code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
_lowerCamelCase : str = 10
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
for i in range(_UpperCamelCase , _UpperCamelCase ):
if array[i] == target:
return i
return -1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = 0
A__ = len(_UpperCamelCase )
while left <= right:
if right - left < precision:
return lin_search(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
A__ = (left + right) // 3 + 1
A__ = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
A__ = one_third - 1
elif array[two_third] < target:
A__ = two_third + 1
else:
A__ = one_third + 1
A__ = two_third - 1
else:
return -1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
if left < right:
if right - left < precision:
return lin_search(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
A__ = (left + right) // 3 + 1
A__ = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_UpperCamelCase , one_third - 1 , _UpperCamelCase , _UpperCamelCase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _UpperCamelCase , _UpperCamelCase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase : Optional[int] = input("""Enter numbers separated by comma:\n""").strip()
_lowerCamelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
_lowerCamelCase : str = int(input("""Enter the number to be found in the list:\n""").strip())
_lowerCamelCase : Optional[int] = ite_ternary_search(collection, target)
_lowerCamelCase : Optional[int] = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 14 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__a = logging.get_logger(__name__)
__a = {
'''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''',
}
class __SCREAMING_SNAKE_CASE ( A__ ):
A : List[str] = 'deta'
A : Dict = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=900 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="sine" , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=300 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.25 , **SCREAMING_SNAKE_CASE__ , ):
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
lowercase : Tuple = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] )
else:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowercase : Tuple = backbone_config.pop('''model_type''' )
lowercase : Any = CONFIG_MAPPING[backbone_model_type]
lowercase : List[Any] = config_class.from_dict(SCREAMING_SNAKE_CASE__ )
lowercase : List[str] = backbone_config
lowercase : Union[str, Any] = num_queries
lowercase : Any = max_position_embeddings
lowercase : int = d_model
lowercase : Any = encoder_ffn_dim
lowercase : Optional[int] = encoder_layers
lowercase : Tuple = encoder_attention_heads
lowercase : Optional[Any] = decoder_ffn_dim
lowercase : Optional[int] = decoder_layers
lowercase : int = decoder_attention_heads
lowercase : Any = dropout
lowercase : int = attention_dropout
lowercase : Dict = activation_dropout
lowercase : int = activation_function
lowercase : Dict = init_std
lowercase : List[str] = init_xavier_std
lowercase : Optional[Any] = encoder_layerdrop
lowercase : Tuple = auxiliary_loss
lowercase : Tuple = position_embedding_type
# deformable attributes
lowercase : List[str] = num_feature_levels
lowercase : Tuple = encoder_n_points
lowercase : Optional[int] = decoder_n_points
lowercase : Tuple = two_stage
lowercase : Optional[Any] = two_stage_num_proposals
lowercase : Union[str, Any] = with_box_refine
lowercase : Any = assign_first_stage
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
lowercase : Optional[Any] = class_cost
lowercase : str = bbox_cost
lowercase : List[Any] = giou_cost
# Loss coefficients
lowercase : Tuple = mask_loss_coefficient
lowercase : Any = dice_loss_coefficient
lowercase : Dict = bbox_loss_coefficient
lowercase : Tuple = giou_loss_coefficient
lowercase : Union[str, Any] = eos_coefficient
lowercase : Tuple = focal_alpha
super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
@property
def __lowerCamelCase ( self ):
return self.encoder_attention_heads
@property
def __lowerCamelCase ( self ):
return self.d_model
def __lowerCamelCase ( self ):
lowercase : Optional[Any] = copy.deepcopy(self.__dict__ )
lowercase : Any = self.backbone_config.to_dict()
lowercase : List[str] = self.__class__.model_type
return output
| 337 | 0 |
"""simple docstring"""
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
_lowerCAmelCase :Union[str, Any] = 'src/diffusers'
_lowerCAmelCase :Union[str, Any] = '.'
# This is to make sure the diffusers module imported is the one in the repo.
_lowerCAmelCase :Dict = importlib.util.spec_from_file_location(
'diffusers',
os.path.join(DIFFUSERS_PATH, '__init__.py'),
submodule_search_locations=[DIFFUSERS_PATH],
)
_lowerCAmelCase :List[str] = spec.loader.load_module()
def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ):
return line.startswith(_UpperCamelCase ) or len(_UpperCamelCase ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , _UpperCamelCase ) is not None
def lowerCamelCase_ (UpperCamelCase__ : Tuple ):
_UpperCAmelCase : List[str] = object_name.split('''.''' )
_UpperCAmelCase : List[str] = 0
# First let's find the module where our object lives.
_UpperCAmelCase : Dict = parts[i]
while i < len(_UpperCamelCase ) and not os.path.isfile(os.path.join(_UpperCamelCase , F'{module}.py' ) ):
i += 1
if i < len(_UpperCamelCase ):
_UpperCAmelCase : int = os.path.join(_UpperCamelCase , parts[i] )
if i >= len(_UpperCamelCase ):
raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' )
with open(os.path.join(_UpperCamelCase , F'{module}.py' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
_UpperCAmelCase : List[Any] = f.readlines()
# Now let's find the class / func in the code!
_UpperCAmelCase : Optional[Any] = ''''''
_UpperCAmelCase : Optional[Any] = 0
for name in parts[i + 1 :]:
while (
line_index < len(_UpperCamelCase ) and re.search(rF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(_UpperCamelCase ):
raise ValueError(F' {object_name} does not match any function or class in {module}.' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
_UpperCAmelCase : Tuple = line_index
while line_index < len(_UpperCamelCase ) and _should_continue(lines[line_index] , _UpperCamelCase ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
_UpperCAmelCase : str = lines[start_index:line_index]
return "".join(_UpperCamelCase )
_lowerCAmelCase :int = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)')
_lowerCAmelCase :int = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)')
_lowerCAmelCase :Any = re.compile(R'<FILL\s+[^>]*>')
def lowerCamelCase_ (UpperCamelCase__ : List[str] ):
_UpperCAmelCase : str = code.split('''\n''' )
_UpperCAmelCase : str = 0
while idx < len(_UpperCamelCase ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(_UpperCamelCase ):
return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0]
return ""
def lowerCamelCase_ (UpperCamelCase__ : Dict ):
_UpperCAmelCase : List[Any] = len(get_indent(_UpperCamelCase ) ) > 0
if has_indent:
_UpperCAmelCase : Dict = F'class Bla:\n{code}'
_UpperCAmelCase : Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_UpperCamelCase )
_UpperCAmelCase : List[Any] = black.format_str(_UpperCamelCase , mode=_UpperCamelCase )
_UpperCAmelCase : str = style_docstrings_in_code(_UpperCamelCase )
return result[len('''class Bla:\n''' ) :] if has_indent else result
def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict=False ):
with open(_UpperCamelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
_UpperCAmelCase : List[Any] = f.readlines()
_UpperCAmelCase : Tuple = []
_UpperCAmelCase : List[Any] = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(_UpperCamelCase ):
_UpperCAmelCase : Dict = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
_UpperCAmelCase : Any = search.groups()
_UpperCAmelCase : Any = find_code_in_diffusers(_UpperCamelCase )
_UpperCAmelCase : Dict = get_indent(_UpperCamelCase )
_UpperCAmelCase : Optional[int] = line_index + 1 if indent == theoretical_indent else line_index + 2
_UpperCAmelCase : int = theoretical_indent
_UpperCAmelCase : Union[str, Any] = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
_UpperCAmelCase : Optional[Any] = True
while line_index < len(_UpperCamelCase ) and should_continue:
line_index += 1
if line_index >= len(_UpperCamelCase ):
break
_UpperCAmelCase : List[Any] = lines[line_index]
_UpperCAmelCase : str = _should_continue(_UpperCamelCase , _UpperCamelCase ) and re.search(F'^{indent}# End copy' , _UpperCamelCase ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
_UpperCAmelCase : List[str] = lines[start_index:line_index]
_UpperCAmelCase : Tuple = ''''''.join(_UpperCamelCase )
# Remove any nested `Copied from` comments to avoid circular copies
_UpperCAmelCase : Dict = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(_UpperCamelCase ) is None]
_UpperCAmelCase : Dict = '''\n'''.join(_UpperCamelCase )
# Before comparing, use the `replace_pattern` on the original code.
if len(_UpperCamelCase ) > 0:
_UpperCAmelCase : Any = replace_pattern.replace('''with''' , '''''' ).split(''',''' )
_UpperCAmelCase : Dict = [_re_replace_pattern.search(_UpperCamelCase ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
_UpperCAmelCase : Any = pattern.groups()
_UpperCAmelCase : int = re.sub(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
if option.strip() == "all-casing":
_UpperCAmelCase : List[str] = re.sub(obja.lower() , obja.lower() , _UpperCamelCase )
_UpperCAmelCase : Optional[int] = re.sub(obja.upper() , obja.upper() , _UpperCamelCase )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
_UpperCAmelCase : List[Any] = blackify(lines[start_index - 1] + theoretical_code )
_UpperCAmelCase : List[str] = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
_UpperCAmelCase : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:]
_UpperCAmelCase : Optional[Any] = start_index + 1
if overwrite and len(_UpperCamelCase ) > 0:
# Warn the user a file has been modified.
print(F'Detected changes, rewriting {filename}.' )
with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(_UpperCamelCase )
return diffs
def lowerCamelCase_ (UpperCamelCase__ : List[str] = False ):
_UpperCAmelCase : Dict = glob.glob(os.path.join(_UpperCamelCase , '''**/*.py''' ) , recursive=_UpperCamelCase )
_UpperCAmelCase : Dict = []
for filename in all_files:
_UpperCAmelCase : Any = is_copy_consistent(_UpperCamelCase , _UpperCamelCase )
diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs]
if not overwrite and len(_UpperCamelCase ) > 0:
_UpperCAmelCase : Tuple = '''\n'''.join(_UpperCamelCase )
raise Exception(
'''Found the following copy inconsistencies:\n'''
+ diff
+ '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' )
if __name__ == "__main__":
_lowerCAmelCase :Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
_lowerCAmelCase :List[str] = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 263 |
def __lowercase ( ) ->List[Any]:
"""simple docstring"""
lowercase : Union[str, Any] = 0
for i in range(1, 1001 ):
total += i**i
return str(_UpperCamelCase )[-10:]
if __name__ == "__main__":
print(solution())
| 337 | 0 |
import math
class UpperCAmelCase__ :
'''simple docstring'''
def __init__( self : Dict , a_ : Dict=0 ): # a graph with Node 0,1,...,N-1
'''simple docstring'''
__UpperCAmelCase : List[Any] = n
__UpperCAmelCase : List[Any] = [
[math.inf for j in range(0 , SCREAMING_SNAKE_CASE__ )] for i in range(0 , SCREAMING_SNAKE_CASE__ )
] # adjacency matrix for weight
__UpperCAmelCase : Union[str, Any] = [
[math.inf for j in range(0 , SCREAMING_SNAKE_CASE__ )] for i in range(0 , SCREAMING_SNAKE_CASE__ )
] # dp[i][j] stores minimum distance from i to j
def snake_case__ ( self : Union[str, Any] , a_ : int , a_ : Any , a_ : Dict ):
'''simple docstring'''
__UpperCAmelCase : int = w
def snake_case__ ( self : Tuple ):
'''simple docstring'''
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
__UpperCAmelCase : Any = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def snake_case__ ( self : Optional[Any] , a_ : Optional[Any] , a_ : List[Any] ):
'''simple docstring'''
return self.dp[u][v]
if __name__ == "__main__":
__A =Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 1_0)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 1_0)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 226 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
__a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
__a = ''' \"""
Output class for the scheduler\'s step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
'''
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __lowerCamelCase ( self ):
lowercase : str = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) )
lowercase : Any = self.diffusers_dir
shutil.copy(
os.path.join(SCREAMING_SNAKE_CASE__ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , )
def __lowerCamelCase ( self ):
lowercase : List[Any] = '''src/diffusers'''
shutil.rmtree(self.diffusers_dir )
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ):
lowercase : Tuple = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
lowercase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
lowercase : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
lowercase : List[Any] = black.format_str(SCREAMING_SNAKE_CASE__ , mode=SCREAMING_SNAKE_CASE__ )
lowercase : Dict = os.path.join(self.diffusers_dir , '''new_code.py''' )
with open(SCREAMING_SNAKE_CASE__ , '''w''' , newline='''\n''' ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(SCREAMING_SNAKE_CASE__ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f:
self.assertTrue(f.read() , SCREAMING_SNAKE_CASE__ )
def __lowerCamelCase ( self ):
lowercase : Tuple = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCamelCase ( self ):
# Base copy consistency
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , SCREAMING_SNAKE_CASE__ , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , SCREAMING_SNAKE_CASE__ ) , )
# Copy consistency with a really long name
lowercase : List[Any] = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , SCREAMING_SNAKE_CASE__ , overwrite_result=re.sub('''DDPM''' , '''Test''' , SCREAMING_SNAKE_CASE__ ) , )
| 337 | 0 |
'''simple docstring'''
def UpperCAmelCase_ ( __lowerCamelCase : Optional[Any] = 10**12 ):
lowercase_ :Tuple = 1
lowercase_ :List[str] = 0
lowercase_ :List[str] = 1
lowercase_ :List[Any] = 1
while numerator <= 2 * min_total - 1:
prev_numerator += 2 * numerator
numerator += 2 * prev_numerator
prev_denominator += 2 * denominator
denominator += 2 * prev_denominator
return (denominator + 1) // 2
if __name__ == "__main__":
print(F'''{solution() = }''')
| 223 |
import math
class __SCREAMING_SNAKE_CASE :
def __init__( self , SCREAMING_SNAKE_CASE__=0 ): # a graph with Node 0,1,...,N-1
lowercase : List[Any] = n
lowercase : List[Any] = [
[math.inf for j in range(0 , SCREAMING_SNAKE_CASE__ )] for i in range(0 , SCREAMING_SNAKE_CASE__ )
] # adjacency matrix for weight
lowercase : Union[str, Any] = [
[math.inf for j in range(0 , SCREAMING_SNAKE_CASE__ )] for i in range(0 , SCREAMING_SNAKE_CASE__ )
] # dp[i][j] stores minimum distance from i to j
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowercase : int = w
def __lowerCamelCase ( self ):
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
lowercase : Any = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return self.dp[u][v]
if __name__ == "__main__":
__a = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 337 | 0 |
'''simple docstring'''
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
UpperCAmelCase = logging.getLogger(__name__)
UpperCAmelCase = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
UpperCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCAmelCase :
lowerCAmelCase_ = field(
default=A__ , metadata={
"help": (
"The model checkpoint for weights initialization. Leave None if you want to train a model from"
" scratch."
)
} , )
lowerCAmelCase_ = field(
default=A__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(A__ )} , )
lowerCAmelCase_ = field(
default=A__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCAmelCase_ = field(
default=A__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCAmelCase_ = field(
default=A__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class lowerCAmelCase :
lowerCAmelCase_ = field(
default=A__ , metadata={"help": "The input training data file (a text file)."} )
lowerCAmelCase_ = field(
default=A__ , metadata={
"help": (
"The input training data files (multiple files in glob format). "
"Very often splitting large files to smaller files can prevent tokenizer going out of memory"
)
} , )
lowerCAmelCase_ = field(
default=A__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
lowerCAmelCase_ = field(
default=A__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , )
lowerCAmelCase_ = field(
default=A__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , )
lowerCAmelCase_ = field(
default=A__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , )
lowerCAmelCase_ = field(
default=A__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} )
lowerCAmelCase_ = field(default=A__ , metadata={"help": "Whether ot not to use whole word mask."} )
lowerCAmelCase_ = field(
default=0.1_5 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} )
lowerCAmelCase_ = field(
default=1 / 6 , metadata={
"help": (
"Ratio of length of a span of masked tokens to surrounding context length for permutation language"
" modeling."
)
} , )
lowerCAmelCase_ = field(
default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} )
lowerCAmelCase_ = field(
default=-1 , metadata={
"help": (
"Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
} , )
lowerCAmelCase_ = field(
default=A__ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def __UpperCamelCase ( lowercase__ : str, lowercase__ : Any, lowercase__ : Any = False, lowercase__ : Union[str, Any] = None, ):
'''simple docstring'''
def _dataset(lowercase__ : Any, lowercase__ : str=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' )
return LineByLineWithRefDataset(
tokenizer=_UpperCamelCase, file_path=_UpperCamelCase, block_size=args.block_size, ref_path=_UpperCamelCase, )
return LineByLineTextDataset(tokenizer=_UpperCamelCase, file_path=_UpperCamelCase, block_size=args.block_size )
else:
return TextDataset(
tokenizer=_UpperCamelCase, file_path=_UpperCamelCase, block_size=args.block_size, overwrite_cache=args.overwrite_cache, cache_dir=_UpperCamelCase, )
if evaluate:
return _dataset(args.eval_data_file, args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(_UpperCamelCase ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file, args.train_ref_file )
def __UpperCamelCase ( ):
'''simple docstring'''
__lowercase =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__lowercase =parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file '
'or remove the --do_eval argument.' )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
' --overwrite_output_dir to overcome.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s', _UpperCamelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
__lowercase =AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
__lowercase =AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir )
else:
__lowercase =CONFIG_MAPPING[model_args.model_type]()
logger.warning('You are instantiating a new config instance from scratch.' )
if model_args.tokenizer_name:
__lowercase =AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
__lowercase =AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir )
else:
raise ValueError(
'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another'
' script, save it,and load it from here, using --tokenizer_name' )
if model_args.model_name_or_path:
__lowercase =AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, )
else:
logger.info('Training new model from scratch' )
__lowercase =AutoModelWithLMHead.from_config(_UpperCamelCase )
model.resize_token_embeddings(len(_UpperCamelCase ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the'
'--mlm flag (masked language modeling).' )
if data_args.block_size <= 0:
__lowercase =tokenizer.max_len
# Our input block size will be the max possible for the model
else:
__lowercase =min(data_args.block_size, tokenizer.max_len )
# Get datasets
__lowercase =(
get_dataset(_UpperCamelCase, tokenizer=_UpperCamelCase, cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
__lowercase =(
get_dataset(_UpperCamelCase, tokenizer=_UpperCamelCase, evaluate=_UpperCamelCase, cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
__lowercase =DataCollatorForPermutationLanguageModeling(
tokenizer=_UpperCamelCase, plm_probability=data_args.plm_probability, max_span_length=data_args.max_span_length, )
else:
if data_args.mlm and data_args.whole_word_mask:
__lowercase =DataCollatorForWholeWordMask(
tokenizer=_UpperCamelCase, mlm_probability=data_args.mlm_probability )
else:
__lowercase =DataCollatorForLanguageModeling(
tokenizer=_UpperCamelCase, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
__lowercase =Trainer(
model=_UpperCamelCase, args=_UpperCamelCase, data_collator=_UpperCamelCase, train_dataset=_UpperCamelCase, eval_dataset=_UpperCamelCase, prediction_loss_only=_UpperCamelCase, )
# Training
if training_args.do_train:
__lowercase =(
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=_UpperCamelCase )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__lowercase ={}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__lowercase =trainer.evaluate()
__lowercase =math.exp(eval_output['eval_loss'] )
__lowercase ={'''perplexity''': perplexity}
__lowercase =os.path.join(training_args.output_dir, 'eval_results_lm.txt' )
if trainer.is_world_master():
with open(_UpperCamelCase, 'w' ) as writer:
logger.info('***** Eval results *****' )
for key in sorted(result.keys() ):
logger.info(' %s = %s', _UpperCamelCase, str(result[key] ) )
writer.write('%s = %s\n' % (key, str(result[key] )) )
results.update(_UpperCamelCase )
return results
def __UpperCamelCase ( lowercase__ : str ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 141 |
from __future__ import annotations
def __lowercase ( _UpperCamelCase ) ->float:
"""simple docstring"""
if not nums:
raise ValueError('''List is empty''' )
return sum(_UpperCamelCase ) / len(_UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 337 | 0 |
'''simple docstring'''
a : Optional[int] = "Input must be a string of 8 numbers plus letter"
a : Any = "TRWAGMYFPDXBNJZSQVHLCKE"
def lowercase ( __magic_name__ ):
'''simple docstring'''
if not isinstance(_UpperCamelCase , _UpperCamelCase ):
UpperCAmelCase : Optional[Any] = F"Expected string as input, found {type(_UpperCamelCase ).__name__}"
raise TypeError(_UpperCamelCase )
UpperCAmelCase : Optional[int] = spanish_id.replace("-" , "" ).upper()
if len(_UpperCamelCase ) != 9:
raise ValueError(_UpperCamelCase )
try:
UpperCAmelCase : Optional[Any] = int(spanish_id_clean[0:8] )
UpperCAmelCase : Tuple = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_UpperCamelCase ) from ex
if letter.isdigit():
raise ValueError(_UpperCamelCase )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311 |
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
__a = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( A__ ):
def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ):
warnings.warn(
'''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use DeiTImageProcessor instead.''' , SCREAMING_SNAKE_CASE__ , )
super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
| 337 | 0 |
"""simple docstring"""
import heapq as hq
import math
from collections.abc import Iterator
class lowerCamelCase :
'''simple docstring'''
def __init__(self , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : Tuple = str(id_ )
UpperCAmelCase__ : str = None
UpperCAmelCase__ : str = None
UpperCAmelCase__ : str = []
UpperCAmelCase__ : Optional[Any] = {} # {vertex:distance}
def __lt__(self , _lowerCamelCase ):
"""simple docstring"""
return self.key < other.key
def __repr__(self ):
"""simple docstring"""
return self.id
def _a (self , _lowerCamelCase ):
"""simple docstring"""
self.neighbors.append(SCREAMING_SNAKE_CASE__ )
def _a (self , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : List[str] = weight
def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Tuple:
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , _UpperCamelCase )
graph[b - 1].add_edge(graph[a - 1] , _UpperCamelCase )
def a__ ( lowerCAmelCase , lowerCAmelCase ) -> list:
UpperCAmelCase__ : Optional[int] = []
for u in graph:
UpperCAmelCase__ : Any = math.inf
UpperCAmelCase__ : Dict = None
UpperCAmelCase__ : Any = 0
UpperCAmelCase__ : Union[str, Any] = graph[:]
while q:
UpperCAmelCase__ : List[Any] = min(_UpperCamelCase )
q.remove(_UpperCamelCase )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
UpperCAmelCase__ : str = u
UpperCAmelCase__ : int = u.edges[v.id]
for i in range(1 , len(_UpperCamelCase ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Iterator[tuple]:
for u in graph:
UpperCAmelCase__ : Dict = math.inf
UpperCAmelCase__ : List[Any] = None
UpperCAmelCase__ : Tuple = 0
UpperCAmelCase__ : Any = list(_UpperCamelCase )
hq.heapify(_UpperCamelCase )
while h:
UpperCAmelCase__ : List[Any] = hq.heappop(_UpperCamelCase )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
UpperCAmelCase__ : Dict = u
UpperCAmelCase__ : Optional[Any] = u.edges[v.id]
hq.heapify(_UpperCamelCase )
for i in range(1 , len(_UpperCamelCase ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def a__ ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 171 |
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
__a = logging.get_logger(__name__)
def __lowercase ( _UpperCamelCase ) ->List[int]:
"""simple docstring"""
if isinstance(_UpperCamelCase, np.ndarray ):
return list(tensor.shape )
lowercase : Optional[Any] = tf.shape(_UpperCamelCase )
if tensor.shape == tf.TensorShape(_UpperCamelCase ):
return dynamic
lowercase : Tuple = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(_UpperCamelCase )]
def __lowercase ( _UpperCamelCase, _UpperCamelCase = None, _UpperCamelCase = None ) ->tf.Tensor:
"""simple docstring"""
return tf.nn.softmax(logits=logits + 1e-9, axis=_UpperCamelCase, name=_UpperCamelCase )
def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase=1e-5, _UpperCamelCase=-1 ) ->int:
"""simple docstring"""
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_UpperCamelCase, _UpperCamelCase ):
raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' )
# Get mean and variance on the axis to be normalized
lowercase , lowercase : Union[str, Any] = tf.nn.moments(_UpperCamelCase, axes=[axis], keepdims=_UpperCamelCase )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
lowercase : int = [1] * inputs.shape.rank
lowercase : Union[str, Any] = shape_list(_UpperCamelCase )[axis]
lowercase : List[str] = tf.reshape(_UpperCamelCase, _UpperCamelCase )
lowercase : Dict = tf.reshape(_UpperCamelCase, _UpperCamelCase )
# Compute layer normalization using the batch_normalization
# function.
lowercase : List[str] = tf.nn.batch_normalization(
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, offset=_UpperCamelCase, scale=_UpperCamelCase, variance_epsilon=_UpperCamelCase, )
return outputs
def __lowercase ( _UpperCamelCase, _UpperCamelCase=0, _UpperCamelCase=-1 ) ->List[Any]:
"""simple docstring"""
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
lowercase : Dict = tf.shape(_UpperCamelCase )
lowercase : Optional[Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
lowercase : List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]], axis=0 )
return tf.reshape(_UpperCamelCase, _UpperCamelCase )
def __lowercase ( _UpperCamelCase ) ->tf.Tensor:
"""simple docstring"""
if not isinstance(_UpperCamelCase, tf.Tensor ):
lowercase : Optional[Any] = tf.convert_to_tensor(_UpperCamelCase ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
lowercase : Tuple = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
lowercase : List[Any] = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
lowercase : str = (
tf.cast(1, encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase = "input_ids" ) ->None:
"""simple docstring"""
tf.debugging.assert_less(
_UpperCamelCase, tf.cast(_UpperCamelCase, dtype=tensor.dtype ), message=(
f"""The maximum value of {tensor_name} ({tf.math.reduce_max(_UpperCamelCase )}) must be smaller than the embedding """
f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time."""
), )
def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]:
"""simple docstring"""
lowercase : List[Any] = 64512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
lowercase : Optional[int] = [x for x in data if len(_UpperCamelCase ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'''The following attributes cannot be saved to HDF5 file because '''
f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """
f"""bytes: {bad_attributes}""" )
lowercase : Any = np.asarray(_UpperCamelCase )
lowercase : List[Any] = 1
lowercase : Tuple = np.array_split(_UpperCamelCase, _UpperCamelCase )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
lowercase : Dict = np.array_split(_UpperCamelCase, _UpperCamelCase )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(_UpperCamelCase ):
lowercase : Optional[int] = chunk_data
else:
lowercase : int = data
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->List[str]:
"""simple docstring"""
if name in group.attrs:
lowercase : str = [n.decode('''utf8''' ) if hasattr(_UpperCamelCase, '''decode''' ) else n for n in group.attrs[name]]
else:
lowercase : Optional[Any] = []
lowercase : List[str] = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('''utf8''' ) if hasattr(_UpperCamelCase, '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] )
chunk_id += 1
return data
def __lowercase ( _UpperCamelCase ) ->List[str]:
"""simple docstring"""
def _expand_single_ad_tensor(_UpperCamelCase ):
if isinstance(_UpperCamelCase, tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(_UpperCamelCase, axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor, _UpperCamelCase )
| 337 | 0 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
def __A ( a_ :str) -> int:
if not postfix_notation:
return 0
__a : List[str] = {'''+''', '''-''', '''*''', '''/'''}
__a : list[Any] = []
for token in postfix_notation:
if token in operations:
__a : Union[str, Any] = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b)
elif token == "-":
stack.append(a - b)
elif token == "*":
stack.append(a * b)
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1)
else:
stack.append(a // b)
else:
stack.append(int(_UpperCamelCase))
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod() | 160 |
def __lowercase ( _UpperCamelCase = 4000000 ) ->int:
"""simple docstring"""
lowercase : int = []
lowercase , lowercase : str = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(_UpperCamelCase )
lowercase , lowercase : Dict = b, a + b
return sum(_UpperCamelCase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 337 | 0 |
'''simple docstring'''
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class __snake_case ( A__ ,A__):
"""simple docstring"""
@register_to_config
def __init__( self : Optional[Any] , lowerCamelCase : Optional[Any] = 7_68 , ) -> List[str]:
super().__init__()
lowerCAmelCase_ : str = nn.Parameter(torch.zeros(1 , SCREAMING_SNAKE_CASE__ ) )
lowerCAmelCase_ : Tuple = nn.Parameter(torch.ones(1 , SCREAMING_SNAKE_CASE__ ) )
def __lowercase ( self : List[Any] , lowerCamelCase : Any = None , lowerCamelCase : List[str] = None , ) -> int:
lowerCAmelCase_ : List[Any] = nn.Parameter(self.mean.to(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) )
lowerCAmelCase_ : int = nn.Parameter(self.std.to(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) )
return self
def __lowercase ( self : int , lowerCamelCase : int ) -> Union[str, Any]:
lowerCAmelCase_ : Dict = (embeds - self.mean) * 1.0 / self.std
return embeds
def __lowercase ( self : Any , lowerCamelCase : Union[str, Any] ) -> List[str]:
lowerCAmelCase_ : Optional[int] = (embeds * self.std) + self.mean
return embeds
| 120 |
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
__a = logging.get_logger(__name__)
__a = {
'''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''',
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class __SCREAMING_SNAKE_CASE ( A__ ):
A : List[str] = 'perceiver'
def __init__( self , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=1280 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=26 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="kv" , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=262 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=56 , SCREAMING_SNAKE_CASE__=[368, 496] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=1920 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=[1, 16, 224, 224] , **SCREAMING_SNAKE_CASE__ , ):
super().__init__(**SCREAMING_SNAKE_CASE__ )
lowercase : Any = num_latents
lowercase : Union[str, Any] = d_latents
lowercase : str = d_model
lowercase : int = num_blocks
lowercase : str = num_self_attends_per_block
lowercase : List[str] = num_self_attention_heads
lowercase : List[str] = num_cross_attention_heads
lowercase : int = qk_channels
lowercase : List[Any] = v_channels
lowercase : int = cross_attention_shape_for_attention
lowercase : Tuple = self_attention_widening_factor
lowercase : Dict = cross_attention_widening_factor
lowercase : Any = hidden_act
lowercase : Optional[Any] = attention_probs_dropout_prob
lowercase : Union[str, Any] = initializer_range
lowercase : Any = layer_norm_eps
lowercase : Any = use_query_residual
# masked language modeling attributes
lowercase : List[str] = vocab_size
lowercase : Dict = max_position_embeddings
# image classification attributes
lowercase : int = image_size
# flow attributes
lowercase : List[Any] = train_size
# multimodal autoencoding attributes
lowercase : List[Any] = num_frames
lowercase : Union[str, Any] = audio_samples_per_frame
lowercase : int = samples_per_patch
lowercase : Optional[int] = output_shape
class __SCREAMING_SNAKE_CASE ( A__ ):
@property
def __lowerCamelCase ( self ):
if self.task == "multiple-choice":
lowercase : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
lowercase : Dict = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''inputs''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
@property
def __lowerCamelCase ( self ):
return 1E-4
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 3 , SCREAMING_SNAKE_CASE__ = 40 , SCREAMING_SNAKE_CASE__ = 40 , ):
# copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase : str = compute_effective_axis_dimension(
SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowercase : Union[str, Any] = preprocessor.num_special_tokens_to_add(SCREAMING_SNAKE_CASE__ )
lowercase : Optional[int] = compute_effective_axis_dimension(
SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE__ )
# Generate dummy inputs according to compute batch and sequence
lowercase : Optional[Any] = [''' '''.join(['''a'''] ) * seq_length] * batch_size
lowercase : Any = dict(preprocessor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) )
lowercase : Union[str, Any] = inputs.pop('''input_ids''' )
return inputs
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase : List[str] = compute_effective_axis_dimension(SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch )
lowercase : List[str] = self._generate_dummy_images(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
lowercase : Optional[int] = dict(preprocessor(images=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) )
lowercase : Union[str, Any] = inputs.pop('''pixel_values''' )
return inputs
else:
raise ValueError(
'''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
| 337 | 0 |
"""simple docstring"""
import unittest
from datasets import load_dataset
from transformers.pipelines import pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow
@is_pipeline_test
@require_torch
class _snake_case ( unittest.TestCase ):
@require_torch
def lowerCamelCase__ ( self : List[Any] ):
__lowerCamelCase : List[Any] = pipeline(
task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" )
__lowerCamelCase : Dict = load_dataset("ashraq/esc50" )
__lowerCamelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array''']
__lowerCamelCase : int = audio_classifier(SCREAMING_SNAKE_CASE__ , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{"score": 0.5_0_1, "label": "Sound of a dog"}, {"score": 0.4_9_9, "label": "Sound of vaccum cleaner"}] , )
@unittest.skip("No models are available in TF" )
def lowerCamelCase__ ( self : List[str] ):
pass
@slow
@require_torch
def lowerCamelCase__ ( self : str ):
__lowerCamelCase : List[Any] = pipeline(
task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , )
# This is an audio of a dog
__lowerCamelCase : Union[str, Any] = load_dataset("ashraq/esc50" )
__lowerCamelCase : Union[str, Any] = dataset['''train''']['''audio'''][-1]['''array''']
__lowerCamelCase : List[str] = audio_classifier(SCREAMING_SNAKE_CASE__ , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , [
{"score": 0.9_9_9, "label": "Sound of a dog"},
{"score": 0.0_0_1, "label": "Sound of vaccum cleaner"},
] , )
__lowerCamelCase : int = audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , [
[
{"score": 0.9_9_9, "label": "Sound of a dog"},
{"score": 0.0_0_1, "label": "Sound of vaccum cleaner"},
],
]
* 5 , )
__lowerCamelCase : Optional[Any] = audio_classifier(
[audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , [
[
{"score": 0.9_9_9, "label": "Sound of a dog"},
{"score": 0.0_0_1, "label": "Sound of vaccum cleaner"},
],
]
* 5 , )
@unittest.skip("No models are available in TF" )
def lowerCamelCase__ ( self : int ):
pass | 135 |
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def __lowercase ( _UpperCamelCase = 8 ) ->str:
"""simple docstring"""
lowercase : List[str] = ascii_letters + digits + punctuation
return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) )
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->str:
"""simple docstring"""
i -= len(_UpperCamelCase )
lowercase : Dict = i // 3
lowercase : List[str] = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
lowercase : Union[str, Any] = (
chars_incl
+ random(_UpperCamelCase, quotient + remainder )
+ random(_UpperCamelCase, _UpperCamelCase )
+ random(_UpperCamelCase, _UpperCamelCase )
)
lowercase : Union[str, Any] = list(_UpperCamelCase )
shuffle(_UpperCamelCase )
return "".join(_UpperCamelCase )
# random is a generalised function for letters, characters and numbers
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->str:
"""simple docstring"""
return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) )
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Dict:
"""simple docstring"""
pass # Put your code here...
