREAMING_SNAKE_CASE , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Any=ReturnType.TEXT , __UpperCAmelCase : Dict=False ) ->Optional[int]: """simple docstring""" a = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: a = {F"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: a = { F"""{self.return_name}_text""": self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) } records.append(_SCREAMING_SNAKE_CASE ) return records @add_end_docstrings(lowercase ) class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = 'summary' def __call__( self : List[Any] , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : List[Any] ) ->List[Any]: """simple docstring""" return super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) ->bool: """simple docstring""" if max_length < min_length: logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F"""consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})""" ) @add_end_docstrings(lowercase ) class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = 'translation' def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] ) ->Tuple: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __lowerCAmelCase ( self : List[Any] , *__UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any=TruncationStrategy.DO_NOT_TRUNCATE , __UpperCAmelCase : int=None , __UpperCAmelCase : Any=None ) ->Tuple: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _SCREAMING_SNAKE_CASE ): return self.tokenizer._build_translation_inputs( *_SCREAMING_SNAKE_CASE , return_tensors=self.framework , truncation=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE ) else: return super()._parse_and_tokenize(*_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : str=None , **__UpperCAmelCase : Optional[int] ) ->Any: """simple docstring""" a , a , a = super()._sanitize_parameters(**_SCREAMING_SNAKE_CASE ) if src_lang is not None: a = src_lang if tgt_lang is not None: a = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. a = kwargs.get('''task''' , self.task ) a = task.split('''_''' ) if task and len(_SCREAMING_SNAKE_CASE ) == 4: # translation, XX, to YY a = items[1] a = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : str , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : List[Any] ) ->int: """simple docstring""" return super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :Dict = logging.get_logger(__name__) lowerCAmelCase__ :Optional[int] = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class __a ( UpperCAmelCase ): _a : List[str] = 'openai-gpt' _a : int = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=40478 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = afn _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = summary_type _UpperCAmelCase = summary_use_proj _UpperCAmelCase = summary_activation _UpperCAmelCase = summary_first_dropout _UpperCAmelCase = summary_proj_to_labels super().__init__(**_SCREAMING_SNAKE_CASE )
329
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _lowercase : """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=32 , lowerCamelCase_=2 , lowerCamelCase_=3 , lowerCamelCase_=16 , lowerCamelCase_=[1, 2, 1] , lowerCamelCase_=[2, 2, 4] , lowerCamelCase_=2 , lowerCamelCase_=2.0 , lowerCamelCase_=True , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_="gelu" , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=0.02 , lowerCamelCase_=1E-5 , lowerCamelCase_=True , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_=10 , lowerCamelCase_=8 , lowerCamelCase_=["stage1", "stage2", "stage3"] , lowerCamelCase_=[1, 2, 3] , ): """simple docstring""" a = parent a = batch_size a = image_size a = patch_size a = num_channels a = embed_dim a = depths a = num_heads a = window_size a = mlp_ratio a = qkv_bias a = hidden_dropout_prob a = attention_probs_dropout_prob a = drop_path_rate a = hidden_act a = use_absolute_embeddings a = patch_norm a = layer_norm_eps a = initializer_range a = is_training a = scope a = use_labels a = type_sequence_label_size a = encoder_stride a = out_features a = out_indices def UpperCamelCase_ (self ): """simple docstring""" a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = self.get_config() return config, pixel_values, labels def UpperCamelCase_ (self ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a = model(_SCREAMING_SNAKE_CASE ) a = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) a = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): a = ["stem"] a = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ (self ): """simple docstring""" a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __A = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} __A = False __A = False __A = False __A = False __A = False def UpperCamelCase_ (self ): """simple docstring""" a = MaskFormerSwinModelTester(self ) a = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with" " `nn.DataParallel`" ) ) def UpperCamelCase_ (self ): """simple docstring""" pass def UpperCamelCase_ (self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ (self ): """simple docstring""" return def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCamelCase_ (self ): """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip("Swin does not use inputs_embeds" ) def UpperCamelCase_ (self ): """simple docstring""" pass @unittest.skip("Swin does not support feedforward chunking" ) def UpperCamelCase_ (self ): """simple docstring""" pass def UpperCamelCase_ (self ): """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCamelCase_ (self ): """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(_SCREAMING_SNAKE_CASE ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn\'t support output_attentions" ) def UpperCamelCase_ (self ): """simple docstring""" pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def UpperCamelCase_ (self ): """simple docstring""" pass def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) a = outputs.hidden_states a = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase_ (self ): """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: a = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCamelCase_ (self ): """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) a = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) a = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: a = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn\'t have pretrained checkpoints" ) def UpperCamelCase_ (self ): """simple docstring""" pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def UpperCamelCase_ (self ): """simple docstring""" pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def UpperCamelCase_ (self ): """simple docstring""" pass def UpperCamelCase_ (self ): """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCamelCase_ ): a = 0 return t def check_equivalence(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_={} ): with torch.no_grad(): a = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) a = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(lowerCamelCase_ , lowerCamelCase_ ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1E-5 ) , msg=( "Tuple and dict output are not equal. Difference:" F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has''' F''' `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}.''' ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: a = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) a = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {"output_hidden_states": True} ) a = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) a = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {"output_hidden_states": True} ) @require_torch class _lowercase ( unittest.TestCase, lowerCAmelCase ): """simple docstring""" __A = (MaskFormerSwinBackbone,) if is_torch_available() else () __A = MaskFormerSwinConfig def UpperCamelCase_ (self ): """simple docstring""" a = MaskFormerSwinModelTester(self ) def UpperCamelCase_ (self ): """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() a = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: a = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() a = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True a = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) a , a , a = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: a = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
227
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def lowerCAmelCase__ ( a__: Any , a__: Tuple , a__: Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = hf_hub_url(repo_id=a__ , path=a__ , revision=a__ ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a__ )}'''
329
0
'''simple docstring''' lowercase__ : Optional[int] = { '''meter''': '''m''', '''kilometer''': '''km''', '''megametre''': '''Mm''', '''gigametre''': '''Gm''', '''terametre''': '''Tm''', '''petametre''': '''Pm''', '''exametre''': '''Em''', '''zettametre''': '''Zm''', '''yottametre''': '''Ym''', } # Exponent of the factor(meter) lowercase__ : Dict = { '''m''': 0, '''km''': 3, '''Mm''': 6, '''Gm''': 9, '''Tm''': 12, '''Pm''': 15, '''Em''': 18, '''Zm''': 21, '''Ym''': 24, } def a__ ( lowercase : float, lowercase : str, lowercase : str ) -> float: """simple docstring""" _UpperCamelCase = from_type.lower().strip('''s''' ) _UpperCamelCase = to_type.lower().strip('''s''' ) _UpperCamelCase = UNIT_SYMBOL.get(a__, a__ ) _UpperCamelCase = UNIT_SYMBOL.get(a__, a__ ) if from_sanitized not in METRIC_CONVERSION: _UpperCamelCase = ( F"""Invalid \'from_type\' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(a__ )}""" ) raise ValueError(a__ ) if to_sanitized not in METRIC_CONVERSION: _UpperCamelCase = ( F"""Invalid \'to_type\' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {', '.join(a__ )}""" ) raise ValueError(a__ ) _UpperCamelCase = METRIC_CONVERSION[from_sanitized] _UpperCamelCase = METRIC_CONVERSION[to_sanitized] _UpperCamelCase = 1 if from_exponent > to_exponent: _UpperCamelCase = from_exponent - to_exponent else: _UpperCamelCase = -(to_exponent - from_exponent) return value * pow(10, a__ ) if __name__ == "__main__": from doctest import testmod testmod()
324
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase__ :Optional[int] = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int]=None ) -> Any: '''simple docstring''' require_version(deps[pkg] , a__ )
329
0
from random import shuffle import tensorflow as tf from numpy import array def _SCREAMING_SNAKE_CASE ( a , a ) -> Dict: __A : Optional[int] = int(a__ ) assert noofclusters < len(a__ ) # Find out the dimensionality __A : Tuple = len(vectors[0] ) # Will help select random centroids from among the available vectors __A : List[str] = list(range(len(a__ ) ) ) shuffle(a__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __A : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __A : Tuple = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __A : Optional[Any] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(a__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __A : List[str] = tf.placeholder('float64' , [dim] ) __A : Any = [] for centroid in centroids: cent_assigns.append(tf.assign(a__ , a__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __A : Optional[Any] = [tf.Variable(0 ) for i in range(len(a__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __A : Dict = tf.placeholder('int32' ) __A : Tuple = [] for assignment in assignments: cluster_assigns.append(tf.assign(a__ , a__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __A : Dict = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __A : List[str] = tf.reduce_mean(a__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __A : str = tf.placeholder('float' , [dim] ) __A : str = tf.placeholder('float' , [dim] ) __A : str = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(a__ , a__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __A : List[Any] = tf.placeholder('float' , [noofclusters] ) __A : Any = tf.argmin(a__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __A : Tuple = tf.initialize_all_variables() # Initialize all variables sess.run(a__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __A : Tuple = 1_00 for _ in range(a__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(a__ ) ): __A : str = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __A : Union[str, Any] = [ sess.run(a__ , feed_dict={va: vect, va: sess.run(a__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __A : List[Any] = sess.run( a__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(a__ ): # Collect all the vectors assigned to this cluster __A : Union[str, Any] = [ vectors[i] for i in range(len(a__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __A : str = sess.run( a__ , feed_dict={mean_input: array(a__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __A : Optional[Any] = sess.run(a__ ) __A : Dict = sess.run(a__ ) return centroids, assignments
280
from __future__ import annotations def lowerCAmelCase__ ( a__: dict , a__: str ) -> set[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = set(a__ ), [start] while stack: _UpperCAmelCase = stack.pop() explored.add(a__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a__ ) return explored lowerCAmelCase__ :Tuple = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
329
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : int , *_a : str , **_a : Dict ) -> Dict: super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _lowercase ( self : Any , _a : str=None , _a : Union[str, Any]=None , _a : Optional[Any]=None ) -> int: __lowerCamelCase : Union[str, Any] = {} __lowerCamelCase : Dict = {} if prompt is not None: __lowerCamelCase : Tuple = prompt if generate_kwargs is not None: __lowerCamelCase : Optional[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __lowerCamelCase : Any = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) __lowerCamelCase : List[str] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Union[str, Any] , _a : str , **_a : List[Any] ) -> Optional[Any]: return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowercase ( self : int , _a : str , _a : Tuple=None ) -> int: __lowerCamelCase : Union[str, Any] = load_image(_SCREAMING_SNAKE_CASE ) if prompt is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( f'Received an invalid text input, got - {type(_SCREAMING_SNAKE_CASE )} - but expected a single string. ' 'Note also that one single text can be provided for conditional image to text generation.' ) __lowerCamelCase : Optional[Any] = self.model.config.model_type if model_type == "git": __lowerCamelCase : str = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __lowerCamelCase : List[Any] = self.tokenizer(text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids __lowerCamelCase : str = [self.tokenizer.cls_token_id] + input_ids __lowerCamelCase : Optional[Any] = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": __lowerCamelCase : int = self.image_processor(images=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __lowerCamelCase : List[str] = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __lowerCamelCase : Tuple = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'Model type {model_type} does not support conditional text generation' ) else: __lowerCamelCase : Optional[Any] = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __lowerCamelCase : str = None return model_inputs def _lowercase ( self : Optional[int] , _a : Optional[int] , _a : str=None ) -> List[str]: if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _SCREAMING_SNAKE_CASE ) and all(x is None for x in model_inputs['input_ids'] ) ): __lowerCamelCase : Optional[Any] = None if generate_kwargs is None: __lowerCamelCase : List[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __lowerCamelCase : Any = model_inputs.pop(self.model.main_input_name ) __lowerCamelCase : Optional[Any] = self.model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return model_outputs def _lowercase ( self : Dict , _a : int ) -> Dict: __lowerCamelCase : Optional[Any] = [] for output_ids in model_outputs: __lowerCamelCase : str = { 'generated_text': self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , ) } records.append(_SCREAMING_SNAKE_CASE ) return records
208
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(_SCREAMING_SNAKE_CASE , os.listdir(_SCREAMING_SNAKE_CASE )[0] , 'snapshots' ) )] _UpperCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 4 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3 assert np.abs(np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1 _UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_SCREAMING_SNAKE_CASE ) == num_samples def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = scheduler.create_state() _UpperCAmelCase = scheduler_state _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , use_memory_efficient_attention=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
329
0
from typing import List import numpy as np def __lowerCAmelCase ( a__ ) -> int: __a = {key: len(a__ ) for key, value in gen_kwargs.items() if isinstance(a__ , a__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) __a = max(lists_lengths.values() , default=0 ) return max(1 , a__ ) def __lowerCAmelCase ( a__ , a__ ) -> List[range]: __a = [] for group_idx in range(a__ ): __a = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break __a = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 __a = range(a__ , start + num_shards_to_add ) shards_indices_per_group.append(a__ ) return shards_indices_per_group def __lowerCAmelCase ( a__ , a__ ) -> List[dict]: __a = _number_of_shards_in_gen_kwargs(a__ ) if num_shards == 1: return [dict(a__ )] else: __a = _distribute_shards(num_shards=a__ , max_num_jobs=a__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(a__ , a__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(a__ ) ) ] def __lowerCAmelCase ( a__ ) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , a__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __lowerCAmelCase ( a__ , a__ ) -> dict: __a = {len(a__ ) for value in gen_kwargs.values() if isinstance(a__ , a__ )} __a = {} for size in list_sizes: __a = list(range(a__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes __a = dict(a__ ) for key, value in shuffled_kwargs.items(): if isinstance(a__ , a__ ): __a = [value[i] for i in indices_per_size[len(a__ )]] return shuffled_kwargs
6
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase__ :int = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class __a ( UpperCAmelCase ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = {} if prompt is not None: _UpperCAmelCase = prompt if generate_kwargs is not None: _UpperCAmelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _UpperCAmelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) _UpperCAmelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" _UpperCAmelCase = load_image(_SCREAMING_SNAKE_CASE ) if prompt is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( f'''Received an invalid text input, got - {type(_SCREAMING_SNAKE_CASE )} - but expected a single string. ''' 'Note also that one single text can be provided for conditional image to text generation.' ) _UpperCAmelCase = self.model.config.model_type if model_type == "git": _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids _UpperCAmelCase = [self.tokenizer.cls_token_id] + input_ids _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _UpperCAmelCase = None return model_inputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[str]: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _SCREAMING_SNAKE_CASE ) and all(x is None for x in model_inputs['input_ids'] ) ): _UpperCAmelCase = None if generate_kwargs is None: _UpperCAmelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _UpperCAmelCase = model_inputs.pop(self.model.main_input_name ) _UpperCAmelCase = self.model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return model_outputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = [] for output_ids in model_outputs: _UpperCAmelCase = { 'generated_text': self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , ) } records.append(_SCREAMING_SNAKE_CASE ) return records
329
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class UpperCAmelCase_ ( a): lowerCamelCase__ = 'openai-gpt' lowerCamelCase__ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self, __a=4_0478, __a=512, __a=768, __a=12, __a=12, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=1E-5, __a=0.02, __a="cls_index", __a=True, __a=None, __a=True, __a=0.1, **__a, ): '''simple docstring''' _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : int = n_positions _lowerCAmelCase : Union[str, Any] = n_embd _lowerCAmelCase : Optional[Any] = n_layer _lowerCAmelCase : Optional[int] = n_head _lowerCAmelCase : List[Any] = afn _lowerCAmelCase : Union[str, Any] = resid_pdrop _lowerCAmelCase : Tuple = embd_pdrop _lowerCAmelCase : List[Any] = attn_pdrop _lowerCAmelCase : Tuple = layer_norm_epsilon _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : str = summary_type _lowerCAmelCase : List[Any] = summary_use_proj _lowerCAmelCase : List[Any] = summary_activation _lowerCAmelCase : Optional[Any] = summary_first_dropout _lowerCAmelCase : List[str] = summary_proj_to_labels super().__init__(**_SCREAMING_SNAKE_CASE)
36
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowerCAmelCase__ ( *a__: str , a__: Optional[Union[Dict, Any]] = None , a__: Dict=True , a__: Any=2 ) -> Union[str, Any]: '''simple docstring''' from .. import __version__ _UpperCAmelCase = take_from _UpperCAmelCase = () if not isinstance(args[0] , a__ ): _UpperCAmelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) _UpperCAmelCase = None if isinstance(a__ , a__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(a__ ),) _UpperCAmelCase = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(a__ , a__ ): values += (getattr(a__ , a__ ),) _UpperCAmelCase = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: _UpperCAmelCase = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: _UpperCAmelCase = warning + ' ' if standard_warn else '' warnings.warn(warning + message , a__ , stacklevel=a__ ) if isinstance(a__ , a__ ) and len(a__ ) > 0: _UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCAmelCase = call_frame.filename _UpperCAmelCase = call_frame.lineno _UpperCAmelCase = call_frame.function _UpperCAmelCase , _UpperCAmelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(a__ ) == 0: return elif len(a__ ) == 1: return values[0] return values
329
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCAmelCase__ : """simple docstring""" def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" return None class lowerCAmelCase__ : """simple docstring""" def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: """simple docstring""" return None class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_SCREAMING_SNAKE_CASE , """tf""" , 12 , **_SCREAMING_SNAKE_CASE ) @require_torch @slow def UpperCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_SCREAMING_SNAKE_CASE , """pt""" , 12 , **_SCREAMING_SNAKE_CASE ) @require_torch @slow def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" from transformers import BertModel __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) vocab_file.flush() __SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(_SCREAMING_SNAKE_CASE ) ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) self._test_export(_SCREAMING_SNAKE_CASE , """pt""" , 12 , _SCREAMING_SNAKE_CASE ) @require_tf @slow def UpperCAmelCase__ ( self : Any ) -> List[str]: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __SCREAMING_SNAKE_CASE = self._test_export(_SCREAMING_SNAKE_CASE , """tf""" , 12 , **_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = quantize(Path(_SCREAMING_SNAKE_CASE ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_SCREAMING_SNAKE_CASE ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __SCREAMING_SNAKE_CASE = self._test_export(_SCREAMING_SNAKE_CASE , """pt""" , 12 , **_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = quantize(_SCREAMING_SNAKE_CASE ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_SCREAMING_SNAKE_CASE ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: __SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return path except Exception as e: self.fail(_SCREAMING_SNAKE_CASE ) @require_torch @require_tokenizers @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" from transformers import BertModel __SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) __SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """pt""" ) @require_tf @require_tokenizers @slow def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" from transformers import TFBertModel __SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) __SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """tf""" ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = infer_shapes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Assert all variables are present self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _SCREAMING_SNAKE_CASE ) self.assertSequenceEqual(variable_names[3:] , _SCREAMING_SNAKE_CASE ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask""", """token_type_ids"""] __SCREAMING_SNAKE_CASE = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_SCREAMING_SNAKE_CASE ) , set(_SCREAMING_SNAKE_CASE ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_SCREAMING_SNAKE_CASE , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
267
import math lowerCAmelCase__ :Optional[int] = 1_0 lowerCAmelCase__ :Optional[Any] = 7 lowerCAmelCase__ :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def lowerCAmelCase__ ( a__: int = 2_0 ) -> str: '''simple docstring''' _UpperCAmelCase = math.comb(a__ , a__ ) _UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) _UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
329
0
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class A_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ = VQModel lowerCAmelCase__ = 'sample' @property def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List[str]=(32, 32) )-> Any: __A = 4 __A = 3 __A = floats_tensor((batch_size, num_channels) + sizes ).to(_SCREAMING_SNAKE_CASE ) return {"sample": image} @property def _lowerCAmelCase (self :Any )-> List[Any]: return (3, 32, 32) @property def _lowerCAmelCase (self :str )-> str: return (3, 32, 32) def _lowerCAmelCase (self :Union[str, Any] )-> Tuple: __A = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } __A = self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase (self :List[str] )-> Union[str, Any]: pass def _lowerCAmelCase (self :Optional[Any] )-> Tuple: pass def _lowerCAmelCase (self :int )-> str: __A , __A = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_SCREAMING_SNAKE_CASE ) __A = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _lowerCAmelCase (self :int )-> str: __A = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(_SCREAMING_SNAKE_CASE ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) __A = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) __A = image.to(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): __A = model(_SCREAMING_SNAKE_CASE ).sample __A = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __A = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
117
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ :str = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Union[str, Any] = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
329
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : torch.FloatTensor UpperCAmelCase__ : Optional[torch.FloatTensor] = None def snake_case ( UpperCAmelCase , UpperCAmelCase=0.999 , UpperCAmelCase="cosine" , )-> Union[str, Any]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __A = [] for i in range(a__ ): __A = i / num_diffusion_timesteps __A = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a__ ) / alpha_bar_fn(a__ ) , a__ ) ) return torch.tensor(a__ , dtype=torch.floataa ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): @register_to_config def __init__( self :str , _A :int = 1_000 , _A :Union[str, Any] = "fixed_small_log" , _A :List[Any] = True , _A :Optional[Any] = 1.0 , _A :Optional[int] = "epsilon" , _A :Optional[int] = "squaredcos_cap_v2" , ) -> List[Any]: '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) __A = betas_for_alpha_bar(_SCREAMING_SNAKE_CASE ) __A = 1.0 - self.betas __A = torch.cumprod(self.alphas , dim=0 ) __A = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __A = 1.0 # setable values __A = None __A = torch.from_numpy(np.arange(0 , _SCREAMING_SNAKE_CASE )[::-1].copy() ) __A = variance_type def lowercase_ ( self :Tuple , _A :Optional[int] , _A :Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def lowercase_ ( self :Any , _A :List[str] , _A :Optional[Any] = None ) -> Optional[Any]: '''simple docstring''' __A = num_inference_steps __A = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __A = (np.arange(0 , _SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __A = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) def lowercase_ ( self :str , _A :Dict , _A :Dict=None , _A :Union[str, Any]=None , _A :Optional[Any]=None ) -> Tuple: '''simple docstring''' if prev_timestep is None: __A = t - 1 __A = self.alphas_cumprod[t] __A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __A = 1 - alpha_prod_t __A = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __A = self.betas[t] else: __A = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __A = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __A = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __A = torch.log(torch.clamp(_SCREAMING_SNAKE_CASE , min=1E-20 ) ) __A = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __A = variance.log() __A = beta.log() __A = (predicted_variance + 1) / 2 __A = frac * max_log + (1 - frac) * min_log return variance def lowercase_ ( self :Dict , _A :int , _A :Tuple , _A :str , _A :List[Any] = None , _A :Union[str, Any]=None , _A :Tuple = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: '''simple docstring''' __A = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __A , __A = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 ) else: __A = None # 1. compute alphas, betas if prev_timestep is None: __A = t - 1 __A = self.alphas_cumprod[t] __A = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __A = 1 - alpha_prod_t __A = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __A = self.betas[t] __A = self.alphas[t] else: __A = 1 - alpha_prod_t / alpha_prod_t_prev __A = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __A = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __A = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __A = torch.clamp( _SCREAMING_SNAKE_CASE , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __A = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __A = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __A = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __A = 0 if t > 0: __A = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE , device=model_output.device ) __A = self._get_variance( _SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE , prev_timestep=_SCREAMING_SNAKE_CASE , ) if self.variance_type == "fixed_small_log": __A = variance elif self.variance_type == "learned_range": __A = (0.5 * variance).exp() else: raise ValueError( F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' ' for the UnCLIPScheduler.' ) __A = variance * variance_noise __A = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def lowercase_ ( self :Dict , _A :List[Any] , _A :Optional[Any] , _A :Optional[Any] , ) -> torch.FloatTensor: '''simple docstring''' __A = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __A = timesteps.to(original_samples.device ) __A = alphas_cumprod[timesteps] ** 0.5 __A = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __A = sqrt_alpha_prod.unsqueeze(-1 ) __A = (1 - alphas_cumprod[timesteps]) ** 0.5 __A = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __A = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __A = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
161
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCAmelCase__ ( a__: Tuple , a__: Optional[Any] , a__: Any ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = AutoConfig.from_pretrained(a__ ) _UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=a__ ) _UpperCAmelCase = checkpoints.load_tax_checkpoint(a__ ) _UpperCAmelCase = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": _UpperCAmelCase = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": _UpperCAmelCase = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): _UpperCAmelCase = F'''layers_{str(a__ )}''' # Self-Attention _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCAmelCase = flax_model.params['encoder']['block'][str(a__ )]['layer'] _UpperCAmelCase = tax_attention_key _UpperCAmelCase = tax_attention_out _UpperCAmelCase = tax_attention_query _UpperCAmelCase = tax_attention_value _UpperCAmelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_global_layer_norm if split_mlp_wi: _UpperCAmelCase = tax_mlp_wi_a _UpperCAmelCase = tax_mlp_wi_a else: _UpperCAmelCase = tax_mlp_wi _UpperCAmelCase = tax_mlp_wo _UpperCAmelCase = tax_mlp_layer_norm _UpperCAmelCase = flax_model_encoder_layer_block # Only for layer 0: _UpperCAmelCase = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_encoder_global_rel_embedding # Assigning _UpperCAmelCase = tax_model['target']['encoder']['encoder_norm']['scale'] _UpperCAmelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _UpperCAmelCase = F'''layers_{str(a__ )}''' # Self-Attention _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] _UpperCAmelCase = tax_enc_dec_attention_module['key']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['out']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['query']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCAmelCase = flax_model.params['decoder']['block'][str(a__ )]['layer'] _UpperCAmelCase = tax_attention_key _UpperCAmelCase = tax_attention_out _UpperCAmelCase = tax_attention_query _UpperCAmelCase = tax_attention_value _UpperCAmelCase = tax_pre_attention_layer_norm _UpperCAmelCase = tax_enc_dec_attention_key _UpperCAmelCase = tax_enc_dec_attention_out _UpperCAmelCase = tax_enc_dec_attention_query _UpperCAmelCase = tax_enc_dec_attention_value _UpperCAmelCase = tax_cross_layer_norm if split_mlp_wi: _UpperCAmelCase = tax_mlp_wi_a _UpperCAmelCase = tax_mlp_wi_a else: _UpperCAmelCase = tax_mlp_wi _UpperCAmelCase = tax_mlp_wo _UpperCAmelCase = txa_mlp_layer_norm _UpperCAmelCase = flax_model_decoder_layer_block # Decoder Normalization _UpperCAmelCase = tax_model['target']['decoder']['decoder_norm']['scale'] _UpperCAmelCase = txa_decoder_norm # Only for layer 0: _UpperCAmelCase = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_decoder_rel_embedding # Token Embeddings _UpperCAmelCase = tax_model['target']['token_embedder']['embedding'] _UpperCAmelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _UpperCAmelCase = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(a__ ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": lowerCAmelCase__ :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowerCAmelCase__ :List[str] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
329
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "width_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __lowercase : Tuple , __lowercase : Dict=13 , __lowercase : Any=64 , __lowercase : str=2 , __lowercase : List[Any]=3 , __lowercase : int="swish" , __lowercase : int=3 , __lowercase : List[Any]=32 , __lowercase : Tuple=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Tuple=True , __lowercase : Optional[Any]=True , __lowercase : Optional[Any]=10 , __lowercase : List[str]=None , __lowercase : Tuple=0.25 , __lowercase : List[Any]=0.0 , __lowercase : Optional[Any]=0.0 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = make_divisible(5_12 * width_multiplier , divisor=8 ) snake_case_ = hidden_act snake_case_ = conv_kernel_size snake_case_ = output_stride snake_case_ = classifier_dropout_prob snake_case_ = use_labels snake_case_ = is_training snake_case_ = num_labels snake_case_ = initializer_range snake_case_ = scope snake_case_ = width_multiplier snake_case_ = ffn_dropout snake_case_ = attn_dropout def snake_case__ ( self : int ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case__ ( self : Tuple ): """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def snake_case__ ( self : str , __lowercase : int , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : Optional[int] ): """simple docstring""" snake_case_ = MobileViTVaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case__ ( self : str , __lowercase : List[Any] , __lowercase : Dict , __lowercase : Union[str, Any] , __lowercase : Optional[Any] ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MobileViTVaForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Dict , __lowercase : Dict , __lowercase : Any , __lowercase : Dict , __lowercase : int ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MobileViTVaForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase_ = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = MobileViTVaModelTester(self ) snake_case_ = MobileViTVaConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def snake_case__ ( self : List[Any] ): """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def snake_case__ ( self : List[Any] ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def snake_case__ ( self : List[str] ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case__ ( self : Dict ): """simple docstring""" pass def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_SCREAMING_SNAKE_CASE ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Tuple ): """simple docstring""" def check_hidden_states_output(__lowercase : List[Any] , __lowercase : List[Any] , __lowercase : Union[str, Any] ): snake_case_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) snake_case_ = outputs.hidden_states snake_case_ = 5 self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case_ = 2 for i in range(len(_SCREAMING_SNAKE_CASE ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self : str ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) @slow def snake_case__ ( self : Tuple ): """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = MobileViTVaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self : Union[str, Any] ): """simple docstring""" return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def snake_case__ ( self : List[Any] ): """simple docstring""" snake_case_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _SCREAMING_SNAKE_CASE ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case_ = model(**_SCREAMING_SNAKE_CASE ) # verify the logits snake_case_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) snake_case_ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case_ = model.to(_SCREAMING_SNAKE_CASE ) snake_case_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case_ = prepare_img() snake_case_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case_ = model(**_SCREAMING_SNAKE_CASE ) snake_case_ = outputs.logits # verify the logits snake_case_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE ) snake_case_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_SCREAMING_SNAKE_CASE , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def snake_case__ ( self : int ): """simple docstring""" snake_case_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case_ = model.to(_SCREAMING_SNAKE_CASE ) snake_case_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case_ = prepare_img() snake_case_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case_ = model(**_SCREAMING_SNAKE_CASE ) snake_case_ = outputs.logits.detach().cpu() snake_case_ = image_processor.post_process_semantic_segmentation(outputs=_SCREAMING_SNAKE_CASE , target_sizes=[(50, 60)] ) snake_case_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _SCREAMING_SNAKE_CASE ) snake_case_ = image_processor.post_process_semantic_segmentation(outputs=_SCREAMING_SNAKE_CASE ) snake_case_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _SCREAMING_SNAKE_CASE )
187
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :List[Any] = logging.get_logger(__name__) lowerCAmelCase__ :Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __a ( UpperCAmelCase ): _a : str = 'ctrl' _a : Tuple = ['past_key_values'] _a : List[Any] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=246534 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=8192 , _SCREAMING_SNAKE_CASE=48 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = dff _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache super().__init__(**_SCREAMING_SNAKE_CASE )
329
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase_ : '''simple docstring''' @staticmethod def __lowerCAmelCase ( *__UpperCAmelCase : int , **__UpperCAmelCase : Optional[Any] ) ->int: """simple docstring""" pass @is_pipeline_test @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @require_torch def __lowerCAmelCase ( self : int ) ->str: """simple docstring""" a = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) a = image_classifier(_SCREAMING_SNAKE_CASE , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) a = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], ] , ) @require_tf def __lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" a = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) a = image_classifier(_SCREAMING_SNAKE_CASE , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) a = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, {'''score''': 0.333, '''label''': ANY(_SCREAMING_SNAKE_CASE )}, ], ] , ) @slow @require_torch def __lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" a = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) a = image_classifier(_SCREAMING_SNAKE_CASE , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) a = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) a = image_classifier(_SCREAMING_SNAKE_CASE , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) a = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Dict: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size['shortest_edge'] * h / w ) _UpperCAmelCase = self.size['shortest_edge'] elif w > h: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = int(self.size['shortest_edge'] * w / h ) else: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = self.size['shortest_edge'] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : str = DeformableDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DeformableDetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_rescale' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'image_id': 39769, 'annotations': target} # encode them _UpperCAmelCase = DeformableDetrImageProcessor() _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) ) @slow def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} _UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic' ) _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify masks _UpperCAmelCase = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
329
0
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _lowercase: int = logging.get_logger(__name__) def a( A : Any ) -> List[str]: """simple docstring""" a = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: a = 128 elif "12-12" in model_name: a = 12 a = 12 elif "14-14" in model_name: a = 14 a = 14 elif "16-16" in model_name: a = 16 a = 16 else: raise ValueError("Model not supported" ) a = "huggingface/label-files" if "speech-commands" in model_name: a = 35 a = "speech-commands-v2-id2label.json" else: a = 527 a = "audioset-id2label.json" a = json.load(open(hf_hub_download(a__ , a__ , repo_type="dataset" ) , "r" ) ) a = {int(a__ ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} return config def a( A : int ) -> Optional[Any]: """simple docstring""" if "module.v" in name: a = name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: a = name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: a = name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: a = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: a = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: a = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: a = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: a = name.replace("attn" , "attention.self" ) if "norm1" in name: a = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: a = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a = name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: a = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: a = name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: a = name.replace("module.mlp_head.1" , "classifier.dense" ) return name def a( A : str , A : Optional[Any] ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): a = orig_state_dict.pop(a__ ) if "qkv" in key: a = key.split("." ) a = int(key_split[3] ) a = config.hidden_size if "weight" in key: a = val[:dim, :] a = val[dim : dim * 2, :] a = val[-dim:, :] else: a = val[:dim] a = val[dim : dim * 2] a = val[-dim:] else: a = val return orig_state_dict def a( A : List[Any] ) -> List[Any]: """simple docstring""" a = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(a__ , a__ ) @torch.no_grad() def a( A : Optional[Any] , A : Optional[int] , A : int=False ) -> int: """simple docstring""" a = get_audio_spectrogram_transformer_config(a__ ) a = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict a = model_name_to_url[model_name] a = torch.hub.load_state_dict_from_url(a__ , map_location="cpu" ) # remove some keys remove_keys(a__ ) # rename some keys a = convert_state_dict(a__ , a__ ) # load 🤗 model a = ASTForAudioClassification(a__ ) model.eval() model.load_state_dict(a__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 a = -4.2_677_393 if "speech-commands" not in model_name else -6.845_978 a = 4.5_689_974 if "speech-commands" not in model_name else 5.5_654_526 a = 1024 if "speech-commands" not in model_name else 128 a = ASTFeatureExtractor(mean=a__ , std=a__ , max_length=a__ ) if "speech-commands" in model_name: a = load_dataset("speech_commands" , "v0.02" , split="validation" ) a = dataset[0]["audio"]["array"] else: a = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) a , a = torchaudio.load(a__ ) a = waveform.squeeze().numpy() a = feature_extractor(a__ , sampling_rate=1_6000 , return_tensors="pt" ) # forward pass a = model(**a__ ) a = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": a = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": a = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": a = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": a = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": a = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": a = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": a = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": a = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , a__ , atol=1e-4 ): raise ValueError("Logits don\'t match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(a__ ).mkdir(exist_ok=a__ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(a__ ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": _lowercase: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase: Optional[Any] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
227
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __a ( unittest.TestCase ): _a : List[str] = JukeboxTokenizer _a : List[Any] = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
329
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : Optional[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = 'data2vec-text' def __init__( self : Tuple , lowerCAmelCase__ : str=30522 , lowerCAmelCase__ : Optional[Any]=768 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : Union[str, Any]=12 , lowerCAmelCase__ : Dict=3072 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Dict=512 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : Union[str, Any]=1 , lowerCAmelCase__ : Any=0 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : List[Any]="absolute" , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Union[str, Any]=None , **lowerCAmelCase__ : str , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def snake_case__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
324
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase__ :Optional[int] = logging.getLogger(__name__) def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=a__ , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=a__ , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=a__ , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=a__ , default=1_0_0_0 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=a__ , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=a__ , type=a__ , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=a__ , default=5_1_2 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=a__ , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) _UpperCAmelCase = parser.parse_args() return args def lowerCAmelCase__ ( a__: Union[str, Any] ) -> List[Any]: '''simple docstring''' def fn(a__: str ): return tokenizer(examples['text'] ) return fn def lowerCAmelCase__ ( a__: List[str] ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for i in range(len(tokenized_data['input_ids'] ) ): _UpperCAmelCase = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } _UpperCAmelCase = tf.train.Features(feature=a__ ) _UpperCAmelCase = tf.train.Example(features=a__ ) _UpperCAmelCase = example.SerializeToString() records.append(a__ ) return records def lowerCAmelCase__ ( a__: Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: _UpperCAmelCase = min(len(a__ ) , args.limit ) _UpperCAmelCase = dataset.select(range(a__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _UpperCAmelCase = os.path.join(args.output_dir , args.split ) if not os.path.exists(a__ ): os.makedirs(a__ ) else: _UpperCAmelCase = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. _UpperCAmelCase = tokenize_function(a__ ) _UpperCAmelCase = dataset.map(a__ , batched=a__ , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(a__: Optional[int] ): # Concatenate all texts. _UpperCAmelCase = {k: sum(examples[k] , [] ) for k in examples.keys()} _UpperCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _UpperCAmelCase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _UpperCAmelCase = { k: [t[i : i + args.max_length] for i in range(0 , a__ , args.max_length )] for k, t in concatenated_examples.items() } return result _UpperCAmelCase = dataset_tokenized.map(a__ , batched=a__ , batch_size=1_0_0_0 , num_proc=4 ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 for shard in range(0 , len(a__ ) , args.shard_size ): _UpperCAmelCase = grouped_dataset[shard : shard + args.shard_size] _UpperCAmelCase = len(dataset_snapshot['input_ids'] ) _UpperCAmelCase = os.path.join(a__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) _UpperCAmelCase = get_serialized_examples(a__ ) with tf.io.TFRecordWriter(a__ ) as out_file: for i in range(len(a__ ) ): _UpperCAmelCase = serialized_examples[i] out_file.write(a__ ) print('Wrote file {} containing {} records'.format(a__ , a__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , 'w' ) as f: print(F'''Total {args.split} records: {total_records}''' , file=a__ ) if __name__ == "__main__": lowerCAmelCase__ :str = parse_args() main(args)
329
0
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __A : Optional[int] = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) __A : Union[str, Any] = [t[-1] for t in os.walk(os.path.join(_SCREAMING_SNAKE_CASE , os.listdir(_SCREAMING_SNAKE_CASE )[0] , 'snapshots' ) )] __A : Union[str, Any] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A , __A : Dict = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE ) __A : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Optional[Any] = jax.random.PRNGKey(0 ) __A : List[str] = 4 __A : Optional[Any] = jax.device_count() __A : List[Any] = num_samples * [prompt] __A : Optional[int] = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng __A : List[str] = replicate(_SCREAMING_SNAKE_CASE ) __A : Optional[int] = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __A : int = shard(_SCREAMING_SNAKE_CASE ) __A : Optional[int] = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 __A : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_SCREAMING_SNAKE_CASE ) == num_samples def UpperCAmelCase_ ( self ): __A , __A : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_SCREAMING_SNAKE_CASE ) __A : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : List[str] = jax.random.PRNGKey(0 ) __A : Any = 50 __A : Any = jax.device_count() __A : List[str] = num_samples * [prompt] __A : List[Any] = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng __A : List[Any] = replicate(_SCREAMING_SNAKE_CASE ) __A : Optional[Any] = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __A : Optional[int] = shard(_SCREAMING_SNAKE_CASE ) __A : Dict = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def UpperCAmelCase_ ( self ): __A , __A : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE ) __A : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : str = jax.random.PRNGKey(0 ) __A : Union[str, Any] = 50 __A : Optional[Any] = jax.device_count() __A : Any = num_samples * [prompt] __A : List[Any] = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng __A : Union[str, Any] = replicate(_SCREAMING_SNAKE_CASE ) __A : Optional[int] = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __A : Dict = shard(_SCREAMING_SNAKE_CASE ) __A : List[Any] = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def UpperCAmelCase_ ( self ): __A , __A : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) __A : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Any = jax.random.PRNGKey(0 ) __A : List[str] = 50 __A : Tuple = jax.device_count() __A : Optional[Any] = num_samples * [prompt] __A : Any = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng __A : Any = replicate(_SCREAMING_SNAKE_CASE ) __A : str = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __A : Union[str, Any] = shard(_SCREAMING_SNAKE_CASE ) __A : Tuple = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def UpperCAmelCase_ ( self ): __A : List[Any] = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , ) __A , __A : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , ) __A : Dict = scheduler.create_state() __A : int = scheduler_state __A : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Union[str, Any] = jax.random.PRNGKey(0 ) __A : Any = 50 __A : Optional[int] = jax.device_count() __A : Optional[int] = num_samples * [prompt] __A : Union[str, Any] = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng __A : Any = replicate(_SCREAMING_SNAKE_CASE ) __A : Optional[int] = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __A : Union[str, Any] = shard(_SCREAMING_SNAKE_CASE ) __A : List[str] = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def UpperCAmelCase_ ( self ): __A : List[str] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : List[str] = jax.device_count() __A : Any = num_samples * [prompt] __A : List[Any] = jax.random.split(jax.random.PRNGKey(0 ) , _SCREAMING_SNAKE_CASE ) __A , __A : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , ) __A : Any = replicate(_SCREAMING_SNAKE_CASE ) __A : Union[str, Any] = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) __A : str = shard(_SCREAMING_SNAKE_CASE ) __A : int = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) __A : Tuple = images[2, 0, 256, 10:17, 1] # With memory efficient attention __A , __A : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , use_memory_efficient_attention=_SCREAMING_SNAKE_CASE , ) __A : int = replicate(_SCREAMING_SNAKE_CASE ) __A : Any = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) __A : str = shard(_SCREAMING_SNAKE_CASE ) __A : int = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) __A : List[str] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
280
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any]=1_0 ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for _ in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCAmelCase__ ( a__: List[str] , a__: Any=1_0 ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = [] for step in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(a__ , 'schedule.bin' ) torch.save(scheduler.state_dict() , a__ ) _UpperCAmelCase = torch.load(a__ ) scheduler.load_state_dict(a__ ) return lrs @require_torch class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = Adafactor( params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=_SCREAMING_SNAKE_CASE , scale_parameter=_SCREAMING_SNAKE_CASE , warmup_init=_SCREAMING_SNAKE_CASE , ) for _ in range(1000 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __a ( unittest.TestCase ): _a : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None _a : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _a : List[Any] = 10 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE , msg=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _UpperCAmelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _UpperCAmelCase , _UpperCAmelCase = data _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _UpperCAmelCase = unwrap_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListAlmostEqual( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule _UpperCAmelCase = unwrap_and_save_reload_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , msg=f'''failed for {scheduler_func} in save and reload''' ) class __a : def __init__( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = fn def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @classmethod def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
329
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ ='ctrl' a_ =['past_key_values'] a_ ={ 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : List[str] , _a : str=24_6534 , _a : List[Any]=256 , _a : int=1280 , _a : Optional[int]=8192 , _a : str=48 , _a : List[str]=16 , _a : List[Any]=0.1 , _a : str=0.1 , _a : Tuple=1e-6 , _a : Any=0.02 , _a : Tuple=True , **_a : Optional[Any] , ) -> List[str]: __lowerCamelCase : int = vocab_size __lowerCamelCase : int = n_positions __lowerCamelCase : Optional[Any] = n_embd __lowerCamelCase : Tuple = n_layer __lowerCamelCase : Tuple = n_head __lowerCamelCase : Any = dff __lowerCamelCase : Tuple = resid_pdrop __lowerCamelCase : Union[str, Any] = embd_pdrop __lowerCamelCase : Union[str, Any] = layer_norm_epsilon __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Dict = use_cache super().__init__(**_SCREAMING_SNAKE_CASE )
208
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ :Any = logging.get_logger(__name__) def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any] , a__: Dict , a__: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = original_name.split('.' )[0] _UpperCAmelCase = key.split('.' ) _UpperCAmelCase = int(key_list[key_list.index(a__ ) - 2] ) _UpperCAmelCase = int(key_list[key_list.index(a__ ) - 1] ) _UpperCAmelCase = orig_block_num - offset _UpperCAmelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCAmelCase__ ( a__: Tuple ) -> int: '''simple docstring''' _UpperCAmelCase = OrderedDict() _UpperCAmelCase , _UpperCAmelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): _UpperCAmelCase = key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCAmelCase = key[: key.find('proj' )] _UpperCAmelCase = key.replace(a__ , F'''patch_embeddings.{total_embed_found}.''' ) _UpperCAmelCase = key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCAmelCase = 'poolformer.encoder.' + key if "mlp.fc1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm1' , 'before_norm' ) if "norm2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: _UpperCAmelCase = key.replace('head' , 'classifier' ) _UpperCAmelCase = value return new_state_dict def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw ) return image @torch.no_grad() def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict , a__: Any ) -> Dict: '''simple docstring''' _UpperCAmelCase = PoolFormerConfig() # set attributes based on model_name _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = model_name[-3:] _UpperCAmelCase = 1_0_0_0 _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = (1, 1_0_0_0) # set config attributes _UpperCAmelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(a__ ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCAmelCase = [2, 2, 6, 2] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 0.9 elif size == "s24": _UpperCAmelCase = [4, 4, 1_2, 4] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 0.9 elif size == "s36": _UpperCAmelCase = [6, 6, 1_8, 6] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.9 elif size == "m36": _UpperCAmelCase = [6, 6, 1_8, 6] _UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.95 elif size == "m48": _UpperCAmelCase = [8, 8, 2_4, 8] _UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ ) # Prepare image _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=a__ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCAmelCase = torch.load(a__ , map_location=torch.device('cpu' ) ) # rename keys _UpperCAmelCase = rename_keys(a__ ) # create HuggingFace model and load state dict _UpperCAmelCase = PoolFormerForImageClassification(a__ ) model.load_state_dict(a__ ) model.eval() # Define image processor _UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ ) _UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass _UpperCAmelCase = model(a__ ) _UpperCAmelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCAmelCase = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": _UpperCAmelCase = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": _UpperCAmelCase = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": _UpperCAmelCase = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": _UpperCAmelCase = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , a__ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ :str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ :Dict = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