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]:
"""simple docstring"""
pass # Put your code here...
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->List[Any]:
"""simple docstring"""
pass # Put your code here...
def __lowercase ( _UpperCamelCase, _UpperCamelCase = 8 ) ->bool:
"""simple docstring"""
if len(_UpperCamelCase ) < min_length:
# Your Password must be at least 8 characters long
return False
lowercase : str = any(char in ascii_uppercase for char in password )
lowercase : List[str] = any(char in ascii_lowercase for char in password )
lowercase : Dict = any(char in digits for char in password )
lowercase : Tuple = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def __lowercase ( ) ->Dict:
"""simple docstring"""
lowercase : Union[str, Any] = int(input('''Please indicate the max length of your password: ''' ).strip() )
lowercase : Optional[Any] = input(
'''Please indicate the characters that must be in your password: ''' ).strip()
print('''Password generated:''', password_generator(_UpperCamelCase ) )
print(
'''Alternative Password generated:''', alternative_password_generator(_UpperCamelCase, _UpperCamelCase ), )
print('''[If you are thinking of using this passsword, You better save it.]''' )
if __name__ == "__main__":
main()
| 337 | 0 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class _UpperCAmelCase ( A__):
_lowerCAmelCase : Dict = (UnCLIPScheduler,)
def _snake_case ( self : Optional[int] , **lowercase_ : str ):
snake_case_ : Union[str, Any] = {
'''num_train_timesteps''': 1000,
'''variance_type''': '''fixed_small_log''',
'''clip_sample''': True,
'''clip_sample_range''': 1.0,
'''prediction_type''': '''epsilon''',
}
config.update(**SCREAMING_SNAKE_CASE__ )
return config
def _snake_case ( self : Optional[int] ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
def _snake_case ( self : Any ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE__ )
def _snake_case ( self : Optional[Any] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__ )
def _snake_case ( self : str ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=SCREAMING_SNAKE_CASE__ )
def _snake_case ( self : str ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ )
def _snake_case ( self : Optional[Any] ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ , prev_timestep=SCREAMING_SNAKE_CASE__ )
def _snake_case ( self : Dict ):
snake_case_ : Dict = self.scheduler_classes[0]
snake_case_ : List[str] = self.get_scheduler_config(variance_type='''fixed_small_log''' )
snake_case_ : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5
def _snake_case ( self : str ):
snake_case_ : Any = self.scheduler_classes[0]
snake_case_ : Any = self.get_scheduler_config(variance_type='''learned_range''' )
snake_case_ : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
snake_case_ : Optional[Any] = 0.5
assert scheduler._get_variance(1 , predicted_variance=SCREAMING_SNAKE_CASE__ ) - -10.1_71_27_90 < 1E-5
assert scheduler._get_variance(487 , predicted_variance=SCREAMING_SNAKE_CASE__ ) - -5.7_99_80_52 < 1E-5
assert scheduler._get_variance(999 , predicted_variance=SCREAMING_SNAKE_CASE__ ) - -0.0_01_00_11 < 1E-5
def _snake_case ( self : int ):
snake_case_ : Optional[int] = self.scheduler_classes[0]
snake_case_ : int = self.get_scheduler_config()
snake_case_ : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ )
snake_case_ : Any = scheduler.timesteps
snake_case_ : List[Any] = self.dummy_model()
snake_case_ : Dict = self.dummy_sample_deter
snake_case_ : str = torch.manual_seed(0 )
for i, t in enumerate(SCREAMING_SNAKE_CASE__ ):
# 1. predict noise residual
snake_case_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# 2. predict previous mean of sample x_t-1
snake_case_ : Tuple = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample
snake_case_ : Optional[Any] = pred_prev_sample
snake_case_ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
snake_case_ : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2
assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3
def _snake_case ( self : Optional[int] ):
snake_case_ : str = self.scheduler_classes[0]
snake_case_ : Dict = self.get_scheduler_config()
snake_case_ : int = scheduler_class(**SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(25 )
snake_case_ : Union[str, Any] = scheduler.timesteps
snake_case_ : int = self.dummy_model()
snake_case_ : str = self.dummy_sample_deter
snake_case_ : str = torch.manual_seed(0 )
for i, t in enumerate(SCREAMING_SNAKE_CASE__ ):
# 1. predict noise residual
snake_case_ : List[Any] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if i + 1 == timesteps.shape[0]:
snake_case_ : int = None
else:
snake_case_ : Any = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
snake_case_ : int = scheduler.step(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , prev_timestep=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample
snake_case_ : int = pred_prev_sample
snake_case_ : List[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
snake_case_ : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2
assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3
def _snake_case ( self : str ):
pass
def _snake_case ( self : List[str] ):
pass
| 264 |
from __future__ import annotations
__a = []
def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->bool:
"""simple docstring"""
for i in range(len(_UpperCamelCase ) ):
if board[row][i] == 1:
return False
for i in range(len(_UpperCamelCase ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(_UpperCamelCase, -1, -1 ), range(_UpperCamelCase, -1, -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(_UpperCamelCase, -1, -1 ), range(_UpperCamelCase, len(_UpperCamelCase ) ) ):
if board[i][j] == 1:
return False
return True
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->bool:
"""simple docstring"""
if row >= len(_UpperCamelCase ):
solution.append(_UpperCamelCase )
printboard(_UpperCamelCase )
print()
return True
for i in range(len(_UpperCamelCase ) ):
if is_safe(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ):
lowercase : int = 1
solve(_UpperCamelCase, row + 1 )
lowercase : Tuple = 0
return False
def __lowercase ( _UpperCamelCase ) ->None:
"""simple docstring"""
for i in range(len(_UpperCamelCase ) ):
for j in range(len(_UpperCamelCase ) ):
if board[i][j] == 1:
print('''Q''', end=''' ''' )
else:
print('''.''', end=''' ''' )
print()
# n=int(input("The no. of queens"))
__a = 8
__a = [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print('''The total no. of solutions are :''', len(solution))
| 337 | 0 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> float:
"""simple docstring"""
if discount_rate < 0:
raise ValueError('''Discount rate cannot be negative''' )
if not cash_flows:
raise ValueError('''Cash flows list cannot be empty''' )
A__ = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_UpperCamelCase ) )
return round(_UpperCamelCase , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__a = {
'''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''],
'''tokenization_ctrl''': ['''CTRLTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CTRLForSequenceClassification''',
'''CTRLLMHeadModel''',
'''CTRLModel''',
'''CTRLPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFCTRLForSequenceClassification''',
'''TFCTRLLMHeadModel''',
'''TFCTRLModel''',
'''TFCTRLPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from .tokenization_ctrl import CTRLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ctrl import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
CTRLPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
TFCTRLLMHeadModel,
TFCTRLModel,
TFCTRLPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 337 | 0 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _UpperCAmelCase ( A__ ):
'''simple docstring'''
a__ =['image_processor', 'tokenizer']
a__ ='AutoImageProcessor'
a__ ='AutoTokenizer'
def __init__( self , A , A ) -> Union[str, Any]:
super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_UpperCAmelCase : int = self.image_processor
def __call__( self , A=None , A=None , A=None , **A ) -> int:
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
_UpperCAmelCase : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
if images is not None:
_UpperCAmelCase : Optional[Any] = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
if text is not None and images is not None:
_UpperCAmelCase : Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self , *A , **A ) -> Dict:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self , *A , **A ) -> List[str]:
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
@property
def __lowerCAmelCase ( self ) -> Union[str, Any]:
return ["input_ids", "attention_mask", "pixel_values"]
| 263 |
from collections.abc import Callable
class __SCREAMING_SNAKE_CASE :
def __init__( self , SCREAMING_SNAKE_CASE__ = None ):
# Stores actual heap items.
lowercase : list = []
# Stores indexes of each item for supporting updates and deletion.
lowercase : dict = {}
# Stores current size of heap.
lowercase : str = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
lowercase : Tuple = key or (lambda SCREAMING_SNAKE_CASE__ : x)
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
return int((i - 1) / 2 ) if i > 0 else None
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
lowercase : Any = int(2 * i + 1 )
return left if 0 < left < self.size else None
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
lowercase : Any = int(2 * i + 2 )
return right if 0 < right < self.size else None
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowercase , lowercase : Dict = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
lowercase , lowercase : int = self.arr[j], self.arr[i]
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return self.arr[i][1] < self.arr[j][1]
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
lowercase : int = self._left(SCREAMING_SNAKE_CASE__ )
lowercase : Optional[int] = self._right(SCREAMING_SNAKE_CASE__ )
lowercase : List[Any] = i
if left is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowercase : Dict = left
if right is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowercase : List[str] = right
return valid_parent
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
lowercase : Optional[int] = self._parent(SCREAMING_SNAKE_CASE__ )
while parent is not None and not self._cmp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
self._swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
lowercase , lowercase : Optional[int] = parent, self._parent(SCREAMING_SNAKE_CASE__ )
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
lowercase : Dict = self._get_valid_parent(SCREAMING_SNAKE_CASE__ )
while valid_parent != index:
self._swap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
lowercase , lowercase : str = valid_parent, self._get_valid_parent(SCREAMING_SNAKE_CASE__ )
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if item not in self.pos_map:
return
lowercase : str = self.pos_map[item]
lowercase : Optional[int] = [item, self.key(SCREAMING_SNAKE_CASE__ )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(SCREAMING_SNAKE_CASE__ )
self._heapify_down(SCREAMING_SNAKE_CASE__ )
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
if item not in self.pos_map:
return
lowercase : List[str] = self.pos_map[item]
del self.pos_map[item]
lowercase : Optional[int] = self.arr[self.size - 1]
lowercase : int = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(SCREAMING_SNAKE_CASE__ )
self._heapify_down(SCREAMING_SNAKE_CASE__ )
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowercase : str = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(SCREAMING_SNAKE_CASE__ )] )
else:
lowercase : int = [item, self.key(SCREAMING_SNAKE_CASE__ )]
lowercase : str = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def __lowerCamelCase ( self ):
return self.arr[0] if self.size else None
def __lowerCamelCase ( self ):
lowercase : str = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def __lowercase ( ) ->None:
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 337 | 0 |
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
__A =get_tests_dir("fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase__ ( A__ ,unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = DebertaVaTokenizer
UpperCamelCase = DebertaVaTokenizerFast
UpperCamelCase = True
UpperCamelCase = True
def snake_case__ ( self : List[Any] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase : Optional[Any] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , unk_token='''<unk>''' )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : Union[str, Any] , a_ : Any ):
'''simple docstring'''
__UpperCAmelCase : Dict = '''this is a test'''
__UpperCAmelCase : str = '''this is a test'''
return input_text, output_text
def snake_case__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = '''<pad>'''
__UpperCAmelCase : Dict = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def snake_case__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''<unk>''' )
self.assertEqual(vocab_keys[-1] , '''[PAD]''' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 3_00_01 )
def snake_case__ ( self : Any ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 )
def snake_case__ ( self : List[str] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = ''' \tHeLLo!how \n Are yoU? '''
__UpperCAmelCase : Optional[int] = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?''']
# fmt: on
__UpperCAmelCase : Tuple = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : str = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def snake_case__ ( self : Any ):
'''simple docstring'''
pass
@unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' )
def snake_case__ ( self : Optional[int] ):
'''simple docstring'''
pass
def snake_case__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : List[str] = '''I was born in 92000, and this is falsé.'''
__UpperCAmelCase : Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
__UpperCAmelCase : Optional[int] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : List[str] = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def snake_case__ ( self : Optional[Any] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = '''I was born in 92000, and this is falsé.'''
__UpperCAmelCase : int = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
__UpperCAmelCase : List[Any] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Union[str, Any] = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def snake_case__ ( self : int ):
'''simple docstring'''
__UpperCAmelCase : List[str] = '''I was born in 92000, and this is falsé.'''
__UpperCAmelCase : Tuple = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
__UpperCAmelCase : Optional[Any] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Optional[int] = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def snake_case__ ( self : str ):
'''simple docstring'''
__UpperCAmelCase : Dict = '''I was born in 92000, and this is falsé.'''
__UpperCAmelCase : Tuple = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ]
# fmt: on
__UpperCAmelCase : Optional[int] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Union[str, Any] = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def snake_case__ ( self : List[Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = ''' \tHeLLo!how \n Are yoU? '''
__UpperCAmelCase : Union[str, Any] = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?''']
# fmt: on
__UpperCAmelCase : Any = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Dict = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , split_by_punct=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def snake_case__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = self.get_tokenizer()
__UpperCAmelCase : int = self.get_rust_tokenizer()
__UpperCAmelCase : Tuple = '''I was born in 92000, and this is falsé.'''
__UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
__UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Optional[int] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer()
__UpperCAmelCase : str = tokenizer.encode(SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Optional[int] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def snake_case__ ( self : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Any = '''This is a test'''
__UpperCAmelCase : Dict = [13, 1, 43_98, 25, 21, 12_89]
__UpperCAmelCase : Optional[Any] = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test''']
__UpperCAmelCase : str = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test''']
__UpperCAmelCase : Union[str, Any] = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Optional[Any] = DebertaVaTokenizerFast(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Dict = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Dict = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : int = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Optional[Any] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# fmt: off
__UpperCAmelCase : Optional[int] = '''I was born in 92000, and this is falsé.'''
__UpperCAmelCase : str = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9]
__UpperCAmelCase : List[str] = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ]
__UpperCAmelCase : Dict = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ]
# fmt: on
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Optional[int] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : List[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : List[Any] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Any = rust_tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def snake_case__ ( self : Union[str, Any] ):
'''simple docstring'''
__UpperCAmelCase : Any = DebertaVaTokenizer(SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : Optional[int] = tokenizer.encode('''sequence builders''' )
__UpperCAmelCase : str = tokenizer.encode('''multi-sequence build''' )
__UpperCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ )
__UpperCAmelCase : str = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE__ )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , SCREAMING_SNAKE_CASE__ , )
@slow
def snake_case__ ( self : Dict ):
'''simple docstring'''
__UpperCAmelCase : str = {'''input_ids''': [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
| 226 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class __SCREAMING_SNAKE_CASE ( A__ ):
A : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 337 | 0 |
'''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def UpperCAmelCase_ ( __lowerCamelCase : Any ):
lowercase_ :Any = prime_factors(_UpperCamelCase )
if is_square_free(_UpperCamelCase ):
return -1 if len(_UpperCamelCase ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 223 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot import BlenderbotTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__a = logging.get_logger(__name__)
__a = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
__a = {
'''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''},
'''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''},
'''tokenizer_config_file''': {
'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'''
},
}
__a = {'''facebook/blenderbot-3B''': 1_28}
class __SCREAMING_SNAKE_CASE ( A__ ):
A : Dict = VOCAB_FILES_NAMES
A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Optional[int] = ['input_ids', 'attention_mask']
A : str = BlenderbotTokenizer
def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="replace" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ):
super().__init__(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
lowercase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE__ ) != add_prefix_space:
lowercase : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , pre_tok_state.pop('''type''' ) )
lowercase : str = add_prefix_space
lowercase : List[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE__ )
lowercase : List[Any] = add_prefix_space
lowercase : str = '''post_processor'''
lowercase : str = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if tokenizer_component_instance:
lowercase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase : Tuple = tuple(state['''sep'''] )
if "cls" in state:
lowercase : Union[str, Any] = tuple(state['''cls'''] )
lowercase : Optional[int] = False
if state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE__ ) != add_prefix_space:
lowercase : Any = add_prefix_space
lowercase : Tuple = True
if state.get('''trim_offsets''' , SCREAMING_SNAKE_CASE__ ) != trim_offsets:
lowercase : List[str] = trim_offsets
lowercase : Optional[int] = True
if changes_to_apply:
lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , state.pop('''type''' ) )
lowercase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE__ )
setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@property
# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot
def __lowerCamelCase ( self ):
if self._mask_token is None:
if self.verbose:
logger.error('''Using mask_token, but it is not set yet.''' )
return None
return str(self._mask_token )
@mask_token.setter
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
lowercase : Any = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else value
lowercase : Any = value
def __lowerCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ):
lowercase : Dict = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE__ )
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def __lowerCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ):
lowercase : Any = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE__ )
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ):
lowercase : int = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ )
return tuple(SCREAMING_SNAKE_CASE__ )
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ):
lowercase : Tuple = [self.sep_token_id]
lowercase : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ):
return token_ids_a + [self.eos_token_id]
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ):
lowercase : Any = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(''' ''' + text )
else:
# Generated responses should contain them already.
inputs.append(SCREAMING_SNAKE_CASE__ )
lowercase : List[str] = ''' '''.join(SCREAMING_SNAKE_CASE__ )
lowercase : Any = self.encode(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) > self.model_max_length:
lowercase : Tuple = input_ids[-self.model_max_length :]
logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" )
return input_ids
| 337 | 0 |
'''simple docstring'''
def __UpperCamelCase ( lowercase__ : Any ):
'''simple docstring'''
return str(_UpperCamelCase ) == str(_UpperCamelCase )[::-1]
def __UpperCamelCase ( lowercase__ : Union[str, Any] ):
'''simple docstring'''
return int(_UpperCamelCase ) + int(str(_UpperCamelCase )[::-1] )
def __UpperCamelCase ( lowercase__ : Dict = 1_00_00 ):
'''simple docstring'''
__lowercase =[]
for num in range(1, _UpperCamelCase ):
__lowercase =0
__lowercase =num
while iterations < 50:
__lowercase =sum_reverse(_UpperCamelCase )
iterations += 1
if is_palindrome(_UpperCamelCase ):
break
else:
lychrel_nums.append(_UpperCamelCase )
return len(_UpperCamelCase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 141 |
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def __lowercase ( ) ->int:
"""simple docstring"""
lowercase : Tuple = HfArgumentParser(_UpperCamelCase )
lowercase : List[str] = parser.parse_args_into_dataclasses()[0]
lowercase : Optional[int] = TensorFlowBenchmark(args=_UpperCamelCase )
try:
lowercase : Any = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
lowercase : Optional[int] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.'''