0
from collections.abc import Sequence def __lowerCAmelCase ( a__ = None ) -> int: if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) __a = nums[0] for i in range(1 , len(a__ ) ): __a = nums[i] __a = max(a__ , ans + num , a__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user A : Any = int(input('Enter number of elements : ').strip()) A : Dict = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
6
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = process _UpperCAmelCase = params def __len__( self ) -> Union[str, Any]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = self.dataset[i] _UpperCAmelCase = self.process(_SCREAMING_SNAKE_CASE , **self.params ) return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = loader _UpperCAmelCase = infer _UpperCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _UpperCAmelCase = None _UpperCAmelCase = loader_batch_size # Internal bookkeeping _UpperCAmelCase = None _UpperCAmelCase = None def __len__( self ) -> Any: """simple docstring""" return len(self.loader ) def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _UpperCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _UpperCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Convert ModelOutput to tuple first _UpperCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _UpperCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _UpperCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _UpperCAmelCase = self._loader_batch_data.__class__(_SCREAMING_SNAKE_CASE ) self._loader_batch_index += 1 return result def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _UpperCAmelCase = next(self.iterator ) _UpperCAmelCase = self.infer(_SCREAMING_SNAKE_CASE , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _UpperCAmelCase = processed _UpperCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __iter__( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) _UpperCAmelCase = None return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if self.subiterator is None: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _UpperCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) _UpperCAmelCase = next(self.subiterator ) return processed class __a ( UpperCAmelCase ): def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = False _UpperCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator while not is_last: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size _UpperCAmelCase = processed _UpperCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator else: _UpperCAmelCase = processed _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) return accumulator class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = key def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.dataset[i][self.key] class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = keya _UpperCAmelCase = keya def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
329
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCAmelCase_ : def __init__( self, __a, __a = 13, __a = 64, __a = 2, __a = 3, __a = 3, __a = True, __a = True, __a = 128, __a=[16, 32, 64, 128], __a = 7, __a = 4, __a = 37, __a = "gelu", __a = 0.1, __a = 0.1, __a = 10, __a = 0.02, __a = 2, __a = 1, __a = 128, __a = [2, 2, 2, 2], __a = 2, __a = 2, ): '''simple docstring''' _lowerCAmelCase : Any = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : Optional[int] = image_size _lowerCAmelCase : Optional[int] = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : int = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = type_sequence_label_size _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : int = encoder_stride _lowerCAmelCase : List[str] = num_attention_outputs _lowerCAmelCase : Union[str, Any] = embed_dim _lowerCAmelCase : str = embed_dim + 1 _lowerCAmelCase : Optional[Any] = resolution _lowerCAmelCase : List[str] = depths _lowerCAmelCase : List[Any] = hidden_sizes _lowerCAmelCase : List[str] = dim _lowerCAmelCase : Optional[Any] = mlp_expansion_ratio def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : Dict = None if self.use_labels: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def snake_case__ ( self): '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=_SCREAMING_SNAKE_CASE, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, resolution=self.resolution, depths=self.depths, hidden_sizes=self.hidden_sizes, dim=self.dim, mlp_expansion_ratio=self.mlp_expansion_ratio, ) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFEfficientFormerModel(config=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE, training=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = self.type_sequence_label_size _lowerCAmelCase : Union[str, Any] = TFEfficientFormerForImageClassification(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE, labels=_SCREAMING_SNAKE_CASE, training=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images _lowerCAmelCase : Dict = 1 _lowerCAmelCase : int = TFEfficientFormerForImageClassification(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowerCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE, labels=_SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = config_and_inputs _lowerCAmelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = TFEfficientFormerModelTester(self) _lowerCAmelCase : Optional[Any] = ConfigTester( self, config_class=_SCREAMING_SNAKE_CASE, has_text_modality=_SCREAMING_SNAKE_CASE, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds") def snake_case__ ( self): '''simple docstring''' pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings") def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = model_class(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : str = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : int = [*signature.parameters.keys()] _lowerCAmelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1], _SCREAMING_SNAKE_CASE) def snake_case__ ( self): '''simple docstring''' def check_hidden_states_output(__a, __a, __a): _lowerCAmelCase : List[str] = model_class(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[str] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE), training=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : Optional[Any] = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_SCREAMING_SNAKE_CASE), _SCREAMING_SNAKE_CASE) if hasattr(self.model_tester, "encoder_seq_length"): _lowerCAmelCase : Union[str, Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1: _lowerCAmelCase : Tuple = seq_length * self.model_tester.chunk_length else: _lowerCAmelCase : List[str] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: _lowerCAmelCase : Dict = outputs.decoder_hidden_states self.asseretIsInstance(_SCREAMING_SNAKE_CASE, (list, tuple)) self.assertEqual(len(_SCREAMING_SNAKE_CASE), _SCREAMING_SNAKE_CASE) _lowerCAmelCase : str = getattr(self.model_tester, "seq_length", _SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[str] = getattr(self.model_tester, "decoder_seq_length", _SCREAMING_SNAKE_CASE) self.assertListEqual( list(hidden_states[-1].shape[-2:]), [decoder_seq_length, self.model_tester.hidden_size], ) _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = True check_hidden_states_output(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Optional[Any] = True check_hidden_states_output(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : int = super()._prepare_for_class(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, return_labels=_SCREAMING_SNAKE_CASE) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE) @slow def snake_case__ ( self): '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = TFEfficientFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE) self.assertIsNotNone(_SCREAMING_SNAKE_CASE) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Tuple = True _lowerCAmelCase : int = getattr(self.model_tester, "seq_length", _SCREAMING_SNAKE_CASE) _lowerCAmelCase : Union[str, Any] = getattr(self.model_tester, "encoder_seq_length", _SCREAMING_SNAKE_CASE) _lowerCAmelCase : Optional[int] = getattr(self.model_tester, "key_length", _SCREAMING_SNAKE_CASE) _lowerCAmelCase : Tuple = getattr(self.model_tester, "chunk_length", _SCREAMING_SNAKE_CASE) if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): _lowerCAmelCase : Union[str, Any] = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _lowerCAmelCase : int = True _lowerCAmelCase : str = False _lowerCAmelCase : Tuple = True _lowerCAmelCase : List[Any] = model_class(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Tuple = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE), training=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE), self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : List[Any] = model_class(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : str = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE), training=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : Tuple = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE), self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _lowerCAmelCase : List[str] = model_class(_SCREAMING_SNAKE_CASE) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _lowerCAmelCase : int = { key: tf.keras.Input(shape=val.shape[1:], dtype=val.dtype, name=_SCREAMING_SNAKE_CASE) for key, val in model.input_signature.items() if key in model.dummy_inputs } _lowerCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE) self.assertTrue(outputs_dict is not None) def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300") if is_vision_available() else None ) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300") _lowerCAmelCase : Union[str, Any] = self.default_image_processor _lowerCAmelCase : Tuple = prepare_img() _lowerCAmelCase : Optional[Any] = image_processor(images=_SCREAMING_SNAKE_CASE, return_tensors="tf") # forward pass _lowerCAmelCase : Optional[Any] = model(**_SCREAMING_SNAKE_CASE, training=_SCREAMING_SNAKE_CASE) # verify the logits _lowerCAmelCase : Any = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape, _SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[str] = tf.constant([-0.0_555, 0.4_825, -0.0_852]) self.assertTrue(np.allclose(outputs.logits[0, :3], _SCREAMING_SNAKE_CASE, atol=1E-4)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300") _lowerCAmelCase : Union[str, Any] = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE, return_tensors="tf") # forward pass _lowerCAmelCase : List[Any] = model(**_SCREAMING_SNAKE_CASE, training=_SCREAMING_SNAKE_CASE) # verify the logits _lowerCAmelCase : Union[str, Any] = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape, _SCREAMING_SNAKE_CASE) _lowerCAmelCase : Optional[Any] = tf.constant([-0.1_312, 0.4_353, -1.0_499]) self.assertTrue(np.allclose(outputs.logits[0, :3], _SCREAMING_SNAKE_CASE, atol=1E-4))
36
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ :int = logging.get_logger(__name__) lowerCAmelCase__ :Optional[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class __a ( UpperCAmelCase ): _a : str = 'data2vec-text' def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class __a ( UpperCAmelCase ): @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
329
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = ['image_processor', 'tokenizer'] lowerCAmelCase__ = 'BlipImageProcessor' lowerCAmelCase__ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = False super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.image_processor def __call__( self : Optional[int] , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : Union[str, Any] = None , __SCREAMING_SNAKE_CASE : int = True , __SCREAMING_SNAKE_CASE : str = False , __SCREAMING_SNAKE_CASE : List[str] = None , __SCREAMING_SNAKE_CASE : List[str] = None , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : Dict = None , __SCREAMING_SNAKE_CASE : Union[str, Any] = None , __SCREAMING_SNAKE_CASE : Tuple = False , __SCREAMING_SNAKE_CASE : int = False , __SCREAMING_SNAKE_CASE : Any = False , __SCREAMING_SNAKE_CASE : int = False , __SCREAMING_SNAKE_CASE : Tuple = False , __SCREAMING_SNAKE_CASE : Optional[Any] = True , __SCREAMING_SNAKE_CASE : List[str] = None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: __SCREAMING_SNAKE_CASE = self.tokenizer __SCREAMING_SNAKE_CASE = self.tokenizer( text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_length=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) return text_encoding # add pixel_values __SCREAMING_SNAKE_CASE = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer( text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_length=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = None if text_encoding is not None: encoding_image_processor.update(_SCREAMING_SNAKE_CASE ) return encoding_image_processor def UpperCAmelCase__ ( self : List[Any] , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names __SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
267
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['stem'] _UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : int = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _a : str = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} _a : Optional[int] = False _a : List[str] = False _a : List[str] = False _a : Optional[int] = False _a : Tuple = False def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 0 return t def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has''' f''' `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}.''' ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) @require_torch class __a ( unittest.TestCase , UpperCAmelCase ): _a : Any = (MaskFormerSwinBackbone,) if is_torch_available() else () _a : Any = MaskFormerSwinConfig def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
329
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : Any = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
117
from collections.abc import Generator def lowerCAmelCase__ ( ) -> Generator[int, None, None]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = 0, 1 while True: _UpperCAmelCase , _UpperCAmelCase = b, a + b yield b def lowerCAmelCase__ ( a__: int = 1_0_0_0 ) -> int: '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = fibonacci_generator() while len(str(next(a__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
329
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Optional[int] = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : Tuple = 'time_series_transformer' UpperCAmelCase__ : str = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self :List[str] , _A :List[str] = None , _A :str = None , _A :Dict = "student_t" , _A :Optional[int] = "nll" , _A :Tuple = 1 , _A :Union[str, Any] = [1, 2, 3, 4, 5, 6, 7] , _A :Tuple = "mean" , _A :List[str] = 0 , _A :Union[str, Any] = 0 , _A :str = 0 , _A :List[str] = 0 , _A :Optional[Any] = None , _A :List[str] = None , _A :Optional[int] = 32 , _A :str = 32 , _A :Union[str, Any] = 2 , _A :Any = 2 , _A :List[str] = 2 , _A :str = 2 , _A :Any = True , _A :Dict = "gelu" , _A :Union[str, Any] = 64 , _A :List[str] = 0.1 , _A :Any = 0.1 , _A :str = 0.1 , _A :int = 0.1 , _A :Optional[Any] = 0.1 , _A :Dict = 100 , _A :int = 0.02 , _A :str=True , **_A :Optional[int] , ) -> List[Any]: '''simple docstring''' __A = prediction_length __A = context_length or prediction_length __A = distribution_output __A = loss __A = input_size __A = num_time_features __A = lags_sequence __A = scaling __A = num_dynamic_real_features __A = num_static_real_features __A = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __A = cardinality else: __A = [0] if embedding_dimension and num_static_categorical_features > 0: if len(_SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __A = embedding_dimension else: __A = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __A = num_parallel_samples # Transformer architecture configuration __A = input_size * len(_SCREAMING_SNAKE_CASE ) + self._number_of_features __A = d_model __A = encoder_attention_heads __A = decoder_attention_heads __A = encoder_ffn_dim __A = decoder_ffn_dim __A = encoder_layers __A = decoder_layers __A = dropout __A = attention_dropout __A = activation_dropout __A = encoder_layerdrop __A = decoder_layerdrop __A = activation_function __A = init_std __A = use_cache super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def lowercase_ ( self :List[Any] ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
161
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 30} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize_and_center_crop _UpperCAmelCase = size _UpperCAmelCase = crop_pct _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
329
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = AutoConfig.from_pretrained(a__ ) snake_case_ = FlaxAutoModelForSeqaSeqLM.from_config(config=a__ ) snake_case_ = checkpoints.load_tax_checkpoint(a__ ) snake_case_ = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": snake_case_ = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": snake_case_ = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`" " attribute with a value from [\'local\', \'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): snake_case_ = f"layers_{str(a__ )}" # Self-Attention snake_case_ = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] snake_case_ = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] snake_case_ = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] snake_case_ = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization snake_case_ = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: snake_case_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] snake_case_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: snake_case_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] snake_case_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization snake_case_ = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning snake_case_ = flax_model.params["encoder"]["block"][str(a__ )]["layer"] snake_case_ = tax_attention_key snake_case_ = tax_attention_out snake_case_ = tax_attention_query snake_case_ = tax_attention_value snake_case_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_global_layer_norm if split_mlp_wi: snake_case_ = tax_mlp_wi_a snake_case_ = tax_mlp_wi_a else: snake_case_ = tax_mlp_wi snake_case_ = tax_mlp_wo snake_case_ = tax_mlp_layer_norm snake_case_ = flax_model_encoder_layer_block # Only for layer 0: snake_case_ = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T snake_case_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T snake_case_ = tax_encoder_global_rel_embedding # Assigning snake_case_ = tax_model["target"]["encoder"]["encoder_norm"]["scale"] snake_case_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): snake_case_ = f"layers_{str(a__ )}" # Self-Attention snake_case_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] snake_case_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] snake_case_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] snake_case_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization snake_case_ = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention snake_case_ = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] snake_case_ = tax_enc_dec_attention_module["key"]["kernel"] snake_case_ = tax_enc_dec_attention_module["out"]["kernel"] snake_case_ = tax_enc_dec_attention_module["query"]["kernel"] snake_case_ = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization snake_case_ = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: snake_case_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] snake_case_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: snake_case_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] snake_case_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization snake_case_ = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning snake_case_ = flax_model.params["decoder"]["block"][str(a__ )]["layer"] snake_case_ = tax_attention_key snake_case_ = tax_attention_out snake_case_ = tax_attention_query snake_case_ = tax_attention_value snake_case_ = tax_pre_attention_layer_norm snake_case_ = tax_enc_dec_attention_key snake_case_ = tax_enc_dec_attention_out snake_case_ = tax_enc_dec_attention_query snake_case_ = tax_enc_dec_attention_value snake_case_ = tax_cross_layer_norm if split_mlp_wi: snake_case_ = tax_mlp_wi_a snake_case_ = tax_mlp_wi_a else: snake_case_ = tax_mlp_wi snake_case_ = tax_mlp_wo snake_case_ = txa_mlp_layer_norm snake_case_ = flax_model_decoder_layer_block # Decoder Normalization snake_case_ = tax_model["target"]["decoder"]["decoder_norm"]["scale"] snake_case_ = txa_decoder_norm # Only for layer 0: snake_case_ = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T snake_case_ = tax_decoder_rel_embedding # Token Embeddings snake_case_ = tax_model["target"]["token_embedder"]["embedding"] snake_case_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: snake_case_ = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(a__ ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) lowercase__ : List[str] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
187
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20} _UpperCAmelCase = do_thumbnail _UpperCAmelCase = do_align_axis _UpperCAmelCase = do_pad _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : List[str] = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_thumbnail' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
329
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) @dataclass class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , __UpperCAmelCase : int=False , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : List[Any]=6.0 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Any=False , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Any="fp4" , __UpperCAmelCase : int=False , **__UpperCAmelCase : Any , ) ->str: """simple docstring""" a = load_in_abit a = load_in_abit a = llm_inta_threshold a = llm_inta_skip_modules a = llm_inta_enable_fpaa_cpu_offload a = llm_inta_has_fpaa_weight a = bnb_abit_quant_type a = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: a = torch.floataa elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , torch.dtype ): a = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" if not isinstance(self.llm_inta_threshold , _SCREAMING_SNAKE_CASE ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _SCREAMING_SNAKE_CASE ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _SCREAMING_SNAKE_CASE ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , _SCREAMING_SNAKE_CASE ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , _SCREAMING_SNAKE_CASE ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , _SCREAMING_SNAKE_CASE ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def __lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" return self.load_in_abit or self.load_in_abit def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def __lowerCAmelCase ( cls : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Optional[Any] ) ->Dict: """simple docstring""" a = cls(**_SCREAMING_SNAKE_CASE ) a = [] for key, value in kwargs.items(): if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) to_remove.append(_SCREAMING_SNAKE_CASE ) for key in to_remove: kwargs.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if return_unused_kwargs: return config, kwargs else: return config def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] ) ->Tuple: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: a = self.to_dict() a = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + '''\n''' writer.write(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self : List[str] ) ->Dict[str, Any]: """simple docstring""" a = copy.deepcopy(self.__dict__ ) a = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self : Optional[int] ) ->Optional[int]: """simple docstring""" return F"""{self.__class__.__name__} {self.to_json_string()}""" def __lowerCAmelCase ( self : str , __UpperCAmelCase : Dict = True ) ->str: """simple docstring""" if use_diff is True: a = self.to_diff_dict() else: a = self.to_dict() return json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + "\n" def __lowerCAmelCase ( self : int ) ->Dict[str, Any]: """simple docstring""" a = self.to_dict() # get the default config dict a = BitsAndBytesConfig().to_dict() a = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: a = value return serializable_config_dict
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :Dict = logging.get_logger(__name__) lowerCAmelCase__ :Optional[int] = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class __a ( UpperCAmelCase ): _a : List[str] = 'openai-gpt' _a : int = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=40478 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = afn _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = summary_type _UpperCAmelCase = summary_use_proj _UpperCAmelCase = summary_activation _UpperCAmelCase = summary_first_dropout _UpperCAmelCase = summary_proj_to_labels super().__init__(**_SCREAMING_SNAKE_CASE )
329
0
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase ): """simple docstring""" @property def UpperCamelCase_ (self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase_ (self ): """simple docstring""" a = ort.SessionOptions() a = False return options def UpperCamelCase_ (self ): """simple docstring""" a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default a = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a = "A red cat sitting on a park bench" a = np.random.RandomState(0 ) a = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_SCREAMING_SNAKE_CASE , output_type="np" , ) a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
227
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def lowerCAmelCase__ ( a__: Any , a__: Tuple , a__: Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = hf_hub_url(repo_id=a__ , path=a__ , revision=a__ ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a__ )}'''
329
0
'''simple docstring''' lowercase__ : Optional[Any] = '''Input must be a string of 8 numbers plus letter''' lowercase__ : List[Any] = '''TRWAGMYFPDXBNJZSQVHLCKE''' def a__ ( lowercase : str ) -> bool: """simple docstring""" if not isinstance(a__, a__ ): _UpperCamelCase = F"""Expected string as input, found {type(a__ ).__name__}""" raise TypeError(a__ ) _UpperCamelCase = spanish_id.replace('''-''', '''''' ).upper() if len(a__ ) != 9: raise ValueError(a__ ) try: _UpperCamelCase = int(spanish_id_clean[0:8] ) _UpperCamelCase = spanish_id_clean[8] except ValueError as ex: raise ValueError(a__ ) from ex if letter.isdigit(): raise ValueError(a__ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
324
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase__ :Optional[int] = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int]=None ) -> Any: '''simple docstring''' require_version(deps[pkg] , a__ )
329
0
from collections.abc import Generator def _SCREAMING_SNAKE_CASE ( ) -> Generator[int, None, None]: __A , __A : Dict = 0, 1 while True: __A , __A : Union[str, Any] = b, a + b yield b def _SCREAMING_SNAKE_CASE ( a = 10_00 ) -> int: __A : str = 1 __A : Optional[int] = fibonacci_generator() while len(str(next(a__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
280
from __future__ import annotations def lowerCAmelCase__ ( a__: dict , a__: str ) -> set[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = set(a__ ), [start] while stack: _UpperCAmelCase = stack.pop() explored.add(a__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a__ ) return explored lowerCAmelCase__ :Tuple = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
329
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Dict: assert isinstance(a__ ,a__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' ,[False, True] ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Dict: __lowerCamelCase : Union[str, Any] = tmp_path / 'cache' __lowerCamelCase : Union[str, Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCamelCase : str = ParquetDatasetReader(a__ ,cache_dir=a__ ,keep_in_memory=a__ ).read() _check_parquet_dataset(a__ ,a__ ) @pytest.mark.parametrize( 'features' ,[ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> int: __lowerCamelCase : List[Any] = tmp_path / 'cache' __lowerCamelCase : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : Optional[Any] = features.copy() if features else default_expected_features __lowerCamelCase : List[str] = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCamelCase : Dict = ParquetDatasetReader(a__ ,features=a__ ,cache_dir=a__ ).read() _check_parquet_dataset(a__ ,a__ ) @pytest.mark.parametrize('split' ,[None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: __lowerCamelCase : int = tmp_path / 'cache' __lowerCamelCase : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : Any = ParquetDatasetReader(a__ ,cache_dir=a__ ,split=a__ ).read() _check_parquet_dataset(a__ ,a__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' ,[str, list] ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Tuple: if issubclass(a__ ,a__ ): __lowerCamelCase : Union[str, Any] = parquet_path elif issubclass(a__ ,a__ ): __lowerCamelCase : List[Any] = [parquet_path] __lowerCamelCase : Dict = tmp_path / 'cache' __lowerCamelCase : int = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : List[str] = ParquetDatasetReader(a__ ,cache_dir=a__ ).read() _check_parquet_dataset(a__ ,a__ ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=("train",) ) -> Union[str, Any]: assert isinstance(a__ ,a__ ) for split in splits: __lowerCamelCase : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' ,[False, True] ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> List[Any]: __lowerCamelCase : Dict = tmp_path / 'cache' __lowerCamelCase : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCamelCase : Dict = ParquetDatasetReader( {'train': parquet_path} ,cache_dir=a__ ,keep_in_memory=a__ ).read() _check_parquet_datasetdict(a__ ,a__ ) @pytest.mark.parametrize( 'features' ,[ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> List[Any]: __lowerCamelCase : Optional[Any] = tmp_path / 'cache' __lowerCamelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : Union[str, Any] = features.copy() if features else default_expected_features __lowerCamelCase : Union[str, Any] = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCamelCase : Optional[Any] = ParquetDatasetReader({'train': parquet_path} ,features=a__ ,cache_dir=a__ ).read() _check_parquet_datasetdict(a__ ,a__ ) @pytest.mark.parametrize('split' ,[None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> str: if split: __lowerCamelCase : List[Any] = {split: parquet_path} else: __lowerCamelCase : Optional[int] = 'train' __lowerCamelCase : List[str] = {'train': parquet_path, 'test': parquet_path} __lowerCamelCase : Optional[int] = tmp_path / 'cache' __lowerCamelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : List[str] = ParquetDatasetReader(a__ ,cache_dir=a__ ).read() _check_parquet_datasetdict(a__ ,a__ ,splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Optional[int]: __lowerCamelCase : Any = ParquetDatasetWriter(a__ ,tmp_path / 'foo.parquet' ) assert writer.write() > 0 __lowerCamelCase : Tuple = pq.ParquetFile(tmp_path / 'foo.parquet' ) __lowerCamelCase : Optional[Any] = pf.read() assert dataset.data.table == output_table def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: __lowerCamelCase : List[str] = str(shared_datadir / 'test_image_rgb.jpg' ) __lowerCamelCase : str = {'image': [image_path]} __lowerCamelCase : Optional[int] = Features({'image': Image()} ) __lowerCamelCase : Union[str, Any] = Dataset.from_dict(a__ ,features=a__ ) __lowerCamelCase : int = ParquetDatasetWriter(a__ ,tmp_path / 'foo.parquet' ) assert writer.write() > 0 __lowerCamelCase : int = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features __lowerCamelCase : str = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) ,streaming=a__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' ,[ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] ,) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: assert get_writer_batch_size(a__ ) == expected
208
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(_SCREAMING_SNAKE_CASE , os.listdir(_SCREAMING_SNAKE_CASE )[0] , 'snapshots' ) )] _UpperCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 4 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3 assert np.abs(np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1 _UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_SCREAMING_SNAKE_CASE ) == num_samples def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = scheduler.create_state() _UpperCAmelCase = scheduler_state _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , use_memory_efficient_attention=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
329
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A : Optional[int] = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __lowerCAmelCase ( a__ , a__=None ) -> Any: require_version(deps[pkg] , a__ )
6
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase__ :int = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class __a ( UpperCAmelCase ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = {} if prompt is not None: _UpperCAmelCase = prompt if generate_kwargs is not None: _UpperCAmelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _UpperCAmelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) _UpperCAmelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" _UpperCAmelCase = load_image(_SCREAMING_SNAKE_CASE ) if prompt is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( f'''Received an invalid text input, got - {type(_SCREAMING_SNAKE_CASE )} - but expected a single string. ''' 'Note also that one single text can be provided for conditional image to text generation.' ) _UpperCAmelCase = self.model.config.model_type if model_type == "git": _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids _UpperCAmelCase = [self.tokenizer.cls_token_id] + input_ids _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _UpperCAmelCase = None return model_inputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[str]: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _SCREAMING_SNAKE_CASE ) and all(x is None for x in model_inputs['input_ids'] ) ): _UpperCAmelCase = None if generate_kwargs is None: _UpperCAmelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _UpperCAmelCase = model_inputs.pop(self.model.main_input_name ) _UpperCAmelCase = self.model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return model_outputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = [] for output_ids in model_outputs: _UpperCAmelCase = { 'generated_text': self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , ) } records.append(_SCREAMING_SNAKE_CASE ) return records
329
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _snake_case = '''sshleifer/bart-tiny-random''' _snake_case = '''patrickvonplaten/t5-tiny-random''' @require_torch class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' return AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , *_lowerCAmelCase : str = create_student_by_copying_alternating_layers(_SCREAMING_SNAKE_CASE, tempfile.mkdtemp(), e=1, d=1) self.assertEqual(student.config.num_hidden_layers, 1) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , *_lowerCAmelCase : Union[str, Any] = create_student_by_copying_alternating_layers(_SCREAMING_SNAKE_CASE, tempfile.mkdtemp(), e=1, d=_SCREAMING_SNAKE_CASE) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , *_lowerCAmelCase : Any = create_student_by_copying_alternating_layers(_SCREAMING_SNAKE_CASE, tempfile.mkdtemp(), e=1, d=_SCREAMING_SNAKE_CASE) self.assertEqual(student.config.encoder_layers, 1) self.assertEqual(student.config.decoder_layers, self.teacher_config.encoder_layers) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , *_lowerCAmelCase : List[str] = create_student_by_copying_alternating_layers(_SCREAMING_SNAKE_CASE, tempfile.mkdtemp(), e=1, d=1) self.assertEqual(student.config.encoder_layers, 1) self.assertEqual(student.config.decoder_layers, 1) def snake_case__ ( self): '''simple docstring''' with self.assertRaises(_SCREAMING_SNAKE_CASE): create_student_by_copying_alternating_layers(_SCREAMING_SNAKE_CASE, tempfile.mkdtemp(), e=_SCREAMING_SNAKE_CASE, d=_SCREAMING_SNAKE_CASE)
36
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowerCAmelCase__ ( *a__: str , a__: Optional[Union[Dict, Any]] = None , a__: Dict=True , a__: Any=2 ) -> Union[str, Any]: '''simple docstring''' from .. import __version__ _UpperCAmelCase = take_from _UpperCAmelCase = () if not isinstance(args[0] , a__ ): _UpperCAmelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) _UpperCAmelCase = None if isinstance(a__ , a__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(a__ ),) _UpperCAmelCase = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(a__ , a__ ): values += (getattr(a__ , a__ ),) _UpperCAmelCase = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: _UpperCAmelCase = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: _UpperCAmelCase = warning + ' ' if standard_warn else '' warnings.warn(warning + message , a__ , stacklevel=a__ ) if isinstance(a__ , a__ ) and len(a__ ) > 0: _UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCAmelCase = call_frame.filename _UpperCAmelCase = call_frame.lineno _UpperCAmelCase = call_frame.function _UpperCAmelCase , _UpperCAmelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(a__ ) == 0: return elif len(a__ ) == 1: return values[0] return values
329
0
'''simple docstring''' from __future__ import annotations def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = str(a__ ) return n == n[::-1] def a__ ( a__ = 1_00_00_00 ): """simple docstring""" __SCREAMING_SNAKE_CASE = 0 for i in range(1 , a__ ): if is_palindrome(a__ ) and is_palindrome(bin(a__ ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
267
import math lowerCAmelCase__ :Optional[int] = 1_0 lowerCAmelCase__ :Optional[Any] = 7 lowerCAmelCase__ :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def lowerCAmelCase__ ( a__: int = 2_0 ) -> str: '''simple docstring''' _UpperCAmelCase = math.comb(a__ , a__ ) _UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) _UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
329
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Dict = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
117
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ :str = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Union[str, Any] = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
329
0
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a__ : List[Any] = logging.get_logger(__name__) def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> int: """simple docstring""" __A = UniSpeechSatForSequenceClassification.from_pretrained(a__ , config=a__ ) __A = downstream_dict['projector.weight'] __A = downstream_dict['projector.bias'] __A = downstream_dict['model.post_net.linear.weight'] __A = downstream_dict['model.post_net.linear.bias'] return model def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> List[Any]: """simple docstring""" __A = UniSpeechSatForAudioFrameClassification.from_pretrained(a__ , config=a__ ) __A = downstream_dict['model.linear.weight'] __A = downstream_dict['model.linear.bias'] return model def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> List[Any]: """simple docstring""" __A = UniSpeechSatForXVector.from_pretrained(a__ , config=a__ ) __A = downstream_dict['connector.weight'] __A = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __A = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] __A = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] __A = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] __A = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] __A = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] __A = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] __A = downstream_dict['objective.W'] return model @torch.no_grad() def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> int: """simple docstring""" __A = torch.load(a__ , map_location='cpu' ) __A = checkpoint['Downstream'] __A = UniSpeechSatConfig.from_pretrained(a__ ) __A = WavaVecaFeatureExtractor.from_pretrained( a__ , return_attention_mask=a__ , do_normalize=a__ ) __A = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): __A = convert_classification(a__ , a__ , a__ ) elif arch.endswith('ForAudioFrameClassification' ): __A = convert_diarization(a__ , a__ , a__ ) elif arch.endswith('ForXVector' ): __A = convert_xvector(a__ , a__ , a__ ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: __A = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(a__ ) hf_model.save_pretrained(a__ ) if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") a__ : str = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
161
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCAmelCase__ ( a__: Tuple , a__: Optional[Any] , a__: Any ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = AutoConfig.from_pretrained(a__ ) _UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=a__ ) _UpperCAmelCase = checkpoints.load_tax_checkpoint(a__ ) _UpperCAmelCase = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": _UpperCAmelCase = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": _UpperCAmelCase = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): _UpperCAmelCase = F'''layers_{str(a__ )}''' # Self-Attention _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCAmelCase = flax_model.params['encoder']['block'][str(a__ )]['layer'] _UpperCAmelCase = tax_attention_key _UpperCAmelCase = tax_attention_out _UpperCAmelCase = tax_attention_query _UpperCAmelCase = tax_attention_value _UpperCAmelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_global_layer_norm if split_mlp_wi: _UpperCAmelCase = tax_mlp_wi_a _UpperCAmelCase = tax_mlp_wi_a else: _UpperCAmelCase = tax_mlp_wi _UpperCAmelCase = tax_mlp_wo _UpperCAmelCase = tax_mlp_layer_norm _UpperCAmelCase = flax_model_encoder_layer_block # Only for layer 0: _UpperCAmelCase = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_encoder_global_rel_embedding # Assigning _UpperCAmelCase = tax_model['target']['encoder']['encoder_norm']['scale'] _UpperCAmelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _UpperCAmelCase = F'''layers_{str(a__ )}''' # Self-Attention _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] _UpperCAmelCase = tax_enc_dec_attention_module['key']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['out']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['query']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCAmelCase = flax_model.params['decoder']['block'][str(a__ )]['layer'] _UpperCAmelCase = tax_attention_key _UpperCAmelCase = tax_attention_out _UpperCAmelCase = tax_attention_query _UpperCAmelCase = tax_attention_value _UpperCAmelCase = tax_pre_attention_layer_norm _UpperCAmelCase = tax_enc_dec_attention_key _UpperCAmelCase = tax_enc_dec_attention_out _UpperCAmelCase = tax_enc_dec_attention_query _UpperCAmelCase = tax_enc_dec_attention_value _UpperCAmelCase = tax_cross_layer_norm if split_mlp_wi: _UpperCAmelCase = tax_mlp_wi_a _UpperCAmelCase = tax_mlp_wi_a else: _UpperCAmelCase = tax_mlp_wi _UpperCAmelCase = tax_mlp_wo _UpperCAmelCase = txa_mlp_layer_norm _UpperCAmelCase = flax_model_decoder_layer_block # Decoder Normalization _UpperCAmelCase = tax_model['target']['decoder']['decoder_norm']['scale'] _UpperCAmelCase = txa_decoder_norm # Only for layer 0: _UpperCAmelCase = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_decoder_rel_embedding # Token Embeddings _UpperCAmelCase = tax_model['target']['token_embedder']['embedding'] _UpperCAmelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _UpperCAmelCase = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(a__ ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": lowerCAmelCase__ :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowerCAmelCase__ :List[str] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
329
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = 'new-model' if is_tf_available(): class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = NewModelConfig @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__ ( self : int ): """simple docstring""" snake_case_ = "bert-base-cased" snake_case_ = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = "bert-base-cased" snake_case_ = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = TFAutoModelForPreTraining.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def snake_case__ ( self : List[Any] ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = TFAutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = TFAutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def snake_case__ ( self : Optional[Any] ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def snake_case__ ( self : Optional[Any] ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = TFAutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = TFAutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def snake_case__ ( self : Optional[int] ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def snake_case__ ( self : Dict ): """simple docstring""" for model_name in ["bert-base-uncased"]: snake_case_ = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = TFAutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def snake_case__ ( self : List[str] ): """simple docstring""" for model_name in ["bert-base-uncased"]: snake_case_ = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = TFAutoModelForQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow @require_tensorflow_probability def snake_case__ ( self : Optional[Any] ): """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: snake_case_ = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = TFAutoModelForTableQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = TFAutoModelForTableQuestionAnswering.from_pretrained( _SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 1_44_10 ) def snake_case__ ( self : List[Any] ): """simple docstring""" snake_case_ = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = copy.deepcopy(model.config ) snake_case_ = ["FunnelBaseModel"] snake_case_ = TFAutoModel.from_config(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Dict ): """simple docstring""" try: AutoConfig.register("new-model" , _SCREAMING_SNAKE_CASE ) snake_case_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): auto_class.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) auto_class.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): auto_class.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case_ = BertModelTester(self ).get_config() snake_case_ = NewModelConfig(**tiny_config.to_dict() ) snake_case_ = auto_class.from_config(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = auto_class.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def snake_case__ ( self : Tuple ): """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , "bert-base is not a local folder and is not a valid model identifier" ): snake_case_ = TFAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self : Any ): """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): snake_case_ = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE , revision="aaaaaa" ) def snake_case__ ( self : Optional[int] ): """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): snake_case_ = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , "Use `from_pt=True` to load this model" ): snake_case_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: snake_case_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint snake_case_ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: snake_case_ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
187
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :List[Any] = logging.get_logger(__name__) lowerCAmelCase__ :Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __a ( UpperCAmelCase ): _a : str = 'ctrl' _a : Tuple = ['past_key_values'] _a : List[Any] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=246534 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=8192 , _SCREAMING_SNAKE_CASE=48 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = dff _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache super().__init__(**_SCREAMING_SNAKE_CASE )
329
0
def _a ( a :list[int] , a :list[int] , a :int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(a__ ) ) def _a ( a :list[list[int]] , a :int , a :list[int] , a :int ) -> bool: if index == len(a__ ): return True # Recursive Step for i in range(a__ ): if valid_coloring(graph[index] , a__ , a__ ): # Color current vertex a = i # Validate coloring if util_color(a__ , a__ , a__ , index + 1 ): return True # Backtrack a = -1 return False def _a ( a :list[list[int]] , a :int ) -> list[int]: a = [-1] * len(a__ ) if util_color(a__ , a__ , a__ , 0 ): return colored_vertices return []
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Dict: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size['shortest_edge'] * h / w ) _UpperCAmelCase = self.size['shortest_edge'] elif w > h: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = int(self.size['shortest_edge'] * w / h ) else: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = self.size['shortest_edge'] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : str = DeformableDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DeformableDetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_rescale' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'image_id': 39769, 'annotations': target} # encode them _UpperCAmelCase = DeformableDetrImageProcessor() _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) ) @slow def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} _UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic' ) _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify masks _UpperCAmelCase = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
329
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase: Union[str, Any] = logging.get_logger(__name__) class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = ['input_values', 'attention_mask'] def __init__(self , lowerCamelCase_ = 1 , lowerCamelCase_ = 16000 , lowerCamelCase_ = 0.0 , lowerCamelCase_ = False , lowerCamelCase_ = 80 , lowerCamelCase_ = 16 , lowerCamelCase_ = 64 , lowerCamelCase_ = "hann_window" , lowerCamelCase_ = 1.0 , lowerCamelCase_ = 80 , lowerCamelCase_ = 7600 , lowerCamelCase_ = 1E-1_0 , lowerCamelCase_ = 2 , lowerCamelCase_ = True , **lowerCamelCase_ , ): """simple docstring""" super().__init__(feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) a = do_normalize a = return_attention_mask a = num_mel_bins a = hop_length a = win_length a = win_function a = frame_signal_scale a = fmin a = fmax a = mel_floor a = reduction_factor a = win_length * sampling_rate // 1000 a = hop_length * sampling_rate // 1000 a = optimal_fft_length(self.sample_size ) a = (self.n_fft // 2) + 1 a = window_function(window_length=self.sample_size , name=self.win_function , periodic=_SCREAMING_SNAKE_CASE ) a = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="slaney" , mel_scale="slaney" , ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers" , _SCREAMING_SNAKE_CASE , ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers" , _SCREAMING_SNAKE_CASE , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCamelCase_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0.0 ): """simple docstring""" if attention_mask is not None: a = np.array(_SCREAMING_SNAKE_CASE , np.intaa ) a = [] for vector, length in zip(_SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): a = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: a = padding_value normed_input_values.append(_SCREAMING_SNAKE_CASE ) else: a = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def UpperCamelCase_ (self , lowerCamelCase_ , ): """simple docstring""" a = spectrogram( _SCREAMING_SNAKE_CASE , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="log10" , ) return log_mel_spec.T def __call__(self , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values." ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: a = self._process_audio( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) else: a = None if audio_target is not None: a = self._process_audio( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if inputs is None: return inputs_target else: a = inputs_target["input_values"] a = inputs_target.get("attention_mask" ) if decoder_attention_mask is not None: a = decoder_attention_mask return inputs def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ): """simple docstring""" a = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): a = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): a = speech.astype(np.floataa ) # always return batch if not is_batched: a = [speech] # needed to make pad() work on spectrogram inputs a = self.feature_size # convert into correct format for padding if is_target: a = [self._extract_mel_features(_SCREAMING_SNAKE_CASE ) for waveform in speech] a = BatchFeature({"input_values": features} ) a = self.num_mel_bins else: a = BatchFeature({"input_values": speech} ) a = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) a = feature_size_hack # convert input values to correct format a = padded_inputs["input_values"] if not isinstance(input_values[0] , np.ndarray ): a = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): a = [array.astype(np.floataa ) for array in input_values] elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): a = input_values.astype(np.floataa ) # convert attention_mask to correct format a = padded_inputs.get("attention_mask" ) if attention_mask is not None: a = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: a = ( attention_mask if self._get_padding_strategies(_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD else None ) a = self.zero_mean_unit_var_norm( padded_inputs["input_values"] , attention_mask=_SCREAMING_SNAKE_CASE , padding_value=self.padding_value ) if return_tensors is not None: a = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs def UpperCamelCase_ (self ): """simple docstring""" a = super().to_dict() # Don't serialize these as they are derived from the other properties. a = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
227
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __a ( unittest.TestCase ): _a : List[str] = JukeboxTokenizer _a : List[Any] = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
329
0
'''simple docstring''' from __future__ import annotations def a__ ( lowercase : int = 4 ) -> list[list[int]]: """simple docstring""" _UpperCamelCase = abs(a__ ) or 4 return [[1 + x + y * row_size for x in range(a__ )] for y in range(a__ )] def a__ ( lowercase : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a__ ) ) # OR.. transpose(reverse_column(matrix)) def a__ ( lowercase : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a__ ) ) # OR.. reverse_column(reverse_row(matrix)) def a__ ( lowercase : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a__ ) ) # OR.. transpose(reverse_row(matrix)) def a__ ( lowercase : list[list[int]] ) -> list[list[int]]: """simple docstring""" _UpperCamelCase = [list(a__ ) for x in zip(*a__ )] return matrix def a__ ( lowercase : list[list[int]] ) -> list[list[int]]: """simple docstring""" _UpperCamelCase = matrix[::-1] return matrix def a__ ( lowercase : list[list[int]] ) -> list[list[int]]: """simple docstring""" _UpperCamelCase = [x[::-1] for x in matrix] return matrix def a__ ( lowercase : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a__ ) if __name__ == "__main__": lowercase__ : Optional[Any] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) lowercase__ : Union[str, Any] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) lowercase__ : List[Any] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
324
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase__ :Optional[int] = logging.getLogger(__name__) def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=a__ , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=a__ , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=a__ , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=a__ , default=1_0_0_0 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=a__ , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=a__ , type=a__ , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=a__ , default=5_1_2 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=a__ , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) _UpperCAmelCase = parser.parse_args() return args def lowerCAmelCase__ ( a__: Union[str, Any] ) -> List[Any]: '''simple docstring''' def fn(a__: str ): return tokenizer(examples['text'] ) return fn def lowerCAmelCase__ ( a__: List[str] ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for i in range(len(tokenized_data['input_ids'] ) ): _UpperCAmelCase = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } _UpperCAmelCase = tf.train.Features(feature=a__ ) _UpperCAmelCase = tf.train.Example(features=a__ ) _UpperCAmelCase = example.SerializeToString() records.append(a__ ) return records def lowerCAmelCase__ ( a__: Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: _UpperCAmelCase = min(len(a__ ) , args.limit ) _UpperCAmelCase = dataset.select(range(a__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _UpperCAmelCase = os.path.join(args.output_dir , args.split ) if not os.path.exists(a__ ): os.makedirs(a__ ) else: _UpperCAmelCase = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. _UpperCAmelCase = tokenize_function(a__ ) _UpperCAmelCase = dataset.map(a__ , batched=a__ , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(a__: Optional[int] ): # Concatenate all texts. _UpperCAmelCase = {k: sum(examples[k] , [] ) for k in examples.keys()} _UpperCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _UpperCAmelCase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _UpperCAmelCase = { k: [t[i : i + args.max_length] for i in range(0 , a__ , args.max_length )] for k, t in concatenated_examples.items() } return result _UpperCAmelCase = dataset_tokenized.map(a__ , batched=a__ , batch_size=1_0_0_0 , num_proc=4 ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 for shard in range(0 , len(a__ ) , args.shard_size ): _UpperCAmelCase = grouped_dataset[shard : shard + args.shard_size] _UpperCAmelCase = len(dataset_snapshot['input_ids'] ) _UpperCAmelCase = os.path.join(a__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) _UpperCAmelCase = get_serialized_examples(a__ ) with tf.io.TFRecordWriter(a__ ) as out_file: for i in range(len(a__ ) ): _UpperCAmelCase = serialized_examples[i] out_file.write(a__ ) print('Wrote file {} containing {} records'.format(a__ , a__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , 'w' ) as f: print(F'''Total {args.split} records: {total_records}''' , file=a__ ) if __name__ == "__main__": lowerCAmelCase__ :str = parse_args() main(args)