lowercase : Any = ''' '''.join(str(_UpperCamelCase ).split(''' ''' )[:-1] )
lowercase : Any = ''''''
lowercase : str = eval(str(_UpperCamelCase ).split(''' ''' )[-1] )
lowercase : List[str] = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(_UpperCamelCase )
if len(_UpperCamelCase ) > 0:
lowercase : Union[str, Any] = full_error_msg + begin_error_msg + str(_UpperCamelCase )
raise ValueError(_UpperCamelCase )
benchmark.run()
if __name__ == "__main__":
main()
| 337 | 0 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = MODEL_FOR_CAUSAL_LM_MAPPING
SCREAMING_SNAKE_CASE__ : Tuple = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[str] = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" )
# Using `do_sample=False` to force deterministic output
UpperCAmelCase : Tuple = text_generator("This is a test" , do_sample=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [
{
"generated_text": (
"This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
" oscope. FiliFili@@"
)
}
] , )
UpperCAmelCase : int = text_generator(["This is a test", "This is a second test"] )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [
[
{
"generated_text": (
"This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
" oscope. FiliFili@@"
)
}
],
[
{
"generated_text": (
"This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy"
" oscope. oscope. FiliFili@@"
)
}
],
] , )
UpperCAmelCase : Optional[Any] = text_generator("This is a test" , do_sample=SCREAMING_SNAKE_CASE__ , num_return_sequences=2 , return_tensors=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [
{"generated_token_ids": ANY(SCREAMING_SNAKE_CASE__ )},
{"generated_token_ids": ANY(SCREAMING_SNAKE_CASE__ )},
] , )
UpperCAmelCase : Any = text_generator.model.config.eos_token_id
UpperCAmelCase : int = '''<pad>'''
UpperCAmelCase : Optional[Any] = text_generator(
["This is a test", "This is a second test"] , do_sample=SCREAMING_SNAKE_CASE__ , num_return_sequences=2 , batch_size=2 , return_tensors=SCREAMING_SNAKE_CASE__ , )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [
[
{"generated_token_ids": ANY(SCREAMING_SNAKE_CASE__ )},
{"generated_token_ids": ANY(SCREAMING_SNAKE_CASE__ )},
],
[
{"generated_token_ids": ANY(SCREAMING_SNAKE_CASE__ )},
{"generated_token_ids": ANY(SCREAMING_SNAKE_CASE__ )},
],
] , )
@require_tf
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" )
# Using `do_sample=False` to force deterministic output
UpperCAmelCase : str = text_generator("This is a test" , do_sample=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [
{
"generated_text": (
"This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
" please,"
)
}
] , )
UpperCAmelCase : Optional[int] = text_generator(["This is a test", "This is a second test"] , do_sample=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [
[
{
"generated_text": (
"This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
" please,"
)
}
],
[
{
"generated_text": (
"This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes"
" Cannes 閲閲Cannes Cannes Cannes 攵 please,"
)
}
],
] , )
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = TextGenerationPipeline(model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ )
return text_generator, ["This is a test", "Another test"]
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = '''Hello I believe in'''
UpperCAmelCase : Optional[int] = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" )
UpperCAmelCase : Optional[int] = text_generator(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , )
UpperCAmelCase : Tuple = text_generator(SCREAMING_SNAKE_CASE__ , stop_sequence=" fe" )
self.assertEqual(SCREAMING_SNAKE_CASE__ , [{"generated_text": "Hello I believe in fe"}] )
def A_ ( self , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Tuple = text_generator.model
UpperCAmelCase : List[Any] = text_generator.tokenizer
UpperCAmelCase : Dict = text_generator("This is a test" )
self.assertEqual(SCREAMING_SNAKE_CASE__ , [{"generated_text": ANY(SCREAMING_SNAKE_CASE__ )}] )
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) )
UpperCAmelCase : Dict = text_generator("This is a test" , return_full_text=SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , [{"generated_text": ANY(SCREAMING_SNAKE_CASE__ )}] )
self.assertNotIn("This is a test" , outputs[0]["generated_text"] )
UpperCAmelCase : Tuple = pipeline(task="text-generation" , model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , return_full_text=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase : Any = text_generator("This is a test" )
self.assertEqual(SCREAMING_SNAKE_CASE__ , [{"generated_text": ANY(SCREAMING_SNAKE_CASE__ )}] )
self.assertNotIn("This is a test" , outputs[0]["generated_text"] )
UpperCAmelCase : Any = text_generator("This is a test" , return_full_text=SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , [{"generated_text": ANY(SCREAMING_SNAKE_CASE__ )}] )
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) )
UpperCAmelCase : int = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [
[{"generated_text": ANY(SCREAMING_SNAKE_CASE__ )}, {"generated_text": ANY(SCREAMING_SNAKE_CASE__ )}],
[{"generated_text": ANY(SCREAMING_SNAKE_CASE__ )}, {"generated_text": ANY(SCREAMING_SNAKE_CASE__ )}],
] , )
if text_generator.tokenizer.pad_token is not None:
UpperCAmelCase : Dict = text_generator(
["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [
[{"generated_text": ANY(SCREAMING_SNAKE_CASE__ )}, {"generated_text": ANY(SCREAMING_SNAKE_CASE__ )}],
[{"generated_text": ANY(SCREAMING_SNAKE_CASE__ )}, {"generated_text": ANY(SCREAMING_SNAKE_CASE__ )}],
] , )
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase : Dict = text_generator("test" , return_full_text=SCREAMING_SNAKE_CASE__ , return_text=SCREAMING_SNAKE_CASE__ )
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase : List[Any] = text_generator("test" , return_full_text=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ )
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase : List[str] = text_generator("test" , return_text=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ )
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
UpperCAmelCase : Dict = text_generator("" )
self.assertEqual(SCREAMING_SNAKE_CASE__ , [{"generated_text": ANY(SCREAMING_SNAKE_CASE__ )}] )
else:
with self.assertRaises((ValueError, AssertionError) ):
UpperCAmelCase : Any = text_generator("" )
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
UpperCAmelCase : Tuple = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM''']
if (
tokenizer.model_max_length < 1_0_0_0_0
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ):
text_generator("This is a test" * 5_0_0 , max_new_tokens=2_0 )
UpperCAmelCase : Tuple = text_generator("This is a test" * 5_0_0 , handle_long_generation="hole" , max_new_tokens=2_0 )
# Hole strategy cannot work
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
text_generator(
"This is a test" * 5_0_0 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 1_0 , )
@require_torch
@require_accelerate
@require_torch_gpu
def A_ ( self ):
'''simple docstring'''
import torch
# Classic `model_kwargs`
UpperCAmelCase : Union[str, Any] = pipeline(
model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
UpperCAmelCase : List[str] = pipe("This is a test" )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [
{
"generated_text": (
"This is a test test test test test test test test test test test test test test test test"
" test"
)
}
] , )
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
UpperCAmelCase : List[str] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
UpperCAmelCase : Tuple = pipe("This is a test" )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [
{
"generated_text": (
"This is a test test test test test test test test test test test test test test test test"
" test"
)
}
] , )
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
UpperCAmelCase : str = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa )
UpperCAmelCase : Optional[int] = pipe("This is a test" )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [
{
"generated_text": (
"This is a test test test test test test test test test test test test test test test test"
" test"
)
}
] , )
@require_torch
@require_torch_gpu
def A_ ( self ):
'''simple docstring'''
import torch
UpperCAmelCase : List[str] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa )
pipe("This is a test" )
@require_torch
@require_accelerate
@require_torch_gpu
def A_ ( self ):
'''simple docstring'''
import torch
UpperCAmelCase : List[Any] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa )
pipe("This is a test" , do_sample=SCREAMING_SNAKE_CASE__ , top_p=0.5 )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Dict = '''Hello world'''
UpperCAmelCase : Union[str, Any] = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" )
if text_generator.model.framework == "tf":
UpperCAmelCase : List[Any] = logging.get_logger("transformers.generation.tf_utils" )
else:
UpperCAmelCase : Any = logging.get_logger("transformers.generation.utils" )
UpperCAmelCase : Tuple = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(SCREAMING_SNAKE_CASE__ ) as cl:
UpperCAmelCase : Union[str, Any] = text_generator(SCREAMING_SNAKE_CASE__ , max_length=1_0 , max_new_tokens=1 )
self.assertIn(SCREAMING_SNAKE_CASE__ , cl.out )
# The user only sets one -> no warning
with CaptureLogger(SCREAMING_SNAKE_CASE__ ) as cl:
UpperCAmelCase : Any = text_generator(SCREAMING_SNAKE_CASE__ , max_new_tokens=1 )
self.assertNotIn(SCREAMING_SNAKE_CASE__ , cl.out )
with CaptureLogger(SCREAMING_SNAKE_CASE__ ) as cl:
UpperCAmelCase : Tuple = text_generator(SCREAMING_SNAKE_CASE__ , max_length=1_0 )
self.assertNotIn(SCREAMING_SNAKE_CASE__ , cl.out )
| 311 |
def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]:
"""simple docstring"""
lowercase : Union[str, Any] = [False] * len(_UpperCamelCase )
lowercase : Optional[int] = []
queue.append(_UpperCamelCase )
lowercase : Union[str, Any] = True
while queue:
lowercase : List[str] = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(_UpperCamelCase )
lowercase : Tuple = True
lowercase : Optional[Any] = u
return visited[t]
def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->List[str]:
"""simple docstring"""
lowercase : List[str] = [-1] * (len(_UpperCamelCase ))
lowercase : int = 0
while bfs(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ):
lowercase : List[str] = float('''Inf''' )
lowercase : int = sink
while s != source:
# Find the minimum value in select path
lowercase : List[Any] = min(_UpperCamelCase, graph[parent[s]][s] )
lowercase : Union[str, Any] = parent[s]
max_flow += path_flow
lowercase : Optional[int] = sink
while v != source:
lowercase : Any = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
lowercase : Union[str, Any] = parent[v]
return max_flow
__a = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
__a , __a = 0, 5
print(ford_fulkerson(graph, source, sink))
| 337 | 0 |
"""simple docstring"""
from typing import List
from .keymap import KEYMAP, get_character
def a__ ( lowerCAmelCase ) -> int:
def decorator(lowerCAmelCase ):
UpperCAmelCase__ : str = getattr(_UpperCamelCase , """handle_key""" , [] )
handle += [key]
setattr(_UpperCamelCase , """handle_key""" , _UpperCamelCase )
return func
return decorator
def a__ ( *lowerCAmelCase ) -> Any:
def decorator(lowerCAmelCase ):
UpperCAmelCase__ : List[Any] = getattr(_UpperCamelCase , """handle_key""" , [] )
handle += keys
setattr(_UpperCamelCase , """handle_key""" , _UpperCamelCase )
return func
return decorator
class lowerCamelCase ( A__ ):
'''simple docstring'''
def __new__(cls , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : str = super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not hasattr(SCREAMING_SNAKE_CASE__ , """key_handler""" ):
setattr(SCREAMING_SNAKE_CASE__ , """key_handler""" , {} )
setattr(SCREAMING_SNAKE_CASE__ , """handle_input""" , KeyHandler.handle_input )
for value in attrs.values():
UpperCAmelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , [] )
for key in handled_keys:
UpperCAmelCase__ : List[Any] = value
return new_cls
@staticmethod
def _a (cls ):
"""simple docstring"""
UpperCAmelCase__ : Dict = get_character()
if char != KEYMAP["undefined"]:
UpperCAmelCase__ : Optional[int] = ord(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ : Optional[Any] = cls.key_handler.get(SCREAMING_SNAKE_CASE__ )
if handler:
UpperCAmelCase__ : Tuple = char
return handler(cls )
else:
return None
def a__ ( cls ) -> Any:
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 171 |
from typing import List
from .keymap import KEYMAP, get_character
def __lowercase ( _UpperCamelCase ) ->int:
"""simple docstring"""
def decorator(_UpperCamelCase ):
lowercase : str = getattr(_UpperCamelCase, '''handle_key''', [] )
handle += [key]
setattr(_UpperCamelCase, '''handle_key''', _UpperCamelCase )
return func
return decorator
def __lowercase ( *_UpperCamelCase ) ->Any:
"""simple docstring"""
def decorator(_UpperCamelCase ):
lowercase : List[Any] = getattr(_UpperCamelCase, '''handle_key''', [] )
handle += keys
setattr(_UpperCamelCase, '''handle_key''', _UpperCamelCase )
return func
return decorator
class __SCREAMING_SNAKE_CASE ( A__ ):
def __new__( cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowercase : str = super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not hasattr(SCREAMING_SNAKE_CASE__ , '''key_handler''' ):
setattr(SCREAMING_SNAKE_CASE__ , '''key_handler''' , {} )
setattr(SCREAMING_SNAKE_CASE__ , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
lowercase : Dict = getattr(SCREAMING_SNAKE_CASE__ , '''handle_key''' , [] )
for key in handled_keys:
lowercase : List[Any] = value
return new_cls
@staticmethod
def __lowerCamelCase ( cls ):
lowercase : Dict = get_character()
if char != KEYMAP["undefined"]:
lowercase : Optional[int] = ord(SCREAMING_SNAKE_CASE__ )
lowercase : Optional[Any] = cls.key_handler.get(SCREAMING_SNAKE_CASE__ )
if handler:
lowercase : Tuple = char
return handler(cls )
else:
return None
def __lowercase ( cls ) ->Any:
"""simple docstring"""
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
| 337 | 0 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A = logging.get_logger(__name__)
A = {
'''microsoft/unispeech-sat-base-100h-libri-ft''': (
'''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'''
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class __lowercase ( A__ ):
'''simple docstring'''
__lowerCAmelCase = 'unispeech-sat'
def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.0_5 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=504 , **_UpperCAmelCase , ):
super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = hidden_size
__a : Optional[int] = feat_extract_norm
__a : Dict = feat_extract_activation
__a : int = list(SCREAMING_SNAKE_CASE__ )
__a : List[Any] = list(SCREAMING_SNAKE_CASE__ )
__a : Dict = list(SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = conv_bias
__a : Any = num_conv_pos_embeddings
__a : Any = num_conv_pos_embedding_groups
__a : int = len(self.conv_dim )
__a : Union[str, Any] = num_hidden_layers
__a : int = intermediate_size
__a : Optional[int] = hidden_act
__a : List[str] = num_attention_heads
__a : Any = hidden_dropout
__a : List[Any] = attention_dropout
__a : Any = activation_dropout
__a : int = feat_proj_dropout
__a : str = final_dropout
__a : Optional[Any] = layerdrop
__a : Optional[Any] = layer_norm_eps
__a : Union[str, Any] = initializer_range
__a : List[str] = vocab_size
__a : List[Any] = num_clusters
__a : Union[str, Any] = do_stable_layer_norm
__a : List[str] = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__a : Union[str, Any] = apply_spec_augment
__a : Optional[int] = mask_time_prob
__a : Any = mask_time_length
__a : Dict = mask_time_min_masks
__a : List[str] = mask_feature_prob
__a : List[str] = mask_feature_length
__a : Union[str, Any] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__a : List[str] = num_codevectors_per_group
__a : str = num_codevector_groups
__a : List[Any] = contrastive_logits_temperature
__a : Union[str, Any] = feat_quantizer_dropout
__a : str = num_negatives
__a : Dict = codevector_dim
__a : Tuple = proj_codevector_dim
__a : Optional[int] = diversity_loss_weight
# ctc loss
__a : Any = ctc_loss_reduction
__a : Any = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__a : Dict = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__a : Optional[Any] = list(SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = list(SCREAMING_SNAKE_CASE__ )
__a : int = list(SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = xvector_output_dim
@property
def _lowerCamelCase ( self ):
return functools.reduce(operator.mul , self.conv_stride , 1 ) | 160 |
import logging
import os
from .state import PartialState
class __SCREAMING_SNAKE_CASE ( logging.LoggerAdapter ):
@staticmethod
def __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ):
lowercase : List[Any] = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ):
if PartialState._shared_state == {}:
raise RuntimeError(
'''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' )
lowercase : List[str] = kwargs.pop('''main_process_only''' , SCREAMING_SNAKE_CASE__ )
lowercase : List[str] = kwargs.pop('''in_order''' , SCREAMING_SNAKE_CASE__ )
if self.isEnabledFor(SCREAMING_SNAKE_CASE__ ):
if self._should_log(SCREAMING_SNAKE_CASE__ ):
lowercase , lowercase : str = self.process(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.logger.log(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
elif in_order:
lowercase : List[Any] = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
lowercase , lowercase : Union[str, Any] = self.process(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.logger.log(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
state.wait_for_everyone()
def __lowercase ( _UpperCamelCase, _UpperCamelCase = None ) ->List[Any]:
"""simple docstring"""
if log_level is None:
lowercase : str = os.environ.get('''ACCELERATE_LOG_LEVEL''', _UpperCamelCase )
lowercase : str = logging.getLogger(_UpperCamelCase )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(_UpperCamelCase, {} )
| 337 | 0 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> bool:
if len(snake_case__ ) == 0:
return False
lowerCAmelCase = len(snake_case__ ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] , snake_case__ )
else:
return binary_search(a_list[midpoint + 1 :] , snake_case__ )
if __name__ == "__main__":
lowercase__ : str = input('''Enter numbers separated by comma:\n''').strip()
lowercase__ : Union[str, Any] = [int(item.strip()) for item in user_input.split(''',''')]
lowercase__ : Tuple = int(input('''Enter the number to be found in the list:\n''').strip())
lowercase__ : List[Any] = '''''' if binary_search(sequence, target) else '''not '''
print(f'{target} was {not_str}found in {sequence}')
| 338 | import os
import re
import shutil
import sys
import tempfile
import unittest
import black
lowercase__ : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
lowercase__ : Dict = ''' def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
'''
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = tempfile.mkdtemp()
os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) )
lowerCAmelCase = self.transformer_dir
shutil.copy(
os.path.join(__SCREAMING_SNAKE_CASE , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = '''src/transformers'''
shutil.rmtree(self.transformer_dir )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Union[str, Any]:
lowerCAmelCase = comment + F"\nclass {class_name}(nn.Module):\n" + class_code
if overwrite_result is not None:
lowerCAmelCase = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result
lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
lowerCAmelCase = black.format_str(__SCREAMING_SNAKE_CASE , mode=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = os.path.join(self.transformer_dir , '''new_code.py''' )
with open(__SCREAMING_SNAKE_CASE , '''w''' , newline='''\n''' ) as f:
f.write(__SCREAMING_SNAKE_CASE )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(__SCREAMING_SNAKE_CASE ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=__SCREAMING_SNAKE_CASE )
with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f:
self.assertTrue(f.read() , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
# Base copy consistency
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , __SCREAMING_SNAKE_CASE , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , __SCREAMING_SNAKE_CASE ) , )
# Copy consistency with a really long name
lowerCAmelCase = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub('''Bert''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , __SCREAMING_SNAKE_CASE , overwrite_result=re.sub('''Bert''' , '''TestModel''' , __SCREAMING_SNAKE_CASE ) , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
lowerCAmelCase = check_copies.LOCALIZED_READMES['''README_zh-hans.md''']
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),'''
''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**'''
''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders'''
''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang'''
''' Luong, Quoc V. Le, Christopher D. Manning.'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文'''
''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自'''
''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather'''
''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,'''
''' Christopher D. Manning 发布。\n'''
)
lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] )
self.assertFalse(__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] )
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and'''
''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] )
# Check if the model link is synchronized.
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 338 | 1 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ = True , snake_case__ = math.inf , snake_case__ = -math.inf , snake_case__ = math.inf , snake_case__ = -math.inf , snake_case__ = False , snake_case__ = 1_0_0 , snake_case__ = 0.01 , snake_case__ = 1 , ) -> Any:
lowerCAmelCase = False
lowerCAmelCase = search_prob
lowerCAmelCase = start_temperate
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = None
while not search_end:
lowerCAmelCase = current_state.score()
if best_state is None or current_score > best_state.score():
lowerCAmelCase = current_state
scores.append(snake_case__ )
iterations += 1
lowerCAmelCase = None
lowerCAmelCase = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
lowerCAmelCase = random.randint(0 , len(snake_case__ ) - 1 ) # picking a random neighbor
lowerCAmelCase = neighbors.pop(snake_case__ )
lowerCAmelCase = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
lowerCAmelCase = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
lowerCAmelCase = picked_neighbor
else:
lowerCAmelCase = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
lowerCAmelCase = picked_neighbor
lowerCAmelCase = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
lowerCAmelCase = True
else:
lowerCAmelCase = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(snake_case__ ) , snake_case__ )
plt.xlabel('''Iterations''' )
plt.ylabel('''Function values''' )
plt.show()
return best_state
if __name__ == "__main__":
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Tuple:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
lowercase__ : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa)
lowercase__ : int = simulated_annealing(
prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
f'and 50 > y > - 5 found via hill climbing: {local_min.score()}'
)
# starting the problem with initial coordinates (12, 47)
lowercase__ : Union[str, Any] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa)
lowercase__ : Optional[int] = simulated_annealing(
prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
f'and 50 > y > - 5 found via hill climbing: {local_min.score()}'
)
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Optional[Any]:
return (3 * x**2) - (6 * y)
lowercase__ : List[str] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
lowercase__ : Any = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
f'{local_min.score()}'
)
lowercase__ : Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
lowercase__ : Optional[Any] = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
f'{local_min.score()}'
)
| 338 | import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'''split_dict''' , [
SplitDict(),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name='''my_dataset''' )} ),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 )} ),
SplitDict({'''train''': SplitInfo()} ),
] , )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase = split_dict._to_yaml_list()
assert len(snake_case__ ) == len(snake_case__ )
lowerCAmelCase = SplitDict._from_yaml_list(snake_case__ )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
lowerCAmelCase = None
# the split name of split_dict takes over the name of the split info object
lowerCAmelCase = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'''split_info''' , [SplitInfo(), SplitInfo(dataset_name=snake_case__ ), SplitInfo(dataset_name='''my_dataset''' )] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
lowerCAmelCase = asdict(SplitDict({'''train''': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 338 | 1 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
lowercase__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
lowercase__ : Union[str, Any] = '''
Examples:
```py
>>> from PIL import Image
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from diffusers.utils import export_to_gif, load_image
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> repo = "openai/shap-e-img2img"
>>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)
>>> pipe = pipe.to(device)
>>> guidance_scale = 3.0
>>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"
>>> image = load_image(image_url).convert("RGB")
>>> images = pipe(
... image,
... guidance_scale=guidance_scale,
... num_inference_steps=64,
... frame_size=256,
... ).images
>>> gif_path = export_to_gif(images[0], "corgi_3d.gif")
```
'''
@dataclass
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Union[PIL.Image.Image, np.ndarray]
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) ->int:
super().__init__()
self.register_modules(
prior=__SCREAMING_SNAKE_CASE , image_encoder=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , renderer=__SCREAMING_SNAKE_CASE , )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Dict:
if latents is None:
lowerCAmelCase = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )
else:
if latents.shape != shape:
raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" )
lowerCAmelCase = latents.to(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = latents * scheduler.init_noise_sigma
return latents
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0 ) ->Tuple:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
lowerCAmelCase = torch.device(F"cuda:{gpu_id}" )
lowerCAmelCase = [self.image_encoder, self.prior]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ):
return self.device
for module in self.image_encoder.modules():
if (
hasattr(__SCREAMING_SNAKE_CASE , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) ->Tuple:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(image[0] , torch.Tensor ):
lowerCAmelCase = torch.cat(__SCREAMING_SNAKE_CASE , axis=0 ) if image[0].ndim == 4 else torch.stack(__SCREAMING_SNAKE_CASE , axis=0 )
if not isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ):
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 )
lowerCAmelCase = image.to(dtype=self.image_encoder.dtype , device=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.image_encoder(__SCREAMING_SNAKE_CASE )['''last_hidden_state''']
lowerCAmelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
lowerCAmelCase = image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 )
if do_classifier_free_guidance:
lowerCAmelCase = torch.zeros_like(__SCREAMING_SNAKE_CASE )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
lowerCAmelCase = torch.cat([negative_image_embeds, image_embeds] )
return image_embeds
@torch.no_grad()
@replace_example_docstring(__SCREAMING_SNAKE_CASE )
def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 25 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 4.0 , __SCREAMING_SNAKE_CASE = 64 , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , ) ->Tuple:
if isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ):
lowerCAmelCase = 1
elif isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ):
lowerCAmelCase = image.shape[0]
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ):
lowerCAmelCase = len(__SCREAMING_SNAKE_CASE )
else:
raise ValueError(
F"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__SCREAMING_SNAKE_CASE )}" )
lowerCAmelCase = self._execution_device
lowerCAmelCase = batch_size * num_images_per_prompt
lowerCAmelCase = guidance_scale > 1.0
lowerCAmelCase = self._encode_image(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# prior
self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.scheduler.timesteps
lowerCAmelCase = self.prior.config.num_embeddings
lowerCAmelCase = self.prior.config.embedding_dim
lowerCAmelCase = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.scheduler , )
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
lowerCAmelCase = latents.reshape(latents.shape[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
for i, t in enumerate(self.progress_bar(__SCREAMING_SNAKE_CASE ) ):
# expand the latents if we are doing classifier free guidance
lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowerCAmelCase = self.scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.prior(
__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , proj_embedding=__SCREAMING_SNAKE_CASE , ).predicted_image_embedding
# remove the variance
lowerCAmelCase , lowerCAmelCase = noise_pred.split(
scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
lowerCAmelCase , lowerCAmelCase = noise_pred.chunk(2 )
lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
lowerCAmelCase = self.scheduler.step(
__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , sample=__SCREAMING_SNAKE_CASE , ).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = []
for i, latent in enumerate(__SCREAMING_SNAKE_CASE ):
print()
lowerCAmelCase = self.renderer.decode(
latent[None, :] , __SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , )
images.append(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.stack(__SCREAMING_SNAKE_CASE )
if output_type not in ["np", "pil"]:
raise ValueError(F"Only the output types `pil` and `np` are supported not output_type={output_type}" )
lowerCAmelCase = images.cpu().numpy()
if output_type == "pil":
lowerCAmelCase = [self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) for image in images]
# Offload last model to CPU
if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=__SCREAMING_SNAKE_CASE )
| 338 | import unittest
import numpy as np
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ) -> np.ndarray:
lowerCAmelCase = np.shape(snake_case__ )
lowerCAmelCase = np.shape(snake_case__ )
lowerCAmelCase = np.shape(snake_case__ )
if shape_a[0] != shape_b[0]:
lowerCAmelCase = (
'''Expected the same number of rows for A and B. '''
f"Instead found A of size {shape_a} and B of size {shape_b}"
)
raise ValueError(snake_case__ )
if shape_b[1] != shape_c[1]:
lowerCAmelCase = (
'''Expected the same number of columns for B and C. '''
f"Instead found B of size {shape_b} and C of size {shape_c}"
)
raise ValueError(snake_case__ )
lowerCAmelCase = pseudo_inv
if a_inv is None:
try:
lowerCAmelCase = np.linalg.inv(snake_case__ )
except np.linalg.LinAlgError:
raise ValueError(
'''Input matrix A is not invertible. Cannot compute Schur complement.''' )
return mat_c - mat_b.T @ a_inv @ mat_b
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->None:
lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCAmelCase = np.array([[2, 1], [6, 3]] )
lowerCAmelCase = schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.block([[a, b], [b.T, c]] )
lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE )
self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , det_a * det_s )
def SCREAMING_SNAKE_CASE_ ( self ) ->None:
lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCAmelCase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->None:
lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 338 | 1 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> list[int]:
return [ord(snake_case__ ) - 9_6 for elem in plain]
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str:
return "".join(chr(elem + 9_6 ) for elem in encoded )
def SCREAMING_SNAKE_CASE_ ( ) -> None:
lowerCAmelCase = encode(input('''-> ''' ).strip().lower() )
print('''Encoded: ''' , snake_case__ )
print('''Decoded:''' , decode(snake_case__ ) )
if __name__ == "__main__":
main()
| 338 | import argparse
import hashlib
import os
import urllib
import warnings
import torch
from torch import nn
from tqdm import tqdm
from transformers import WhisperConfig, WhisperForConditionalGeneration
lowercase__ : Any = {
'''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''',
'''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''',
'''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''',
'''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''',
'''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''',
'''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''',
'''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''',
'''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''',
'''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''',
'''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''',
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str:
lowerCAmelCase = ['''layers''', '''blocks''']
for k in ignore_keys:
state_dict.pop(snake_case__ , snake_case__ )
lowercase__ : List[Any] = {
'''blocks''': '''layers''',
'''mlp.0''': '''fc1''',
'''mlp.2''': '''fc2''',
'''mlp_ln''': '''final_layer_norm''',
'''.attn.query''': '''.self_attn.q_proj''',
'''.attn.key''': '''.self_attn.k_proj''',
'''.attn.value''': '''.self_attn.v_proj''',
'''.attn_ln''': '''.self_attn_layer_norm''',
'''.attn.out''': '''.self_attn.out_proj''',
'''.cross_attn.query''': '''.encoder_attn.q_proj''',
'''.cross_attn.key''': '''.encoder_attn.k_proj''',
'''.cross_attn.value''': '''.encoder_attn.v_proj''',
'''.cross_attn_ln''': '''.encoder_attn_layer_norm''',
'''.cross_attn.out''': '''.encoder_attn.out_proj''',
'''decoder.ln.''': '''decoder.layer_norm.''',
'''encoder.ln.''': '''encoder.layer_norm.''',
'''token_embedding''': '''embed_tokens''',
'''encoder.positional_embedding''': '''encoder.embed_positions.weight''',
'''decoder.positional_embedding''': '''decoder.embed_positions.weight''',
'''ln_post''': '''layer_norm''',
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase = list(s_dict.keys() )
for key in keys:
lowerCAmelCase = key
for k, v in WHISPER_MAPPING.items():
if k in key:
lowerCAmelCase = new_key.replace(snake_case__ , snake_case__ )
print(f"{key} -> {new_key}" )
lowerCAmelCase = s_dict.pop(snake_case__ )
return s_dict
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase , lowerCAmelCase = emb.weight.shape
lowerCAmelCase = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ )
lowerCAmelCase = emb.weight.data
return lin_layer
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> bytes:
os.makedirs(snake_case__ , exist_ok=snake_case__ )
lowerCAmelCase = os.path.basename(snake_case__ )
lowerCAmelCase = url.split('''/''' )[-2]
lowerCAmelCase = os.path.join(snake_case__ , snake_case__ )
if os.path.exists(snake_case__ ) and not os.path.isfile(snake_case__ ):
raise RuntimeError(f"{download_target} exists and is not a regular file" )
if os.path.isfile(snake_case__ ):
lowerCAmelCase = open(snake_case__ , '''rb''' ).read()
if hashlib.shaaaa(snake_case__ ).hexdigest() == expected_shaaaa:
return model_bytes
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" )
with urllib.request.urlopen(snake_case__ ) as source, open(snake_case__ , '''wb''' ) as output:
with tqdm(
total=int(source.info().get('''Content-Length''' ) ) , ncols=8_0 , unit='''iB''' , unit_scale=snake_case__ , unit_divisor=1_0_2_4 ) as loop:
while True:
lowerCAmelCase = source.read(8_1_9_2 )
if not buffer:
break
output.write(snake_case__ )
loop.update(len(snake_case__ ) )
lowerCAmelCase = open(snake_case__ , '''rb''' ).read()
if hashlib.shaaaa(snake_case__ ).hexdigest() != expected_shaaaa:
raise RuntimeError(
'''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' )
return model_bytes
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
if ".pt" not in checkpoint_path:
lowerCAmelCase = _download(_MODELS[checkpoint_path] )
else:
lowerCAmelCase = torch.load(snake_case__ , map_location='''cpu''' )
lowerCAmelCase = original_checkpoint['''dims''']
lowerCAmelCase = original_checkpoint['''model_state_dict''']
lowerCAmelCase = state_dict['''decoder.token_embedding.weight''']
remove_ignore_keys_(snake_case__ )
rename_keys(snake_case__ )
lowerCAmelCase = True
lowerCAmelCase = state_dict['''decoder.layers.0.fc1.weight'''].shape[0]
lowerCAmelCase = WhisperConfig(
vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=snake_case__ , decoder_ffn_dim=snake_case__ , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , )
lowerCAmelCase = WhisperForConditionalGeneration(snake_case__ )
lowerCAmelCase , lowerCAmelCase = model.model.load_state_dict(snake_case__ , strict=snake_case__ )
if len(snake_case__ ) > 0 and not set(snake_case__ ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'''
f" but all the following weights are missing {missing}" )
if tie_embeds:
lowerCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
lowerCAmelCase = proj_out_weights
model.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase__ : List[str] = argparse.ArgumentParser()
# # Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''')
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
lowercase__ : int = parser.parse_args()
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
| 338 | 1 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> int:
if len(snake_case__ ) < k or k < 0:
raise ValueError('''Invalid Input''' )
lowerCAmelCase = lowerCAmelCase = sum(array[:k] )
for i in range(len(snake_case__ ) - k ):
lowerCAmelCase = current_sum - array[i] + array[i + k]
lowerCAmelCase = max(snake_case__ , snake_case__ )
return max_sum
if __name__ == "__main__":
from doctest import testmod
from random import randint
testmod()
lowercase__ : Tuple = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0_0)]
lowercase__ : Optional[int] = randint(0, 1_1_0)
print(f'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
| 338 | from ...processing_utils import ProcessorMixin
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = ["""image_processor""", """feature_extractor"""]
UpperCAmelCase_ : Optional[int] = """TvltImageProcessor"""
UpperCAmelCase_ : Optional[int] = """TvltFeatureExtractor"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
super().__init__(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = image_processor
lowerCAmelCase = feature_extractor
def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) ->List[Any]:
if images is None and audio is None:
raise ValueError('''You need to specify either an `images` or `audio` input to process.''' )
lowerCAmelCase = None
if images is not None:
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , mask_pixel=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if images_mixed is not None:
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , is_mixed=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if audio is not None:
lowerCAmelCase = self.feature_extractor(
__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , mask_audio=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {}
if audio is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
if images is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
if images_mixed_dict is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
return output_dict
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.image_processor.model_input_names
lowerCAmelCase = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 338 | 1 |
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
lowercase__ : int = logging.get_logger(__name__)
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->None:
warnings.warn(
'''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use CLIPImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , )
super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
| 338 | def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> List[str]:
lowerCAmelCase = len(snake_case__ )
for i in range(length - 1 ):
lowerCAmelCase = i
for k in range(i + 1 , snake_case__ ):
if collection[k] < collection[least]:
lowerCAmelCase = k
if least != i:
lowerCAmelCase , lowerCAmelCase = (collection[i], collection[least])
return collection
if __name__ == "__main__":
lowercase__ : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip()
lowercase__ : str = [int(item) for item in user_input.split(''',''')]
print(selection_sort(unsorted))
| 338 | 1 |
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Any:
lowerCAmelCase = {}
lowerCAmelCase = tokenizer(example['''content'''] , truncation=snake_case__ )['''input_ids''']
lowerCAmelCase = len(example['''content'''] ) / len(output['''input_ids'''] )
return output
lowercase__ : int = HfArgumentParser(PretokenizationArguments)
lowercase__ : Dict = parser.parse_args()
if args.num_workers is None:
lowercase__ : Tuple = multiprocessing.cpu_count()
lowercase__ : str = AutoTokenizer.from_pretrained(args.tokenizer_dir)
lowercase__ : Optional[int] = time.time()
lowercase__ : Tuple = load_dataset(args.dataset_name, split='''train''')
print(f'Dataset loaded in {time.time()-t_start:.2f}s')
lowercase__ : List[Any] = time.time()
lowercase__ : Union[str, Any] = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
'''repo_name''',
'''path''',
'''copies''',
'''size''',
'''content''',
'''license''',
'''hash''',
'''line_mean''',
'''line_max''',
'''alpha_frac''',
'''autogenerated''',
],
)
print(f'Dataset tokenized in {time.time()-t_start:.2f}s')
lowercase__ : Any = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'Data pushed to the hub in {time.time()-t_start:.2f}s')
| 338 | import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class lowercase_ :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=19 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) ->Union[str, Any]:
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = EsmConfig(
vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__SCREAMING_SNAKE_CASE , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , )
return config
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = EsmForProteinFolding(config=__SCREAMING_SNAKE_CASE ).float()