329
0
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : List[str] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCAmelCase : Tuple = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCAmelCase : Optional[Any] = {'''facebook/blenderbot_small-90M''': 5_12} def _SCREAMING_SNAKE_CASE ( a ) -> Optional[int]: __A : int = set() __A : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __A : Optional[int] = char __A : Any = set(a__ ) return pairs class _A( snake_case__ ): """simple docstring""" UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _A , _A , _A="__start__" , _A="__end__" , _A="__unk__" , _A="__null__" , **_A , ): super().__init__(unk_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as vocab_handle: __A : str = json.load(_SCREAMING_SNAKE_CASE ) __A : Optional[int] = {v: k for k, v in self.encoder.items()} with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as merges_handle: __A : List[str] = merges_handle.read().split('\n' )[1:-1] __A : Union[str, Any] = [tuple(merge.split() ) for merge in merges] __A : List[str] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) __A : List[str] = {} @property def UpperCAmelCase_ ( self ): return len(self.encoder ) def UpperCAmelCase_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self , _A ): if token in self.cache: return self.cache[token] __A : Dict = re.sub('([.,!?()])' , R' \1' , _SCREAMING_SNAKE_CASE ) __A : Union[str, Any] = re.sub('(\')' , R' \1 ' , _SCREAMING_SNAKE_CASE ) __A : Tuple = re.sub(R'\s{2,}' , ' ' , _SCREAMING_SNAKE_CASE ) if "\n" in token: __A : Dict = token.replace('\n' , ' __newln__' ) __A : Tuple = token.split(' ' ) __A : Optional[int] = [] for token in tokens: if not len(_SCREAMING_SNAKE_CASE ): continue __A : int = token.lower() __A : List[str] = tuple(_SCREAMING_SNAKE_CASE ) __A : Optional[int] = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) __A : List[str] = get_pairs(_SCREAMING_SNAKE_CASE ) if not pairs: words.append(_SCREAMING_SNAKE_CASE ) continue while True: __A : Optional[Any] = min(_SCREAMING_SNAKE_CASE , key=lambda _A : self.bpe_ranks.get(_SCREAMING_SNAKE_CASE , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __A , __A : List[Any] = bigram __A : int = [] __A : Optional[int] = 0 while i < len(_SCREAMING_SNAKE_CASE ): try: __A : int = word.index(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) new_word.extend(word[i:j] ) __A : List[str] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(_SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __A : Union[str, Any] = tuple(_SCREAMING_SNAKE_CASE ) __A : Any = new_word if len(_SCREAMING_SNAKE_CASE ) == 1: break else: __A : int = get_pairs(_SCREAMING_SNAKE_CASE ) __A : Optional[Any] = '@@ '.join(_SCREAMING_SNAKE_CASE ) __A : List[Any] = word[:-4] __A : List[Any] = word words.append(_SCREAMING_SNAKE_CASE ) return " ".join(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self , _A ): __A : Any = [] __A : Union[str, Any] = re.findall(R'\S+\n?' , _SCREAMING_SNAKE_CASE ) for token in words: split_tokens.extend(list(self.bpe(_SCREAMING_SNAKE_CASE ).split(' ' ) ) ) return split_tokens def UpperCAmelCase_ ( self , _A ): __A : Union[str, Any] = token.lower() return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self , _A ): return self.decoder.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def UpperCAmelCase_ ( self , _A ): __A : Optional[int] = ' '.join(_SCREAMING_SNAKE_CASE ).replace('@@ ' , '' ).strip() return out_string def UpperCAmelCase_ ( self , _A , _A = None ): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __A : Dict = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __A : Any = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE , ensure_ascii=_SCREAMING_SNAKE_CASE ) + '\n' ) __A : Optional[Any] = 0 with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) __A : Tuple = token_index writer.write(' '.join(_SCREAMING_SNAKE_CASE ) + '\n' ) index += 1 return vocab_file, merge_file
280
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any]=1_0 ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for _ in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCAmelCase__ ( a__: List[str] , a__: Any=1_0 ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = [] for step in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(a__ , 'schedule.bin' ) torch.save(scheduler.state_dict() , a__ ) _UpperCAmelCase = torch.load(a__ ) scheduler.load_state_dict(a__ ) return lrs @require_torch class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = Adafactor( params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=_SCREAMING_SNAKE_CASE , scale_parameter=_SCREAMING_SNAKE_CASE , warmup_init=_SCREAMING_SNAKE_CASE , ) for _ in range(1000 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __a ( unittest.TestCase ): _a : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None _a : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _a : List[Any] = 10 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE , msg=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _UpperCAmelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _UpperCAmelCase , _UpperCAmelCase = data _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _UpperCAmelCase = unwrap_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListAlmostEqual( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule _UpperCAmelCase = unwrap_and_save_reload_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , msg=f'''failed for {scheduler_func} in save and reload''' ) class __a : def __init__( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = fn def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @classmethod def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
329
0
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = '''Hello world! cécé herlolip''' def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> str: __lowerCamelCase : Optional[int] = FairseqRobertaModel.from_pretrained(a__ ) roberta.eval() # disable dropout __lowerCamelCase : List[str] = roberta.model.encoder.sentence_encoder __lowerCamelCase : Any = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: __lowerCamelCase : int = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' ,a__ ) __lowerCamelCase : List[str] = XLMRobertaXLForSequenceClassification(a__ ) if classification_head else XLMRobertaXLForMaskedLM(a__ ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCamelCase : List[str] = roberta_sent_encoder.embed_tokens.weight __lowerCamelCase : Optional[int] = roberta_sent_encoder.embed_positions.weight __lowerCamelCase : List[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __lowerCamelCase : Dict = roberta_sent_encoder.layer_norm.weight __lowerCamelCase : Optional[int] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCamelCase : Dict = model.roberta.encoder.layer[i] __lowerCamelCase : Union[str, Any] = roberta_sent_encoder.layers[i] __lowerCamelCase : Tuple = layer.attention __lowerCamelCase : Optional[int] = roberta_layer.self_attn_layer_norm.weight __lowerCamelCase : str = roberta_layer.self_attn_layer_norm.bias # self attention __lowerCamelCase : Optional[int] = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __lowerCamelCase : Optional[int] = roberta_layer.self_attn.q_proj.weight __lowerCamelCase : Union[str, Any] = roberta_layer.self_attn.q_proj.bias __lowerCamelCase : Dict = roberta_layer.self_attn.k_proj.weight __lowerCamelCase : Optional[int] = roberta_layer.self_attn.k_proj.bias __lowerCamelCase : int = roberta_layer.self_attn.v_proj.weight __lowerCamelCase : Optional[int] = roberta_layer.self_attn.v_proj.bias # self-attention output __lowerCamelCase : List[Any] = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __lowerCamelCase : Any = roberta_layer.self_attn.out_proj.weight __lowerCamelCase : List[Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __lowerCamelCase : Any = roberta_layer.final_layer_norm.weight __lowerCamelCase : str = roberta_layer.final_layer_norm.bias # intermediate __lowerCamelCase : Optional[Any] = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __lowerCamelCase : Union[str, Any] = roberta_layer.fca.weight __lowerCamelCase : Any = roberta_layer.fca.bias # output __lowerCamelCase : Any = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __lowerCamelCase : Union[str, Any] = roberta_layer.fca.weight __lowerCamelCase : Tuple = roberta_layer.fca.bias # end of layer if classification_head: __lowerCamelCase : int = roberta.model.classification_heads['mnli'].dense.weight __lowerCamelCase : List[str] = roberta.model.classification_heads['mnli'].dense.bias __lowerCamelCase : List[Any] = roberta.model.classification_heads['mnli'].out_proj.weight __lowerCamelCase : List[str] = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowerCamelCase : Tuple = roberta.model.encoder.lm_head.dense.weight __lowerCamelCase : str = roberta.model.encoder.lm_head.dense.bias __lowerCamelCase : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight __lowerCamelCase : List[str] = roberta.model.encoder.lm_head.layer_norm.bias __lowerCamelCase : Dict = roberta.model.encoder.lm_head.weight __lowerCamelCase : List[Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCamelCase : Dict = roberta.encode(a__ ).unsqueeze(0 ) # batch of size 1 __lowerCamelCase : Optional[int] = model(a__ )[0] if classification_head: __lowerCamelCase : int = roberta.model.classification_heads['mnli'](roberta.extract_features(a__ ) ) else: __lowerCamelCase : Tuple = roberta.model(a__ )[0] print(our_output.shape ,their_output.shape ) __lowerCamelCase : Union[str, Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(F'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 __lowerCamelCase : Tuple = torch.allclose(a__ ,a__ ,atol=1E-3 ) print('Do both models output the same tensors?' ,'🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(a__ ).mkdir(parents=a__ ,exist_ok=a__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(a__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) _UpperCamelCase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
208
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ :Any = logging.get_logger(__name__) def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any] , a__: Dict , a__: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = original_name.split('.' )[0] _UpperCAmelCase = key.split('.' ) _UpperCAmelCase = int(key_list[key_list.index(a__ ) - 2] ) _UpperCAmelCase = int(key_list[key_list.index(a__ ) - 1] ) _UpperCAmelCase = orig_block_num - offset _UpperCAmelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCAmelCase__ ( a__: Tuple ) -> int: '''simple docstring''' _UpperCAmelCase = OrderedDict() _UpperCAmelCase , _UpperCAmelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): _UpperCAmelCase = key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCAmelCase = key[: key.find('proj' )] _UpperCAmelCase = key.replace(a__ , F'''patch_embeddings.{total_embed_found}.''' ) _UpperCAmelCase = key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCAmelCase = 'poolformer.encoder.' + key if "mlp.fc1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm1' , 'before_norm' ) if "norm2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: _UpperCAmelCase = key.replace('head' , 'classifier' ) _UpperCAmelCase = value return new_state_dict def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw ) return image @torch.no_grad() def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict , a__: Any ) -> Dict: '''simple docstring''' _UpperCAmelCase = PoolFormerConfig() # set attributes based on model_name _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = model_name[-3:] _UpperCAmelCase = 1_0_0_0 _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = (1, 1_0_0_0) # set config attributes _UpperCAmelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(a__ ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCAmelCase = [2, 2, 6, 2] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 0.9 elif size == "s24": _UpperCAmelCase = [4, 4, 1_2, 4] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 0.9 elif size == "s36": _UpperCAmelCase = [6, 6, 1_8, 6] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.9 elif size == "m36": _UpperCAmelCase = [6, 6, 1_8, 6] _UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.95 elif size == "m48": _UpperCAmelCase = [8, 8, 2_4, 8] _UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ ) # Prepare image _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=a__ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCAmelCase = torch.load(a__ , map_location=torch.device('cpu' ) ) # rename keys _UpperCAmelCase = rename_keys(a__ ) # create HuggingFace model and load state dict _UpperCAmelCase = PoolFormerForImageClassification(a__ ) model.load_state_dict(a__ ) model.eval() # Define image processor _UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ ) _UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass _UpperCAmelCase = model(a__ ) _UpperCAmelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCAmelCase = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": _UpperCAmelCase = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": _UpperCAmelCase = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": _UpperCAmelCase = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": _UpperCAmelCase = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , a__ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ :str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ :Dict = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__=True , a__="pt" ) -> int: __a = {'''add_prefix_space''': True} if isinstance(a__ , a__ ) and not line.startswith(''' ''' ) else {} __a = padding_side return tokenizer( [line] , max_length=a__ , padding='''max_length''' if pad_to_max_length else None , truncation=a__ , return_tensors=a__ , add_special_tokens=a__ , **a__ , ) def __lowerCAmelCase ( a__ , a__ , a__=None , ) -> Tuple: __a = input_ids.ne(a__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __A( a ): def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case="train" , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case="" , ) -> Dict: '''simple docstring''' super().__init__() __a = Path(_SCREAMING_SNAKE_CASE ).joinpath(type_path + '''.source''' ) __a = Path(_SCREAMING_SNAKE_CASE ).joinpath(type_path + '''.target''' ) __a = self.get_char_lens(self.src_file ) __a = max_source_length __a = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" __a = tokenizer __a = prefix if n_obs is not None: __a = self.src_lens[:n_obs] __a = src_lang __a = tgt_lang def __len__( self ) -> List[str]: '''simple docstring''' return len(self.src_lens ) def __getitem__( self , _snake_case ) -> Dict[str, torch.Tensor]: '''simple docstring''' __a = index + 1 # linecache starts at 1 __a = self.prefix + linecache.getline(str(self.src_file ) , _SCREAMING_SNAKE_CASE ).rstrip('''\n''' ) __a = linecache.getline(str(self.tgt_file ) , _SCREAMING_SNAKE_CASE ).rstrip('''\n''' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __a = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer ) __a = self.tokenizer.generator if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer __a = encode_line(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.max_source_length , '''right''' ) __a = encode_line(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.max_target_length , '''right''' ) __a = source_inputs['''input_ids'''].squeeze() __a = target_inputs['''input_ids'''].squeeze() __a = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def SCREAMING_SNAKE_CASE_ ( _snake_case ) -> Any: '''simple docstring''' return [len(_SCREAMING_SNAKE_CASE ) for x in Path(_SCREAMING_SNAKE_CASE ).open().readlines()] def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Dict[str, torch.Tensor]: '''simple docstring''' __a = torch.stack([x['''input_ids'''] for x in batch] ) __a = torch.stack([x['''attention_mask'''] for x in batch] ) __a = torch.stack([x['''decoder_input_ids'''] for x in batch] ) __a = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer.pad_token_id ) __a = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer.pad_token_id ) __a = trim_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a , __a = trim_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) __a = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch A : str = getLogger(__name__) def __lowerCAmelCase ( a__ ) -> Tuple: return list(itertools.chain.from_iterable(a__ ) ) def __lowerCAmelCase ( a__ ) -> None: __a = get_git_info() save_json(a__ , os.path.join(a__ , '''git_log.json''' ) ) def __lowerCAmelCase ( a__ , a__ , a__=4 , **a__ ) -> List[Any]: with open(a__ , '''w''' ) as f: json.dump(a__ , a__ , indent=a__ , **a__ ) def __lowerCAmelCase ( a__ ) -> Tuple: with open(a__ ) as f: return json.load(a__ ) def __lowerCAmelCase ( ) -> List[Any]: __a = git.Repo(search_parent_directories=a__ ) __a = { '''repo_id''': str(a__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def __lowerCAmelCase ( a__ , a__ ) -> List: return list(map(a__ , a__ ) ) def __lowerCAmelCase ( a__ , a__ ) -> str: with open(a__ , '''wb''' ) as f: return pickle.dump(a__ , a__ ) def __lowerCAmelCase ( a__ ) -> Dict: def remove_articles(a__ ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , a__ ) def white_space_fix(a__ ): return " ".join(text.split() ) def remove_punc(a__ ): __a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(a__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a__ ) ) ) ) def __lowerCAmelCase ( a__ , a__ ) -> Tuple: __a = normalize_answer(a__ ).split() __a = normalize_answer(a__ ).split() __a = Counter(a__ ) & Counter(a__ ) __a = sum(common.values() ) if num_same == 0: return 0 __a = 1.0 * num_same / len(a__ ) __a = 1.0 * num_same / len(a__ ) __a = (2 * precision * recall) / (precision + recall) return fa def __lowerCAmelCase ( a__ , a__ ) -> List[Any]: return normalize_answer(a__ ) == normalize_answer(a__ ) def __lowerCAmelCase ( a__ , a__ ) -> Dict: assert len(a__ ) == len(a__ ) __a = 0 for hypo, pred in zip(a__ , a__ ): em += exact_match_score(a__ , a__ ) if len(a__ ) > 0: em /= len(a__ ) return {"em": em} def __lowerCAmelCase ( a__ ) -> int: return model_prefix.startswith('''rag''' ) def __lowerCAmelCase ( a__ , a__ , a__ ) -> List[str]: __a = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __a = '''dropout_rate''' for p in extra_params: if getattr(a__ , a__ , a__ ): if not hasattr(a__ , a__ ) and not hasattr(a__ , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(a__ ) ) delattr(a__ , a__ ) continue __a = p if hasattr(a__ , a__ ) else equivalent_param[p] setattr(a__ , a__ , getattr(a__ , a__ ) ) delattr(a__ , a__ ) return hparams, config
6
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = process _UpperCAmelCase = params def __len__( self ) -> Union[str, Any]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = self.dataset[i] _UpperCAmelCase = self.process(_SCREAMING_SNAKE_CASE , **self.params ) return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = loader _UpperCAmelCase = infer _UpperCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _UpperCAmelCase = None _UpperCAmelCase = loader_batch_size # Internal bookkeeping _UpperCAmelCase = None _UpperCAmelCase = None def __len__( self ) -> Any: """simple docstring""" return len(self.loader ) def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _UpperCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _UpperCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Convert ModelOutput to tuple first _UpperCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _UpperCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _UpperCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _UpperCAmelCase = self._loader_batch_data.__class__(_SCREAMING_SNAKE_CASE ) self._loader_batch_index += 1 return result def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _UpperCAmelCase = next(self.iterator ) _UpperCAmelCase = self.infer(_SCREAMING_SNAKE_CASE , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _UpperCAmelCase = processed _UpperCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __iter__( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) _UpperCAmelCase = None return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if self.subiterator is None: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _UpperCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) _UpperCAmelCase = next(self.subiterator ) return processed class __a ( UpperCAmelCase ): def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = False _UpperCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator while not is_last: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size _UpperCAmelCase = processed _UpperCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator else: _UpperCAmelCase = processed _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) return accumulator class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = key def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.dataset[i][self.key] class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = keya _UpperCAmelCase = keya def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
329
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _snake_case = logging.getLogger(__name__) def A ( ): '''simple docstring''' _lowerCAmelCase : List[str] = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=a__ , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=a__ , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=a__ , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=a__ , default=1_000 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=a__ , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=a__ , type=a__ , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=a__ , default=512 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=a__ , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) _lowerCAmelCase : str = parser.parse_args() return args def A ( _lowerCamelCase ): '''simple docstring''' def fn(_lowerCamelCase ): return tokenizer(examples["text"] ) return fn def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] for i in range(len(tokenized_data["input_ids"] ) ): _lowerCAmelCase : Optional[int] = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } _lowerCAmelCase : List[str] = tf.train.Features(feature=a__ ) _lowerCAmelCase : str = tf.train.Example(features=a__ ) _lowerCAmelCase : Union[str, Any] = example.SerializeToString() records.append(a__ ) return records def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: _lowerCAmelCase : Union[str, Any] = min(len(a__ ) , args.limit ) _lowerCAmelCase : Any = dataset.select(range(a__ ) ) print(F"Limiting the dataset to {args.limit} entries." ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(a__ ): os.makedirs(a__ ) else: _lowerCAmelCase : Any = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. _lowerCAmelCase : Tuple = tokenize_function(a__ ) _lowerCAmelCase : List[str] = dataset.map(a__ , batched=a__ , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_lowerCamelCase ): # Concatenate all texts. _lowerCAmelCase : Dict = {k: sum(examples[k] , [] ) for k in examples.keys()} _lowerCAmelCase : Optional[int] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _lowerCAmelCase : Optional[Any] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _lowerCAmelCase : List[str] = { k: [t[i : i + args.max_length] for i in range(0 , a__ , args.max_length )] for k, t in concatenated_examples.items() } return result _lowerCAmelCase : List[Any] = dataset_tokenized.map(a__ , batched=a__ , batch_size=1_000 , num_proc=4 ) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[Any] = 0 for shard in range(0 , len(a__ ) , args.shard_size ): _lowerCAmelCase : Dict = grouped_dataset[shard : shard + args.shard_size] _lowerCAmelCase : Dict = len(dataset_snapshot["input_ids"] ) _lowerCAmelCase : List[str] = os.path.join(a__ , F"dataset-{shard_count}-{records_containing}.tfrecord" ) _lowerCAmelCase : int = get_serialized_examples(a__ ) with tf.io.TFRecordWriter(a__ ) as out_file: for i in range(len(a__ ) ): _lowerCAmelCase : Optional[int] = serialized_examples[i] out_file.write(a__ ) print("Wrote file {} containing {} records".format(a__ , a__ ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , "w" ) as f: print(F"Total {args.split} records: {total_records}" , file=a__ ) if __name__ == "__main__": _snake_case = parse_args() main(args)
36
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ :int = logging.get_logger(__name__) lowerCAmelCase__ :Optional[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class __a ( UpperCAmelCase ): _a : str = 'data2vec-text' def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class __a ( UpperCAmelCase ): @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
329
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Any = logging.get_logger(__name__) def a__ ( a__ , a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = original_name.split(""".""" )[0] __SCREAMING_SNAKE_CASE = key.split(""".""" ) __SCREAMING_SNAKE_CASE = int(key_list[key_list.index(a__ ) - 2] ) __SCREAMING_SNAKE_CASE = int(key_list[key_list.index(a__ ) - 1] ) __SCREAMING_SNAKE_CASE = orig_block_num - offset __SCREAMING_SNAKE_CASE = key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = OrderedDict() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 0 for key, value in state_dict.items(): if key.startswith("""network""" ): __SCREAMING_SNAKE_CASE = key.replace("""network""" , """poolformer.encoder""" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""" ) and "patch_embed" not in key: patch_emb_offset += 1 __SCREAMING_SNAKE_CASE = key[: key.find("""proj""" )] __SCREAMING_SNAKE_CASE = key.replace(a__ , F'patch_embeddings.{total_embed_found}.' ) __SCREAMING_SNAKE_CASE = key.replace("""proj""" , """projection""" ) if key.endswith("""bias""" ): total_embed_found += 1 if "patch_embeddings" in key: __SCREAMING_SNAKE_CASE = """poolformer.encoder.""" + key if "mlp.fc1" in key: __SCREAMING_SNAKE_CASE = replace_key_with_offset(a__ , a__ , """mlp.fc1""" , """output.conv1""" ) if "mlp.fc2" in key: __SCREAMING_SNAKE_CASE = replace_key_with_offset(a__ , a__ , """mlp.fc2""" , """output.conv2""" ) if "norm1" in key: __SCREAMING_SNAKE_CASE = replace_key_with_offset(a__ , a__ , """norm1""" , """before_norm""" ) if "norm2" in key: __SCREAMING_SNAKE_CASE = replace_key_with_offset(a__ , a__ , """norm2""" , """after_norm""" ) if "layer_scale_1" in key: __SCREAMING_SNAKE_CASE = replace_key_with_offset(a__ , a__ , """layer_scale_1""" , """layer_scale_1""" ) if "layer_scale_2" in key: __SCREAMING_SNAKE_CASE = replace_key_with_offset(a__ , a__ , """layer_scale_2""" , """layer_scale_2""" ) if "head" in key: __SCREAMING_SNAKE_CASE = key.replace("""head""" , """classifier""" ) __SCREAMING_SNAKE_CASE = value return new_state_dict def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ) return image @torch.no_grad() def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = PoolFormerConfig() # set attributes based on model_name __SCREAMING_SNAKE_CASE = """huggingface/label-files""" __SCREAMING_SNAKE_CASE = model_name[-3:] __SCREAMING_SNAKE_CASE = 10_00 __SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" __SCREAMING_SNAKE_CASE = (1, 10_00) # set config attributes __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(a__ , a__ , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE = {int(a__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} if size == "s12": __SCREAMING_SNAKE_CASE = [2, 2, 6, 2] __SCREAMING_SNAKE_CASE = [64, 1_28, 3_20, 5_12] __SCREAMING_SNAKE_CASE = 4.0 __SCREAMING_SNAKE_CASE = 0.9 elif size == "s24": __SCREAMING_SNAKE_CASE = [4, 4, 12, 4] __SCREAMING_SNAKE_CASE = [64, 1_28, 3_20, 5_12] __SCREAMING_SNAKE_CASE = 4.0 __SCREAMING_SNAKE_CASE = 0.9 elif size == "s36": __SCREAMING_SNAKE_CASE = [6, 6, 18, 6] __SCREAMING_SNAKE_CASE = [64, 1_28, 3_20, 5_12] __SCREAMING_SNAKE_CASE = 4.0 __SCREAMING_SNAKE_CASE = 1E-6 __SCREAMING_SNAKE_CASE = 0.9 elif size == "m36": __SCREAMING_SNAKE_CASE = [6, 6, 18, 6] __SCREAMING_SNAKE_CASE = [96, 1_92, 3_84, 7_68] __SCREAMING_SNAKE_CASE = 4.0 __SCREAMING_SNAKE_CASE = 1E-6 __SCREAMING_SNAKE_CASE = 0.95 elif size == "m48": __SCREAMING_SNAKE_CASE = [8, 8, 24, 8] __SCREAMING_SNAKE_CASE = [96, 1_92, 3_84, 7_68] __SCREAMING_SNAKE_CASE = 4.0 __SCREAMING_SNAKE_CASE = 1E-6 __SCREAMING_SNAKE_CASE = 0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __SCREAMING_SNAKE_CASE = PoolFormerImageProcessor(crop_pct=a__ ) # Prepare image __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=a__ , return_tensors="""pt""" ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __SCREAMING_SNAKE_CASE = torch.load(a__ , map_location=torch.device("""cpu""" ) ) # rename keys __SCREAMING_SNAKE_CASE = rename_keys(a__ ) # create HuggingFace model and load state dict __SCREAMING_SNAKE_CASE = PoolFormerForImageClassification(a__ ) model.load_state_dict(a__ ) model.eval() # Define image processor __SCREAMING_SNAKE_CASE = PoolFormerImageProcessor(crop_pct=a__ ) __SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values # forward pass __SCREAMING_SNAKE_CASE = model(a__ ) __SCREAMING_SNAKE_CASE = outputs.logits # define expected logit slices for different models if size == "s12": __SCREAMING_SNAKE_CASE = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": __SCREAMING_SNAKE_CASE = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": __SCREAMING_SNAKE_CASE = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": __SCREAMING_SNAKE_CASE = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": __SCREAMING_SNAKE_CASE = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , a__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCAmelCase : Dict = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
267
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['stem'] _UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : int = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _a : str = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} _a : Optional[int] = False _a : List[str] = False _a : List[str] = False _a : Optional[int] = False _a : Tuple = False def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 0 return t def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has''' f''' `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}.''' ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) @require_torch class __a ( unittest.TestCase , UpperCAmelCase ): _a : Any = (MaskFormerSwinBackbone,) if is_torch_available() else () _a : Any = MaskFormerSwinConfig def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
329
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Dict = logging.get_logger(__name__) snake_case__ : int = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class A_ ( _lowerCamelCase ): lowerCAmelCase__ = 'swinv2' lowerCAmelCase__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self :List[str] , _UpperCamelCase :List[Any]=224 , _UpperCamelCase :int=4 , _UpperCamelCase :Any=3 , _UpperCamelCase :Dict=96 , _UpperCamelCase :List[Any]=[2, 2, 6, 2] , _UpperCamelCase :List[str]=[3, 6, 12, 24] , _UpperCamelCase :Union[str, Any]=7 , _UpperCamelCase :Tuple=4.0 , _UpperCamelCase :Dict=True , _UpperCamelCase :Optional[int]=0.0 , _UpperCamelCase :str=0.0 , _UpperCamelCase :int=0.1 , _UpperCamelCase :List[str]="gelu" , _UpperCamelCase :Tuple=False , _UpperCamelCase :Union[str, Any]=0.0_2 , _UpperCamelCase :Dict=1e-5 , _UpperCamelCase :int=32 , **_UpperCamelCase :str , )-> Tuple: super().__init__(**_SCREAMING_SNAKE_CASE ) __A = image_size __A = patch_size __A = num_channels __A = embed_dim __A = depths __A = len(_SCREAMING_SNAKE_CASE ) __A = num_heads __A = window_size __A = mlp_ratio __A = qkv_bias __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = drop_path_rate __A = hidden_act __A = use_absolute_embeddings __A = layer_norm_eps __A = initializer_range __A = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __A = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE ) - 1) ) __A = (0, 0, 0, 0)
117
from collections.abc import Generator def lowerCAmelCase__ ( ) -> Generator[int, None, None]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = 0, 1 while True: _UpperCAmelCase , _UpperCAmelCase = b, a + b yield b def lowerCAmelCase__ ( a__: int = 1_0_0_0 ) -> int: '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = fibonacci_generator() while len(str(next(a__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
329
0
'''simple docstring''' from __future__ import annotations def snake_case ( UpperCAmelCase , UpperCAmelCase )-> tuple[int, int]: """simple docstring""" if b == 0: return (1, 0) ((__A) , (__A)) = extended_euclid(a__ , a % b ) __A = a // b return (y, x - k * y) def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> int: """simple docstring""" ((__A) , (__A)) = extended_euclid(a__ , a__ ) __A = na * na __A = ra * x * na + ra * y * na return (n % m + m) % m def snake_case ( UpperCAmelCase , UpperCAmelCase )-> int: """simple docstring""" ((__A) , (__A)) = extended_euclid(a__ , a__ ) if b < 0: __A = (b % n + n) % n return b def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> int: """simple docstring""" __A , __A = invert_modulo(a__ , a__ ), invert_modulo(a__ , a__ ) __A = na * na __A = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
161
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 30} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize_and_center_crop _UpperCAmelCase = size _UpperCAmelCase = crop_pct _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
329
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , __lowercase : Union[str, Any] , __lowercase : List[str]=7 , __lowercase : str=3 , __lowercase : Dict=18 , __lowercase : str=30 , __lowercase : Any=4_00 , __lowercase : Tuple=True , __lowercase : int=None , __lowercase : Any=True , __lowercase : Any=None , __lowercase : List[Any]=True , ): """simple docstring""" snake_case_ = size if size is not None else {"shortest_edge": 20} snake_case_ = crop_size if crop_size is not None else {"height": 18, "width": 18} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = do_flip_channel_order def snake_case__ ( self : str ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = MobileViTImageProcessor if is_vision_available() else None def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = MobileViTImageProcessingTester(self ) @property def snake_case__ ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : int ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_center_crop" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "center_crop" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_flip_channel_order" ) ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def snake_case__ ( self : Tuple ): """simple docstring""" pass def snake_case__ ( self : List[Any] ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched snake_case_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
187
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20} _UpperCAmelCase = do_thumbnail _UpperCAmelCase = do_align_axis _UpperCAmelCase = do_pad _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : List[str] = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_thumbnail' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
329
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _a ( a :int ) -> List[str]: def is_in_circle(a :float , a :float ) -> bool: a = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle a = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(a__ ) ) # The ratio of the area for circle to square is pi/4. a = proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""" ) print(F"""The numpy value of pi is {pi}""" ) print(F"""The total error is {abs(pi - pi_estimate )}""" ) def _a ( a :int , a :Callable[[float], float] , a :float = 0.0 , a :float = 1.0 , ) -> float: return mean( function_to_integrate(uniform(a__ , a__ ) ) for _ in range(a__ ) ) * (max_value - min_value) def _a ( a :int , a :float = 0.0 , a :float = 1.0 ) -> None: def identity_function(a :float ) -> float: return x a = area_under_curve_estimator( a__ , a__ , a__ , a__ ) a = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {expected_value}""" ) print(F"""Total error is {abs(estimated_value - expected_value )}""" ) print('''******************''' ) def _a ( a :int ) -> None: def function_to_integrate(a :float ) -> float: return sqrt(4.0 - x * x ) a = area_under_curve_estimator( a__ , a__ , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {pi}""" ) print(F"""Total error is {abs(estimated_value - pi )}""" ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :Dict = logging.get_logger(__name__) lowerCAmelCase__ :Optional[int] = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class __a ( UpperCAmelCase ): _a : List[str] = 'openai-gpt' _a : int = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=40478 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = afn _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = summary_type _UpperCAmelCase = summary_use_proj _UpperCAmelCase = summary_activation _UpperCAmelCase = summary_first_dropout _UpperCAmelCase = summary_proj_to_labels super().__init__(**_SCREAMING_SNAKE_CASE )
329
0
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , lowerCamelCase_ = "▁" , lowerCamelCase_ = True , lowerCamelCase_ = "<unk>" , lowerCamelCase_ = "</s>" , lowerCamelCase_ = "<pad>" , ): """simple docstring""" a = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } a = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): a = token_dict["token"] a = Tokenizer(Unigram() ) a = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) a = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ), pre_tokenizers.Digits(individual_digits=_SCREAMING_SNAKE_CASE ), pre_tokenizers.Punctuation(), ] ) a = decoders.Metaspace(replacement=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) a = TemplateProcessing( single=F'''$A {self.special_tokens['eos']['token']}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) a = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = 8000 , lowerCamelCase_ = True , ): """simple docstring""" a = trainers.UnigramTrainer( vocab_size=_SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=_SCREAMING_SNAKE_CASE , ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a = [files] self._tokenizer.train(_SCREAMING_SNAKE_CASE , trainer=_SCREAMING_SNAKE_CASE ) self.add_unk_id() def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = 8000 , lowerCamelCase_ = True , ): """simple docstring""" a = trainers.UnigramTrainer( vocab_size=_SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=_SCREAMING_SNAKE_CASE , ) self._tokenizer.train_from_iterator(_SCREAMING_SNAKE_CASE , trainer=_SCREAMING_SNAKE_CASE ) self.add_unk_id() def UpperCamelCase_ (self ): """simple docstring""" a = json.loads(self._tokenizer.to_str() ) a = self.special_tokens["unk"]["id"] a = Tokenizer.from_str(json.dumps(_SCREAMING_SNAKE_CASE ) )
227
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def lowerCAmelCase__ ( a__: Any , a__: Tuple , a__: Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = hf_hub_url(repo_id=a__ , path=a__ , revision=a__ ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a__ )}'''
329
0
'''simple docstring''' import math lowercase__ : Optional[int] = 10 lowercase__ : Optional[Any] = 7 lowercase__ : Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def a__ ( lowercase : int = 20 ) -> str: """simple docstring""" _UpperCamelCase = math.comb(a__, a__ ) _UpperCamelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR, a__ ) _UpperCamelCase = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
324
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase__ :Optional[int] = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int]=None ) -> Any: '''simple docstring''' require_version(deps[pkg] , a__ )
329
0
from __future__ import annotations from typing import TypedDict class _A( snake_case__ ): """simple docstring""" UpperCamelCase : str UpperCamelCase : int def _SCREAMING_SNAKE_CASE ( a ) -> list[str]: if not isinstance(a__ , a__ ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(a__ ) )] def _SCREAMING_SNAKE_CASE ( a ) -> BWTTransformDict: if not isinstance(a__ , a__ ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) __A : Tuple = all_rotations(a__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation __A : Optional[Any] = { 'bwt_string': ''.join([word[-1] for word in rotations] ), 'idx_original_string': rotations.index(a__ ), } return response def _SCREAMING_SNAKE_CASE ( a , a ) -> str: if not isinstance(a__ , a__ ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: __A : Optional[Any] = int(a__ ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(a__ ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) __A : Tuple = [''] * len(a__ ) for _ in range(len(a__ ) ): for i in range(len(a__ ) ): __A : Tuple = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCAmelCase : int = '''Provide a string that I will generate its BWT transform: ''' UpperCAmelCase : int = input(entry_msg).strip() UpperCAmelCase : Any = bwt_transform(s) print( F"""Burrows Wheeler transform for string \'{s}\' results """ F"""in \'{result["bwt_string"]}\'""" ) UpperCAmelCase : List[Any] = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( F"""Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' """ F"""we get original string \'{original_string}\'""" )
280
from __future__ import annotations def lowerCAmelCase__ ( a__: dict , a__: str ) -> set[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = set(a__ ), [start] while stack: _UpperCAmelCase = stack.pop() explored.add(a__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a__ ) return explored lowerCAmelCase__ :Tuple = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
329
0
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Dict: __lowerCamelCase : Dict = RobertaPreLayerNormConfig.from_pretrained( a__ ,architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __lowerCamelCase : List[Any] = torch.load(hf_hub_download(repo_id=a__ ,filename='pytorch_model.bin' ) ) __lowerCamelCase : List[Any] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __lowerCamelCase : str = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __lowerCamelCase : int = tensor_value __lowerCamelCase : Tuple = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=a__ ,config=a__ ,state_dict=a__ ) model.save_pretrained(a__ ) # convert tokenizer __lowerCamelCase : str = AutoTokenizer.from_pretrained(a__ ) tokenizer.save_pretrained(a__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
208
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(_SCREAMING_SNAKE_CASE , os.listdir(_SCREAMING_SNAKE_CASE )[0] , 'snapshots' ) )] _UpperCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 4 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3 assert np.abs(np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1 _UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_SCREAMING_SNAKE_CASE ) == num_samples def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = scheduler.create_state() _UpperCAmelCase = scheduler_state _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1 def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , use_memory_efficient_attention=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
329
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A : int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') A : List[Any] = [file for file in filepaths if ''' ''' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') A : Optional[Any] = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') A : Tuple = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') A : List[str] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
6
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase__ :int = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class __a ( UpperCAmelCase ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = {} if prompt is not None: _UpperCAmelCase = prompt if generate_kwargs is not None: _UpperCAmelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _UpperCAmelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) _UpperCAmelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" _UpperCAmelCase = load_image(_SCREAMING_SNAKE_CASE ) if prompt is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( f'''Received an invalid text input, got - {type(_SCREAMING_SNAKE_CASE )} - but expected a single string. ''' 'Note also that one single text can be provided for conditional image to text generation.' ) _UpperCAmelCase = self.model.config.model_type if model_type == "git": _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids _UpperCAmelCase = [self.tokenizer.cls_token_id] + input_ids _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) _UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: _UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _UpperCAmelCase = None return model_inputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[str]: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , _SCREAMING_SNAKE_CASE ) and all(x is None for x in model_inputs['input_ids'] ) ): _UpperCAmelCase = None if generate_kwargs is None: _UpperCAmelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _UpperCAmelCase = model_inputs.pop(self.model.main_input_name ) _UpperCAmelCase = self.model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return model_outputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = [] for output_ids in model_outputs: _UpperCAmelCase = { 'generated_text': self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , ) } records.append(_SCREAMING_SNAKE_CASE ) return records
329
0
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar _snake_case = TypeVar("T") def A ( _lowerCamelCase ): '''simple docstring''' return (position - 1) // 2 def A ( _lowerCamelCase ): '''simple docstring''' return (2 * position) + 1 def A ( _lowerCamelCase ): '''simple docstring''' return (2 * position) + 2 class UpperCAmelCase_ ( Generic[T]): def __init__( self): '''simple docstring''' _lowerCAmelCase : Any = [] _lowerCAmelCase : Tuple = {} _lowerCAmelCase : List[str] = 0 def __len__( self): '''simple docstring''' return self.elements def __repr__( self): '''simple docstring''' return str(self.heap) def snake_case__ ( self): '''simple docstring''' return self.elements == 0 def snake_case__ ( self, __a, __a): '''simple docstring''' self.heap.append((elem, weight)) _lowerCAmelCase : Union[str, Any] = self.elements self.elements += 1 self._bubble_up(_SCREAMING_SNAKE_CASE) def snake_case__ ( self): '''simple docstring''' if self.elements > 1: self._swap_nodes(0, self.elements - 1) _lowerCAmelCase , _lowerCAmelCase : Dict = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.heap[0] self._bubble_down(_SCREAMING_SNAKE_CASE) return elem def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : int = self.position_map[elem] _lowerCAmelCase : int = (elem, weight) if position > 0: _lowerCAmelCase : Optional[int] = get_parent_position(_SCREAMING_SNAKE_CASE) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_SCREAMING_SNAKE_CASE) else: self._bubble_down(_SCREAMING_SNAKE_CASE) else: self._bubble_down(_SCREAMING_SNAKE_CASE) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position_map[elem] if curr_pos == 0: return None _lowerCAmelCase : Dict = get_parent_position(_SCREAMING_SNAKE_CASE) _lowerCAmelCase , _lowerCAmelCase : List[str] = self.heap[curr_pos] _lowerCAmelCase , _lowerCAmelCase : Dict = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) return self._bubble_up(_SCREAMING_SNAKE_CASE) return None def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : str = self.position_map[elem] _lowerCAmelCase , _lowerCAmelCase : str = self.heap[curr_pos] _lowerCAmelCase : Dict = get_child_left_position(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : int = get_child_right_position(_SCREAMING_SNAKE_CASE) if child_left_position < self.elements and child_right_position < self.elements: _lowerCAmelCase , _lowerCAmelCase : Dict = self.heap[child_left_position] _lowerCAmelCase , _lowerCAmelCase : Tuple = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) return self._bubble_down(_SCREAMING_SNAKE_CASE) if child_left_position < self.elements: _lowerCAmelCase , _lowerCAmelCase : List[str] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) return self._bubble_down(_SCREAMING_SNAKE_CASE) else: return None if child_right_position < self.elements: _lowerCAmelCase , _lowerCAmelCase : List[str] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE) return self._bubble_down(_SCREAMING_SNAKE_CASE) return None def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.heap[nodea_pos][0] _lowerCAmelCase : Any = self.heap[nodea_pos][0] _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _lowerCAmelCase : int = nodea_pos _lowerCAmelCase : int = nodea_pos class UpperCAmelCase_ ( Generic[T]): def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = 0 def __repr__( self): '''simple docstring''' return str(self.connections) def __len__( self): '''simple docstring''' return self.nodes def snake_case__ ( self, __a): '''simple docstring''' if node not in self.connections: _lowerCAmelCase : Dict = {} self.nodes += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_node(_SCREAMING_SNAKE_CASE) self.add_node(_SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[Any] = weight _lowerCAmelCase : Union[str, Any] = weight def A ( _lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : Any = {node: maxsize for node in graph.connections} _lowerCAmelCase : Optional[Any] = {node: None for node in graph.connections} _lowerCAmelCase : str = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization _lowerCAmelCase : Union[str, Any] = priority_queue.extract_min() _lowerCAmelCase : int = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _lowerCAmelCase : Union[str, Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) _lowerCAmelCase : Dict = node # running prim's algorithm while not priority_queue.is_empty(): _lowerCAmelCase : List[Any] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _lowerCAmelCase : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) _lowerCAmelCase : Optional[Any] = node return dist, parent
36
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowerCAmelCase__ ( *a__: str , a__: Optional[Union[Dict, Any]] = None , a__: Dict=True , a__: Any=2 ) -> Union[str, Any]: '''simple docstring''' from .. import __version__ _UpperCAmelCase = take_from _UpperCAmelCase = () if not isinstance(args[0] , a__ ): _UpperCAmelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) _UpperCAmelCase = None if isinstance(a__ , a__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(a__ ),) _UpperCAmelCase = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(a__ , a__ ): values += (getattr(a__ , a__ ),) _UpperCAmelCase = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: _UpperCAmelCase = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: _UpperCAmelCase = warning + ' ' if standard_warn else '' warnings.warn(warning + message , a__ , stacklevel=a__ ) if isinstance(a__ , a__ ) and len(a__ ) > 0: _UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCAmelCase = call_frame.filename _UpperCAmelCase = call_frame.lineno _UpperCAmelCase = call_frame.function _UpperCAmelCase , _UpperCAmelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(a__ ) == 0: return elif len(a__ ) == 1: return values[0] return values
329
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : """simple docstring""" @staticmethod def UpperCAmelCase__ ( *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __SCREAMING_SNAKE_CASE = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = vqa_pipeline(_SCREAMING_SNAKE_CASE , top_k=1 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ [{"""score""": ANY(_SCREAMING_SNAKE_CASE ), """answer""": ANY(_SCREAMING_SNAKE_CASE )}], [{"""score""": ANY(_SCREAMING_SNAKE_CASE ), """answer""": ANY(_SCREAMING_SNAKE_CASE )}], ] , ) @require_torch def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __SCREAMING_SNAKE_CASE = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __SCREAMING_SNAKE_CASE = """How many cats are there?""" __SCREAMING_SNAKE_CASE = vqa_pipeline(image=_SCREAMING_SNAKE_CASE , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [{"""score""": ANY(_SCREAMING_SNAKE_CASE ), """answer""": ANY(_SCREAMING_SNAKE_CASE )}, {"""score""": ANY(_SCREAMING_SNAKE_CASE ), """answer""": ANY(_SCREAMING_SNAKE_CASE )}] ) __SCREAMING_SNAKE_CASE = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [{"""score""": ANY(_SCREAMING_SNAKE_CASE ), """answer""": ANY(_SCREAMING_SNAKE_CASE )}, {"""score""": ANY(_SCREAMING_SNAKE_CASE ), """answer""": ANY(_SCREAMING_SNAKE_CASE )}] ) @slow @require_torch def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) __SCREAMING_SNAKE_CASE = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __SCREAMING_SNAKE_CASE = """How many cats are there?""" __SCREAMING_SNAKE_CASE = vqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) __SCREAMING_SNAKE_CASE = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) __SCREAMING_SNAKE_CASE = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" pass
267
import math lowerCAmelCase__ :Optional[int] = 1_0 lowerCAmelCase__ :Optional[Any] = 7 lowerCAmelCase__ :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def lowerCAmelCase__ ( a__: int = 2_0 ) -> str: '''simple docstring''' _UpperCAmelCase = math.comb(a__ , a__ ) _UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) _UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
329
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A_ : lowerCAmelCase__ = XGLMConfig lowerCAmelCase__ = {} lowerCAmelCase__ = 'gelu' def __init__(self :Optional[int] , _UpperCamelCase :List[str] , _UpperCamelCase :List[str]=14 , _UpperCamelCase :Optional[int]=7 , _UpperCamelCase :int=True , _UpperCamelCase :Union[str, Any]=True , _UpperCamelCase :List[Any]=True , _UpperCamelCase :Optional[Any]=99 , _UpperCamelCase :str=32 , _UpperCamelCase :Tuple=2 , _UpperCamelCase :List[str]=4 , _UpperCamelCase :int=37 , _UpperCamelCase :Union[str, Any]="gelu" , _UpperCamelCase :Any=0.1 , _UpperCamelCase :List[str]=0.1 , _UpperCamelCase :Dict=512 , _UpperCamelCase :Any=0.0_2 , )-> Dict: __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_labels __A = vocab_size __A = d_model __A = num_hidden_layers __A = num_attention_heads __A = ffn_dim __A = activation_function __A = activation_dropout __A = attention_dropout __A = max_position_embeddings __A = initializer_range __A = None __A = 0 __A = 2 __A = 1 def _lowerCAmelCase (self :List[Any] )-> Tuple: return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def _lowerCAmelCase (self :Any )-> Optional[Any]: __A = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = self.get_config() __A = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase (self :List[str] )-> str: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_SCREAMING_SNAKE_CASE , ) def _lowerCAmelCase (self :Union[str, Any] )-> Dict: __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class A_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCAmelCase__ = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCAmelCase__ = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowerCAmelCase (self :Tuple )-> List[str]: __A = TFXGLMModelTester(self ) __A = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , n_embd=37 ) def _lowerCAmelCase (self :Union[str, Any] )-> Optional[int]: self.config_tester.run_common_tests() @slow def _lowerCAmelCase (self :Optional[Any] )-> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFXGLMModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def _lowerCAmelCase (self :Union[str, Any] )-> Optional[Any]: super().test_resize_token_embeddings() @require_tf class A_ ( unittest.TestCase ): @slow def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :Tuple=True )-> Dict: __A = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) __A = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __A = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on __A = model.generate(_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _SCREAMING_SNAKE_CASE ) @slow def _lowerCAmelCase (self :int )-> Any: __A = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) __A = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) __A = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) __A = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): __A = model.generate(_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , seed=[7, 0] ) __A = tokenizer.decode(output_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) __A = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def _lowerCAmelCase (self :int )-> Optional[int]: __A = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) __A = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) __A = '''left''' # use different length sentences to test batching __A = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] __A = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=_SCREAMING_SNAKE_CASE ) __A = inputs['''input_ids'''] __A = model.generate(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) __A = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __A = model.generate(input_ids=_SCREAMING_SNAKE_CASE , max_new_tokens=12 ) __A = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __A = model.generate(input_ids=_SCREAMING_SNAKE_CASE , max_new_tokens=12 ) __A = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) __A = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) __A = tokenizer.decode(output_padded[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) __A = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
117
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ :str = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Union[str, Any] = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
329
0
'''simple docstring''' import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def snake_case ( *UpperCAmelCase )-> Optional[Any]: """simple docstring""" if not isinstance(a__ , a__ ): __A = list(a__ ) for i in range(len(a__ ) ): __A = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def snake_case ( UpperCAmelCase )-> bool: """simple docstring""" __A = [ 'CUDA out of memory.', # CUDA OOM 'cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.', # CUDNN SNAFU 'DefaultCPUAllocator: can\'t allocate memory', # CPU OOM ] if isinstance(a__ , a__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def snake_case ( UpperCAmelCase = None , UpperCAmelCase = 1_2_8 )-> int: """simple docstring""" if function is None: return functools.partial(a__ , starting_batch_size=a__ ) __A = starting_batch_size def decorator(*UpperCAmelCase , **UpperCAmelCase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __A = list(inspect.signature(a__ ).parameters.keys() ) # Guard against user error if len(a__ ) < (len(a__ ) + 1): __A = ', '.join([f'{arg}={value}' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'Batch size was passed into `{function.__name__}` as the first argument when called.' f'Remove this as the decorator already does so: `{function.__name__}({arg_str})`' ) while True: if batch_size == 0: raise RuntimeError('No executable batch size found, reached zero.' ) try: return function(a__ , *a__ , **a__ ) except Exception as e: if should_reduce_batch_size(a__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
161