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) )
self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowercase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = False
UpperCAmelCase_ : Dict = (EsmForProteinFolding,) if is_torch_available() else ()
UpperCAmelCase_ : List[Any] = ()
UpperCAmelCase_ : Tuple = {} if is_torch_available() else {}
UpperCAmelCase_ : List[str] = False
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = EsmFoldModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
@unittest.skip('''Does not support attention outputs''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
pass
@unittest.skip
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
pass
@unittest.skip('''Esm does not support embedding resizing''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
pass
@unittest.skip('''Esm does not support embedding resizing''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold does not support passing input embeds!''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
pass
@unittest.skip('''ESMFold does not output hidden states in the normal way.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
pass
@unittest.skip('''ESMfold does not output hidden states in the normal way.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
pass
@unittest.skip('''ESMFold only has one output format.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
pass
@unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
pass
@unittest.skip('''ESMFold does not support input chunking.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
pass
@unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold doesn\'t support data parallel.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
pass
@require_torch
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float()
model.eval()
lowerCAmelCase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )['''positions''']
lowerCAmelCase = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] , dtype=torch.floataa )
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 338 | 1 |
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> int:
assert column_title.isupper()
lowerCAmelCase = 0
lowerCAmelCase = len(snake_case__ ) - 1
lowerCAmelCase = 0
while index >= 0:
lowerCAmelCase = (ord(column_title[index] ) - 6_4) * pow(2_6 , snake_case__ )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 338 | import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = ["""image_processor""", """tokenizer"""]
UpperCAmelCase_ : int = """OwlViTImageProcessor"""
UpperCAmelCase_ : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Any:
lowerCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __SCREAMING_SNAKE_CASE , )
lowerCAmelCase = kwargs.pop('''feature_extractor''' )
lowerCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="max_length" , __SCREAMING_SNAKE_CASE="np" , **__SCREAMING_SNAKE_CASE ) ->int:
if text is None and query_images is None and images is None:
raise ValueError(
'''You have to specify at least one text or query image or image. All three cannot be none.''' )
if text is not None:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or (isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(text[0] , __SCREAMING_SNAKE_CASE )):
lowerCAmelCase = [self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )]
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(text[0] , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = []
# Maximum number of queries across batch
lowerCAmelCase = max([len(__SCREAMING_SNAKE_CASE ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__SCREAMING_SNAKE_CASE ) != max_num_queries:
lowerCAmelCase = t + [''' '''] * (max_num_queries - len(__SCREAMING_SNAKE_CASE ))
lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
encodings.append(__SCREAMING_SNAKE_CASE )
else:
raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' )
if return_tensors == "np":
lowerCAmelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
lowerCAmelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
lowerCAmelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
lowerCAmelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
lowerCAmelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 )
lowerCAmelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
lowerCAmelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
lowerCAmelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
else:
raise ValueError('''Target return tensor type could not be returned''' )
lowerCAmelCase = BatchEncoding()
lowerCAmelCase = input_ids
lowerCAmelCase = attention_mask
if query_images is not None:
lowerCAmelCase = BatchEncoding()
lowerCAmelCase = self.image_processor(
__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).pixel_values
lowerCAmelCase = query_pixel_values
if images is not None:
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if text is not None and images is not None:
lowerCAmelCase = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
lowerCAmelCase = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__SCREAMING_SNAKE_CASE ) , tensor_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Optional[int]:
return self.image_processor.post_process(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Any:
return self.image_processor.post_process_object_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Tuple:
return self.image_processor.post_process_image_guided_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->str:
return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __SCREAMING_SNAKE_CASE , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __SCREAMING_SNAKE_CASE , )
return self.image_processor
| 338 | 1 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : torch.FloatTensor
UpperCAmelCase_ : Optional[torch.FloatTensor] = None
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__=0.9_99 , snake_case__="cosine" , ) -> Union[str, Any]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(snake_case__ ):
return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(snake_case__ ):
return math.exp(t * -12.0 )
else:
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" )
lowerCAmelCase = []
for i in range(snake_case__ ):
lowerCAmelCase = i / num_diffusion_timesteps
lowerCAmelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) )
return torch.tensor(snake_case__ , dtype=torch.floataa )
class lowercase_ ( UpperCamelCase_ , UpperCamelCase_ ):
"""simple docstring"""
@register_to_config
def __init__( self , __SCREAMING_SNAKE_CASE = 1000 , __SCREAMING_SNAKE_CASE = "fixed_small_log" , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 1.0 , __SCREAMING_SNAKE_CASE = "epsilon" , __SCREAMING_SNAKE_CASE = "squaredcos_cap_v2" , ) ->List[Any]:
if beta_schedule != "squaredcos_cap_v2":
raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' )
lowerCAmelCase = betas_for_alpha_bar(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = 1.0 - self.betas
lowerCAmelCase = torch.cumprod(self.alphas , dim=0 )
lowerCAmelCase = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
lowerCAmelCase = 1.0
# setable values
lowerCAmelCase = None
lowerCAmelCase = torch.from_numpy(np.arange(0 , __SCREAMING_SNAKE_CASE )[::-1].copy() )
lowerCAmelCase = variance_type
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->torch.FloatTensor:
return sample
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Dict:
lowerCAmelCase = num_inference_steps
lowerCAmelCase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
lowerCAmelCase = (np.arange(0 , __SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1].copy().astype(np.intaa )
lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) ->int:
if prev_timestep is None:
lowerCAmelCase = t - 1
lowerCAmelCase = self.alphas_cumprod[t]
lowerCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
lowerCAmelCase = 1 - alpha_prod_t
lowerCAmelCase = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
lowerCAmelCase = self.betas[t]
else:
lowerCAmelCase = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
lowerCAmelCase = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
lowerCAmelCase = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
lowerCAmelCase = torch.log(torch.clamp(__SCREAMING_SNAKE_CASE , min=1e-20 ) )
lowerCAmelCase = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
lowerCAmelCase = variance.log()
lowerCAmelCase = beta.log()
lowerCAmelCase = (predicted_variance + 1) / 2
lowerCAmelCase = frac * max_log + (1 - frac) * min_log
return variance
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = True , ) ->Union[UnCLIPSchedulerOutput, Tuple]:
lowerCAmelCase = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
lowerCAmelCase , lowerCAmelCase = torch.split(__SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 )
else:
lowerCAmelCase = None
# 1. compute alphas, betas
if prev_timestep is None:
lowerCAmelCase = t - 1
lowerCAmelCase = self.alphas_cumprod[t]
lowerCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
lowerCAmelCase = 1 - alpha_prod_t
lowerCAmelCase = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
lowerCAmelCase = self.betas[t]
lowerCAmelCase = self.alphas[t]
else:
lowerCAmelCase = 1 - alpha_prod_t / alpha_prod_t_prev
lowerCAmelCase = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
lowerCAmelCase = model_output
else:
raise ValueError(
F"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"
''' for the UnCLIPScheduler.''' )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
lowerCAmelCase = torch.clamp(
__SCREAMING_SNAKE_CASE , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
lowerCAmelCase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
lowerCAmelCase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
lowerCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
lowerCAmelCase = 0
if t > 0:
lowerCAmelCase = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=__SCREAMING_SNAKE_CASE , device=model_output.device )
lowerCAmelCase = self._get_variance(
__SCREAMING_SNAKE_CASE , predicted_variance=__SCREAMING_SNAKE_CASE , prev_timestep=__SCREAMING_SNAKE_CASE , )
if self.variance_type == "fixed_small_log":
lowerCAmelCase = variance
elif self.variance_type == "learned_range":
lowerCAmelCase = (0.5 * variance).exp()
else:
raise ValueError(
F"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"
''' for the UnCLIPScheduler.''' )
lowerCAmelCase = variance * variance_noise
lowerCAmelCase = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=__SCREAMING_SNAKE_CASE , pred_original_sample=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) ->torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
lowerCAmelCase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
lowerCAmelCase = timesteps.to(original_samples.device )
lowerCAmelCase = alphas_cumprod[timesteps] ** 0.5
lowerCAmelCase = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
lowerCAmelCase = sqrt_alpha_prod.unsqueeze(-1 )
lowerCAmelCase = (1 - alphas_cumprod[timesteps]) ** 0.5
lowerCAmelCase = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
lowerCAmelCase = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
lowerCAmelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 338 | import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : List[Any] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'''vocab_file''': '''spiece.model'''}
lowercase__ : Optional[int] = {
'''vocab_file''': {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''',
}
}
lowercase__ : Any = {
'''albert-base-v1''': 5_1_2,
'''albert-large-v1''': 5_1_2,
'''albert-xlarge-v1''': 5_1_2,
'''albert-xxlarge-v1''': 5_1_2,
'''albert-base-v2''': 5_1_2,
'''albert-large-v2''': 5_1_2,
'''albert-xlarge-v2''': 5_1_2,
'''albert-xxlarge-v2''': 5_1_2,
}
lowercase__ : Tuple = '''▁'''
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = VOCAB_FILES_NAMES
UpperCAmelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) ->None:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
lowerCAmelCase = (
AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE , normalized=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else mask_token
)
lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = do_lower_case
lowerCAmelCase = remove_space
lowerCAmelCase = keep_accents
lowerCAmelCase = vocab_file
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__SCREAMING_SNAKE_CASE )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
return len(self.sp_model )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) ->int:
lowerCAmelCase = self.__dict__.copy()
lowerCAmelCase = None
return state
def __setstate__( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
lowerCAmelCase = {}
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Any:
if self.remove_space:
lowerCAmelCase = ''' '''.join(inputs.strip().split() )
else:
lowerCAmelCase = inputs
lowerCAmelCase = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' )
if not self.keep_accents:
lowerCAmelCase = unicodedata.normalize('''NFKD''' , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = ''''''.join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE )] )
if self.do_lower_case:
lowerCAmelCase = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[str]:
lowerCAmelCase = self.preprocess_text(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = []
for piece in pieces:
if len(__SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit():
lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , '''''' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowerCAmelCase = cur_pieces[1:]
else:
lowerCAmelCase = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__SCREAMING_SNAKE_CASE )
else:
new_pieces.append(__SCREAMING_SNAKE_CASE )
return new_pieces
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->int:
return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->int:
return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
lowerCAmelCase = []
lowerCAmelCase = ''''''
lowerCAmelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token
lowerCAmelCase = True
lowerCAmelCase = []
else:
current_sub_tokens.append(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = False
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE )
return out_string.strip()
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ) ->List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE )
if token_ids_a is not None:
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Tuple[str]:
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCAmelCase = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi:
lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 338 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowercase__ : Optional[int] = {
'''configuration_m2m_100''': ['''M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''M2M100Config''', '''M2M100OnnxConfig'''],
'''tokenization_m2m_100''': ['''M2M100Tokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Any = [
'''M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''M2M100ForConditionalGeneration''',
'''M2M100Model''',
'''M2M100PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
lowercase__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 338 | import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = (DEISMultistepScheduler,)
UpperCAmelCase_ : int = (("""num_inference_steps""", 25),)
def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->str:
lowerCAmelCase = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
}
config.update(**__SCREAMING_SNAKE_CASE )
return config
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE )
new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
lowerCAmelCase , lowerCAmelCase = sample, sample
for t in range(__SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ):
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
lowerCAmelCase = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals (must be after setting timesteps)
lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residual (must be after setting timesteps)
lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
lowerCAmelCase = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
if scheduler is None:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = 10
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample
return sample
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
if num_inference_steps is not None and hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
elif num_inference_steps is not None and not hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
lowerCAmelCase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
lowerCAmelCase = scheduler.timesteps[5]
lowerCAmelCase = scheduler.timesteps[6]
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
# make sure that iterating over schedulers with same config names gives same results
# for defaults
lowerCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() )
lowerCAmelCase = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config )
lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , algorithm_type='''deis''' , solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = self.full_loop(
solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , )
assert not torch.isnan(__SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers"
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE )
self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=__SCREAMING_SNAKE_CASE , time_step=0 )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.full_loop()
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
lowerCAmelCase = self.full_loop(prediction_type='''v_prediction''' )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(thresholding=__SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = 10
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter.half()
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample
assert sample.dtype == torch.floataa
| 338 | 1 |
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> float:
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> list[list[list[float] | float]]:
if dataset.ndim != value_array.ndim:
lowerCAmelCase = (
'''Wrong input data\'s dimensions... '''
f"dataset : {dataset.ndim}, value_array : {value_array.ndim}"
)
raise ValueError(snake_case__ )
try:
if dataset.shape[1] != value_array.shape[1]:
lowerCAmelCase = (
'''Wrong input data\'s shape... '''
f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"
)
raise ValueError(snake_case__ )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('''Wrong shape''' )
if dataset.dtype != value_array.dtype:
lowerCAmelCase = (
'''Input data have different datatype... '''
f"dataset : {dataset.dtype}, value_array : {value_array.dtype}"
)
raise TypeError(snake_case__ )
lowerCAmelCase = []
for value in value_array:
lowerCAmelCase = euclidean(snake_case__ , dataset[0] )
lowerCAmelCase = dataset[0].tolist()
for dataset_value in dataset[1:]:
lowerCAmelCase = euclidean(snake_case__ , snake_case__ )
if dist > temp_dist:
lowerCAmelCase = temp_dist
lowerCAmelCase = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> float:
return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
torch.manual_seed(0 )
lowerCAmelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = self.dummy_uncond_unet
lowerCAmelCase = KarrasVeScheduler()
lowerCAmelCase = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0]
lowerCAmelCase = image[0, -3:, -3:, -1]
lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
lowerCAmelCase = '''google/ncsnpp-celebahq-256'''
lowerCAmelCase = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = KarrasVeScheduler()
lowerCAmelCase = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
lowerCAmelCase = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 338 | 1 |
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
return "\n".join(
f"{number} * {i} = {number * i}" for i in range(1 , number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=1_0))
| 338 | from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
lowercase__ : Dict = logging.get_logger(__name__)
@add_end_docstrings(
UpperCamelCase_ , r"""
top_k (`int`, defaults to 5):
The number of predictions to return.
targets (`str` or `List[str]`, *optional*):
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting
token will be used (with a warning, and that might be slower).
""" , )
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray:
if self.framework == "tf":
lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE )
else:
raise ValueError('''Unsupported framework''' )
return masked_index
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray:
lowerCAmelCase = self.get_masked_index(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Dict[str, GenericTensor]:
if return_tensors is None:
lowerCAmelCase = self.framework
lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE )
self.ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = self.model(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model_inputs['''input_ids''']
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=None ) ->str:
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
lowerCAmelCase = target_ids.shape[0]
lowerCAmelCase = model_outputs['''input_ids'''][0]
lowerCAmelCase = model_outputs['''logits''']
if self.framework == "tf":
lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
lowerCAmelCase = outputs.numpy()
lowerCAmelCase = outputs[0, masked_index, :]
lowerCAmelCase = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 )
if target_ids is not None:
lowerCAmelCase = tf.gather_nd(tf.squeeze(__SCREAMING_SNAKE_CASE , 0 ) , target_ids.reshape(-1 , 1 ) )
lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE , 0 )
lowerCAmelCase = tf.math.top_k(__SCREAMING_SNAKE_CASE , k=__SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase = topk.values.numpy(), topk.indices.numpy()
else:
lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
lowerCAmelCase = outputs[0, masked_index, :]
lowerCAmelCase = logits.softmax(dim=-1 )
if target_ids is not None:
lowerCAmelCase = probs[..., target_ids]
lowerCAmelCase , lowerCAmelCase = probs.topk(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = []
lowerCAmelCase = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ):
lowerCAmelCase = []
for v, p in zip(_values , _predictions ):
# Copy is important since we're going to modify this array in place
lowerCAmelCase = input_ids.numpy().copy()
if target_ids is not None:
lowerCAmelCase = target_ids[p].tolist()
lowerCAmelCase = p
# Filter padding out:
lowerCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
lowerCAmelCase = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence}
row.append(__SCREAMING_SNAKE_CASE )
result.append(__SCREAMING_SNAKE_CASE )
if single_mask:
return result[0]
return result
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Optional[Any]:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = [targets]
try:
lowerCAmelCase = self.tokenizer.get_vocab()
except Exception:
lowerCAmelCase = {}
lowerCAmelCase = []
for target in targets:
lowerCAmelCase = vocab.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if id_ is None:
lowerCAmelCase = self.tokenizer(
__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , max_length=1 , truncation=__SCREAMING_SNAKE_CASE , )['''input_ids''']
if len(__SCREAMING_SNAKE_CASE ) == 0:
logger.warning(
F"The specified target token `{target}` does not exist in the model vocabulary. "
'''We cannot replace it with anything meaningful, ignoring it''' )
continue
lowerCAmelCase = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
F"The specified target token `{target}` does not exist in the model vocabulary. "
F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." )
target_ids.append(id_ )
lowerCAmelCase = list(set(__SCREAMING_SNAKE_CASE ) )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError('''At least one target must be provided when passed.''' )
lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
return target_ids
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) ->Dict:
lowerCAmelCase = {}
if targets is not None:
lowerCAmelCase = self.get_target_ids(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = target_ids
if top_k is not None:
lowerCAmelCase = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' )
return {}, {}, postprocess_params
def __call__( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
lowerCAmelCase = super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) == 1:
return outputs[0]
return outputs
| 338 | 1 |
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE=0.0_1 , __SCREAMING_SNAKE_CASE=1000 ) ->Dict:
lowerCAmelCase = p_stop
lowerCAmelCase = max_length
def __iter__( self ) ->Optional[Any]:
lowerCAmelCase = 0
lowerCAmelCase = False
while not stop and count < self.max_length:
yield count
count += 1
lowerCAmelCase = random.random() < self.p_stop
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True ) ->Optional[Any]:
lowerCAmelCase = [
BatchSamplerShard(__SCREAMING_SNAKE_CASE , 2 , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
for i in range(2 )
]
lowerCAmelCase = [list(__SCREAMING_SNAKE_CASE ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(__SCREAMING_SNAKE_CASE ) for shard in batch_sampler_shards] , [len(__SCREAMING_SNAKE_CASE ) for e in expected] )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
# Check the shards when the dataset is a round multiple of total batch size.
lowerCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
# Expected shouldn't change
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
lowerCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
lowerCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
lowerCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Check the shards when the dataset is very small.
lowerCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [[], []]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
# Check the shards when the dataset is a round multiple of batch size.
lowerCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
# Expected shouldn't change
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
# Check the shards when the dataset is not a round multiple of batch size.
lowerCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
lowerCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
# Check the shards when the dataset is very small.
lowerCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [[], []]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
# Check the shards when the dataset is a round multiple of total batch size.
lowerCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
# Expected shouldn't change
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
lowerCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
lowerCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
lowerCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
# Check the shards when the dataset is very small.
lowerCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [[[0, 1]], []]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [[], []]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
# Check the shards when the dataset is a round multiple of batch size.
lowerCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
# Expected shouldn't change
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
# Check the shards when the dataset is not a round multiple of batch size.
lowerCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
lowerCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
# Check the shards when the dataset is very small.
lowerCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [[[0, 1]], []]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [[], []]
self.check_batch_sampler_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
lowerCAmelCase = [BatchSamplerShard(__SCREAMING_SNAKE_CASE , 2 , __SCREAMING_SNAKE_CASE , even_batches=__SCREAMING_SNAKE_CASE ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=False ) ->Tuple:
random.seed(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = list(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [
IterableDatasetShard(
__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , drop_last=__SCREAMING_SNAKE_CASE , num_processes=__SCREAMING_SNAKE_CASE , process_index=__SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE , )
for i in range(__SCREAMING_SNAKE_CASE )
]
lowerCAmelCase = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(__SCREAMING_SNAKE_CASE )
iterable_dataset_lists.append(list(__SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
lowerCAmelCase = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(len(__SCREAMING_SNAKE_CASE ) % shard_batch_size == 0 )
lowerCAmelCase = []
for idx in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(__SCREAMING_SNAKE_CASE ) < len(__SCREAMING_SNAKE_CASE ):
reference += reference
self.assertListEqual(__SCREAMING_SNAKE_CASE , reference[: len(__SCREAMING_SNAKE_CASE )] )
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
lowerCAmelCase = 42
lowerCAmelCase = RandomIterableDataset()
self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
# Edge case with a very small dataset
lowerCAmelCase = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
self.check_iterable_dataset_shards(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE , split_batches=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = SkipBatchSampler(__SCREAMING_SNAKE_CASE , 2 )
self.assertListEqual(list(__SCREAMING_SNAKE_CASE ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
lowerCAmelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = DataLoader(list(range(16 ) ) , batch_size=4 )
lowerCAmelCase = skip_first_batches(__SCREAMING_SNAKE_CASE , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
lowerCAmelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(__SCREAMING_SNAKE_CASE ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(__SCREAMING_SNAKE_CASE ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
Accelerator()
lowerCAmelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(__SCREAMING_SNAKE_CASE ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(__SCREAMING_SNAKE_CASE ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 338 | from typing import TYPE_CHECKING
from ...utils import _LazyModule
lowercase__ : int = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
lowercase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 338 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : Optional[Any] = logging.get_logger(__name__)
lowercase__ : int = {
'''edbeeching/decision-transformer-gym-hopper-medium''': (
'''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = """decision_transformer"""
UpperCAmelCase_ : Dict = ["""past_key_values"""]
UpperCAmelCase_ : List[Any] = {
"""max_position_embeddings""": """n_positions""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , __SCREAMING_SNAKE_CASE=17 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=128 , __SCREAMING_SNAKE_CASE=4096 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=50256 , __SCREAMING_SNAKE_CASE=50256 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) ->str:
lowerCAmelCase = state_dim
lowerCAmelCase = act_dim
lowerCAmelCase = hidden_size
lowerCAmelCase = max_ep_len
lowerCAmelCase = action_tanh
lowerCAmelCase = vocab_size
lowerCAmelCase = n_positions
lowerCAmelCase = n_layer
lowerCAmelCase = n_head
lowerCAmelCase = n_inner
lowerCAmelCase = activation_function
lowerCAmelCase = resid_pdrop
lowerCAmelCase = embd_pdrop
lowerCAmelCase = attn_pdrop
lowerCAmelCase = layer_norm_epsilon
lowerCAmelCase = initializer_range
lowerCAmelCase = scale_attn_weights
lowerCAmelCase = use_cache
lowerCAmelCase = scale_attn_by_inverse_layer_idx
lowerCAmelCase = reorder_and_upcast_attn
lowerCAmelCase = bos_token_id
lowerCAmelCase = eos_token_id
super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
| 338 | lowercase__ : Optional[int] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ'''
def SCREAMING_SNAKE_CASE_ ( ) -> None:
lowerCAmelCase = input('''Enter message: ''' )
lowerCAmelCase = input('''Enter key [alphanumeric]: ''' )
lowerCAmelCase = input('''Encrypt/Decrypt [e/d]: ''' )
if mode.lower().startswith('''e''' ):
lowerCAmelCase = '''encrypt'''
lowerCAmelCase = encrypt_message(snake_case__ , snake_case__ )
elif mode.lower().startswith('''d''' ):
lowerCAmelCase = '''decrypt'''
lowerCAmelCase = decrypt_message(snake_case__ , snake_case__ )
print(f"\n{mode.title()}ed message:" )
print(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
return translate_message(snake_case__ , snake_case__ , '''encrypt''' )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
return translate_message(snake_case__ , snake_case__ , '''decrypt''' )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> str:
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = key.upper()
for symbol in message:
lowerCAmelCase = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(snake_case__ )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(snake_case__ ):
lowerCAmelCase = 0
else:
translated.append(snake_case__ )
return "".join(snake_case__ )
if __name__ == "__main__":
main()
| 338 | 1 |
import functools
import logging
import os
import sys
import threading
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
import huggingface_hub.utils as hf_hub_utils
from tqdm import auto as tqdm_lib
lowercase__ : Union[str, Any] = threading.Lock()
lowercase__ : Optional[logging.Handler] = None
lowercase__ : List[Any] = {
'''debug''': logging.DEBUG,
'''info''': logging.INFO,
'''warning''': logging.WARNING,
'''error''': logging.ERROR,
'''critical''': logging.CRITICAL,
}
lowercase__ : List[str] = logging.WARNING
lowercase__ : List[Any] = True
def SCREAMING_SNAKE_CASE_ ( ) -> Tuple:
lowerCAmelCase = os.getenv('''TRANSFORMERS_VERBOSITY''' , snake_case__ )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, "
f"has to be one of: { ', '.join(log_levels.keys() ) }" )
return _default_log_level
def SCREAMING_SNAKE_CASE_ ( ) -> str:
return __name__.split('''.''' )[0]
def SCREAMING_SNAKE_CASE_ ( ) -> logging.Logger:
return logging.getLogger(_get_library_name() )
def SCREAMING_SNAKE_CASE_ ( ) -> None:
global _default_handler
with _lock:
if _default_handler:
# This library has already configured the library root logger.
return
lowerCAmelCase = logging.StreamHandler() # Set sys.stderr as stream.
lowerCAmelCase = sys.stderr.flush
# Apply our default configuration to the library root logger.
lowerCAmelCase = _get_library_root_logger()
library_root_logger.addHandler(_default_handler )
library_root_logger.setLevel(_get_default_logging_level() )
lowerCAmelCase = False
def SCREAMING_SNAKE_CASE_ ( ) -> None:
global _default_handler
with _lock:
if not _default_handler:
return
lowerCAmelCase = _get_library_root_logger()
library_root_logger.removeHandler(_default_handler )
library_root_logger.setLevel(logging.NOTSET )
lowerCAmelCase = None
def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]:
return log_levels
def SCREAMING_SNAKE_CASE_ ( snake_case__ = None ) -> logging.Logger:
if name is None:
lowerCAmelCase = _get_library_name()
_configure_library_root_logger()
return logging.getLogger(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( ) -> int:
_configure_library_root_logger()
return _get_library_root_logger().getEffectiveLevel()
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> None:
_configure_library_root_logger()
_get_library_root_logger().setLevel(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( ) -> Dict:
return set_verbosity(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]:
return set_verbosity(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( ) -> str:
return set_verbosity(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( ) -> Any:
return set_verbosity(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( ) -> None:
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().removeHandler(_default_handler )
def SCREAMING_SNAKE_CASE_ ( ) -> None:
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().addHandler(_default_handler )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> None:
_configure_library_root_logger()
assert handler is not None
_get_library_root_logger().addHandler(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> None:
_configure_library_root_logger()
assert handler is not None and handler not in _get_library_root_logger().handlers
_get_library_root_logger().removeHandler(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( ) -> None:
_configure_library_root_logger()
lowerCAmelCase = False
def SCREAMING_SNAKE_CASE_ ( ) -> None:
_configure_library_root_logger()
lowerCAmelCase = True
def SCREAMING_SNAKE_CASE_ ( ) -> None:
lowerCAmelCase = _get_library_root_logger().handlers
for handler in handlers:
lowerCAmelCase = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' )
handler.setFormatter(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( ) -> None:
lowerCAmelCase = _get_library_root_logger().handlers
for handler in handlers:
handler.setFormatter(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( self , *snake_case__ , **snake_case__ ) -> int:
lowerCAmelCase = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , snake_case__ )
if no_advisory_warnings:
return
self.warning(*snake_case__ , **snake_case__ )
lowercase__ : Optional[int] = warning_advice
@functools.lru_cache(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( self , *snake_case__ , **snake_case__ ) -> Any:
self.warning(*snake_case__ , **snake_case__ )
lowercase__ : Union[str, Any] = warning_once
class lowercase_ :
"""simple docstring"""
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Optional[int]: # pylint: disable=unused-argument
lowerCAmelCase = args[0] if args else None
def __iter__( self ) ->int:
return iter(self._iterator )
def __getattr__( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
def empty_fn(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self ) ->Tuple:
return self
def __exit__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Any:
return
class lowercase_ :
"""simple docstring"""
def __call__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->int:
if _tqdm_active:
return tqdm_lib.tqdm(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
else:
return EmptyTqdm(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->str:
lowerCAmelCase = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
lowercase__ : int = _tqdm_cls()
def SCREAMING_SNAKE_CASE_ ( ) -> bool:
global _tqdm_active
return bool(_tqdm_active )
def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]:
global _tqdm_active
lowerCAmelCase = True
hf_hub_utils.enable_progress_bars()
def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]:
global _tqdm_active
lowerCAmelCase = False
hf_hub_utils.disable_progress_bars()
| 338 | from collections import defaultdict
from math import ceil, sqrt
def SCREAMING_SNAKE_CASE_ ( snake_case__ = 1_0_0_0_0_0_0 , snake_case__ = 1_0 ) -> int:
lowerCAmelCase = defaultdict(snake_case__ )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
lowerCAmelCase = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
lowerCAmelCase = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(snake_case__ , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 1_0 )
if __name__ == "__main__":
print(f'{solution() = }')
| 338 | 1 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> list[int]:
lowerCAmelCase = 2
lowerCAmelCase = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(snake_case__ )
if n > 1:
factors.append(snake_case__ )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Union[str, Any]:
assert isinstance(snake_case__ , snake_case__ )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''text''': '''string'''},
{'''text''': '''int32'''},
{'''text''': '''float32'''},
] , )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = features.copy() if features else default_expected_features
lowerCAmelCase = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCAmelCase = TextDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]:
if issubclass(snake_case__ , snake_case__ ):
lowerCAmelCase = text_path
elif issubclass(snake_case__ , snake_case__ ):
lowerCAmelCase = [text_path]
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__=("train",) ) -> Optional[Any]:
assert isinstance(snake_case__ , snake_case__ )
for split in splits:
lowerCAmelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCAmelCase = TextDatasetReader({'''train''': text_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_text_datasetdict(snake_case__ , snake_case__ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''text''': '''string'''},
{'''text''': '''int32'''},
{'''text''': '''float32'''},
] , )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]:
lowerCAmelCase = tmp_path / '''cache'''
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = features.copy() if features else default_expected_features
lowerCAmelCase = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCAmelCase = TextDatasetReader({'''train''': text_path} , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_text_datasetdict(snake_case__ , snake_case__ )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Any:
if split:
lowerCAmelCase = {split: text_path}
else:
lowerCAmelCase = '''train'''
lowerCAmelCase = {'''train''': text_path, '''test''': text_path}
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ ).read()
_check_text_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 338 | 1 |
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase_ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = BlenderbotSmallTokenizer
UpperCAmelCase_ : Tuple = False
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
super().setUp()
lowerCAmelCase = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
lowerCAmelCase = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) )
lowerCAmelCase = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
lowerCAmelCase = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) )
def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Optional[Any]:
lowerCAmelCase = '''adapt act apte'''
lowerCAmelCase = '''adapt act apte'''
return input_text, output_text
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowerCAmelCase = '''adapt act apte'''
lowerCAmelCase = ['''adapt''', '''act''', '''ap@@''', '''te''']
lowerCAmelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
lowerCAmelCase = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
lowerCAmelCase = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [1384]
lowerCAmelCase = '''I am a small frog.'''
lowerCAmelCase = tok([src_text] , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE )['''input_ids''']
lowerCAmelCase = tok.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
lowerCAmelCase = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
lowerCAmelCase = '''I am a small frog .'''
lowerCAmelCase = '''.'''