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCAmelCase__ ( a__: Tuple , a__: Optional[Any] , a__: Any ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = AutoConfig.from_pretrained(a__ ) _UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=a__ ) _UpperCAmelCase = checkpoints.load_tax_checkpoint(a__ ) _UpperCAmelCase = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": _UpperCAmelCase = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": _UpperCAmelCase = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): _UpperCAmelCase = F'''layers_{str(a__ )}''' # Self-Attention _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCAmelCase = flax_model.params['encoder']['block'][str(a__ )]['layer'] _UpperCAmelCase = tax_attention_key _UpperCAmelCase = tax_attention_out _UpperCAmelCase = tax_attention_query _UpperCAmelCase = tax_attention_value _UpperCAmelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_global_layer_norm if split_mlp_wi: _UpperCAmelCase = tax_mlp_wi_a _UpperCAmelCase = tax_mlp_wi_a else: _UpperCAmelCase = tax_mlp_wi _UpperCAmelCase = tax_mlp_wo _UpperCAmelCase = tax_mlp_layer_norm _UpperCAmelCase = flax_model_encoder_layer_block # Only for layer 0: _UpperCAmelCase = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCAmelCase = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_encoder_global_rel_embedding # Assigning _UpperCAmelCase = tax_model['target']['encoder']['encoder_norm']['scale'] _UpperCAmelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _UpperCAmelCase = F'''layers_{str(a__ )}''' # Self-Attention _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] _UpperCAmelCase = tax_enc_dec_attention_module['key']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['out']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['query']['kernel'] _UpperCAmelCase = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCAmelCase = flax_model.params['decoder']['block'][str(a__ )]['layer'] _UpperCAmelCase = tax_attention_key _UpperCAmelCase = tax_attention_out _UpperCAmelCase = tax_attention_query _UpperCAmelCase = tax_attention_value _UpperCAmelCase = tax_pre_attention_layer_norm _UpperCAmelCase = tax_enc_dec_attention_key _UpperCAmelCase = tax_enc_dec_attention_out _UpperCAmelCase = tax_enc_dec_attention_query _UpperCAmelCase = tax_enc_dec_attention_value _UpperCAmelCase = tax_cross_layer_norm if split_mlp_wi: _UpperCAmelCase = tax_mlp_wi_a _UpperCAmelCase = tax_mlp_wi_a else: _UpperCAmelCase = tax_mlp_wi _UpperCAmelCase = tax_mlp_wo _UpperCAmelCase = txa_mlp_layer_norm _UpperCAmelCase = flax_model_decoder_layer_block # Decoder Normalization _UpperCAmelCase = tax_model['target']['decoder']['decoder_norm']['scale'] _UpperCAmelCase = txa_decoder_norm # Only for layer 0: _UpperCAmelCase = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T _UpperCAmelCase = tax_decoder_rel_embedding # Token Embeddings _UpperCAmelCase = tax_model['target']['token_embedder']['embedding'] _UpperCAmelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _UpperCAmelCase = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(a__ ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": lowerCAmelCase__ :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowerCAmelCase__ :List[str] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
329
0
import math import qiskit def lowerCamelCase__ ( _A = 1 , _A = 1 , _A = 1 ): '''simple docstring''' if ( isinstance(a__ , a__ ) or isinstance(a__ , a__ ) or isinstance(a__ , a__ ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(a__ ) != input_a) or (math.floor(a__ ) != input_a) or (math.floor(a__ ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers snake_case_ = qiskit.QuantumRegister(4 , "qr" ) snake_case_ = qiskit.ClassicalRegister(2 , "cr" ) # list the entries snake_case_ = [input_a, input_a, carry_in] snake_case_ = qiskit.QuantumCircuit(a__ , a__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(a__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(a__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(a__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , a__ ) # measure the last two qbits snake_case_ = qiskit.Aer.get_backend("aer_simulator" ) snake_case_ = qiskit.execute(a__ , a__ , shots=1000 ) return job.result().get_counts(a__ ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
187
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :List[Any] = logging.get_logger(__name__) lowerCAmelCase__ :Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __a ( UpperCAmelCase ): _a : str = 'ctrl' _a : Tuple = ['past_key_values'] _a : List[Any] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=246534 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=8192 , _SCREAMING_SNAKE_CASE=48 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = dff _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = use_cache super().__init__(**_SCREAMING_SNAKE_CASE )
329
0
from functools import lru_cache @lru_cache def _a ( a :int ) -> int: if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Dict: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size['shortest_edge'] * h / w ) _UpperCAmelCase = self.size['shortest_edge'] elif w > h: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = int(self.size['shortest_edge'] * w / h ) else: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = self.size['shortest_edge'] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : str = DeformableDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DeformableDetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_rescale' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'image_id': 39769, 'annotations': target} # encode them _UpperCAmelCase = DeformableDetrImageProcessor() _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) ) @slow def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} _UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic' ) _UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels _UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) ) # verify masks _UpperCAmelCase = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
329
0
def a( A : list[list[float]] ) -> list[list[float]]: """simple docstring""" a = [] for data in source_data: for i, el in enumerate(a__ ): if len(a__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(a__ ) ) return data_lists def a( A : list[list[float]] , A : list[int] ) -> list[list[float]]: """simple docstring""" a = [] for dlist, weight in zip(a__ , a__ ): a = min(a__ ) a = max(a__ ) a = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: a = f'''Invalid weight of {weight:f} provided''' raise ValueError(a__ ) score_lists.append(a__ ) return score_lists def a( A : list[list[float]] ) -> list[float]: """simple docstring""" a = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(a__ ): a = final_scores[j] + ele return final_scores def a( A : list[list[float]] , A : list[int] ) -> list[list[float]]: """simple docstring""" a = get_data(a__ ) a = calculate_each_score(a__ , a__ ) a = generate_final_scores(a__ ) # append scores to source data for i, ele in enumerate(a__ ): source_data[i].append(a__ ) return source_data
227
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __a ( unittest.TestCase ): _a : List[str] = JukeboxTokenizer _a : List[Any] = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" import torch _UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) _UpperCAmelCase = tokenizer(**self.metas )['input_ids'] # fmt: off _UpperCAmelCase = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
329
0
'''simple docstring''' from heapq import heappop, heappush import numpy as np def a__ ( lowercase : np.ndarray, lowercase : tuple[int, int], lowercase : tuple[int, int], lowercase : bool, ) -> tuple[float | int, list[tuple[int, int]]]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = grid.shape _UpperCamelCase = [-1, 1, 0, 0] _UpperCamelCase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] _UpperCamelCase , _UpperCamelCase = [(0, source)], set() _UpperCamelCase = np.full((rows, cols), np.inf ) _UpperCamelCase = 0 _UpperCamelCase = np.empty((rows, cols), dtype=a__ ) _UpperCamelCase = None while queue: ((_UpperCamelCase) , (_UpperCamelCase)) = heappop(a__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: _UpperCamelCase = [] while (x, y) != source: path.append((x, y) ) _UpperCamelCase , _UpperCamelCase = predecessors[x, y] path.append(a__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(a__ ) ): _UpperCamelCase , _UpperCamelCase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: _UpperCamelCase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(a__, (dist + 1, (nx, ny)) ) _UpperCamelCase = dist + 1 _UpperCamelCase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
324
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase__ :Optional[int] = logging.getLogger(__name__) def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=a__ , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=a__ , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=a__ , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=a__ , default=1_0_0_0 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=a__ , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=a__ , type=a__ , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=a__ , default=5_1_2 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=a__ , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) _UpperCAmelCase = parser.parse_args() return args def lowerCAmelCase__ ( a__: Union[str, Any] ) -> List[Any]: '''simple docstring''' def fn(a__: str ): return tokenizer(examples['text'] ) return fn def lowerCAmelCase__ ( a__: List[str] ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for i in range(len(tokenized_data['input_ids'] ) ): _UpperCAmelCase = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } _UpperCAmelCase = tf.train.Features(feature=a__ ) _UpperCAmelCase = tf.train.Example(features=a__ ) _UpperCAmelCase = example.SerializeToString() records.append(a__ ) return records def lowerCAmelCase__ ( a__: Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: _UpperCAmelCase = min(len(a__ ) , args.limit ) _UpperCAmelCase = dataset.select(range(a__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _UpperCAmelCase = os.path.join(args.output_dir , args.split ) if not os.path.exists(a__ ): os.makedirs(a__ ) else: _UpperCAmelCase = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. _UpperCAmelCase = tokenize_function(a__ ) _UpperCAmelCase = dataset.map(a__ , batched=a__ , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(a__: Optional[int] ): # Concatenate all texts. _UpperCAmelCase = {k: sum(examples[k] , [] ) for k in examples.keys()} _UpperCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _UpperCAmelCase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _UpperCAmelCase = { k: [t[i : i + args.max_length] for i in range(0 , a__ , args.max_length )] for k, t in concatenated_examples.items() } return result _UpperCAmelCase = dataset_tokenized.map(a__ , batched=a__ , batch_size=1_0_0_0 , num_proc=4 ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 for shard in range(0 , len(a__ ) , args.shard_size ): _UpperCAmelCase = grouped_dataset[shard : shard + args.shard_size] _UpperCAmelCase = len(dataset_snapshot['input_ids'] ) _UpperCAmelCase = os.path.join(a__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) _UpperCAmelCase = get_serialized_examples(a__ ) with tf.io.TFRecordWriter(a__ ) as out_file: for i in range(len(a__ ) ): _UpperCAmelCase = serialized_examples[i] out_file.write(a__ ) print('Wrote file {} containing {} records'.format(a__ , a__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , 'w' ) as f: print(F'''Total {args.split} records: {total_records}''' , file=a__ ) if __name__ == "__main__": lowerCAmelCase__ :str = parse_args() main(args)
329
0
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def _SCREAMING_SNAKE_CASE ( a ) -> Dict: warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , a__ , ) if isinstance(a__ , torch.Tensor ): return image elif isinstance(a__ , PIL.Image.Image ): __A : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): __A , __A : Any = image[0].size __A , __A : Optional[int] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __A : Union[str, Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __A : int = np.concatenate(a__ , axis=0 ) __A : Optional[Any] = np.array(a__ ).astype(np.floataa ) / 255.0 __A : Optional[Any] = image.transpose(0 , 3 , 1 , 2 ) __A : Any = 2.0 * image - 1.0 __A : Union[str, Any] = torch.from_numpy(a__ ) elif isinstance(image[0] , torch.Tensor ): __A : Optional[Any] = torch.cat(a__ , dim=0 ) return image def _SCREAMING_SNAKE_CASE ( a ) -> int: if isinstance(a__ , torch.Tensor ): return mask elif isinstance(a__ , PIL.Image.Image ): __A : Union[str, Any] = [mask] if isinstance(mask[0] , PIL.Image.Image ): __A , __A : int = mask[0].size __A , __A : Any = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __A : Dict = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] __A : List[str] = np.concatenate(a__ , axis=0 ) __A : Dict = mask.astype(np.floataa ) / 255.0 __A : Dict = 0 __A : Any = 1 __A : str = torch.from_numpy(a__ ) elif isinstance(mask[0] , torch.Tensor ): __A : Tuple = torch.cat(a__ , dim=0 ) return mask class _A( snake_case__ ): """simple docstring""" UpperCamelCase : UNetaDModel UpperCamelCase : RePaintScheduler def __init__( self , _A , _A ): super().__init__() self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , _A , _A , _A = 250 , _A = 0.0 , _A = 10 , _A = 10 , _A = None , _A = "pil" , _A = True , ): __A : int = image __A : int = _preprocess_image(_SCREAMING_SNAKE_CASE ) __A : Optional[int] = original_image.to(device=self.device , dtype=self.unet.dtype ) __A : Dict = _preprocess_mask(_SCREAMING_SNAKE_CASE ) __A : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) __A : List[str] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __A : List[str] = original_image.shape __A : Tuple = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device ) __A : List[str] = eta __A : Union[str, Any] = self.scheduler.timesteps[0] + 1 __A : Optional[Any] = generator[0] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __A : List[str] = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # compute previous image: x_t -> x_t-1 __A : List[str] = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample else: # compute the reverse: x_t-1 -> x_t __A : Any = self.scheduler.undo_step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __A : str = t __A : str = (image / 2 + 0.5).clamp(0 , 1 ) __A : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __A : Union[str, Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
280
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any]=1_0 ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for _ in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCAmelCase__ ( a__: List[str] , a__: Any=1_0 ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = [] for step in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(a__ , 'schedule.bin' ) torch.save(scheduler.state_dict() , a__ ) _UpperCAmelCase = torch.load(a__ ) scheduler.load_state_dict(a__ ) return lrs @require_torch class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = Adafactor( params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=_SCREAMING_SNAKE_CASE , scale_parameter=_SCREAMING_SNAKE_CASE , warmup_init=_SCREAMING_SNAKE_CASE , ) for _ in range(1000 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __a ( unittest.TestCase ): _a : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None _a : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _a : List[Any] = 10 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE , msg=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _UpperCAmelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _UpperCAmelCase , _UpperCAmelCase = data _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _UpperCAmelCase = unwrap_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListAlmostEqual( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule _UpperCAmelCase = unwrap_and_save_reload_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , msg=f'''failed for {scheduler_func} in save and reload''' ) class __a : def __init__( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = fn def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @classmethod def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
329
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def a_ ( _lowerCAmelCase ) -> List[Tuple[int, ...]]: __lowerCamelCase : int = [] if isinstance(a__ ,a__ ): for v in tree.values(): shapes.extend(_fetch_dims(a__ ) ) elif isinstance(a__ ,(list, tuple) ): for t in tree: shapes.extend(_fetch_dims(a__ ) ) elif isinstance(a__ ,torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Tuple[int, ...]: __lowerCamelCase : Any = [] for d in reversed(a__ ): idx.append(flat_idx % d ) __lowerCamelCase : Dict = flat_idx // d return tuple(reversed(a__ ) ) @torch.jit.ignore def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,) -> List[Tuple[slice, ...]]: def reduce_edge_list(_lowerCAmelCase ) -> None: __lowerCamelCase : Optional[int] = True for i in range(len(a__ ) ): __lowerCamelCase : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally __lowerCamelCase : Optional[int] = l[reversed_idx] if start_edges is None: __lowerCamelCase : List[Any] = [s == 0 for s in start] reduce_edge_list(a__ ) if end_edges is None: __lowerCamelCase : Optional[int] = [e == (d - 1) for e, d in zip(a__ ,a__ )] reduce_edge_list(a__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(a__ ) == 0: return [()] elif len(a__ ) == 1: return [(slice(start[0] ,end[0] + 1 ),)] __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : List[Any] = [] # Dimensions common to start and end can be selected directly for s, e in zip(a__ ,a__ ): if s == e: path_list.append(slice(a__ ,s + 1 ) ) else: break __lowerCamelCase : Optional[Any] = tuple(a__ ) __lowerCamelCase : Optional[int] = len(a__ ) # start == end, and we're done if divergence_idx == len(a__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowerCamelCase : List[str] = start[divergence_idx] return tuple( path + (slice(a__ ,sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] ,[d - 1 for d in dims[divergence_idx + 1 :]] ,dims[divergence_idx + 1 :] ,start_edges=start_edges[divergence_idx + 1 :] ,end_edges=[True for _ in end_edges[divergence_idx + 1 :]] ,) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowerCamelCase : List[Any] = end[divergence_idx] return tuple( path + (slice(a__ ,edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] ,end[divergence_idx + 1 :] ,dims[divergence_idx + 1 :] ,start_edges=[True for _ in start_edges[divergence_idx + 1 :]] ,end_edges=end_edges[divergence_idx + 1 :] ,) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] ,end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] ,end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 ,end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __lowerCamelCase : Tuple = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 ,end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> torch.Tensor: __lowerCamelCase : Union[str, Any] = t.shape[:no_batch_dims] __lowerCamelCase : int = list(_flat_idx_to_idx(a__ ,a__ ) ) # _get_minimal_slice_set is inclusive __lowerCamelCase : Dict = list(_flat_idx_to_idx(flat_end - 1 ,a__ ) ) # Get an ordered list of slices to perform __lowerCamelCase : Union[str, Any] = _get_minimal_slice_set( a__ ,a__ ,a__ ,) __lowerCamelCase : Dict = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,) -> Any: if not (len(a__ ) > 0): raise ValueError('Must provide at least one input' ) __lowerCamelCase : int = [shape[:no_batch_dims] for shape in _fetch_dims(a__ )] __lowerCamelCase : int = tuple([max(a__ ) for s in zip(*a__ )] ) def _prep_inputs(_lowerCAmelCase ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __lowerCamelCase : List[str] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __lowerCamelCase : str = t.reshape(-1 ,*t.shape[no_batch_dims:] ) else: __lowerCamelCase : int = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __lowerCamelCase : Any = tensor_tree_map(_prep_inputs ,a__ ) __lowerCamelCase : List[Any] = None if _out is not None: __lowerCamelCase : List[Any] = tensor_tree_map(lambda _lowerCAmelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) ,_out ) __lowerCamelCase : Optional[int] = 1 for d in orig_batch_dims: flat_batch_dim *= d __lowerCamelCase : str = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_lowerCAmelCase ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Any = prepped_outputs for _ in range(a__ ): # Chunk the input if not low_mem: __lowerCamelCase : Dict = _select_chunk else: __lowerCamelCase : Dict = partial( _chunk_slice ,flat_start=a__ ,flat_end=min(a__ ,i + chunk_size ) ,no_batch_dims=len(a__ ) ,) __lowerCamelCase : Union[str, Any] = tensor_tree_map(a__ ,a__ ) # Run the layer on the chunk __lowerCamelCase : Optional[Any] = layer(**a__ ) # Allocate space for the output if out is None: __lowerCamelCase : Union[str, Any] = tensor_tree_map(lambda _lowerCAmelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) ,a__ ) # Put the chunk in its pre-allocated space if isinstance(a__ ,a__ ): def assign(_lowerCAmelCase ,_lowerCAmelCase ) -> None: for k, v in da.items(): if isinstance(a__ ,a__ ): assign(a__ ,da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __lowerCamelCase : Union[str, Any] = da[k] assign(a__ ,a__ ) elif isinstance(a__ ,a__ ): for xa, xa in zip(a__ ,a__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: __lowerCamelCase : Dict = xa elif isinstance(a__ ,torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __lowerCamelCase : Tuple = output_chunk else: raise ValueError('Not supported' ) i += chunk_size __lowerCamelCase : List[Any] = tensor_tree_map(lambda _lowerCAmelCase : t.view(orig_batch_dims + t.shape[1:] ) ,a__ ) return out class lowerCamelCase_ : """simple docstring""" def __init__( self : Optional[int] , _a : Dict = 512 , ) -> Union[str, Any]: __lowerCamelCase : str = max_chunk_size __lowerCamelCase : List[Any] = None __lowerCamelCase : Optional[Any] = None def _lowercase ( self : Optional[int] , _a : List[str] , _a : Dict , _a : List[Any] ) -> int: logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __lowerCamelCase : Tuple = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __lowerCamelCase : int = [c for c in candidates if c > min_chunk_size] __lowerCamelCase : List[str] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_a : Dict ) -> bool: try: with torch.no_grad(): fn(*_SCREAMING_SNAKE_CASE , chunk_size=_SCREAMING_SNAKE_CASE ) return True except RuntimeError: return False __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : int = len(_SCREAMING_SNAKE_CASE ) - 1 while i > min_viable_chunk_size_index: __lowerCamelCase : str = test_chunk_size(candidates[i] ) if not viable: __lowerCamelCase : Tuple = (min_viable_chunk_size_index + i) // 2 else: __lowerCamelCase : Tuple = i __lowerCamelCase : Optional[Any] = (i + len(_SCREAMING_SNAKE_CASE ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _lowercase ( self : Dict , _a : Tuple , _a : Dict ) -> bool: __lowerCamelCase : Optional[int] = True for aa, aa in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert type(_SCREAMING_SNAKE_CASE ) == type(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): consistent &= self._compare_arg_caches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCamelCase : Tuple = [v for _, v in sorted(aa.items() , key=lambda _a : x[0] )] __lowerCamelCase : List[Any] = [v for _, v in sorted(aa.items() , key=lambda _a : x[0] )] consistent &= self._compare_arg_caches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: consistent &= aa == aa return consistent def _lowercase ( self : int , _a : Tuple , _a : List[str] , _a : str , ) -> int: __lowerCamelCase : int = True __lowerCamelCase : List[Any] = tree_map(lambda _a : a.shape if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) else a , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_SCREAMING_SNAKE_CASE ) __lowerCamelCase : str = self._compare_arg_caches(self.cached_arg_data , _SCREAMING_SNAKE_CASE ) else: # Otherwise, we can reuse the precomputed value __lowerCamelCase : Any = False if not consistent: __lowerCamelCase : Dict = self._determine_favorable_chunk_size( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) __lowerCamelCase : Optional[int] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
208
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ :Any = logging.get_logger(__name__) def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any] , a__: Dict , a__: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = original_name.split('.' )[0] _UpperCAmelCase = key.split('.' ) _UpperCAmelCase = int(key_list[key_list.index(a__ ) - 2] ) _UpperCAmelCase = int(key_list[key_list.index(a__ ) - 1] ) _UpperCAmelCase = orig_block_num - offset _UpperCAmelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCAmelCase__ ( a__: Tuple ) -> int: '''simple docstring''' _UpperCAmelCase = OrderedDict() _UpperCAmelCase , _UpperCAmelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): _UpperCAmelCase = key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCAmelCase = key[: key.find('proj' )] _UpperCAmelCase = key.replace(a__ , F'''patch_embeddings.{total_embed_found}.''' ) _UpperCAmelCase = key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCAmelCase = 'poolformer.encoder.' + key if "mlp.fc1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm1' , 'before_norm' ) if "norm2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: _UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: _UpperCAmelCase = key.replace('head' , 'classifier' ) _UpperCAmelCase = value return new_state_dict def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw ) return image @torch.no_grad() def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict , a__: Any ) -> Dict: '''simple docstring''' _UpperCAmelCase = PoolFormerConfig() # set attributes based on model_name _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = model_name[-3:] _UpperCAmelCase = 1_0_0_0 _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = (1, 1_0_0_0) # set config attributes _UpperCAmelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(a__ ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCAmelCase = [2, 2, 6, 2] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 0.9 elif size == "s24": _UpperCAmelCase = [4, 4, 1_2, 4] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 0.9 elif size == "s36": _UpperCAmelCase = [6, 6, 1_8, 6] _UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.9 elif size == "m36": _UpperCAmelCase = [6, 6, 1_8, 6] _UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.95 elif size == "m48": _UpperCAmelCase = [8, 8, 2_4, 8] _UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor _UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ ) # Prepare image _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=a__ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict _UpperCAmelCase = torch.load(a__ , map_location=torch.device('cpu' ) ) # rename keys _UpperCAmelCase = rename_keys(a__ ) # create HuggingFace model and load state dict _UpperCAmelCase = PoolFormerForImageClassification(a__ ) model.load_state_dict(a__ ) model.eval() # Define image processor _UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ ) _UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass _UpperCAmelCase = model(a__ ) _UpperCAmelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCAmelCase = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": _UpperCAmelCase = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": _UpperCAmelCase = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": _UpperCAmelCase = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": _UpperCAmelCase = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , a__ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase__ :str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ :Dict = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : int = logging.get_logger(__name__) A : Optional[Any] = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class __A( a ): snake_case_ = 'deit' def __init__( self , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3_072 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=224 , _snake_case=16 , _snake_case=3 , _snake_case=True , _snake_case=16 , **_snake_case , ) -> Dict: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = qkv_bias __a = encoder_stride class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
6
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = process _UpperCAmelCase = params def __len__( self ) -> Union[str, Any]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = self.dataset[i] _UpperCAmelCase = self.process(_SCREAMING_SNAKE_CASE , **self.params ) return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = loader _UpperCAmelCase = infer _UpperCAmelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _UpperCAmelCase = None _UpperCAmelCase = loader_batch_size # Internal bookkeeping _UpperCAmelCase = None _UpperCAmelCase = None def __len__( self ) -> Any: """simple docstring""" return len(self.loader ) def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _UpperCAmelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _UpperCAmelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Convert ModelOutput to tuple first _UpperCAmelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _UpperCAmelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _UpperCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _UpperCAmelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _UpperCAmelCase = self._loader_batch_data.__class__(_SCREAMING_SNAKE_CASE ) self._loader_batch_index += 1 return result def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _UpperCAmelCase = next(self.iterator ) _UpperCAmelCase = self.infer(_SCREAMING_SNAKE_CASE , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size # Setting internal index to unwrap the batch _UpperCAmelCase = processed _UpperCAmelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __iter__( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) _UpperCAmelCase = None return self def UpperCAmelCase__ ( self ) -> int: """simple docstring""" if self.subiterator is None: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _UpperCAmelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) _UpperCAmelCase = next(self.subiterator ) return processed class __a ( UpperCAmelCase ): def __iter__( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = iter(self.loader ) return self def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = False _UpperCAmelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator while not is_last: _UpperCAmelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): _UpperCAmelCase = processed else: _UpperCAmelCase = list(processed.keys() )[0] _UpperCAmelCase = processed[key] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _UpperCAmelCase = observed_batch_size _UpperCAmelCase = processed _UpperCAmelCase = 0 while self._loader_batch_index < self.loader_batch_size: _UpperCAmelCase = self.loader_batch_item() _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) if is_last: return accumulator else: _UpperCAmelCase = processed _UpperCAmelCase = item.pop('is_last' ) accumulator.append(_SCREAMING_SNAKE_CASE ) return accumulator class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = key def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.dataset[i][self.key] class __a ( UpperCAmelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = dataset _UpperCAmelCase = keya _UpperCAmelCase = keya def __len__( self ) -> Optional[int]: """simple docstring""" return len(self.dataset ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