lowerCAmelCase = tok(__SCREAMING_SNAKE_CASE )['''input_ids''']
lowerCAmelCase = tok(__SCREAMING_SNAKE_CASE )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 338 | def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str:
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('''\'float\' object cannot be interpreted as an integer''' )
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('''\'str\' object cannot be interpreted as an integer''' )
if num == 0:
return "0b0"
lowerCAmelCase = False
if num < 0:
lowerCAmelCase = True
lowerCAmelCase = -num
lowerCAmelCase = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(snake_case__ ) for e in binary )
return "0b" + "".join(str(snake_case__ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | 1 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : str = KandinskyVaaPriorPipeline
UpperCAmelCase_ : List[str] = ["""prompt"""]
UpperCAmelCase_ : Dict = ["""prompt""", """negative_prompt"""]
UpperCAmelCase_ : Optional[Any] = [
"""num_images_per_prompt""",
"""generator""",
"""num_inference_steps""",
"""latents""",
"""negative_prompt""",
"""guidance_scale""",
"""output_type""",
"""return_dict""",
]
UpperCAmelCase_ : Optional[int] = False
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
return 32
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
return 32
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
return self.time_input_dim
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
return self.time_input_dim * 4
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
return 100
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
torch.manual_seed(0 )
lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(__SCREAMING_SNAKE_CASE )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
torch.manual_seed(0 )
lowerCAmelCase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
lowerCAmelCase = PriorTransformer(**__SCREAMING_SNAKE_CASE )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
lowerCAmelCase = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
torch.manual_seed(0 )
lowerCAmelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
lowerCAmelCase = CLIPVisionModelWithProjection(__SCREAMING_SNAKE_CASE )
return model
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = CLIPImageProcessor(
crop_size=224 , do_center_crop=__SCREAMING_SNAKE_CASE , do_normalize=__SCREAMING_SNAKE_CASE , do_resize=__SCREAMING_SNAKE_CASE , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , )
return image_processor
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.dummy_prior
lowerCAmelCase = self.dummy_image_encoder
lowerCAmelCase = self.dummy_text_encoder
lowerCAmelCase = self.dummy_tokenizer
lowerCAmelCase = self.dummy_image_processor
lowerCAmelCase = UnCLIPScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=__SCREAMING_SNAKE_CASE , clip_sample_range=1_0.0 , )
lowerCAmelCase = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) ->Dict:
if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ):
lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = '''cpu'''
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = output.image_embeds
lowerCAmelCase = pipe(
**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) , return_dict=__SCREAMING_SNAKE_CASE , )[0]
lowerCAmelCase = image[0, -10:]
lowerCAmelCase = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
lowerCAmelCase = np.array(
[-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
lowerCAmelCase = torch_device == '''cpu'''
lowerCAmelCase = True
lowerCAmelCase = False
self._test_inference_batch_single_identical(
test_max_difference=__SCREAMING_SNAKE_CASE , relax_max_difference=__SCREAMING_SNAKE_CASE , test_mean_pixel_difference=__SCREAMING_SNAKE_CASE , )
@skip_mps
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = torch_device == '''cpu'''
lowerCAmelCase = False
self._test_attention_slicing_forward_pass(
test_max_difference=__SCREAMING_SNAKE_CASE , test_mean_pixel_difference=__SCREAMING_SNAKE_CASE , )
| 338 | class lowercase_ :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Any:
lowerCAmelCase = name
lowerCAmelCase = value
lowerCAmelCase = weight
def __repr__( self ) ->str:
return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})"
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
return self.value
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
return self.name
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
return self.weight
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
return self.value / self.weight
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> int:
lowerCAmelCase = []
for i in range(len(snake_case__ ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]:
lowerCAmelCase = sorted(snake_case__ , key=snake_case__ , reverse=snake_case__ )
lowerCAmelCase = []
lowerCAmelCase , lowerCAmelCase = 0.0, 0.0
for i in range(len(snake_case__ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | 1 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
lowercase__ : List[Any] = 4
lowercase__ : Dict = 3
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[Any]:
for shard in shards:
for i in range(snake_case__ ):
yield {"i": i, "shard": shard}
def SCREAMING_SNAKE_CASE_ ( ) -> Tuple:
lowerCAmelCase = int(os.environ['''RANK'''] )
lowerCAmelCase = int(os.environ['''WORLD_SIZE'''] )
lowerCAmelCase = ArgumentParser()
parser.add_argument('''--streaming''' , type=snake_case__ )
parser.add_argument('''--local_rank''' , type=snake_case__ )
parser.add_argument('''--num_workers''' , type=snake_case__ , default=0 )
lowerCAmelCase = parser.parse_args()
lowerCAmelCase = args.streaming
lowerCAmelCase = args.num_workers
lowerCAmelCase = {'''shards''': [f"shard_{shard_idx}" for shard_idx in range(snake_case__ )]}
lowerCAmelCase = IterableDataset.from_generator(snake_case__ , gen_kwargs=snake_case__ )
if not streaming:
lowerCAmelCase = Dataset.from_list(list(snake_case__ ) )
lowerCAmelCase = split_dataset_by_node(snake_case__ , rank=snake_case__ , world_size=snake_case__ )
lowerCAmelCase = torch.utils.data.DataLoader(snake_case__ , num_workers=snake_case__ )
lowerCAmelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD
lowerCAmelCase = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
lowerCAmelCase = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f"local_size {local_size} != expected_local_size {expected_local_size}" )
if __name__ == "__main__":
main()
| 338 | import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
lowercase__ : Dict = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
lowercase__ : Optional[int] = [0, 2_5, 5_0]
lowercase__ : Union[str, Any] = [2_5, 5_0, 7_5]
lowercase__ : int = fuzz.membership.trimf(X, abca)
lowercase__ : Tuple = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
lowercase__ : List[str] = np.ones(7_5)
lowercase__ : Any = np.zeros((7_5,))
# 1. Union = max(µA(x), µB(x))
lowercase__ : Union[str, Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
lowercase__ : int = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
lowercase__ : Union[str, Any] = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
lowercase__ : Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
lowercase__ : Any = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
lowercase__ : str = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
lowercase__ : Tuple = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
lowercase__ : Tuple = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('''Young''')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('''Middle aged''')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('''union''')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('''intersection''')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('''complement_a''')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('''difference a/b''')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('''alg_sum''')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('''alg_product''')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('''bdd_sum''')
plt.grid(True)
plt.subplot(4, 3, 1_0)
plt.plot(X, bdd_difference)
plt.title('''bdd_difference''')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 338 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : List[Any] = {
'''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''',
}
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = """mgp-str"""
def __init__( self , __SCREAMING_SNAKE_CASE=[32, 128] , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=27 , __SCREAMING_SNAKE_CASE=38 , __SCREAMING_SNAKE_CASE=50257 , __SCREAMING_SNAKE_CASE=30522 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=4.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0.0_2 , **__SCREAMING_SNAKE_CASE , ) ->Optional[Any]:
super().__init__(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = image_size
lowerCAmelCase = patch_size
lowerCAmelCase = num_channels
lowerCAmelCase = max_token_length
lowerCAmelCase = num_character_labels
lowerCAmelCase = num_bpe_labels
lowerCAmelCase = num_wordpiece_labels
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = mlp_ratio
lowerCAmelCase = distilled
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = drop_rate
lowerCAmelCase = qkv_bias
lowerCAmelCase = attn_drop_rate
lowerCAmelCase = drop_path_rate
lowerCAmelCase = output_aa_attentions
lowerCAmelCase = initializer_range
| 338 | import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = (DDPMScheduler,)
def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->Optional[Any]:
lowerCAmelCase = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**__SCREAMING_SNAKE_CASE )
return config
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
for t in [0, 500, 999]:
self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = len(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(__SCREAMING_SNAKE_CASE ) ):
# 1. predict noise residual
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase = pred_prev_sample
lowerCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = len(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(__SCREAMING_SNAKE_CASE ) ):
# 1. predict noise residual
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase = pred_prev_sample
lowerCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler.timesteps
for i, timestep in enumerate(__SCREAMING_SNAKE_CASE ):
if i == len(__SCREAMING_SNAKE_CASE ) - 1:
lowerCAmelCase = -1
else:
lowerCAmelCase = timesteps[i + 1]
lowerCAmelCase = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = prev_t.item()
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [100, 87, 50, 51, 0]
with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [100, 87, 50, 1, 0]
lowerCAmelCase = len(__SCREAMING_SNAKE_CASE )
with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
__SCREAMING_SNAKE_CASE , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
| 338 | 1 |
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> int:
while b:
lowerCAmelCase , lowerCAmelCase = b, a % b
return a
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> int:
return a if b == 0 else euclidean_gcd_recursive(snake_case__ , a % b )
def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]:
print(f"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" )
print(f"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" )
print(f"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" )
print(f"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" )
print(f"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" )
print(f"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" )
print(f"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" )
print(f"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" )
print(f"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" )
print(f"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" )
if __name__ == "__main__":
main()
| 338 | import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
lowercase__ : str = logging.get_logger(__name__)
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = """AutoTokenizer"""
UpperCAmelCase_ : Optional[int] = ["""tokenizer"""]
UpperCAmelCase_ : str = {
"""semantic_prompt""": 1,
"""coarse_prompt""": 2,
"""fine_prompt""": 2,
}
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Optional[Any]:
super().__init__(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = speaker_embeddings
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , **__SCREAMING_SNAKE_CASE ) ->Tuple:
if speaker_embeddings_dict_path is not None:
lowerCAmelCase = get_file_from_repo(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , subfolder=kwargs.pop('''subfolder''' , __SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop('''cache_dir''' , __SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop('''force_download''' , __SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop('''proxies''' , __SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop('''resume_download''' , __SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop('''local_files_only''' , __SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop('''use_auth_token''' , __SCREAMING_SNAKE_CASE ) , revision=kwargs.pop('''revision''' , __SCREAMING_SNAKE_CASE ) , )
if speaker_embeddings_path is None:
logger.warning(
F"`{os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." )
lowerCAmelCase = None
else:
with open(__SCREAMING_SNAKE_CASE ) as speaker_embeddings_json:
lowerCAmelCase = json.load(__SCREAMING_SNAKE_CASE )
else:
lowerCAmelCase = None
lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
return cls(tokenizer=__SCREAMING_SNAKE_CASE , speaker_embeddings=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , __SCREAMING_SNAKE_CASE="speaker_embeddings" , __SCREAMING_SNAKE_CASE = False , **__SCREAMING_SNAKE_CASE , ) ->int:
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '''v2''' ) , exist_ok=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {}
lowerCAmelCase = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
lowerCAmelCase = self._load_voice_preset(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict['''repo_or_path'''] , __SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}.npy" )
lowerCAmelCase = tmp_dict
with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , '''w''' ) as fp:
json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE ) ->List[str]:
lowerCAmelCase = self.speaker_embeddings[voice_preset]
lowerCAmelCase = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." )
lowerCAmelCase = get_file_from_repo(
self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , __SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop('''cache_dir''' , __SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop('''force_download''' , __SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop('''proxies''' , __SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop('''resume_download''' , __SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop('''local_files_only''' , __SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop('''use_auth_token''' , __SCREAMING_SNAKE_CASE ) , revision=kwargs.pop('''revision''' , __SCREAMING_SNAKE_CASE ) , )
if path is None:
raise ValueError(
F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." )
lowerCAmelCase = np.load(__SCREAMING_SNAKE_CASE )
return voice_preset_dict
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE = None ) ->Tuple:
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(F"Voice preset unrecognized, missing {key} as a key." )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." )
def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="pt" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) ->int:
if voice_preset is not None and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
lowerCAmelCase = self._load_voice_preset(__SCREAMING_SNAKE_CASE )
else:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not voice_preset.endswith('''.npz''' ):
lowerCAmelCase = voice_preset + '''.npz'''
lowerCAmelCase = np.load(__SCREAMING_SNAKE_CASE )
if voice_preset is not None:
self._validate_voice_preset_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.tokenizer(
__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
if voice_preset is not None:
lowerCAmelCase = voice_preset
return encoded_text
| 338 | 1 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : Any = {
'''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''',
'''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''',
'''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''',
'''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''',
'''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''',
'''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''',
'''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''',
'''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''',
'''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''',
'''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''',
'''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''',
'''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''',
}
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = """codegen"""
UpperCAmelCase_ : Dict = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , __SCREAMING_SNAKE_CASE=50400 , __SCREAMING_SNAKE_CASE=2048 , __SCREAMING_SNAKE_CASE=2048 , __SCREAMING_SNAKE_CASE=4096 , __SCREAMING_SNAKE_CASE=28 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="gelu_new" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=50256 , __SCREAMING_SNAKE_CASE=50256 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) ->Dict:
lowerCAmelCase = vocab_size
lowerCAmelCase = n_ctx
lowerCAmelCase = n_positions
lowerCAmelCase = n_embd
lowerCAmelCase = n_layer
lowerCAmelCase = n_head
lowerCAmelCase = n_inner
lowerCAmelCase = rotary_dim
lowerCAmelCase = activation_function
lowerCAmelCase = resid_pdrop
lowerCAmelCase = embd_pdrop
lowerCAmelCase = attn_pdrop
lowerCAmelCase = layer_norm_epsilon
lowerCAmelCase = initializer_range
lowerCAmelCase = use_cache
lowerCAmelCase = bos_token_id
lowerCAmelCase = eos_token_id
super().__init__(
bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , tie_word_embeddings=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "default" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , ) ->int:
super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE )
if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ):
# TODO: how to do that better?
lowerCAmelCase = 0
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Mapping[str, Mapping[int, str]]:
lowerCAmelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' )
lowerCAmelCase = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
lowerCAmelCase = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
return self._config.n_layer
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
return self._config.n_head
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ) ->Mapping[str, Any]:
lowerCAmelCase = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs(
__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
lowerCAmelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
lowerCAmelCase , lowerCAmelCase = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
lowerCAmelCase = seqlen + 2
lowerCAmelCase = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCAmelCase = [
(torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
lowerCAmelCase = common_inputs['''attention_mask''']
if self.use_past:
lowerCAmelCase = ordered_inputs['''attention_mask'''].dtype
lowerCAmelCase = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 )
return ordered_inputs
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
return 13
| 338 | import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
'''The `inpainting.py` script is outdated. Please use directly `from diffusers import'''
''' StableDiffusionInpaintPipeline` instead.'''
)
| 338 | 1 |
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = None
UpperCAmelCase_ : List[Any] = None
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
return self.feat_extract_tester.prepare_feat_extract_dict()
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''feature_size''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''sampling_rate''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''padding_value''' ) )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) for x, y in zip(__SCREAMING_SNAKE_CASE , processed_features[input_name] ) ) )
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' )
lowerCAmelCase = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
lowerCAmelCase = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' )
lowerCAmelCase = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
lowerCAmelCase = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' )
lowerCAmelCase = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
lowerCAmelCase = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=False ) ->Union[str, Any]:
def _inputs_have_equal_length(__SCREAMING_SNAKE_CASE ):
lowerCAmelCase = len(input[0] )
for input_slice in input[1:]:
if len(__SCREAMING_SNAKE_CASE ) != length:
return False
return True
def _inputs_are_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ):
return False
for input_slice_a, input_slice_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if not np.allclose(np.asarray(__SCREAMING_SNAKE_CASE ) , np.asarray(__SCREAMING_SNAKE_CASE ) , atol=1e-3 ):
return False
return True
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
lowerCAmelCase = self.feat_extract_tester.seq_length_diff
lowerCAmelCase = self.feat_extract_tester.max_seq_length + pad_diff
lowerCAmelCase = self.feat_extract_tester.min_seq_length
lowerCAmelCase = self.feat_extract_tester.batch_size
lowerCAmelCase = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
lowerCAmelCase = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[-1] ) )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''np''' )
lowerCAmelCase = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''max_length''' )[input_name]
lowerCAmelCase = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=__SCREAMING_SNAKE_CASE , return_tensors='''np''' )
lowerCAmelCase = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_are_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
lowerCAmelCase = feat_extract.pad(__SCREAMING_SNAKE_CASE , pad_to_multiple_of=10 )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , pad_to_multiple_of=10 )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , pad_to_multiple_of=10 , max_length=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , pad_to_multiple_of=10 , max_length=__SCREAMING_SNAKE_CASE , return_tensors='''np''' , )
lowerCAmelCase = input_a[input_name]
self.assertTrue(all(len(__SCREAMING_SNAKE_CASE ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(__SCREAMING_SNAKE_CASE ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
lowerCAmelCase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1e-3 )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=False ) ->str:
def _inputs_have_equal_length(__SCREAMING_SNAKE_CASE ):
lowerCAmelCase = len(input[0] )
for input_slice in input[1:]:
if len(__SCREAMING_SNAKE_CASE ) != length:
return False
return True
def _inputs_are_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ):
return False
for input_slice_a, input_slice_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if not np.allclose(np.asarray(__SCREAMING_SNAKE_CASE ) , np.asarray(__SCREAMING_SNAKE_CASE ) , atol=1e-3 ):
return False
return True
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
# truncate to smallest
lowerCAmelCase = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) )
lowerCAmelCase = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertFalse(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
# truncate to smallest with np
lowerCAmelCase = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' )
lowerCAmelCase = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
# truncate to middle
lowerCAmelCase = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=__SCREAMING_SNAKE_CASE , return_tensors='''np''' , )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' )
lowerCAmelCase = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_are_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
feat_extract.pad(__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , truncation=__SCREAMING_SNAKE_CASE )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , truncation=__SCREAMING_SNAKE_CASE )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''max_length''' , truncation=__SCREAMING_SNAKE_CASE )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
lowerCAmelCase = 12
lowerCAmelCase = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
lowerCAmelCase = len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
lowerCAmelCase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertFalse(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
self._check_padding(numpify=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
self._check_padding(numpify=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
self._check_truncation(numpify=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
self._check_truncation(numpify=__SCREAMING_SNAKE_CASE )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
lowerCAmelCase = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''np''' )[input_name]
lowerCAmelCase = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''pt''' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
lowerCAmelCase = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''np''' )[input_name]
lowerCAmelCase = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''tf''' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.feat_extract_dict
lowerCAmelCase = True
lowerCAmelCase = self.feature_extraction_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
lowerCAmelCase = [len(__SCREAMING_SNAKE_CASE ) for x in speech_inputs]
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
lowerCAmelCase = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''np''' )
self.assertIn('''attention_mask''' , __SCREAMING_SNAKE_CASE )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.feat_extract_dict
lowerCAmelCase = True
lowerCAmelCase = self.feature_extraction_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
lowerCAmelCase = [len(__SCREAMING_SNAKE_CASE ) for x in speech_inputs]
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
lowerCAmelCase = min(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors='''np''' )
self.assertIn('''attention_mask''' , __SCREAMING_SNAKE_CASE )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
| 338 | import os
import re
import shutil
import sys
import tempfile
import unittest
import black
lowercase__ : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
lowercase__ : Dict = ''' def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
'''
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = tempfile.mkdtemp()
os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) )
lowerCAmelCase = self.transformer_dir
shutil.copy(
os.path.join(__SCREAMING_SNAKE_CASE , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = '''src/transformers'''
shutil.rmtree(self.transformer_dir )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Union[str, Any]:
lowerCAmelCase = comment + F"\nclass {class_name}(nn.Module):\n" + class_code
if overwrite_result is not None:
lowerCAmelCase = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result
lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
lowerCAmelCase = black.format_str(__SCREAMING_SNAKE_CASE , mode=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = os.path.join(self.transformer_dir , '''new_code.py''' )
with open(__SCREAMING_SNAKE_CASE , '''w''' , newline='''\n''' ) as f:
f.write(__SCREAMING_SNAKE_CASE )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(__SCREAMING_SNAKE_CASE ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=__SCREAMING_SNAKE_CASE )
with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f:
self.assertTrue(f.read() , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
# Base copy consistency
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , __SCREAMING_SNAKE_CASE , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , __SCREAMING_SNAKE_CASE ) , )
# Copy consistency with a really long name
lowerCAmelCase = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub('''Bert''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , __SCREAMING_SNAKE_CASE , overwrite_result=re.sub('''Bert''' , '''TestModel''' , __SCREAMING_SNAKE_CASE ) , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
lowerCAmelCase = check_copies.LOCALIZED_READMES['''README_zh-hans.md''']
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),'''
''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**'''
''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders'''
''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang'''
''' Luong, Quoc V. Le, Christopher D. Manning.'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文'''
''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自'''
''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather'''
''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,'''
''' Christopher D. Manning 发布。\n'''
)
lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] )
self.assertFalse(__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] )
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and'''
''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] )
# Check if the model link is synchronized.
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 338 | 1 |
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ = False ) -> bool:
if n == 2:
return True
if not n % 2 or n < 2:
return False
if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit
return False
if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable:
raise ValueError(
'''Warning: upper bound of deterministic test is exceeded. '''
'''Pass allow_probable=True to allow probabilistic test. '''
'''A return value of True indicates a probable prime.''' )
# array bounds provided by analysis
lowerCAmelCase = [
2_0_4_7,
1_3_7_3_6_5_3,
2_5_3_2_6_0_0_1,
3_2_1_5_0_3_1_7_5_1,
2_1_5_2_3_0_2_8_9_8_7_4_7,
3_4_7_4_7_4_9_6_6_0_3_8_3,
3_4_1_5_5_0_0_7_1_7_2_8_3_2_1,
1,
3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1,
1,
1,
3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1,
3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1,
]
lowerCAmelCase = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1]
for idx, _p in enumerate(snake_case__ , 1 ):
if n < _p:
# then we have our last prime to check
lowerCAmelCase = primes[:idx]
break
lowerCAmelCase , lowerCAmelCase = n - 1, 0
# break up n -1 into a power of 2 (s) and
# remaining odd component
# essentially, solve for d * 2 ** s == n - 1
while d % 2 == 0:
d //= 2
s += 1
for prime in plist:
lowerCAmelCase = False
for r in range(snake_case__ ):
lowerCAmelCase = pow(snake_case__ , d * 2**r , snake_case__ )
# see article for analysis explanation for m
if (r == 0 and m == 1) or ((m + 1) % n == 0):
lowerCAmelCase = True
# this loop will not determine compositeness
break
if pr:
continue
# if pr is False, then the above loop never evaluated to true,
# and the n MUST be composite
return False
return True
def SCREAMING_SNAKE_CASE_ ( ) -> None:
assert not miller_rabin(5_6_1 )
assert miller_rabin(5_6_3 )
# 2047
assert not miller_rabin(8_3_8_2_0_1 )
assert miller_rabin(8_3_8_2_0_7 )
# 1_373_653
assert not miller_rabin(1_7_3_1_6_0_0_1 )
assert miller_rabin(1_7_3_1_6_0_1_7 )
# 25_326_001
assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 )
assert miller_rabin(3_0_7_8_3_8_6_6_5_3 )
# 3_215_031_751
assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 )
assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 )
# 2_152_302_898_747
assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 )
assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 )
# 3_474_749_660_383
assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 )
assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 )
# 341_550_071_728_321
assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 )
assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 )
# 3_825_123_056_546_413_051
assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 )
assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 )
# 318_665_857_834_031_151_167_461
assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 )
assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 )
# 3_317_044_064_679_887_385_961_981
# upper limit for probabilistic test
if __name__ == "__main__":
test_miller_rabin()
| 338 | import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'''split_dict''' , [
SplitDict(),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name='''my_dataset''' )} ),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 )} ),
SplitDict({'''train''': SplitInfo()} ),
] , )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase = split_dict._to_yaml_list()
assert len(snake_case__ ) == len(snake_case__ )
lowerCAmelCase = SplitDict._from_yaml_list(snake_case__ )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
lowerCAmelCase = None
# the split name of split_dict takes over the name of the split info object
lowerCAmelCase = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'''split_info''' , [SplitInfo(), SplitInfo(dataset_name=snake_case__ ), SplitInfo(dataset_name='''my_dataset''' )] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
lowerCAmelCase = asdict(SplitDict({'''train''': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 338 | 1 |
import warnings
from ..trainer import Trainer
from ..utils import logging
lowercase__ : Any = logging.get_logger(__name__)
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Optional[int]:
warnings.warn(
'''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` '''
'''instead.''' , __SCREAMING_SNAKE_CASE , )
super().__init__(args=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
| 338 | import unittest
import numpy as np
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ) -> np.ndarray:
lowerCAmelCase = np.shape(snake_case__ )
lowerCAmelCase = np.shape(snake_case__ )
lowerCAmelCase = np.shape(snake_case__ )
if shape_a[0] != shape_b[0]:
lowerCAmelCase = (
'''Expected the same number of rows for A and B. '''
f"Instead found A of size {shape_a} and B of size {shape_b}"
)
raise ValueError(snake_case__ )
if shape_b[1] != shape_c[1]:
lowerCAmelCase = (
'''Expected the same number of columns for B and C. '''
f"Instead found B of size {shape_b} and C of size {shape_c}"
)
raise ValueError(snake_case__ )
lowerCAmelCase = pseudo_inv
if a_inv is None:
try:
lowerCAmelCase = np.linalg.inv(snake_case__ )
except np.linalg.LinAlgError:
raise ValueError(
'''Input matrix A is not invertible. Cannot compute Schur complement.''' )
return mat_c - mat_b.T @ a_inv @ mat_b
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->None:
lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCAmelCase = np.array([[2, 1], [6, 3]] )
lowerCAmelCase = schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.block([[a, b], [b.T, c]] )
lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE )
self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , det_a * det_s )
def SCREAMING_SNAKE_CASE_ ( self ) ->None:
lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCAmelCase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->None:
lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 338 | 1 |
import argparse
import hashlib
import os
import urllib
import warnings
import torch
from torch import nn
from tqdm import tqdm
from transformers import WhisperConfig, WhisperForConditionalGeneration
lowercase__ : Any = {
'''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''',
'''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''',
'''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''',
'''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''',
'''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''',
'''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''',
'''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''',
'''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''',
'''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''',
'''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''',
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str:
lowerCAmelCase = ['''layers''', '''blocks''']
for k in ignore_keys:
state_dict.pop(snake_case__ , snake_case__ )
lowercase__ : List[Any] = {
'''blocks''': '''layers''',
'''mlp.0''': '''fc1''',
'''mlp.2''': '''fc2''',
'''mlp_ln''': '''final_layer_norm''',
'''.attn.query''': '''.self_attn.q_proj''',
'''.attn.key''': '''.self_attn.k_proj''',
'''.attn.value''': '''.self_attn.v_proj''',
'''.attn_ln''': '''.self_attn_layer_norm''',
'''.attn.out''': '''.self_attn.out_proj''',
'''.cross_attn.query''': '''.encoder_attn.q_proj''',
'''.cross_attn.key''': '''.encoder_attn.k_proj''',
'''.cross_attn.value''': '''.encoder_attn.v_proj''',
'''.cross_attn_ln''': '''.encoder_attn_layer_norm''',
'''.cross_attn.out''': '''.encoder_attn.out_proj''',
'''decoder.ln.''': '''decoder.layer_norm.''',
'''encoder.ln.''': '''encoder.layer_norm.''',
'''token_embedding''': '''embed_tokens''',
'''encoder.positional_embedding''': '''encoder.embed_positions.weight''',
'''decoder.positional_embedding''': '''decoder.embed_positions.weight''',
'''ln_post''': '''layer_norm''',
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase = list(s_dict.keys() )
for key in keys:
lowerCAmelCase = key
for k, v in WHISPER_MAPPING.items():
if k in key:
lowerCAmelCase = new_key.replace(snake_case__ , snake_case__ )
print(f"{key} -> {new_key}" )
lowerCAmelCase = s_dict.pop(snake_case__ )
return s_dict
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase , lowerCAmelCase = emb.weight.shape
lowerCAmelCase = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ )
lowerCAmelCase = emb.weight.data
return lin_layer
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> bytes:
os.makedirs(snake_case__ , exist_ok=snake_case__ )
lowerCAmelCase = os.path.basename(snake_case__ )
lowerCAmelCase = url.split('''/''' )[-2]
lowerCAmelCase = os.path.join(snake_case__ , snake_case__ )
if os.path.exists(snake_case__ ) and not os.path.isfile(snake_case__ ):
raise RuntimeError(f"{download_target} exists and is not a regular file" )
if os.path.isfile(snake_case__ ):
lowerCAmelCase = open(snake_case__ , '''rb''' ).read()
if hashlib.shaaaa(snake_case__ ).hexdigest() == expected_shaaaa:
return model_bytes
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" )
with urllib.request.urlopen(snake_case__ ) as source, open(snake_case__ , '''wb''' ) as output:
with tqdm(
total=int(source.info().get('''Content-Length''' ) ) , ncols=8_0 , unit='''iB''' , unit_scale=snake_case__ , unit_divisor=1_0_2_4 ) as loop:
while True:
lowerCAmelCase = source.read(8_1_9_2 )
if not buffer:
break
output.write(snake_case__ )
loop.update(len(snake_case__ ) )
lowerCAmelCase = open(snake_case__ , '''rb''' ).read()
if hashlib.shaaaa(snake_case__ ).hexdigest() != expected_shaaaa:
raise RuntimeError(
'''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' )
return model_bytes
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
if ".pt" not in checkpoint_path:
lowerCAmelCase = _download(_MODELS[checkpoint_path] )
else:
lowerCAmelCase = torch.load(snake_case__ , map_location='''cpu''' )
lowerCAmelCase = original_checkpoint['''dims''']
lowerCAmelCase = original_checkpoint['''model_state_dict''']
lowerCAmelCase = state_dict['''decoder.token_embedding.weight''']
remove_ignore_keys_(snake_case__ )
rename_keys(snake_case__ )
lowerCAmelCase = True
lowerCAmelCase = state_dict['''decoder.layers.0.fc1.weight'''].shape[0]
lowerCAmelCase = WhisperConfig(
vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=snake_case__ , decoder_ffn_dim=snake_case__ , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , )
lowerCAmelCase = WhisperForConditionalGeneration(snake_case__ )
lowerCAmelCase , lowerCAmelCase = model.model.load_state_dict(snake_case__ , strict=snake_case__ )
if len(snake_case__ ) > 0 and not set(snake_case__ ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'''
f" but all the following weights are missing {missing}" )
if tie_embeds:
lowerCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
lowerCAmelCase = proj_out_weights
model.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase__ : List[str] = argparse.ArgumentParser()
# # Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''')
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
lowercase__ : int = parser.parse_args()
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
| 338 | import argparse
import hashlib
import os
import urllib
import warnings
import torch
from torch import nn
from tqdm import tqdm
from transformers import WhisperConfig, WhisperForConditionalGeneration
lowercase__ : Any = {
'''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''',
'''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''',
'''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''',
'''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''',
'''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''',
'''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''',
'''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''',
'''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''',
'''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''',
'''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''',
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str:
lowerCAmelCase = ['''layers''', '''blocks''']
for k in ignore_keys:
state_dict.pop(snake_case__ , snake_case__ )
lowercase__ : List[Any] = {
'''blocks''': '''layers''',
'''mlp.0''': '''fc1''',
'''mlp.2''': '''fc2''',
'''mlp_ln''': '''final_layer_norm''',
'''.attn.query''': '''.self_attn.q_proj''',
'''.attn.key''': '''.self_attn.k_proj''',
'''.attn.value''': '''.self_attn.v_proj''',
'''.attn_ln''': '''.self_attn_layer_norm''',
'''.attn.out''': '''.self_attn.out_proj''',
'''.cross_attn.query''': '''.encoder_attn.q_proj''',
'''.cross_attn.key''': '''.encoder_attn.k_proj''',
'''.cross_attn.value''': '''.encoder_attn.v_proj''',
'''.cross_attn_ln''': '''.encoder_attn_layer_norm''',
'''.cross_attn.out''': '''.encoder_attn.out_proj''',
'''decoder.ln.''': '''decoder.layer_norm.''',
'''encoder.ln.''': '''encoder.layer_norm.''',
'''token_embedding''': '''embed_tokens''',
'''encoder.positional_embedding''': '''encoder.embed_positions.weight''',
'''decoder.positional_embedding''': '''decoder.embed_positions.weight''',
'''ln_post''': '''layer_norm''',
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase = list(s_dict.keys() )
for key in keys:
lowerCAmelCase = key
for k, v in WHISPER_MAPPING.items():
if k in key:
lowerCAmelCase = new_key.replace(snake_case__ , snake_case__ )
print(f"{key} -> {new_key}" )
lowerCAmelCase = s_dict.pop(snake_case__ )
return s_dict
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase , lowerCAmelCase = emb.weight.shape
lowerCAmelCase = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ )
lowerCAmelCase = emb.weight.data
return lin_layer
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> bytes:
os.makedirs(snake_case__ , exist_ok=snake_case__ )
lowerCAmelCase = os.path.basename(snake_case__ )
lowerCAmelCase = url.split('''/''' )[-2]
lowerCAmelCase = os.path.join(snake_case__ , snake_case__ )
if os.path.exists(snake_case__ ) and not os.path.isfile(snake_case__ ):
raise RuntimeError(f"{download_target} exists and is not a regular file" )
if os.path.isfile(snake_case__ ):
lowerCAmelCase = open(snake_case__ , '''rb''' ).read()
if hashlib.shaaaa(snake_case__ ).hexdigest() == expected_shaaaa:
return model_bytes
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" )
with urllib.request.urlopen(snake_case__ ) as source, open(snake_case__ , '''wb''' ) as output:
with tqdm(
total=int(source.info().get('''Content-Length''' ) ) , ncols=8_0 , unit='''iB''' , unit_scale=snake_case__ , unit_divisor=1_0_2_4 ) as loop:
while True:
lowerCAmelCase = source.read(8_1_9_2 )
if not buffer:
break
output.write(snake_case__ )
loop.update(len(snake_case__ ) )
lowerCAmelCase = open(snake_case__ , '''rb''' ).read()
if hashlib.shaaaa(snake_case__ ).hexdigest() != expected_shaaaa:
raise RuntimeError(
'''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' )
return model_bytes
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
if ".pt" not in checkpoint_path:
lowerCAmelCase = _download(_MODELS[checkpoint_path] )
else:
lowerCAmelCase = torch.load(snake_case__ , map_location='''cpu''' )
lowerCAmelCase = original_checkpoint['''dims''']
lowerCAmelCase = original_checkpoint['''model_state_dict''']
lowerCAmelCase = state_dict['''decoder.token_embedding.weight''']
remove_ignore_keys_(snake_case__ )
rename_keys(snake_case__ )
lowerCAmelCase = True
lowerCAmelCase = state_dict['''decoder.layers.0.fc1.weight'''].shape[0]
lowerCAmelCase = WhisperConfig(
vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=snake_case__ , decoder_ffn_dim=snake_case__ , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , )
lowerCAmelCase = WhisperForConditionalGeneration(snake_case__ )
lowerCAmelCase , lowerCAmelCase = model.model.load_state_dict(snake_case__ , strict=snake_case__ )
if len(snake_case__ ) > 0 and not set(snake_case__ ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'''
f" but all the following weights are missing {missing}" )
if tie_embeds:
lowerCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
lowerCAmelCase = proj_out_weights
model.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase__ : List[str] = argparse.ArgumentParser()
# # Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''')
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
lowercase__ : int = parser.parse_args()
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
| 338 | 1 |
import sys
import turtle
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> None:
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(snake_case__ , get_mid(snake_case__ , snake_case__ ) , get_mid(snake_case__ , snake_case__ ) , depth - 1 )
triangle(snake_case__ , get_mid(snake_case__ , snake_case__ ) , get_mid(snake_case__ , snake_case__ ) , depth - 1 )
triangle(snake_case__ , get_mid(snake_case__ , snake_case__ ) , get_mid(snake_case__ , snake_case__ ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
'''Correct format for using this script: '''
'''python fractals.py <int:depth_for_fractal>'''
)
lowercase__ : int = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor('''red''')
lowercase__ : Dict = [(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 338 | from ...processing_utils import ProcessorMixin
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = ["""image_processor""", """feature_extractor"""]
UpperCAmelCase_ : Optional[int] = """TvltImageProcessor"""
UpperCAmelCase_ : Optional[int] = """TvltFeatureExtractor"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
super().__init__(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = image_processor
lowerCAmelCase = feature_extractor
def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) ->List[Any]:
if images is None and audio is None:
raise ValueError('''You need to specify either an `images` or `audio` input to process.''' )
lowerCAmelCase = None
if images is not None:
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , mask_pixel=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if images_mixed is not None:
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , is_mixed=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if audio is not None:
lowerCAmelCase = self.feature_extractor(
__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , mask_audio=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {}
if audio is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
if images is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
if images_mixed_dict is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
return output_dict
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.image_processor.model_input_names
lowerCAmelCase = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 338 | 1 |
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> int:
if b == 0:
return 1
if (b % 2) == 0:
return actual_power(snake_case__ , int(b / 2 ) ) * actual_power(snake_case__ , int(b / 2 ) )
else:
return a * actual_power(snake_case__ , int(b / 2 ) ) * actual_power(snake_case__ , int(b / 2 ) )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> float:
if b < 0:
return 1 / actual_power(snake_case__ , snake_case__ )
return actual_power(snake_case__ , snake_case__ )
if __name__ == "__main__":
print(power(-2, -3))
| 338 | def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> List[str]:
lowerCAmelCase = len(snake_case__ )
for i in range(length - 1 ):
lowerCAmelCase = i
for k in range(i + 1 , snake_case__ ):
if collection[k] < collection[least]:
lowerCAmelCase = k
if least != i:
lowerCAmelCase , lowerCAmelCase = (collection[i], collection[least])
return collection
if __name__ == "__main__":
lowercase__ : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip()
lowercase__ : str = [int(item) for item in user_input.split(''',''')]
print(selection_sort(unsorted))
| 338 | 1 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase__ : int = logging.get_logger(__name__)
lowercase__ : int = {
'''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = """detr"""
UpperCAmelCase_ : int = ["""past_key_values"""]
UpperCAmelCase_ : Any = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ) ->Dict:
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
lowerCAmelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = backbone_config.get('''model_type''' )
lowerCAmelCase = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase = config_class.from_dict(__SCREAMING_SNAKE_CASE )
# set timm attributes to None
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None, None, None
lowerCAmelCase = use_timm_backbone
lowerCAmelCase = backbone_config
lowerCAmelCase = num_channels
lowerCAmelCase = num_queries
lowerCAmelCase = d_model
lowerCAmelCase = encoder_ffn_dim
lowerCAmelCase = encoder_layers
lowerCAmelCase = encoder_attention_heads
lowerCAmelCase = decoder_ffn_dim
lowerCAmelCase = decoder_layers
lowerCAmelCase = decoder_attention_heads
lowerCAmelCase = dropout
lowerCAmelCase = attention_dropout
lowerCAmelCase = activation_dropout
lowerCAmelCase = activation_function
lowerCAmelCase = init_std
lowerCAmelCase = init_xavier_std
lowerCAmelCase = encoder_layerdrop
lowerCAmelCase = decoder_layerdrop
lowerCAmelCase = encoder_layers
lowerCAmelCase = auxiliary_loss
lowerCAmelCase = position_embedding_type
lowerCAmelCase = backbone
lowerCAmelCase = use_pretrained_backbone
lowerCAmelCase = dilation
# Hungarian matcher
lowerCAmelCase = class_cost
lowerCAmelCase = bbox_cost
lowerCAmelCase = giou_cost
# Loss coefficients
lowerCAmelCase = mask_loss_coefficient
lowerCAmelCase = dice_loss_coefficient
lowerCAmelCase = bbox_loss_coefficient
lowerCAmelCase = giou_loss_coefficient
lowerCAmelCase = eos_coefficient
super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
return self.encoder_attention_heads
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
return self.d_model
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->str:
return cls(backbone_config=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict[str, any]:
lowerCAmelCase = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
lowerCAmelCase = self.backbone_config.to_dict()
lowerCAmelCase = self.__class__.model_type
return output
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = version.parse("""1.11""" )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
] )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->float:
return 1e-5
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
return 12
| 338 | import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class lowercase_ :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=19 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) ->Union[str, Any]:
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = EsmConfig(
vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__SCREAMING_SNAKE_CASE , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , )
return config
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = EsmForProteinFolding(config=__SCREAMING_SNAKE_CASE ).float()
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) )
self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowercase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = False
UpperCAmelCase_ : Dict = (EsmForProteinFolding,) if is_torch_available() else ()
UpperCAmelCase_ : List[Any] = ()
UpperCAmelCase_ : Tuple = {} if is_torch_available() else {}
UpperCAmelCase_ : List[str] = False
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = EsmFoldModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
@unittest.skip('''Does not support attention outputs''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
pass
@unittest.skip
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
pass
@unittest.skip('''Esm does not support embedding resizing''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
pass
@unittest.skip('''Esm does not support embedding resizing''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold does not support passing input embeds!''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
pass
@unittest.skip('''ESMFold does not output hidden states in the normal way.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
pass
@unittest.skip('''ESMfold does not output hidden states in the normal way.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
pass
@unittest.skip('''ESMFold only has one output format.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
pass
@unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
pass
@unittest.skip('''ESMFold does not support input chunking.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
pass
@unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold doesn\'t support data parallel.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
pass
@require_torch
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float()
model.eval()
lowerCAmelCase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )['''positions''']
lowerCAmelCase = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] , dtype=torch.floataa )
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 338 | 1 |
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]:
if isinstance(snake_case__ , torch.Tensor ):
return image
elif isinstance(snake_case__ , PIL.Image.Image ):
lowerCAmelCase = [image]
if isinstance(image[0] , PIL.Image.Image ):
lowerCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image]
lowerCAmelCase = np.concatenate(snake_case__ , axis=0 )
lowerCAmelCase = np.array(snake_case__ ).astype(np.floataa ) / 2_55.0
lowerCAmelCase = image.transpose(0 , 3 , 1 , 2 )
lowerCAmelCase = 2.0 * image - 1.0
lowerCAmelCase = torch.from_numpy(snake_case__ )
elif isinstance(image[0] , torch.Tensor ):
lowerCAmelCase = torch.cat(snake_case__ , dim=0 )
return image
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=0.99_95 ) -> Optional[int]:
if not isinstance(snake_case__ , np.ndarray ):
lowerCAmelCase = True
lowerCAmelCase = va.device
lowerCAmelCase = va.cpu().numpy()
lowerCAmelCase = va.cpu().numpy()
lowerCAmelCase = np.sum(va * va / (np.linalg.norm(snake_case__ ) * np.linalg.norm(snake_case__ )) )
if np.abs(snake_case__ ) > DOT_THRESHOLD:
lowerCAmelCase = (1 - t) * va + t * va
else:
lowerCAmelCase = np.arccos(snake_case__ )
lowerCAmelCase = np.sin(snake_case__ )
lowerCAmelCase = theta_a * t
lowerCAmelCase = np.sin(snake_case__ )
lowerCAmelCase = np.sin(theta_a - theta_t ) / sin_theta_a
lowerCAmelCase = sin_theta_t / sin_theta_a
lowerCAmelCase = sa * va + sa * va
if inputs_are_torch:
lowerCAmelCase = torch.from_numpy(snake_case__ ).to(snake_case__ )
return va
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> List[Any]:
lowerCAmelCase = F.normalize(snake_case__ , dim=-1 )
lowerCAmelCase = F.normalize(snake_case__ , dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Tuple:
for param in model.parameters():
lowerCAmelCase = value
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , ) ->Optional[Any]:
super().__init__()
self.register_modules(
vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , clip_model=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , coca_model=__SCREAMING_SNAKE_CASE , coca_tokenizer=__SCREAMING_SNAKE_CASE , coca_transform=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = (
feature_extractor.size
if isinstance(feature_extractor.size , __SCREAMING_SNAKE_CASE )
else feature_extractor.size['''shortest_edge''']
)
lowerCAmelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , __SCREAMING_SNAKE_CASE )
set_requires_grad(self.clip_model , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE = "auto" ) ->Optional[Any]:
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
lowerCAmelCase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
self.enable_attention_slicing(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
set_requires_grad(self.vae , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
set_requires_grad(self.vae , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
set_requires_grad(self.unet , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
set_requires_grad(self.unet , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[Any]:
# get the original timestep using init_timestep
lowerCAmelCase = min(int(num_inference_steps * strength ) , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = max(num_inference_steps - init_timestep , 0 )
lowerCAmelCase = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Tuple:
if not isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ):
raise ValueError(F"`image` has to be of type `torch.Tensor` but is {type(__SCREAMING_SNAKE_CASE )}" )
lowerCAmelCase = image.to(device=__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__SCREAMING_SNAKE_CASE )
]
lowerCAmelCase = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 )
else:
lowerCAmelCase = self.vae.encode(__SCREAMING_SNAKE_CASE ).latent_dist.sample(__SCREAMING_SNAKE_CASE )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
lowerCAmelCase = 0.1_8_2_1_5 * init_latents
lowerCAmelCase = init_latents.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 )
lowerCAmelCase = randn_tensor(init_latents.shape , generator=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )
# get latents
lowerCAmelCase = self.scheduler.add_noise(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = init_latents
return latents
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = self.coca_transform(__SCREAMING_SNAKE_CASE ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
lowerCAmelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
lowerCAmelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Any:
lowerCAmelCase = self.feature_extractor.preprocess(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half()
lowerCAmelCase = self.clip_model.get_image_features(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = image_embeddings_clip.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) ->Any:
lowerCAmelCase = latents.detach().requires_grad_()
lowerCAmelCase = self.scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# predict the noise residual
lowerCAmelCase = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
lowerCAmelCase = self.scheduler.alphas_cumprod[timestep]
lowerCAmelCase = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
lowerCAmelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
lowerCAmelCase = torch.sqrt(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = self.scheduler.sigmas[index]
lowerCAmelCase = latents - sigma * noise_pred
else:
raise ValueError(F"scheduler type {type(self.scheduler )} not supported" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
lowerCAmelCase = 1 / 0.1_8_2_1_5 * sample
lowerCAmelCase = self.vae.decode(__SCREAMING_SNAKE_CASE ).sample
lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase = transforms.Resize(self.feature_extractor_size )(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.normalize(__SCREAMING_SNAKE_CASE ).to(latents.dtype )
lowerCAmelCase = self.clip_model.get_image_features(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = spherical_dist_loss(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).mean() * clip_guidance_scale
lowerCAmelCase = -torch.autograd.grad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )[0]
if isinstance(self.scheduler , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = latents.detach() + grads * (sigma**2)
lowerCAmelCase = noise_pred_original
else:
lowerCAmelCase = noise_pred_original - torch.sqrt(__SCREAMING_SNAKE_CASE ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 512 , __SCREAMING_SNAKE_CASE = 512 , __SCREAMING_SNAKE_CASE = 0.6 , __SCREAMING_SNAKE_CASE = 50 , __SCREAMING_SNAKE_CASE = 7.5 , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 100 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 0.8 , __SCREAMING_SNAKE_CASE = 0.1 , __SCREAMING_SNAKE_CASE = 0.1 , ) ->Any:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) != batch_size:
raise ValueError(F"You have passed {batch_size} batch_size, but only {len(__SCREAMING_SNAKE_CASE )} generators." )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." )
if isinstance(__SCREAMING_SNAKE_CASE , torch.Generator ) and batch_size > 1:
lowerCAmelCase = [generator] + [None] * (batch_size - 1)
lowerCAmelCase = [
('''model''', self.coca_model is None),
('''tokenizer''', self.coca_tokenizer is None),
('''transform''', self.coca_transform is None),
]
lowerCAmelCase = [x[0] for x in coca_is_none if x[1]]
lowerCAmelCase = ''', '''.join(__SCREAMING_SNAKE_CASE )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(__SCREAMING_SNAKE_CASE ):
raise ValueError(
F"Content prompt is None and CoCa [{coca_is_none_str}] is None."
F"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." )
lowerCAmelCase = self.get_image_description(__SCREAMING_SNAKE_CASE )
if style_prompt is None:
if len(__SCREAMING_SNAKE_CASE ):
raise ValueError(
F"Style prompt is None and CoCa [{coca_is_none_str}] is None."
F" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." )
lowerCAmelCase = self.get_image_description(__SCREAMING_SNAKE_CASE )
# get prompt text embeddings for content and style
lowerCAmelCase = self.tokenizer(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , )
lowerCAmelCase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
lowerCAmelCase = self.tokenizer(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , )
lowerCAmelCase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
lowerCAmelCase = slerp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# duplicate text embeddings for each generation per prompt
lowerCAmelCase = text_embeddings.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 )
# set timesteps
lowerCAmelCase = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
lowerCAmelCase = {}
if accepts_offset:
lowerCAmelCase = 1
self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
lowerCAmelCase , lowerCAmelCase = self.get_timesteps(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.device )
lowerCAmelCase = timesteps[:1].repeat(__SCREAMING_SNAKE_CASE )
# Preprocess image
lowerCAmelCase = preprocess(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.prepare_latents(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , text_embeddings.dtype , self.device , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = preprocess(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.prepare_latents(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , text_embeddings.dtype , self.device , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = slerp(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if clip_guidance_scale > 0:
lowerCAmelCase = self.get_clip_image_embeddings(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.get_clip_image_embeddings(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = slerp(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
lowerCAmelCase = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
lowerCAmelCase = content_text_input.input_ids.shape[-1]
lowerCAmelCase = self.tokenizer([''''''] , padding='''max_length''' , max_length=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' )
lowerCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
lowerCAmelCase = uncond_embeddings.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
lowerCAmelCase = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
lowerCAmelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
lowerCAmelCase = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
lowerCAmelCase = torch.randn(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device='''cpu''' , dtype=__SCREAMING_SNAKE_CASE ).to(
self.device )
else:
lowerCAmelCase = torch.randn(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=self.device , dtype=__SCREAMING_SNAKE_CASE )
else:
if latents.shape != latents_shape:
raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" )
lowerCAmelCase = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
lowerCAmelCase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
lowerCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
lowerCAmelCase = {}
if accepts_eta:
lowerCAmelCase = eta
# check if the scheduler accepts generator
lowerCAmelCase = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
lowerCAmelCase = generator
with self.progress_bar(total=__SCREAMING_SNAKE_CASE ):
for i, t in enumerate(__SCREAMING_SNAKE_CASE ):
# expand the latents if we are doing classifier free guidance
lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowerCAmelCase = self.scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# predict the noise residual
lowerCAmelCase = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
lowerCAmelCase , lowerCAmelCase = noise_pred.chunk(2 )
lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
lowerCAmelCase = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
lowerCAmelCase , lowerCAmelCase = self.cond_fn(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )
# compute the previous noisy sample x_t -> x_t-1
lowerCAmelCase = self.scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
lowerCAmelCase = 1 / 0.1_8_2_1_5 * latents
lowerCAmelCase = self.vae.decode(__SCREAMING_SNAKE_CASE ).sample
lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase = self.numpy_to_pil(__SCREAMING_SNAKE_CASE )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=__SCREAMING_SNAKE_CASE , nsfw_content_detected=__SCREAMING_SNAKE_CASE )
| 338 | import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = ["""image_processor""", """tokenizer"""]
UpperCAmelCase_ : int = """OwlViTImageProcessor"""
UpperCAmelCase_ : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Any:
lowerCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __SCREAMING_SNAKE_CASE , )
lowerCAmelCase = kwargs.pop('''feature_extractor''' )
lowerCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="max_length" , __SCREAMING_SNAKE_CASE="np" , **__SCREAMING_SNAKE_CASE ) ->int:
if text is None and query_images is None and images is None:
raise ValueError(
'''You have to specify at least one text or query image or image. All three cannot be none.''' )
if text is not None:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or (isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(text[0] , __SCREAMING_SNAKE_CASE )):
lowerCAmelCase = [self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )]
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(text[0] , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = []
# Maximum number of queries across batch
lowerCAmelCase = max([len(__SCREAMING_SNAKE_CASE ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__SCREAMING_SNAKE_CASE ) != max_num_queries:
lowerCAmelCase = t + [''' '''] * (max_num_queries - len(__SCREAMING_SNAKE_CASE ))
lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
encodings.append(__SCREAMING_SNAKE_CASE )
else:
raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' )
if return_tensors == "np":
lowerCAmelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
lowerCAmelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
lowerCAmelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
lowerCAmelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
lowerCAmelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 )
lowerCAmelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
lowerCAmelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
lowerCAmelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
else:
raise ValueError('''Target return tensor type could not be returned''' )
lowerCAmelCase = BatchEncoding()
lowerCAmelCase = input_ids
lowerCAmelCase = attention_mask
if query_images is not None:
lowerCAmelCase = BatchEncoding()
lowerCAmelCase = self.image_processor(
__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).pixel_values
lowerCAmelCase = query_pixel_values
if images is not None:
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if text is not None and images is not None:
lowerCAmelCase = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
lowerCAmelCase = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__SCREAMING_SNAKE_CASE ) , tensor_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Optional[int]:
return self.image_processor.post_process(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Any:
return self.image_processor.post_process_object_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Tuple:
return self.image_processor.post_process_image_guided_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->str:
return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __SCREAMING_SNAKE_CASE , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __SCREAMING_SNAKE_CASE , )
return self.image_processor
| 338 | 1 |
import argparse
import re
from flax.traverse_util import flatten_dict, unflatten_dict
from tax import checkpoints
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
from transformers.utils import logging
logging.set_verbosity_info()
# should not include what is already done by the `from_pt` argument
lowercase__ : int = {
'''/attention/''': '''/0/SelfAttention/''',
'''/self_attention/''': '''/0/SelfAttention/''',
'''/encoder_decoder_attention/''': '''/1/EncDecAttention/''',
'''value''': '''v''',
'''query''': '''q''',
'''key''': '''k''',
'''out''': '''o''',
'''pre_self_attention_layer_norm''': '''0/layer_norm''',
'''pre_cross_attention_layer_norm''': '''1/layer_norm''',
'''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong
'''token_embedder''': '''shared''',
'''encoder_norm''': '''final_layer_norm''',
'''decoder_norm''': '''final_layer_norm''',
'''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''',
'''router/router_weights/w/''': '''router/classifier/''',
'''roer/roer_weights/w/''': '''router/classifier/''',
'''logits_dense''': '''lm_head''',
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> int:
# 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in
# the original model
lowerCAmelCase = list(s_dict.keys() )
for key in keys:
lowerCAmelCase = R'''.*/layers_(\d+)'''
lowerCAmelCase = key
if re.match(snake_case__ , snake_case__ ):
lowerCAmelCase = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , snake_case__ )
lowerCAmelCase = R'''(encoder|decoder)\/'''
if re.match(snake_case__ , snake_case__ ):
lowerCAmelCase = re.match(snake_case__ , snake_case__ ).groups()
if groups[0] == "encoder":
lowerCAmelCase = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , snake_case__ )
lowerCAmelCase = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , snake_case__ )
elif groups[0] == "decoder":
lowerCAmelCase = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , snake_case__ )
lowerCAmelCase = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , snake_case__ )
# 2. Convert other classic mappings
for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items():
if old_key in new_key:
lowerCAmelCase = new_key.replace(snake_case__ , snake_case__ )
print(f"{key} -> {new_key}" )
lowerCAmelCase = s_dict.pop(snake_case__ )
if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
lowerCAmelCase = s_dict[
'''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight'''
].T
if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
lowerCAmelCase = s_dict[
'''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight'''
].T
# 3. Take extra care of the EXPERTS layer
for key in list(s_dict.keys() ):
if "expert" in key:
lowerCAmelCase = s_dict[key].shape[0]
lowerCAmelCase = s_dict[key]
for idx in range(snake_case__ ):
lowerCAmelCase = expert_weihts[idx]
print(f"{key} -> {key.replace('expert/' , 'nested fstring' )}" )
s_dict.pop(snake_case__ )
return s_dict
lowercase__ : Union[str, Any] = {
'''NUM_ENCODER_LAYERS''': '''num_layers''',
'''NUM_DECODER_LAYERS''': '''num_decoder_layers''',
'''NUM_HEADS''': '''num_heads''',
'''HEAD_DIM''': '''d_kv''',
'''EMBED_DIM''': '''d_model''',
'''MLP_DIM''': '''d_ff''',
'''NUM_SELECTED_EXPERTS''': '''num_selected_experts''',
'''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''',
'''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''',
'''dense.MlpBlock.activations''': '''feed_forward_proj''',
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Optional[int]:
# Convert a google style config to the hugging face fromat
import regex as re
with open(snake_case__ , '''r''' ) as f:
lowerCAmelCase = f.read()
lowerCAmelCase = re.findall(R'''(.*) = ([0-9.]*)''' , snake_case__ )
lowerCAmelCase = {}
for param, value in regex_match:
if param in GIN_TO_CONFIG_MAPPING and value != "":
lowerCAmelCase = float(snake_case__ ) if '''.''' in value else int(snake_case__ )
lowerCAmelCase = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , snake_case__ )[0]
lowerCAmelCase = str(activation[1] )
lowerCAmelCase = num_experts
lowerCAmelCase = SwitchTransformersConfig(**snake_case__ )
return config
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__="./" , snake_case__=8 ) -> Union[str, Any]:
# Initialise PyTorch model
print(f"Loading flax weights from : {flax_checkpoint_path}" )
lowerCAmelCase = checkpoints.load_tax_checkpoint(snake_case__ )
if gin_file is not None:
lowerCAmelCase = convert_gin_to_config(snake_case__ , snake_case__ )
else:
lowerCAmelCase = SwitchTransformersConfig.from_pretrained(snake_case__ )
lowerCAmelCase = SwitchTransformersForConditionalGeneration(snake_case__ )
lowerCAmelCase = flax_params['''target''']
lowerCAmelCase = flatten_dict(snake_case__ , sep='''/''' )
lowerCAmelCase = rename_keys(snake_case__ )
lowerCAmelCase = unflatten_dict(snake_case__ , sep='''/''' )
# Load the flax params in the PT model
load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ )
print(f"Save PyTorch model to {pytorch_dump_path}" )
pt_model.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase__ : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--switch_t5x_checkpoint_path''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the'''
''' model architecture. If not provided, a `gin_file` has to be provided.'''
),
)
parser.add_argument(
'''--gin_file''',
default=None,
type=str,
required=False,
help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''',
)
parser.add_argument(
'''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.'''