329
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=7, __a=3, __a=30, __a=400, __a=True, __a=None, __a=True, __a=[0.5, 0.5, 0.5], __a=[0.5, 0.5, 0.5], __a=True, __a=1 / 255, __a=True, ): '''simple docstring''' _lowerCAmelCase : str = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} _lowerCAmelCase : str = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : Union[str, Any] = min_resolution _lowerCAmelCase : Optional[int] = max_resolution _lowerCAmelCase : Tuple = do_resize _lowerCAmelCase : List[str] = size _lowerCAmelCase : List[Any] = do_normalize _lowerCAmelCase : Optional[Any] = image_mean _lowerCAmelCase : Optional[int] = image_std _lowerCAmelCase : Tuple = do_rescale _lowerCAmelCase : str = rescale_factor _lowerCAmelCase : Tuple = do_pad def snake_case__ ( self): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__ ( self, __a, __a=False): '''simple docstring''' if not batched: _lowerCAmelCase : List[str] = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE, Image.Image): _lowerCAmelCase , _lowerCAmelCase : int = image.size else: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = image.shape[1], image.shape[2] if w < h: _lowerCAmelCase : Tuple = int(self.size["shortest_edge"] * h / w) _lowerCAmelCase : Optional[Any] = self.size["shortest_edge"] elif w > h: _lowerCAmelCase : Any = self.size["shortest_edge"] _lowerCAmelCase : Dict = int(self.size["shortest_edge"] * w / h) else: _lowerCAmelCase : List[Any] = self.size["shortest_edge"] _lowerCAmelCase : Union[str, Any] = self.size["shortest_edge"] else: _lowerCAmelCase : str = [] for image in image_inputs: _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _lowerCAmelCase : Tuple = max(_SCREAMING_SNAKE_CASE, key=lambda __a: item[0])[0] _lowerCAmelCase : str = max(_SCREAMING_SNAKE_CASE, key=lambda __a: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = DeformableDetrImageProcessor if is_vision_available() else None def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = DeformableDetrImageProcessingTester(self) @property def snake_case__ ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE, "image_mean")) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE, "image_std")) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE, "do_normalize")) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE, "do_resize")) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE, "do_rescale")) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE, "do_pad")) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE, "size")) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333}) self.assertEqual(image_processor.do_pad, _SCREAMING_SNAKE_CASE) _lowerCAmelCase : Dict = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE) self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84}) self.assertEqual(image_processor.do_pad, _SCREAMING_SNAKE_CASE) def snake_case__ ( self): '''simple docstring''' pass def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=_SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE, Image.Image) # Test not batched input _lowerCAmelCase : str = image_processing(image_inputs[0], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : str = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase , _lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE, batched=_SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[Any] = image_processing(_SCREAMING_SNAKE_CASE, return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=_SCREAMING_SNAKE_CASE, numpify=_SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE, np.ndarray) # Test not batched input _lowerCAmelCase : Optional[int] = image_processing(image_inputs[0], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase : Optional[Any] = image_processing(_SCREAMING_SNAKE_CASE, return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE, batched=_SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=_SCREAMING_SNAKE_CASE, torchify=_SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE, torch.Tensor) # Test not batched input _lowerCAmelCase : str = image_processing(image_inputs[0], return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Any = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched _lowerCAmelCase : Any = image_processing(_SCREAMING_SNAKE_CASE, return_tensors="pt").pixel_values _lowerCAmelCase , _lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE, batched=_SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: _lowerCAmelCase : Any = json.loads(f.read()) _lowerCAmelCase : Optional[Any] = {"image_id": 3_9769, "annotations": target} # encode them _lowerCAmelCase : Tuple = DeformableDetrImageProcessor() _lowerCAmelCase : int = image_processing(images=_SCREAMING_SNAKE_CASE, annotations=_SCREAMING_SNAKE_CASE, return_tensors="pt") # verify pixel values _lowerCAmelCase : Any = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape, _SCREAMING_SNAKE_CASE) _lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], _SCREAMING_SNAKE_CASE, atol=1E-4)) # verify area _lowerCAmelCase : List[Any] = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], _SCREAMING_SNAKE_CASE)) # verify boxes _lowerCAmelCase : Dict = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape, _SCREAMING_SNAKE_CASE) _lowerCAmelCase : List[str] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], _SCREAMING_SNAKE_CASE, atol=1E-3)) # verify image_id _lowerCAmelCase : Optional[int] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], _SCREAMING_SNAKE_CASE)) # verify is_crowd _lowerCAmelCase : List[str] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], _SCREAMING_SNAKE_CASE)) # verify class_labels _lowerCAmelCase : List[str] = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], _SCREAMING_SNAKE_CASE)) # verify orig_size _lowerCAmelCase : Union[str, Any] = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], _SCREAMING_SNAKE_CASE)) # verify size _lowerCAmelCase : str = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], _SCREAMING_SNAKE_CASE)) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f: _lowerCAmelCase : int = json.loads(f.read()) _lowerCAmelCase : List[str] = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} _lowerCAmelCase : Dict = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") # encode them _lowerCAmelCase : Union[str, Any] = DeformableDetrImageProcessor(format="coco_panoptic") _lowerCAmelCase : List[str] = image_processing(images=_SCREAMING_SNAKE_CASE, annotations=_SCREAMING_SNAKE_CASE, masks_path=_SCREAMING_SNAKE_CASE, return_tensors="pt") # verify pixel values _lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape, _SCREAMING_SNAKE_CASE) _lowerCAmelCase : Tuple = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], _SCREAMING_SNAKE_CASE, atol=1E-4)) # verify area _lowerCAmelCase : List[str] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], _SCREAMING_SNAKE_CASE)) # verify boxes _lowerCAmelCase : Union[str, Any] = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape, _SCREAMING_SNAKE_CASE) _lowerCAmelCase : Union[str, Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], _SCREAMING_SNAKE_CASE, atol=1E-3)) # verify image_id _lowerCAmelCase : Optional[int] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], _SCREAMING_SNAKE_CASE)) # verify is_crowd _lowerCAmelCase : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], _SCREAMING_SNAKE_CASE)) # verify class_labels _lowerCAmelCase : Dict = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], _SCREAMING_SNAKE_CASE)) # verify masks _lowerCAmelCase : Any = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item(), _SCREAMING_SNAKE_CASE) # verify orig_size _lowerCAmelCase : Tuple = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], _SCREAMING_SNAKE_CASE)) # verify size _lowerCAmelCase : Tuple = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], _SCREAMING_SNAKE_CASE))
36
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ :int = logging.get_logger(__name__) lowerCAmelCase__ :Optional[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class __a ( UpperCAmelCase ): _a : str = 'data2vec-text' def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class __a ( UpperCAmelCase ): @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
329
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = SamImageProcessor() __SCREAMING_SNAKE_CASE = SamProcessor(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).image_processor def UpperCAmelCase__ ( self : int ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) __SCREAMING_SNAKE_CASE = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="""np""" ) __SCREAMING_SNAKE_CASE = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [torch.ones((1, 3, 5, 5) )] __SCREAMING_SNAKE_CASE = [[1_764, 2_646]] __SCREAMING_SNAKE_CASE = [[683, 1_024]] __SCREAMING_SNAKE_CASE = processor.post_process_masks(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __SCREAMING_SNAKE_CASE = processor.post_process_masks( _SCREAMING_SNAKE_CASE , torch.tensor(_SCREAMING_SNAKE_CASE ) , torch.tensor(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np __SCREAMING_SNAKE_CASE = [np.ones((1, 3, 5, 5) )] __SCREAMING_SNAKE_CASE = processor.post_process_masks(_SCREAMING_SNAKE_CASE , np.array(_SCREAMING_SNAKE_CASE ) , np.array(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __SCREAMING_SNAKE_CASE = [[1, 0], [0, 1]] with self.assertRaises(_SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = processor.post_process_masks(_SCREAMING_SNAKE_CASE , np.array(_SCREAMING_SNAKE_CASE ) , np.array(_SCREAMING_SNAKE_CASE ) ) @require_vision @require_tf class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Tuple ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = SamImageProcessor() __SCREAMING_SNAKE_CASE = SamProcessor(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).image_processor def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) __SCREAMING_SNAKE_CASE = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="""np""" ) __SCREAMING_SNAKE_CASE = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [tf.ones((1, 3, 5, 5) )] __SCREAMING_SNAKE_CASE = [[1_764, 2_646]] __SCREAMING_SNAKE_CASE = [[683, 1_024]] __SCREAMING_SNAKE_CASE = processor.post_process_masks(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __SCREAMING_SNAKE_CASE = processor.post_process_masks( _SCREAMING_SNAKE_CASE , tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) , tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np __SCREAMING_SNAKE_CASE = [np.ones((1, 3, 5, 5) )] __SCREAMING_SNAKE_CASE = processor.post_process_masks( _SCREAMING_SNAKE_CASE , np.array(_SCREAMING_SNAKE_CASE ) , np.array(_SCREAMING_SNAKE_CASE ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __SCREAMING_SNAKE_CASE = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __SCREAMING_SNAKE_CASE = processor.post_process_masks( _SCREAMING_SNAKE_CASE , np.array(_SCREAMING_SNAKE_CASE ) , np.array(_SCREAMING_SNAKE_CASE ) , return_tensors="""tf""" ) @require_vision @require_torchvision class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = SamImageProcessor() __SCREAMING_SNAKE_CASE = SamProcessor(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).image_processor def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def UpperCAmelCase__ ( self : Any ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = [tf.convert_to_tensor(_SCREAMING_SNAKE_CASE )] __SCREAMING_SNAKE_CASE = [torch.tensor(_SCREAMING_SNAKE_CASE )] __SCREAMING_SNAKE_CASE = [[1_764, 2_646]] __SCREAMING_SNAKE_CASE = [[683, 1_024]] __SCREAMING_SNAKE_CASE = processor.post_process_masks( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors="""tf""" ) __SCREAMING_SNAKE_CASE = processor.post_process_masks( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def UpperCAmelCase__ ( self : int ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" )["""pixel_values"""].numpy() __SCREAMING_SNAKE_CASE = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" )["""pixel_values"""].numpy() __SCREAMING_SNAKE_CASE = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="""tf""" )["""pixel_values"""].numpy() __SCREAMING_SNAKE_CASE = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
267
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['stem'] _UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : int = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _a : str = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} _a : Optional[int] = False _a : List[str] = False _a : List[str] = False _a : Optional[int] = False _a : Tuple = False def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 0 return t def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has''' f''' `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}.''' ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) @require_torch class __a ( unittest.TestCase , UpperCAmelCase ): _a : Any = (MaskFormerSwinBackbone,) if is_torch_available() else () _a : Any = MaskFormerSwinConfig def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
329
0
snake_case__ : str = 256 # Modulus to hash a string snake_case__ : str = 1000003 def _a ( lowerCamelCase: str , lowerCamelCase: str ) -> bool: '''simple docstring''' __A = len(a__ ) __A = len(a__ ) if p_len > t_len: return False __A = 0 __A = 0 __A = 1 # Calculating the hash of pattern and substring of text for i in range(a__ ): __A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _a ( ) -> None: '''simple docstring''' __A = '''abc1abc12''' __A = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __A = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(a__ , a__ ) and not rabin_karp(a__ , a__ ) # Test 2) __A = '''ABABX''' __A = '''ABABZABABYABABX''' assert rabin_karp(a__ , a__ ) # Test 3) __A = '''AAAB''' __A = '''ABAAAAAB''' assert rabin_karp(a__ , a__ ) # Test 4) __A = '''abcdabcy''' __A = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(a__ , a__ ) # Test 5) __A = '''Lü''' __A = '''Lüsai''' assert rabin_karp(a__ , a__ ) __A = '''Lue''' assert not rabin_karp(a__ , a__ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
117
from collections.abc import Generator def lowerCAmelCase__ ( ) -> Generator[int, None, None]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = 0, 1 while True: _UpperCAmelCase , _UpperCAmelCase = b, a + b yield b def lowerCAmelCase__ ( a__: int = 1_0_0_0 ) -> int: '''simple docstring''' _UpperCAmelCase = 1 _UpperCAmelCase = fibonacci_generator() while len(str(next(a__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
329
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase): UpperCAmelCase__ : Any = RobertaTokenizer UpperCAmelCase__ : Dict = RobertaTokenizerFast UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : Dict = {'cls_token': '<s>'} def lowercase_ ( self :Any ) -> str: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __A = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) __A = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __A = {'unk_token': '<unk>'} __A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_SCREAMING_SNAKE_CASE ) ) def lowercase_ ( self :Union[str, Any] , **_A :Tuple ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def lowercase_ ( self :str , **_A :Any ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def lowercase_ ( self :Union[str, Any] , _A :Dict ) -> Union[str, Any]: '''simple docstring''' __A = 'lower newer' __A = 'lower newer' return input_text, output_text def lowercase_ ( self :Dict ) -> int: '''simple docstring''' __A = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __A = 'lower newer' __A = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] __A = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) # , add_prefix_space=True) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __A = tokens + [tokenizer.unk_token] __A = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def lowercase_ ( self :Tuple ) -> int: '''simple docstring''' __A = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_SCREAMING_SNAKE_CASE ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_SCREAMING_SNAKE_CASE ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowercase_ ( self :List[Any] ) -> List[str]: '''simple docstring''' __A = self.tokenizer_class.from_pretrained('roberta-base' ) __A = tokenizer.encode('sequence builders' , add_special_tokens=_SCREAMING_SNAKE_CASE ) __A = tokenizer.encode('multi-sequence build' , add_special_tokens=_SCREAMING_SNAKE_CASE ) __A = tokenizer.encode( 'sequence builders' , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) __A = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) __A = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) __A = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase_ ( self :Any ) -> Any: '''simple docstring''' __A = self.get_tokenizer() __A = 'Encode this sequence.' __A = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments __A = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) __A = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __A = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) __A = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) __A = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) __A = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing spaces after special tokens __A = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE )} ) # mask token has a left space __A = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) __A = 'Encode <mask> sequence' __A = 'Encode <mask>sequence' __A = tokenizer.encode(_SCREAMING_SNAKE_CASE ) __A = encoded.index(_SCREAMING_SNAKE_CASE ) __A = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __A = tokenizer.encode(_SCREAMING_SNAKE_CASE ) __A = encoded.index(_SCREAMING_SNAKE_CASE ) __A = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase_ ( self :Union[str, Any] ) -> int: '''simple docstring''' pass def lowercase_ ( self :Union[str, Any] ) -> Dict: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __A = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __A = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __A = 'A, <mask> AllenNLP sentence.' __A = tokenizer_r.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) __A = tokenizer_p.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __A = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __A = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def lowercase_ ( self :Optional[int] ) -> Any: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __A = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) __A = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __A = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['add_prefix_space'] , _SCREAMING_SNAKE_CASE ) self.assertEqual(post_processor_state['trim_offsets'] , _SCREAMING_SNAKE_CASE ) def lowercase_ ( self :Dict ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __A = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __A = F'{text_of_1_token} {text_of_1_token}' __A = self.rust_tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) __A = tokenizer_r(_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_SCREAMING_SNAKE_CASE ) + 1, len(_SCREAMING_SNAKE_CASE ) + 1 + len(_SCREAMING_SNAKE_CASE )) , ) __A = self.rust_tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) __A = tokenizer_r(_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_SCREAMING_SNAKE_CASE ) + 1, len(_SCREAMING_SNAKE_CASE ) + 1 + len(_SCREAMING_SNAKE_CASE )) , ) __A = self.rust_tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) __A = tokenizer_r(_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_SCREAMING_SNAKE_CASE ), len(_SCREAMING_SNAKE_CASE ) + 1 + len(_SCREAMING_SNAKE_CASE )) , ) __A = self.rust_tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) __A = tokenizer_r(_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_SCREAMING_SNAKE_CASE ), len(_SCREAMING_SNAKE_CASE ) + 1 + len(_SCREAMING_SNAKE_CASE )) , ) __A = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __A = self.rust_tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) __A = tokenizer_r(_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_SCREAMING_SNAKE_CASE ) + 1, 1 + len(_SCREAMING_SNAKE_CASE ) + 1 + len(_SCREAMING_SNAKE_CASE )) , ) __A = self.rust_tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) __A = tokenizer_r(_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_SCREAMING_SNAKE_CASE ), 1 + len(_SCREAMING_SNAKE_CASE ) + 1 + len(_SCREAMING_SNAKE_CASE )) , ) __A = self.rust_tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE ) __A = tokenizer_r(_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_SCREAMING_SNAKE_CASE ), 1 + len(_SCREAMING_SNAKE_CASE ) + 1 + len(_SCREAMING_SNAKE_CASE )) , )
161
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 30} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize_and_center_crop _UpperCAmelCase = size _UpperCAmelCase = crop_pct _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
329
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __lowercase : Union[str, Any] , __lowercase : Union[str, Any] , __lowercase : List[str] = True , __lowercase : List[str] = False ): """simple docstring""" snake_case_ = scheduler snake_case_ = optimizers if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) else [optimizers] snake_case_ = split_batches snake_case_ = step_with_optimizer snake_case_ = GradientState() def snake_case__ ( self : int , *__lowercase : List[Any] , **__lowercase : Optional[int] ): """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step snake_case_ = AcceleratorState().num_processes for _ in range(_SCREAMING_SNAKE_CASE ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) else: self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Dict ): """simple docstring""" return self.scheduler.get_last_lr() def snake_case__ ( self : Any ): """simple docstring""" return self.scheduler.state_dict() def snake_case__ ( self : List[str] , __lowercase : int ): """simple docstring""" self.scheduler.load_state_dict(_SCREAMING_SNAKE_CASE ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" return self.scheduler.get_lr() def snake_case__ ( self : int , *__lowercase : int , **__lowercase : Tuple ): """simple docstring""" return self.scheduler.print_lr(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
187
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20} _UpperCAmelCase = do_thumbnail _UpperCAmelCase = do_align_axis _UpperCAmelCase = do_pad _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( UpperCAmelCase , unittest.TestCase ): _a : List[str] = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_thumbnail' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
329
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = 'realm' def __init__( self : Tuple , __UpperCAmelCase : Union[str, Any]=30_522 , __UpperCAmelCase : Optional[Any]=768 , __UpperCAmelCase : Optional[Any]=128 , __UpperCAmelCase : Any=12 , __UpperCAmelCase : List[Any]=12 , __UpperCAmelCase : int=8 , __UpperCAmelCase : Dict=3_072 , __UpperCAmelCase : Tuple="gelu_new" , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : Optional[Any]=512 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Dict=0.02 , __UpperCAmelCase : Optional[int]=1e-1_2 , __UpperCAmelCase : str=256 , __UpperCAmelCase : Tuple=10 , __UpperCAmelCase : Union[str, Any]=1e-3 , __UpperCAmelCase : str=5 , __UpperCAmelCase : List[str]=320 , __UpperCAmelCase : Optional[Any]=13_353_718 , __UpperCAmelCase : int=5_000 , __UpperCAmelCase : Any=1 , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Optional[Any]=2 , **__UpperCAmelCase : Optional[Any] , ) ->Dict: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # Common config a = vocab_size a = max_position_embeddings a = hidden_size a = retriever_proj_size a = num_hidden_layers a = num_attention_heads a = num_candidates a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = type_vocab_size a = layer_norm_eps # Reader config a = span_hidden_size a = max_span_width a = reader_layer_norm_eps a = reader_beam_size a = reader_seq_len # Retrieval config a = num_block_records a = searcher_beam_size
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ :Dict = logging.get_logger(__name__) lowerCAmelCase__ :Optional[int] = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class __a ( UpperCAmelCase ): _a : List[str] = 'openai-gpt' _a : int = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=40478 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = afn _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = summary_type _UpperCAmelCase = summary_use_proj _UpperCAmelCase = summary_activation _UpperCAmelCase = summary_first_dropout _UpperCAmelCase = summary_proj_to_labels super().__init__(**_SCREAMING_SNAKE_CASE )
329
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() a_ = logging.get_logger("""transformers.models.speecht5""") a_ = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } a_ = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } a_ = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } a_ = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } a_ = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } a_ = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } a_ = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } a_ = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } a_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } a_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a_ = [] a_ = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] a_ = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] a_ = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] a_ = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def a__ ( _UpperCamelCase : Optional[Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Any ,_UpperCamelCase : Optional[int] ,_UpperCamelCase : Union[str, Any] ): for attribute in key.split('''.''' ): __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ) if weight_type is not None: __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "running_mean": __lowerCamelCase = value elif weight_type == "running_var": __lowerCamelCase = value elif weight_type == "num_batches_tracked": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def a__ ( _UpperCamelCase : int ,_UpperCamelCase : str ): for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCamelCase ,__lowerCamelCase = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : str ,_UpperCamelCase : int ): __lowerCamelCase = [] if task == "s2t": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2T __lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": __lowerCamelCase = None __lowerCamelCase = MAPPING_T2S __lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2S __lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(_UpperCamelCase ,_UpperCamelCase ): logger.info(F"""{name} was ignored""" ) continue __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hf_model.config.feat_extract_norm == '''group''' ,) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __lowerCamelCase ,__lowerCamelCase = key.split('''.*.''' ) if prefix in name and suffix in name: __lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(_UpperCamelCase )[0].split('''.''' )[-2] __lowerCamelCase = mapped_key.replace('''*''' ,_UpperCamelCase ) if "weight_g" in name: __lowerCamelCase = '''weight_g''' elif "weight_v" in name: __lowerCamelCase = '''weight_v''' elif "bias" in name: __lowerCamelCase = '''bias''' elif "weight" in name: __lowerCamelCase = '''weight''' elif "running_mean" in name: __lowerCamelCase = '''running_mean''' elif "running_var" in name: __lowerCamelCase = '''running_var''' elif "num_batches_tracked" in name: __lowerCamelCase = '''num_batches_tracked''' else: __lowerCamelCase = None set_recursively(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Tuple ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : List[str] ): __lowerCamelCase = full_name.split('''conv_layers.''' )[-1] __lowerCamelCase = name.split('''.''' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def a__ ( _UpperCamelCase : List[str] ,_UpperCamelCase : str ,_UpperCamelCase : Any ,_UpperCamelCase : Union[str, Any]=None ,_UpperCamelCase : List[Any]=None ,_UpperCamelCase : str=None ,): if config_path is not None: __lowerCamelCase = SpeechTaConfig.from_pretrained(_UpperCamelCase ) else: __lowerCamelCase = SpeechTaConfig() if task == "s2t": __lowerCamelCase = config.max_text_positions __lowerCamelCase = SpeechTaForSpeechToText(_UpperCamelCase ) elif task == "t2s": __lowerCamelCase = 18_76 __lowerCamelCase = 6_00 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForTextToSpeech(_UpperCamelCase ) elif task == "s2s": __lowerCamelCase = 18_76 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForSpeechToSpeech(_UpperCamelCase ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __lowerCamelCase = SpeechTaTokenizer(_UpperCamelCase ,model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken('''<mask>''' ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) __lowerCamelCase = SpeechTaFeatureExtractor() __lowerCamelCase = SpeechTaProcessor(tokenizer=_UpperCamelCase ,feature_extractor=_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch.load(_UpperCamelCase ) recursively_load_weights(fairseq_checkpoint['''model'''] ,_UpperCamelCase ,_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_UpperCamelCase ) model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) a_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
330
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
1