)
parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''')
lowercase__ : int = parser.parse_args()
convert_flax_checkpoint_to_pytorch(
args.switch_tax_checkpoint_path,
args.config_name,
args.gin_file,
args.pytorch_dump_folder_path,
args.num_experts,
)
| 338 | import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : List[Any] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'''vocab_file''': '''spiece.model'''}
lowercase__ : Optional[int] = {
'''vocab_file''': {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''',
}
}
lowercase__ : Any = {
'''albert-base-v1''': 5_1_2,
'''albert-large-v1''': 5_1_2,
'''albert-xlarge-v1''': 5_1_2,
'''albert-xxlarge-v1''': 5_1_2,
'''albert-base-v2''': 5_1_2,
'''albert-large-v2''': 5_1_2,
'''albert-xlarge-v2''': 5_1_2,
'''albert-xxlarge-v2''': 5_1_2,
}
lowercase__ : Tuple = '''▁'''
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = VOCAB_FILES_NAMES
UpperCAmelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) ->None:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
lowerCAmelCase = (
AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE , normalized=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else mask_token
)
lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = do_lower_case
lowerCAmelCase = remove_space
lowerCAmelCase = keep_accents
lowerCAmelCase = vocab_file
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__SCREAMING_SNAKE_CASE )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
return len(self.sp_model )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) ->int:
lowerCAmelCase = self.__dict__.copy()
lowerCAmelCase = None
return state
def __setstate__( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
lowerCAmelCase = {}
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Any:
if self.remove_space:
lowerCAmelCase = ''' '''.join(inputs.strip().split() )
else:
lowerCAmelCase = inputs
lowerCAmelCase = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' )
if not self.keep_accents:
lowerCAmelCase = unicodedata.normalize('''NFKD''' , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = ''''''.join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE )] )
if self.do_lower_case:
lowerCAmelCase = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[str]:
lowerCAmelCase = self.preprocess_text(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = []
for piece in pieces:
if len(__SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit():
lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , '''''' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowerCAmelCase = cur_pieces[1:]
else:
lowerCAmelCase = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__SCREAMING_SNAKE_CASE )
else:
new_pieces.append(__SCREAMING_SNAKE_CASE )
return new_pieces
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->int:
return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->int:
return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
lowerCAmelCase = []
lowerCAmelCase = ''''''
lowerCAmelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token
lowerCAmelCase = True
lowerCAmelCase = []
else:
current_sub_tokens.append(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = False
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE )
return out_string.strip()
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ) ->List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE )
if token_ids_a is not None:
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Tuple[str]:
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCAmelCase = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi:
lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 338 | 1 |
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
lowercase__ : List[str] = logging.get_logger(__name__)
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->None:
warnings.warn(
'''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use DeformableDetrImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , )
super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
| 338 | import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = (DEISMultistepScheduler,)
UpperCAmelCase_ : int = (("""num_inference_steps""", 25),)
def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->str:
lowerCAmelCase = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
}
config.update(**__SCREAMING_SNAKE_CASE )
return config
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE )
new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
lowerCAmelCase , lowerCAmelCase = sample, sample
for t in range(__SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ):
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
lowerCAmelCase = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals (must be after setting timesteps)
lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residual (must be after setting timesteps)
lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
lowerCAmelCase = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
if scheduler is None:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = 10
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample
return sample
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
if num_inference_steps is not None and hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
elif num_inference_steps is not None and not hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
lowerCAmelCase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
lowerCAmelCase = scheduler.timesteps[5]
lowerCAmelCase = scheduler.timesteps[6]
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
# make sure that iterating over schedulers with same config names gives same results
# for defaults
lowerCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() )
lowerCAmelCase = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config )
lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , algorithm_type='''deis''' , solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = self.full_loop(
solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , )
assert not torch.isnan(__SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers"
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE )
self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=__SCREAMING_SNAKE_CASE , time_step=0 )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.full_loop()
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
lowerCAmelCase = self.full_loop(prediction_type='''v_prediction''' )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(thresholding=__SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = 10
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter.half()
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample
assert sample.dtype == torch.floataa
| 338 | 1 |
from typing import Any
class lowercase_ :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = data
lowerCAmelCase = None
def __repr__( self ) ->str:
return F"Node({self.data})"
class lowercase_ :
"""simple docstring"""
def __init__( self ) ->List[str]:
lowerCAmelCase = None
def __iter__( self ) ->Any:
lowerCAmelCase = self.head
while node:
yield node.data
lowerCAmelCase = node.next
def __len__( self ) ->int:
return sum(1 for _ in self )
def __repr__( self ) ->str:
return "->".join([str(__SCREAMING_SNAKE_CASE ) for item in self] )
def __getitem__( self , __SCREAMING_SNAKE_CASE ) ->Any:
if not 0 <= index < len(self ):
raise ValueError('''list index out of range.''' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->None:
if not 0 <= index < len(self ):
raise ValueError('''list index out of range.''' )
lowerCAmelCase = self.head
for _ in range(__SCREAMING_SNAKE_CASE ):
lowerCAmelCase = current.next
lowerCAmelCase = data
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->None:
self.insert_nth(len(self ) , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->None:
self.insert_nth(0 , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->None:
if not 0 <= index <= len(self ):
raise IndexError('''list index out of range''' )
lowerCAmelCase = Node(__SCREAMING_SNAKE_CASE )
if self.head is None:
lowerCAmelCase = new_node
elif index == 0:
lowerCAmelCase = self.head # link new_node to head
lowerCAmelCase = new_node
else:
lowerCAmelCase = self.head
for _ in range(index - 1 ):
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next
lowerCAmelCase = new_node
def SCREAMING_SNAKE_CASE_ ( self ) ->None: # print every node data
print(self )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
return self.delete_nth(0 )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any: # delete from tail
return self.delete_nth(len(self ) - 1 )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE = 0 ) ->Any:
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('''List index out of range.''' )
lowerCAmelCase = self.head # default first node
if index == 0:
lowerCAmelCase = self.head.next
else:
lowerCAmelCase = self.head
for _ in range(index - 1 ):
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next
lowerCAmelCase = temp.next.next
return delete_node.data
def SCREAMING_SNAKE_CASE_ ( self ) ->bool:
return self.head is None
def SCREAMING_SNAKE_CASE_ ( self ) ->None:
lowerCAmelCase = None
lowerCAmelCase = self.head
while current:
# Store the current node's next node.
lowerCAmelCase = current.next
# Make the current node's next point backwards
lowerCAmelCase = prev
# Make the previous node be the current node
lowerCAmelCase = current
# Make the current node the next node (to progress iteration)
lowerCAmelCase = next_node
# Return prev in order to put the head at the end
lowerCAmelCase = prev
def SCREAMING_SNAKE_CASE_ ( ) -> None:
lowerCAmelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(snake_case__ ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(1_0 ):
assert len(snake_case__ ) == i
linked_list.insert_nth(snake_case__ , i + 1 )
assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 1_1 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(1_1 )
assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(0 , 1_2 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 1_0
assert linked_list.delete_tail() == 1_1
assert len(snake_case__ ) == 9
assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 1_0 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
lowerCAmelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(-8 , 1 ) )
def SCREAMING_SNAKE_CASE_ ( ) -> None:
lowerCAmelCase = [
-9,
1_0_0,
Node(7_7_3_4_5_1_1_2 ),
'''dlrow olleH''',
7,
5_5_5_5,
0,
-1_92.5_55_55,
'''Hello, world!''',
77.9,
Node(1_0 ),
None,
None,
12.20,
]
lowerCAmelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(snake_case__ )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(snake_case__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
lowerCAmelCase = linked_list.delete_head()
assert result == -9
assert (
str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
lowerCAmelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
lowerCAmelCase = linked_list.delete_nth(1_0 )
assert result is None
assert (
str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('''Hello again, world!''' ) )
assert (
str(snake_case__ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(snake_case__ )
assert (
str(snake_case__ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(snake_case__ )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def SCREAMING_SNAKE_CASE_ ( ) -> Tuple:
from doctest import testmod
testmod()
lowerCAmelCase = LinkedList()
linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() )
linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() )
print('''\nPrint list:''' )
linked_list.print_list()
linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() )
linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() )
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nDelete head''' )
linked_list.delete_head()
print('''Delete tail''' )
linked_list.delete_tail()
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nReverse linked list''' )
linked_list.reverse()
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nString representation of linked list:''' )
print(snake_case__ )
print('''\nReading/changing Node data using indexing:''' )
print(f"Element at Position 1: {linked_list[1]}" )
lowerCAmelCase = input('''Enter New Value: ''' ).strip()
print('''New list:''' )
print(snake_case__ )
print(f"length of linked_list is : {len(snake_case__ )}" )
if __name__ == "__main__":
main()
| 338 | import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
torch.manual_seed(0 )
lowerCAmelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = self.dummy_uncond_unet
lowerCAmelCase = KarrasVeScheduler()
lowerCAmelCase = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0]
lowerCAmelCase = image[0, -3:, -3:, -1]
lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
lowerCAmelCase = '''google/ncsnpp-celebahq-256'''
lowerCAmelCase = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = KarrasVeScheduler()
lowerCAmelCase = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
lowerCAmelCase = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 338 | 1 |
import pprint
import requests
lowercase__ : Tuple = '''https://zenquotes.io/api'''
def SCREAMING_SNAKE_CASE_ ( ) -> list:
return requests.get(API_ENDPOINT_URL + '''/today''' ).json()
def SCREAMING_SNAKE_CASE_ ( ) -> list:
return requests.get(API_ENDPOINT_URL + '''/random''' ).json()
if __name__ == "__main__":
lowercase__ : Tuple = random_quotes()
pprint.pprint(response)
| 338 | from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
lowercase__ : Dict = logging.get_logger(__name__)
@add_end_docstrings(
UpperCamelCase_ , r"""
top_k (`int`, defaults to 5):
The number of predictions to return.
targets (`str` or `List[str]`, *optional*):
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting
token will be used (with a warning, and that might be slower).
""" , )
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray:
if self.framework == "tf":
lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE )
else:
raise ValueError('''Unsupported framework''' )
return masked_index
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray:
lowerCAmelCase = self.get_masked_index(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Dict[str, GenericTensor]:
if return_tensors is None:
lowerCAmelCase = self.framework
lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE )
self.ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = self.model(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model_inputs['''input_ids''']
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=None ) ->str:
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
lowerCAmelCase = target_ids.shape[0]
lowerCAmelCase = model_outputs['''input_ids'''][0]
lowerCAmelCase = model_outputs['''logits''']
if self.framework == "tf":
lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
lowerCAmelCase = outputs.numpy()
lowerCAmelCase = outputs[0, masked_index, :]
lowerCAmelCase = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 )
if target_ids is not None:
lowerCAmelCase = tf.gather_nd(tf.squeeze(__SCREAMING_SNAKE_CASE , 0 ) , target_ids.reshape(-1 , 1 ) )
lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE , 0 )
lowerCAmelCase = tf.math.top_k(__SCREAMING_SNAKE_CASE , k=__SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase = topk.values.numpy(), topk.indices.numpy()
else:
lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
lowerCAmelCase = outputs[0, masked_index, :]
lowerCAmelCase = logits.softmax(dim=-1 )
if target_ids is not None:
lowerCAmelCase = probs[..., target_ids]
lowerCAmelCase , lowerCAmelCase = probs.topk(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = []
lowerCAmelCase = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ):
lowerCAmelCase = []
for v, p in zip(_values , _predictions ):
# Copy is important since we're going to modify this array in place
lowerCAmelCase = input_ids.numpy().copy()
if target_ids is not None:
lowerCAmelCase = target_ids[p].tolist()
lowerCAmelCase = p
# Filter padding out:
lowerCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
lowerCAmelCase = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence}
row.append(__SCREAMING_SNAKE_CASE )
result.append(__SCREAMING_SNAKE_CASE )
if single_mask:
return result[0]
return result
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Optional[Any]:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = [targets]
try:
lowerCAmelCase = self.tokenizer.get_vocab()
except Exception:
lowerCAmelCase = {}
lowerCAmelCase = []
for target in targets:
lowerCAmelCase = vocab.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if id_ is None:
lowerCAmelCase = self.tokenizer(
__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , max_length=1 , truncation=__SCREAMING_SNAKE_CASE , )['''input_ids''']
if len(__SCREAMING_SNAKE_CASE ) == 0:
logger.warning(
F"The specified target token `{target}` does not exist in the model vocabulary. "
'''We cannot replace it with anything meaningful, ignoring it''' )
continue
lowerCAmelCase = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
F"The specified target token `{target}` does not exist in the model vocabulary. "
F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." )
target_ids.append(id_ )
lowerCAmelCase = list(set(__SCREAMING_SNAKE_CASE ) )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError('''At least one target must be provided when passed.''' )
lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
return target_ids
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) ->Dict:
lowerCAmelCase = {}
if targets is not None:
lowerCAmelCase = self.get_target_ids(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = target_ids
if top_k is not None:
lowerCAmelCase = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' )
return {}, {}, postprocess_params
def __call__( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
lowerCAmelCase = super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) == 1:
return outputs[0]
return outputs
| 338 | 1 |
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> list:
if any(not isinstance(snake_case__ , snake_case__ ) or x < 0 for x in sequence ):
raise TypeError('''Sequence must be list of non-negative integers''' )
for _ in range(len(snake_case__ ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(snake_case__ , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 338 | from typing import TYPE_CHECKING
from ...utils import _LazyModule
lowercase__ : int = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
lowercase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 338 | 1 |
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : List[Any] = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]:
lowerCAmelCase = torch.load(snake_case__ , map_location='''cpu''' )
if "model" in sd.keys():
lowerCAmelCase = torch.load(snake_case__ , map_location='''cpu''' )['''model''']
# pop unnecessary weights
lowerCAmelCase = [
'''decoder.version''',
'''decoder.output_projection.weight''',
]
for key in keys_to_delete:
if key in sd:
sd.pop(snake_case__ )
lowerCAmelCase = {
'''decoder.project_in_dim.weight''': '''decoder.project_in.weight''',
'''decoder.project_out_dim.weight''': '''decoder.project_out.weight''',
'''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
lowerCAmelCase = sd.pop(snake_case__ )
lowerCAmelCase = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
lowerCAmelCase = sd[key]
# We split QKV in separate Q,K,V
lowerCAmelCase = key.replace('''.qkv_proj.''' , '''.q_proj.''' )
lowerCAmelCase = key.replace('''.qkv_proj.''' , '''.k_proj.''' )
lowerCAmelCase = key.replace('''.qkv_proj.''' , '''.v_proj.''' )
lowerCAmelCase = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = torch.split(snake_case__ , depth // 3 , dim=0 )
lowerCAmelCase = q
lowerCAmelCase = k
lowerCAmelCase = v
del sd[key]
return sd
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__=None ) -> str:
lowerCAmelCase = load_checkpoint(snake_case__ )
if config is not None:
lowerCAmelCase = OPTConfig.from_pretrained(snake_case__ )
else:
lowerCAmelCase = OPTConfig()
lowerCAmelCase = OPTModel(snake_case__ ).half().eval()
model.load_state_dict(snake_case__ )
# Check results
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
model.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--fairseq_path''',
type=str,
help=(
'''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:'''
''' https://huggingface.co/models?other=opt_metasq'''
),
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''')
lowercase__ : str = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 338 | lowercase__ : Optional[int] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ'''
def SCREAMING_SNAKE_CASE_ ( ) -> None:
lowerCAmelCase = input('''Enter message: ''' )
lowerCAmelCase = input('''Enter key [alphanumeric]: ''' )
lowerCAmelCase = input('''Encrypt/Decrypt [e/d]: ''' )
if mode.lower().startswith('''e''' ):
lowerCAmelCase = '''encrypt'''
lowerCAmelCase = encrypt_message(snake_case__ , snake_case__ )
elif mode.lower().startswith('''d''' ):
lowerCAmelCase = '''decrypt'''
lowerCAmelCase = decrypt_message(snake_case__ , snake_case__ )
print(f"\n{mode.title()}ed message:" )
print(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
return translate_message(snake_case__ , snake_case__ , '''encrypt''' )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
return translate_message(snake_case__ , snake_case__ , '''decrypt''' )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> str:
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = key.upper()
for symbol in message:
lowerCAmelCase = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(snake_case__ )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(snake_case__ ):
lowerCAmelCase = 0
else:
translated.append(snake_case__ )
return "".join(snake_case__ )
if __name__ == "__main__":
main()
| 338 | 1 |
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Optional[Any]:
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__=0 ) -> Union[str, Any]:
return sorted(snake_case__ , key=lambda snake_case__ : x[column] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__=float('''inf''' ) ) -> Optional[int]:
for i in range(points_counts - 1 ):
for j in range(i + 1 , snake_case__ ):
lowerCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
lowerCAmelCase = current_dis
return min_dis
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__=float('''inf''' ) ) -> Tuple:
for i in range(min(6 , points_counts - 1 ) , snake_case__ ):
for j in range(max(0 , i - 6 ) , snake_case__ ):
lowerCAmelCase = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
lowerCAmelCase = current_dis
return min_dis
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]:
# base case
if points_counts <= 3:
return dis_between_closest_pair(snake_case__ , snake_case__ )
# recursion
lowerCAmelCase = points_counts // 2
lowerCAmelCase = closest_pair_of_points_sqr(
snake_case__ , points_sorted_on_y[:mid] , snake_case__ )
lowerCAmelCase = closest_pair_of_points_sqr(
snake_case__ , points_sorted_on_y[mid:] , points_counts - mid )
lowerCAmelCase = min(snake_case__ , snake_case__ )
lowerCAmelCase = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(snake_case__ )
lowerCAmelCase = dis_between_closest_in_strip(
snake_case__ , len(snake_case__ ) , snake_case__ )
return min(snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> List[Any]:
lowerCAmelCase = column_based_sort(snake_case__ , column=0 )
lowerCAmelCase = column_based_sort(snake_case__ , column=1 )
return (
closest_pair_of_points_sqr(
snake_case__ , snake_case__ , snake_case__ )
) ** 0.5
if __name__ == "__main__":
lowercase__ : str = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)]
print('''Distance:''', closest_pair_of_points(points, len(points)))
| 338 | from collections import defaultdict
from math import ceil, sqrt
def SCREAMING_SNAKE_CASE_ ( snake_case__ = 1_0_0_0_0_0_0 , snake_case__ = 1_0 ) -> int:
lowerCAmelCase = defaultdict(snake_case__ )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
lowerCAmelCase = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
lowerCAmelCase = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(snake_case__ , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 1_0 )
if __name__ == "__main__":
print(f'{solution() = }')
| 338 | 1 |
from __future__ import annotations
import math
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> list[int]:
if num <= 0:
lowerCAmelCase = f"{num}: Invalid input, please enter a positive integer."
raise ValueError(snake_case__ )
lowerCAmelCase = [True] * (num + 1)
lowerCAmelCase = []
lowerCAmelCase = 2
lowerCAmelCase = int(math.sqrt(snake_case__ ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(snake_case__ )
# Set multiples of start be False
for i in range(start * start , num + 1 , snake_case__ ):
if sieve[i] is True:
lowerCAmelCase = False
start += 1
for j in range(end + 1 , num + 1 ):
if sieve[j] is True:
prime.append(snake_case__ )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
| 338 | import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Union[str, Any]:
assert isinstance(snake_case__ , snake_case__ )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''text''': '''string'''},
{'''text''': '''int32'''},
{'''text''': '''float32'''},
] , )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = features.copy() if features else default_expected_features
lowerCAmelCase = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCAmelCase = TextDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]:
if issubclass(snake_case__ , snake_case__ ):
lowerCAmelCase = text_path
elif issubclass(snake_case__ , snake_case__ ):
lowerCAmelCase = [text_path]
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__=("train",) ) -> Optional[Any]:
assert isinstance(snake_case__ , snake_case__ )
for split in splits:
lowerCAmelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCAmelCase = TextDatasetReader({'''train''': text_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_text_datasetdict(snake_case__ , snake_case__ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''text''': '''string'''},
{'''text''': '''int32'''},
{'''text''': '''float32'''},
] , )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]:
lowerCAmelCase = tmp_path / '''cache'''
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = features.copy() if features else default_expected_features
lowerCAmelCase = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCAmelCase = TextDatasetReader({'''train''': text_path} , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_text_datasetdict(snake_case__ , snake_case__ )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Any:
if split:
lowerCAmelCase = {split: text_path}
else:
lowerCAmelCase = '''train'''
lowerCAmelCase = {'''train''': text_path, '''test''': text_path}
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ ).read()
_check_text_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 338 | 1 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class lowercase_ :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=36 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1000 , ) ->List[Any]:
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = num_channels
lowerCAmelCase = image_size
lowerCAmelCase = patch_size
lowerCAmelCase = text_seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = coordinate_size
lowerCAmelCase = shape_size
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
lowerCAmelCase = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
lowerCAmelCase = text_seq_length
lowerCAmelCase = (image_size // patch_size) ** 2 + 1
lowerCAmelCase = self.text_seq_length + self.image_seq_length
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowerCAmelCase = bbox[i, j, 3]
lowerCAmelCase = bbox[i, j, 1]
lowerCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
lowerCAmelCase = bbox[i, j, 2]
lowerCAmelCase = bbox[i, j, 0]
lowerCAmelCase = t
lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
lowerCAmelCase = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->List[Any]:
lowerCAmelCase = LayoutLMvaModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
# text + image
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model(
__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
lowerCAmelCase = model(pixel_values=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[Any]:
lowerCAmelCase = self.num_labels
lowerCAmelCase = LayoutLMvaForSequenceClassification(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase = model(
__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = self.num_labels
lowerCAmelCase = LayoutLMvaForTokenClassification(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase = model(
__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->int:
lowerCAmelCase = LayoutLMvaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase = model(
__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''pixel_values''': pixel_values,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class lowercase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = False
UpperCAmelCase_ : str = False
UpperCAmelCase_ : str = False
UpperCAmelCase_ : List[Any] = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
UpperCAmelCase_ : Tuple = (
{"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel}
if is_torch_available()
else {}
)
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->str:
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
lowerCAmelCase = LayoutLMvaModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) ->int:
lowerCAmelCase = copy.deepcopy(__SCREAMING_SNAKE_CASE )
if model_class in get_values(__SCREAMING_SNAKE_CASE ):
lowerCAmelCase = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__SCREAMING_SNAKE_CASE ):
lowerCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE )
elif model_class in get_values(__SCREAMING_SNAKE_CASE ):
lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE )
elif model_class in [
*get_values(__SCREAMING_SNAKE_CASE ),
]:
lowerCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE )
elif model_class in [
*get_values(__SCREAMING_SNAKE_CASE ),
]:
lowerCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE , )
return inputs_dict
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCAmelCase = type
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE )
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = LayoutLMvaModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]:
lowerCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
return LayoutLMvaImageProcessor(apply_ocr=__SCREAMING_SNAKE_CASE ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
lowerCAmelCase = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.default_image_processor
lowerCAmelCase = prepare_img()
lowerCAmelCase = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values.to(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.tensor([[1, 2]] )
lowerCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
lowerCAmelCase = model(
input_ids=input_ids.to(__SCREAMING_SNAKE_CASE ) , bbox=bbox.to(__SCREAMING_SNAKE_CASE ) , pixel_values=pixel_values.to(__SCREAMING_SNAKE_CASE ) , )
# verify the logits
lowerCAmelCase = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.tensor(
[[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 338 | def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str:
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('''\'float\' object cannot be interpreted as an integer''' )
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('''\'str\' object cannot be interpreted as an integer''' )
if num == 0:
return "0b0"
lowerCAmelCase = False
if num < 0:
lowerCAmelCase = True
lowerCAmelCase = -num
lowerCAmelCase = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(snake_case__ ) for e in binary )
return "0b" + "".join(str(snake_case__ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | 1 |
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class lowercase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = StableUnCLIPPipeline
UpperCAmelCase_ : List[str] = TEXT_TO_IMAGE_PARAMS
UpperCAmelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase_ : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCAmelCase_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
UpperCAmelCase_ : Optional[int] = False
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = 32
lowerCAmelCase = embedder_hidden_size
# prior components
torch.manual_seed(0 )
lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
lowerCAmelCase = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=__SCREAMING_SNAKE_CASE , projection_dim=__SCREAMING_SNAKE_CASE , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
lowerCAmelCase = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__SCREAMING_SNAKE_CASE , num_layers=1 , )
torch.manual_seed(0 )
lowerCAmelCase = DDPMScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=__SCREAMING_SNAKE_CASE , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , )
# regular denoising components
torch.manual_seed(0 )
lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' )
torch.manual_seed(0 )
lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
torch.manual_seed(0 )
lowerCAmelCase = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=__SCREAMING_SNAKE_CASE , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
lowerCAmelCase = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__SCREAMING_SNAKE_CASE , layers_per_block=1 , upcast_attention=__SCREAMING_SNAKE_CASE , use_linear_projection=__SCREAMING_SNAKE_CASE , )
torch.manual_seed(0 )
lowerCAmelCase = DDIMScheduler(
beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , )
torch.manual_seed(0 )
lowerCAmelCase = AutoencoderKL()
lowerCAmelCase = {
# prior components
'''prior_tokenizer''': prior_tokenizer,
'''prior_text_encoder''': prior_text_encoder,
'''prior''': prior,
'''prior_scheduler''': prior_scheduler,
# image noising components
'''image_normalizer''': image_normalizer,
'''image_noising_scheduler''': image_noising_scheduler,
# regular denoising components
'''tokenizer''': tokenizer,
'''text_encoder''': text_encoder,
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
}
return components
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) ->Union[str, Any]:
if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ):
lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''prior_num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = torch_device == '''cpu'''
self._test_attention_slicing_forward_pass(test_max_difference=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = torch_device in ['''cpu''', '''mps''']
self._test_inference_batch_single_identical(test_max_difference=__SCREAMING_SNAKE_CASE )
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' )
lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowerCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 )
lowerCAmelCase = pipe('''anime turle''' , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' )
lowerCAmelCase = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa )
lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowerCAmelCase = pipe(
'''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , )
lowerCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 338 | class lowercase_ :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Any:
lowerCAmelCase = name
lowerCAmelCase = value
lowerCAmelCase = weight
def __repr__( self ) ->str:
return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})"
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
return self.value
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
return self.name
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
return self.weight
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
return self.value / self.weight
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> int:
lowerCAmelCase = []
for i in range(len(snake_case__ ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]:
lowerCAmelCase = sorted(snake_case__ , key=snake_case__ , reverse=snake_case__ )
lowerCAmelCase = []
lowerCAmelCase , lowerCAmelCase = 0.0, 0.0
for i in range(len(snake_case__ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : int = logging.get_logger(__name__)
lowercase__ : int = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = """rwkv"""
UpperCAmelCase_ : List[str] = {"""max_position_embeddings""": """context_length"""}
def __init__( self , __SCREAMING_SNAKE_CASE=50277 , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=4096 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ) ->Dict:
lowerCAmelCase = vocab_size
lowerCAmelCase = context_length
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size
lowerCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size
lowerCAmelCase = layer_norm_epsilon
lowerCAmelCase = rescale_every
lowerCAmelCase = use_cache
lowerCAmelCase = bos_token_id
lowerCAmelCase = eos_token_id
super().__init__(
tie_word_embeddings=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
| 338 | import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
lowercase__ : Dict = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
lowercase__ : Optional[int] = [0, 2_5, 5_0]
lowercase__ : Union[str, Any] = [2_5, 5_0, 7_5]
lowercase__ : int = fuzz.membership.trimf(X, abca)
lowercase__ : Tuple = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
lowercase__ : List[str] = np.ones(7_5)
lowercase__ : Any = np.zeros((7_5,))
# 1. Union = max(µA(x), µB(x))
lowercase__ : Union[str, Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
lowercase__ : int = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
lowercase__ : Union[str, Any] = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
lowercase__ : Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
lowercase__ : Any = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
lowercase__ : str = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
lowercase__ : Tuple = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
lowercase__ : Tuple = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('''Young''')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('''Middle aged''')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('''union''')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('''intersection''')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('''complement_a''')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('''difference a/b''')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('''alg_sum''')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('''alg_product''')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('''bdd_sum''')
plt.grid(True)
plt.subplot(4, 3, 1_0)
plt.plot(X, bdd_difference)
plt.title('''bdd_difference''')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 338 | 1 |
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
lowercase__ : List[str] = logging.getLogger(__name__)
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->int:
super().__init__(
__SCREAMING_SNAKE_CASE , question_encoder_tokenizer=__SCREAMING_SNAKE_CASE , generator_tokenizer=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , init_retrieval=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = None
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str:
logger.info('''initializing retrieval''' )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info('''dist initialized''' )
# needs to be set manually
lowerCAmelCase = self._infer_socket_ifname()
# avoid clash with the NCCL port
lowerCAmelCase = str(distributed_port + 1 )
lowerCAmelCase = dist.new_group(ranks=__SCREAMING_SNAKE_CASE , backend='''gloo''' )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info('''dist not initialized / main''' )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
return dist.get_rank(group=self.process_group ) == 0
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=torch.floataa ) ->int:
lowerCAmelCase = torch.empty(__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )
dist.scatter(__SCREAMING_SNAKE_CASE , src=0 , scatter_list=__SCREAMING_SNAKE_CASE , group=self.process_group )
return target_tensor
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
lowerCAmelCase = next((addr for addr in addrs if addr.startswith('''e''' )) , __SCREAMING_SNAKE_CASE )
return ifname
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Tuple[np.ndarray, List[dict]]:
# single GPU training
if not dist.is_initialized():
lowerCAmelCase , lowerCAmelCase = self._main_retrieve(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__SCREAMING_SNAKE_CASE )
# distributed training
lowerCAmelCase = dist.get_world_size(group=self.process_group )
# gather logic
lowerCAmelCase = None
if self._is_main():
lowerCAmelCase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__SCREAMING_SNAKE_CASE )]
dist.gather(torch.tensor(__SCREAMING_SNAKE_CASE ) , dst=0 , gather_list=__SCREAMING_SNAKE_CASE , group=self.process_group )
# scatter logic
lowerCAmelCase = question_hidden_states.shape[0]
lowerCAmelCase = []
lowerCAmelCase = []
if self._is_main():
assert len(__SCREAMING_SNAKE_CASE ) == world_size
lowerCAmelCase , lowerCAmelCase = self._main_retrieve(torch.cat(__SCREAMING_SNAKE_CASE ).numpy() , __SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase = torch.tensor(__SCREAMING_SNAKE_CASE ), torch.tensor(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self._chunk_tensor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self._chunk_tensor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self._scattered(__SCREAMING_SNAKE_CASE , [n_queries, n_docs] , target_type=torch.intaa )
lowerCAmelCase = self._scattered(__SCREAMING_SNAKE_CASE , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__SCREAMING_SNAKE_CASE )
| 338 | import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = (DDPMScheduler,)
def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->Optional[Any]:
lowerCAmelCase = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**__SCREAMING_SNAKE_CASE )
return config
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
for t in [0, 500, 999]:
self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = len(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(__SCREAMING_SNAKE_CASE ) ):
# 1. predict noise residual
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase = pred_prev_sample
lowerCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = len(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(__SCREAMING_SNAKE_CASE ) ):
# 1. predict noise residual
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase = pred_prev_sample
lowerCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler.timesteps
for i, timestep in enumerate(__SCREAMING_SNAKE_CASE ):
if i == len(__SCREAMING_SNAKE_CASE ) - 1:
lowerCAmelCase = -1
else:
lowerCAmelCase = timesteps[i + 1]
lowerCAmelCase = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = prev_t.item()
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [100, 87, 50, 51, 0]
with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [100, 87, 50, 1, 0]
lowerCAmelCase = len(__SCREAMING_SNAKE_CASE )
with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
__SCREAMING_SNAKE_CASE , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
| 338 | 1 |
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase__ : int = logging.get_logger(__name__)
lowercase__ : Any = {
'''vocab_file''': '''vocab.txt''',
'''merges_file''': '''bpe.codes''',
}
lowercase__ : str = {
'''vocab_file''': {
'''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''',
'''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''',
},
'''merges_file''': {
'''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''',
'''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''',
},
}
lowercase__ : Tuple = {
'''vinai/phobert-base''': 2_5_6,
'''vinai/phobert-large''': 2_5_6,
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Dict:
lowerCAmelCase = set()
lowerCAmelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCAmelCase = char
lowerCAmelCase = set(snake_case__ )
return pairs
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = VOCAB_FILES_NAMES
UpperCAmelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , **__SCREAMING_SNAKE_CASE , ) ->Tuple:
super().__init__(
bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = vocab_file
lowerCAmelCase = merges_file
lowerCAmelCase = {}
lowerCAmelCase = 0
lowerCAmelCase = 1
lowerCAmelCase = 2
lowerCAmelCase = 3
self.add_from_file(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {v: k for k, v in self.encoder.items()}
with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as merges_handle:
lowerCAmelCase = merges_handle.read().split('''\n''' )[:-1]
lowerCAmelCase = [tuple(merge.split()[:-1] ) for merge in merges]
lowerCAmelCase = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) )
lowerCAmelCase = {}
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
lowerCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ) ->List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE )
if token_ids_a is None:
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
return len(self.encoder )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
return dict(self.encoder , **self.added_tokens_encoder )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[Any]:
if token in self.cache:
return self.cache[token]
lowerCAmelCase = tuple(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
lowerCAmelCase = get_pairs(__SCREAMING_SNAKE_CASE )
if not pairs:
return token
while True:
lowerCAmelCase = min(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(__SCREAMING_SNAKE_CASE , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
lowerCAmelCase , lowerCAmelCase = bigram
lowerCAmelCase = []
lowerCAmelCase = 0
while i < len(__SCREAMING_SNAKE_CASE ):
try:
lowerCAmelCase = word.index(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCAmelCase = j
if word[i] == first and i < len(__SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCAmelCase = tuple(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = new_word
if len(__SCREAMING_SNAKE_CASE ) == 1:
break
else:
lowerCAmelCase = get_pairs(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = '''@@ '''.join(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = word[:-4]
lowerCAmelCase = word
return word
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = []
lowerCAmelCase = re.findall(R'''\S+\n?''' , __SCREAMING_SNAKE_CASE )
for token in words:
split_tokens.extend(list(self.bpe(__SCREAMING_SNAKE_CASE ).split(''' ''' ) ) )
return split_tokens
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Dict:
return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[Any]:
lowerCAmelCase = ''' '''.join(__SCREAMING_SNAKE_CASE ).replace('''@@ ''' , '''''' ).strip()
return out_string
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Tuple[str]:
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCAmelCase = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCAmelCase = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
if os.path.abspath(self.merges_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ):
copyfile(self.merges_file , __SCREAMING_SNAKE_CASE )
return out_vocab_file, out_merge_file
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
try:
with open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as fd:
self.add_from_file(__SCREAMING_SNAKE_CASE )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(F"Incorrect encoding detected in {f}, please rebuild the dataset" )
return
lowerCAmelCase = f.readlines()
for lineTmp in lines:
lowerCAmelCase = lineTmp.strip()
lowerCAmelCase = line.rfind(''' ''' )
if idx == -1:
raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' )
lowerCAmelCase = line[:idx]
lowerCAmelCase = len(self.encoder )
| 338 | import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
lowercase__ : str = logging.get_logger(__name__)
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = """AutoTokenizer"""
UpperCAmelCase_ : Optional[int] = ["""tokenizer"""]
UpperCAmelCase_ : str = {
"""semantic_prompt""": 1,
"""coarse_prompt""": 2,
"""fine_prompt""": 2,
}
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Optional[Any]:
super().__init__(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = speaker_embeddings
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , **__SCREAMING_SNAKE_CASE ) ->Tuple:
if speaker_embeddings_dict_path is not None:
lowerCAmelCase = get_file_from_repo(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , subfolder=kwargs.pop('''subfolder''' , __SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop('''cache_dir''' , __SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop('''force_download''' , __SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop('''proxies''' , __SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop('''resume_download''' , __SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop('''local_files_only''' , __SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop('''use_auth_token''' , __SCREAMING_SNAKE_CASE ) , revision=kwargs.pop('''revision''' , __SCREAMING_SNAKE_CASE ) , )
if speaker_embeddings_path is None:
logger.warning(
F"`{os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." )
lowerCAmelCase = None
else:
with open(__SCREAMING_SNAKE_CASE ) as speaker_embeddings_json:
lowerCAmelCase = json.load(__SCREAMING_SNAKE_CASE )
else:
lowerCAmelCase = None
lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
return cls(tokenizer=__SCREAMING_SNAKE_CASE , speaker_embeddings=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , __SCREAMING_SNAKE_CASE="speaker_embeddings" , __SCREAMING_SNAKE_CASE = False , **__SCREAMING_SNAKE_CASE , ) ->int:
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '''v2''' ) , exist_ok=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {}
lowerCAmelCase = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
lowerCAmelCase = self._load_voice_preset(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict['''repo_or_path'''] , __SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}.npy" )
lowerCAmelCase = tmp_dict
with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , '''w''' ) as fp:
json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE ) ->List[str]:
lowerCAmelCase = self.speaker_embeddings[voice_preset]
lowerCAmelCase = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." )
lowerCAmelCase = get_file_from_repo(
self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , __SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop('''cache_dir''' , __SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop('''force_download''' , __SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop('''proxies''' , __SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop('''resume_download''' , __SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop('''local_files_only''' , __SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop('''use_auth_token''' , __SCREAMING_SNAKE_CASE ) , revision=kwargs.pop('''revision''' , __SCREAMING_SNAKE_CASE ) , )
if path is None:
raise ValueError(
F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." )
lowerCAmelCase = np.load(__SCREAMING_SNAKE_CASE )
return voice_preset_dict
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE = None ) ->Tuple:
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(F"Voice preset unrecognized, missing {key} as a key." )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." )
def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="pt" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) ->int:
if voice_preset is not None and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
lowerCAmelCase = self._load_voice_preset(__SCREAMING_SNAKE_CASE )
else:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not voice_preset.endswith('''.npz''' ):
lowerCAmelCase = voice_preset + '''.npz'''
lowerCAmelCase = np.load(__SCREAMING_SNAKE_CASE )
if voice_preset is not None:
self._validate_voice_preset_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.tokenizer(
__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
if voice_preset is not None:
lowerCAmelCase = voice_preset
return encoded_text
| 338 | 1 |
from math import loga
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> int:
if a < 0:
raise ValueError('''Input value must be a positive integer''' )
elif isinstance(snake_case__ , snake_case__ ):
raise TypeError('''Input value must be a \'int\' type''' )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
'''The `inpainting.py` script is outdated. Please use directly `from diffusers import'''
''' StableDiffusionInpaintPipeline` instead.'''
)
| 338 | 1 |
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
lowercase__ : Optional[Any] = logging.get_logger(__name__)
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = """linear"""
UpperCAmelCase_ : Union[str, Any] = """cosine"""
UpperCAmelCase_ : List[str] = """cosine_with_restarts"""
UpperCAmelCase_ : str = """polynomial"""
UpperCAmelCase_ : Dict = """constant"""
UpperCAmelCase_ : Any = """constant_with_warmup"""
UpperCAmelCase_ : Any = """piecewise_constant"""
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ = -1 ) -> int:
return LambdaLR(snake_case__ , lambda snake_case__ : 1 , last_epoch=snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ = -1 ) -> int:
def lr_lambda(snake_case__ ):
if current_step < num_warmup_steps:
return float(snake_case__ ) / float(max(1.0 , snake_case__ ) )
return 1.0
return LambdaLR(snake_case__ , snake_case__ , last_epoch=snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ = -1 ) -> int:
lowerCAmelCase = {}
lowerCAmelCase = step_rules.split(''',''' )
for rule_str in rule_list[:-1]:
lowerCAmelCase , lowerCAmelCase = rule_str.split(''':''' )
lowerCAmelCase = int(snake_case__ )
lowerCAmelCase = float(snake_case__ )
lowerCAmelCase = value
lowerCAmelCase = float(rule_list[-1] )
def create_rules_function(snake_case__ , snake_case__ ):
def rule_func(snake_case__ ) -> float:
lowerCAmelCase = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(snake_case__ ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
lowerCAmelCase = create_rules_function(snake_case__ , snake_case__ )
return LambdaLR(snake_case__ , snake_case__ , last_epoch=snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=-1 ) -> List[Any]:
def lr_lambda(snake_case__ ):
if current_step < num_warmup_steps:
return float(snake_case__ ) / float(max(1 , snake_case__ ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(snake_case__ , snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = 0.5 , snake_case__ = -1 ) -> Optional[int]:
def lr_lambda(snake_case__ ):
if current_step < num_warmup_steps:
return float(snake_case__ ) / float(max(1 , snake_case__ ) )
lowerCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(snake_case__ ) * 2.0 * progress )) )
return LambdaLR(snake_case__ , snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = 1 , snake_case__ = -1 ) -> Optional[Any]:
def lr_lambda(snake_case__ ):
if current_step < num_warmup_steps:
return float(snake_case__ ) / float(max(1 , snake_case__ ) )
lowerCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(snake_case__ ) * progress) % 1.0) )) )
return LambdaLR(snake_case__ , snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=1E-7 , snake_case__=1.0 , snake_case__=-1 ) -> Tuple:
lowerCAmelCase = optimizer.defaults['''lr''']
if not (lr_init > lr_end):
raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" )
def lr_lambda(snake_case__ ):
if current_step < num_warmup_steps:
return float(snake_case__ ) / float(max(1 , snake_case__ ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
lowerCAmelCase = lr_init - lr_end
lowerCAmelCase = num_training_steps - num_warmup_steps
lowerCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps
lowerCAmelCase = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(snake_case__ , snake_case__ , snake_case__ )
lowercase__ : Dict = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = 1 , snake_case__ = 1.0 , snake_case__ = -1 , ) -> Union[str, Any]:
lowerCAmelCase = SchedulerType(snake_case__ )
lowerCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(snake_case__ , last_epoch=snake_case__ )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(snake_case__ , step_rules=snake_case__ , last_epoch=snake_case__ )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(snake_case__ , num_warmup_steps=snake_case__ , last_epoch=snake_case__ )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
snake_case__ , num_warmup_steps=snake_case__ , num_training_steps=snake_case__ , num_cycles=snake_case__ , last_epoch=snake_case__ , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
snake_case__ , num_warmup_steps=snake_case__ , num_training_steps=snake_case__ , power=snake_case__ , last_epoch=snake_case__ , )
return schedule_func(
snake_case__ , num_warmup_steps=snake_case__ , num_training_steps=snake_case__ , last_epoch=snake_case__ )
| 338 | import os
import re
import shutil
import sys
import tempfile
import unittest
import black
lowercase__ : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
lowercase__ : Dict = ''' def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
'''
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = tempfile.mkdtemp()
os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) )
lowerCAmelCase = self.transformer_dir
shutil.copy(
os.path.join(__SCREAMING_SNAKE_CASE , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = '''src/transformers'''
shutil.rmtree(self.transformer_dir )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Union[str, Any]:
lowerCAmelCase = comment + F"\nclass {class_name}(nn.Module):\n" + class_code
if overwrite_result is not None:
lowerCAmelCase = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result
lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
lowerCAmelCase = black.format_str(__SCREAMING_SNAKE_CASE , mode=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = os.path.join(self.transformer_dir , '''new_code.py''' )
with open(__SCREAMING_SNAKE_CASE , '''w''' , newline='''\n''' ) as f:
f.write(__SCREAMING_SNAKE_CASE )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(__SCREAMING_SNAKE_CASE ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=__SCREAMING_SNAKE_CASE )
with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f:
self.assertTrue(f.read() , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
# Base copy consistency
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , __SCREAMING_SNAKE_CASE , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , __SCREAMING_SNAKE_CASE ) , )
# Copy consistency with a really long name
lowerCAmelCase = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub('''Bert''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , __SCREAMING_SNAKE_CASE , overwrite_result=re.sub('''Bert''' , '''TestModel''' , __SCREAMING_SNAKE_CASE ) , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
lowerCAmelCase = check_copies.LOCALIZED_READMES['''README_zh-hans.md''']
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),'''
''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**'''
''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders'''
''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang'''
''' Luong, Quoc V. Le, Christopher D. Manning.'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文'''
''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自'''
''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather'''
''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,'''
''' Christopher D. Manning 发布。\n'''
)
lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] )
self.assertFalse(__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] )
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and'''
''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] )
# Check if the model link is synchronized.
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 338 | 1 |
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
lowercase__ : List[str] = logging.getLogger(__name__)
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
# save results
if os.path.exists(snake_case__ ):
if os.path.exists(os.path.join(snake_case__ , '''config.json''' ) ) and os.path.isfile(
os.path.join(snake_case__ , '''config.json''' ) ):
os.remove(os.path.join(snake_case__ , '''config.json''' ) )
if os.path.exists(os.path.join(snake_case__ , '''pytorch_model.bin''' ) ) and os.path.isfile(
os.path.join(snake_case__ , '''pytorch_model.bin''' ) ):
os.remove(os.path.join(snake_case__ , '''pytorch_model.bin''' ) )
else:
os.makedirs(snake_case__ )
model.save_pretrained(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__=False ) -> Union[str, Any]:
lowerCAmelCase = 2
if unlogit:
lowerCAmelCase = torch.pow(snake_case__ , snake_case__ )
lowerCAmelCase = p * torch.log(snake_case__ )
lowerCAmelCase = 0
return -plogp.sum(dim=-1 )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Any:
logger.info('''lv, h >\t''' + '''\t'''.join(f"{x + 1}" for x in range(len(snake_case__ ) ) ) )
for row in range(len(snake_case__ ) ):
if tensor.dtype != torch.long:
logger.info(f"layer {row + 1}:\t" + '''\t'''.join(f"{x:.5f}" for x in tensor[row].cpu().data ) )
else:
logger.info(f"layer {row + 1}:\t" + '''\t'''.join(f"{x:d}" for x in tensor[row].cpu().data ) )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=True , snake_case__=True , snake_case__=None , snake_case__=False ) -> Tuple:
lowerCAmelCase , lowerCAmelCase = model.config.num_hidden_layers, model.config.num_attention_heads
lowerCAmelCase = torch.zeros(snake_case__ , snake_case__ ).to(args.device )
lowerCAmelCase = torch.zeros(snake_case__ , snake_case__ ).to(args.device )
if head_mask is None:
lowerCAmelCase = torch.ones(snake_case__ , snake_case__ ).to(args.device )
head_mask.requires_grad_(requires_grad=snake_case__ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
lowerCAmelCase = None
lowerCAmelCase = 0.0
lowerCAmelCase = 0.0
for step, inputs in enumerate(tqdm(snake_case__ , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ):
lowerCAmelCase = tuple(t.to(args.device ) for t in inputs )
((lowerCAmelCase) , ) = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
lowerCAmelCase = model(snake_case__ , labels=snake_case__ , head_mask=snake_case__ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(snake_case__ ):
lowerCAmelCase = entropy(attn.detach() , snake_case__ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(snake_case__ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
lowerCAmelCase = 2
lowerCAmelCase = torch.pow(torch.pow(snake_case__ , snake_case__ ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20
if not args.dont_normalize_global_importance:
lowerCAmelCase = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('''Attention entropies''' )
print_ad_tensor(snake_case__ )
if compute_importance:
logger.info('''Head importance scores''' )
print_ad_tensor(snake_case__ )
logger.info('''Head ranked by importance scores''' )
lowerCAmelCase = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
lowerCAmelCase = torch.arange(
head_importance.numel() , device=args.device )
lowerCAmelCase = head_ranks.view_as(snake_case__ )
print_ad_tensor(snake_case__ )
return attn_entropy, head_importance, total_loss
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Dict:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = compute_heads_importance(snake_case__ , snake_case__ , snake_case__ , compute_entropy=snake_case__ )
lowerCAmelCase = 1 / loss # instead of downsteam score use the LM loss
logger.info('''Pruning: original score: %f, threshold: %f''' , snake_case__ , original_score * args.masking_threshold )
lowerCAmelCase = torch.ones_like(snake_case__ )
lowerCAmelCase = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
lowerCAmelCase = original_score
while current_score >= original_score * args.masking_threshold:
lowerCAmelCase = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
lowerCAmelCase = float('''Inf''' )
lowerCAmelCase = head_importance.view(-1 ).sort()[1]
if len(snake_case__ ) <= num_to_mask:
print('''BREAK BY num_to_mask''' )
break
# mask heads
lowerCAmelCase = current_heads_to_mask[:num_to_mask]
logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) )
lowerCAmelCase = new_head_mask.view(-1 )
lowerCAmelCase = 0.0
lowerCAmelCase = new_head_mask.view_as(snake_case__ )
lowerCAmelCase = new_head_mask.clone().detach()
print_ad_tensor(snake_case__ )
# Compute metric and head importance again
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = compute_heads_importance(
snake_case__ , snake_case__ , snake_case__ , compute_entropy=snake_case__ , head_mask=snake_case__ )
lowerCAmelCase = 1 / loss
logger.info(
'''Masking: current score: %f, remaining heads %d (%.1f percents)''' , snake_case__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , )
logger.info('''Final head mask''' )
print_ad_tensor(snake_case__ )
np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() )
return head_mask
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Dict:
lowerCAmelCase = datetime.now()
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = compute_heads_importance(
snake_case__ , snake_case__ , snake_case__ , compute_entropy=snake_case__ , compute_importance=snake_case__ , head_mask=snake_case__ )
lowerCAmelCase = 1 / loss
lowerCAmelCase = datetime.now() - before_time
lowerCAmelCase = sum(p.numel() for p in model.parameters() )
lowerCAmelCase = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(snake_case__ ) )
}
for k, v in heads_to_prune.items():
if isinstance(snake_case__ , snake_case__ ):
lowerCAmelCase = [
v,
]
assert sum(len(snake_case__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(snake_case__ )
lowerCAmelCase = sum(p.numel() for p in model.parameters() )
lowerCAmelCase = datetime.now()
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = compute_heads_importance(
snake_case__ , snake_case__ , snake_case__ , compute_entropy=snake_case__ , compute_importance=snake_case__ , head_mask=snake_case__ , actually_pruned=snake_case__ , )
lowerCAmelCase = 1 / loss
lowerCAmelCase = datetime.now() - before_time
logger.info(
'''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , snake_case__ , snake_case__ , pruned_num_params / original_num_params * 1_0_0 , )
logger.info('''Pruning: score with masking: %f score with pruning: %f''' , snake_case__ , snake_case__ )
logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_0_0 )
save_model(snake_case__ , args.output_dir )
def SCREAMING_SNAKE_CASE_ ( ) -> str:
lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--data_dir''' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , )
parser.add_argument(
'''--model_name_or_path''' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--output_dir''' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='''The output directory where the model predictions and checkpoints will be written.''' , )
# Other parameters
parser.add_argument(
'''--config_name''' , default='''''' , type=snake_case__ , help='''Pretrained config name or path if not the same as model_name_or_path''' , )
parser.add_argument(
'''--tokenizer_name''' , default='''''' , type=snake_case__ , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , )
parser.add_argument(
'''--cache_dir''' , default=snake_case__ , type=snake_case__ , help='''Where do you want to store the pre-trained models downloaded from s3''' , )
parser.add_argument(
'''--data_subset''' , type=snake_case__ , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' )
parser.add_argument(
'''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' )
parser.add_argument(
'''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' )
parser.add_argument(
'''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' )
parser.add_argument(
'''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , )
parser.add_argument(
'''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' )
parser.add_argument(
'''--masking_threshold''' , default=0.9 , type=snake_case__ , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , )
parser.add_argument(
'''--masking_amount''' , default=0.1 , type=snake_case__ , help='''Amount to heads to masking at each masking step.''' )
parser.add_argument('''--metric_name''' , default='''acc''' , type=snake_case__ , help='''Metric to use for head masking.''' )
parser.add_argument(
'''--max_seq_length''' , default=1_2_8 , type=snake_case__ , help=(
'''The maximum total input sequence length after WordPiece tokenization. \n'''
'''Sequences longer than this will be truncated, sequences shorter padded.'''
) , )
parser.add_argument('''--batch_size''' , default=1 , type=snake_case__ , help='''Batch size.''' )
parser.add_argument('''--seed''' , type=snake_case__ , default=4_2 )
parser.add_argument('''--local_rank''' , type=snake_case__ , default=-1 , help='''local_rank for distributed training on gpus''' )
parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' )
parser.add_argument('''--server_ip''' , type=snake_case__ , default='''''' , help='''Can be used for distant debugging.''' )
parser.add_argument('''--server_port''' , type=snake_case__ , default='''''' , help='''Can be used for distant debugging.''' )
lowerCAmelCase = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('''Waiting for debugger attach''' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=snake_case__ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
lowerCAmelCase = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' )
lowerCAmelCase = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
lowerCAmelCase = torch.device('''cuda''' , args.local_rank )
lowerCAmelCase = 1
torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
lowerCAmelCase = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
lowerCAmelCase = nn.parallel.DistributedDataParallel(
snake_case__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=snake_case__ )
elif args.n_gpu > 1:
lowerCAmelCase = nn.DataParallel(snake_case__ )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=snake_case__ )
torch.save(snake_case__ , os.path.join(args.output_dir , '''run_args.bin''' ) )
logger.info('''Training/evaluation parameters %s''' , snake_case__ )
# Prepare dataset
lowerCAmelCase = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
lowerCAmelCase = (torch.from_numpy(snake_case__ ),)
lowerCAmelCase = TensorDataset(*snake_case__ )
lowerCAmelCase = RandomSampler(snake_case__ )
lowerCAmelCase = DataLoader(snake_case__ , sampler=snake_case__ , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(snake_case__ , snake_case__ , snake_case__ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
lowerCAmelCase = mask_heads(snake_case__ , snake_case__ , snake_case__ )
prune_heads(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
if __name__ == "__main__":
main()
| 338 | import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'''split_dict''' , [
SplitDict(),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name='''my_dataset''' )} ),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 )} ),
SplitDict({'''train''': SplitInfo()} ),
] , )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase = split_dict._to_yaml_list()
assert len(snake_case__ ) == len(snake_case__ )
lowerCAmelCase = SplitDict._from_yaml_list(snake_case__ )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
lowerCAmelCase = None
# the split name of split_dict takes over the name of the split info object
lowerCAmelCase = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'''split_info''' , [SplitInfo(), SplitInfo(dataset_name=snake_case__ ), SplitInfo(dataset_name='''my_dataset''' )] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
lowerCAmelCase = asdict(SplitDict({'''train''': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 338 | 1 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=4 , ) ->Any:
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_attention_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_choices
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_attention_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = self.prepare_config_and_inputs()
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs
lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = self.prepare_config_and_inputs()
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs
lowerCAmelCase = True
lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class lowercase_ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : str = True
UpperCAmelCase_ : Optional[Any] = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = FlaxRobertaModelTester(self )
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
for model_class_name in self.all_model_classes:
lowerCAmelCase = model_class_name.from_pretrained('''roberta-base''' , from_pt=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
| 338 | import unittest
import numpy as np
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ) -> np.ndarray:
lowerCAmelCase = np.shape(snake_case__ )
lowerCAmelCase = np.shape(snake_case__ )
lowerCAmelCase = np.shape(snake_case__ )
if shape_a[0] != shape_b[0]:
lowerCAmelCase = (
'''Expected the same number of rows for A and B. '''
f"Instead found A of size {shape_a} and B of size {shape_b}"
)
raise ValueError(snake_case__ )
if shape_b[1] != shape_c[1]:
lowerCAmelCase = (
'''Expected the same number of columns for B and C. '''
f"Instead found B of size {shape_b} and C of size {shape_c}"
)
raise ValueError(snake_case__ )
lowerCAmelCase = pseudo_inv
if a_inv is None:
try:
lowerCAmelCase = np.linalg.inv(snake_case__ )
except np.linalg.LinAlgError:
raise ValueError(
'''Input matrix A is not invertible. Cannot compute Schur complement.''' )
return mat_c - mat_b.T @ a_inv @ mat_b
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->None:
lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCAmelCase = np.array([[2, 1], [6, 3]] )
lowerCAmelCase = schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.block([[a, b], [b.T, c]] )
lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE )
self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , det_a * det_s )
def SCREAMING_SNAKE_CASE_ ( self ) ->None:
lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCAmelCase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->None:
lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 338 | 1 |
import mpmath # for roots of unity
import numpy as np
class lowercase_ :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) ->Tuple:
# Input as list
lowerCAmelCase = list(poly_a or [0] )[:]
lowerCAmelCase = list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
lowerCAmelCase = len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
lowerCAmelCase = len(self.polyB )
# Add 0 to make lengths equal a power of 2
lowerCAmelCase = int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
lowerCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
lowerCAmelCase = self.__multiply()
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[Any]:
lowerCAmelCase = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB]
# Corner case
if len(__SCREAMING_SNAKE_CASE ) <= 1:
return dft[0]
#
lowerCAmelCase = self.c_max_length // 2
while next_ncol > 0:
lowerCAmelCase = [[] for i in range(__SCREAMING_SNAKE_CASE )]
lowerCAmelCase = self.root**next_ncol
# First half of next step
lowerCAmelCase = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(__SCREAMING_SNAKE_CASE ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
lowerCAmelCase = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(__SCREAMING_SNAKE_CASE ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
lowerCAmelCase = new_dft
lowerCAmelCase = next_ncol // 2
return dft[0]
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
lowerCAmelCase = self.__dft('''A''' )
lowerCAmelCase = self.__dft('''B''' )
lowerCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
lowerCAmelCase = 2
while next_ncol <= self.c_max_length:
lowerCAmelCase = [[] for i in range(__SCREAMING_SNAKE_CASE )]
lowerCAmelCase = self.root ** (next_ncol // 2)
lowerCAmelCase = 1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
lowerCAmelCase = new_inverse_c
next_ncol *= 2
# Unpack
lowerCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self ) ->Tuple:
lowerCAmelCase = '''A = ''' + ''' + '''.join(
F"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A] ) )
lowerCAmelCase = '''B = ''' + ''' + '''.join(
F"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B] ) )
lowerCAmelCase = '''A*B = ''' + ''' + '''.join(
F"{coef}*x^{i}" for coef, i in enumerate(self.product ) )
return F"{a}\n{b}\n{c}"
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | import argparse
import hashlib
import os
import urllib
import warnings
import torch
from torch import nn
from tqdm import tqdm
from transformers import WhisperConfig, WhisperForConditionalGeneration
lowercase__ : Any = {
'''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''',
'''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''',
'''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''',
'''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''',
'''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''',
'''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''',
'''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''',
'''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''',
'''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''',
'''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''',
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str:
lowerCAmelCase = ['''layers''', '''blocks''']
for k in ignore_keys:
state_dict.pop(snake_case__ , snake_case__ )
lowercase__ : List[Any] = {
'''blocks''': '''layers''',
'''mlp.0''': '''fc1''',
'''mlp.2''': '''fc2''',
'''mlp_ln''': '''final_layer_norm''',
'''.attn.query''': '''.self_attn.q_proj''',
'''.attn.key''': '''.self_attn.k_proj''',
'''.attn.value''': '''.self_attn.v_proj''',
'''.attn_ln''': '''.self_attn_layer_norm''',
'''.attn.out''': '''.self_attn.out_proj''',
'''.cross_attn.query''': '''.encoder_attn.q_proj''',
'''.cross_attn.key''': '''.encoder_attn.k_proj''',
'''.cross_attn.value''': '''.encoder_attn.v_proj''',
'''.cross_attn_ln''': '''.encoder_attn_layer_norm''',
'''.cross_attn.out''': '''.encoder_attn.out_proj''',
'''decoder.ln.''': '''decoder.layer_norm.''',
'''encoder.ln.''': '''encoder.layer_norm.''',
'''token_embedding''': '''embed_tokens''',
'''encoder.positional_embedding''': '''encoder.embed_positions.weight''',
'''decoder.positional_embedding''': '''decoder.embed_positions.weight''',
'''ln_post''': '''layer_norm''',
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase = list(s_dict.keys() )
for key in keys:
lowerCAmelCase = key
for k, v in WHISPER_MAPPING.items():
if k in key:
lowerCAmelCase = new_key.replace(snake_case__ , snake_case__ )
print(f"{key} -> {new_key}" )
lowerCAmelCase = s_dict.pop(snake_case__ )
return s_dict
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase , lowerCAmelCase = emb.weight.shape
lowerCAmelCase = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ )
lowerCAmelCase = emb.weight.data
return lin_layer
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> bytes:
os.makedirs(snake_case__ , exist_ok=snake_case__ )
lowerCAmelCase = os.path.basename(snake_case__ )
lowerCAmelCase = url.split('''/''' )[-2]
lowerCAmelCase = os.path.join(snake_case__ , snake_case__ )
if os.path.exists(snake_case__ ) and not os.path.isfile(snake_case__ ):
raise RuntimeError(f"{download_target} exists and is not a regular file" )
if os.path.isfile(snake_case__ ):
lowerCAmelCase = open(snake_case__ , '''rb''' ).read()
if hashlib.shaaaa(snake_case__ ).hexdigest() == expected_shaaaa:
return model_bytes
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" )
with urllib.request.urlopen(snake_case__ ) as source, open(snake_case__ , '''wb''' ) as output:
with tqdm(
total=int(source.info().get('''Content-Length''' ) ) , ncols=8_0 , unit='''iB''' , unit_scale=snake_case__ , unit_divisor=1_0_2_4 ) as loop:
while True:
lowerCAmelCase = source.read(8_1_9_2 )
if not buffer:
break
output.write(snake_case__ )
loop.update(len(snake_case__ ) )
lowerCAmelCase = open(snake_case__ , '''rb''' ).read()
if hashlib.shaaaa(snake_case__ ).hexdigest() != expected_shaaaa:
raise RuntimeError(
'''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' )
return model_bytes
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
if ".pt" not in checkpoint_path:
lowerCAmelCase = _download(_MODELS[checkpoint_path] )
else:
lowerCAmelCase = torch.load(snake_case__ , map_location='''cpu''' )
lowerCAmelCase = original_checkpoint['''dims''']
lowerCAmelCase = original_checkpoint['''model_state_dict''']
lowerCAmelCase = state_dict['''decoder.token_embedding.weight''']
remove_ignore_keys_(snake_case__ )
rename_keys(snake_case__ )
lowerCAmelCase = True
lowerCAmelCase = state_dict['''decoder.layers.0.fc1.weight'''].shape[0]
lowerCAmelCase = WhisperConfig(
vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=snake_case__ , decoder_ffn_dim=snake_case__ , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , )
lowerCAmelCase = WhisperForConditionalGeneration(snake_case__ )
lowerCAmelCase , lowerCAmelCase = model.model.load_state_dict(snake_case__ , strict=snake_case__ )
if len(snake_case__ ) > 0 and not set(snake_case__ ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'''
f" but all the following weights are missing {missing}" )
if tie_embeds:
lowerCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
lowerCAmelCase = proj_out_weights
model.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase__ : List[str] = argparse.ArgumentParser()
# # Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''')
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
lowercase__ : int = parser.parse_args()
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
| 338 | 1 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase_ :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE=[2, 2, 3, 2] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=["stage2", "stage3", "stage4"] , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=None , ) ->Dict:
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = image_size
lowerCAmelCase = num_channels
lowerCAmelCase = num_stages
lowerCAmelCase = hidden_sizes
lowerCAmelCase = depths
lowerCAmelCase = is_training
lowerCAmelCase = use_labels
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = out_features
lowerCAmelCase = num_labels
lowerCAmelCase = scope
lowerCAmelCase = num_stages
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__SCREAMING_SNAKE_CASE , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=__SCREAMING_SNAKE_CASE , loss_ignore_index=255 , num_labels=self.num_labels , )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = UperNetForSemanticSegmentation(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowercase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
UpperCAmelCase_ : str = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {}
UpperCAmelCase_ : Any = False
UpperCAmelCase_ : Dict = False
UpperCAmelCase_ : Tuple = False
UpperCAmelCase_ : Union[str, Any] = False
UpperCAmelCase_ : Dict = False
UpperCAmelCase_ : Optional[Any] = False
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = UperNetModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
return
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase = [*signature.parameters.keys()]
lowerCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE )
@unittest.skip(reason='''UperNet does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
pass
@unittest.skip(reason='''UperNet does not support input and output embeddings''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@require_torch_multi_gpu
@unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
pass
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
lowerCAmelCase = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCAmelCase = self.model_tester.num_stages
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = _config_zero_init(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(config=__SCREAMING_SNAKE_CASE )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@unittest.skip(reason='''UperNet does not have tied weights''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( ) -> str:
lowerCAmelCase = hf_hub_download(
repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' )
lowerCAmelCase = Image.open(snake_case__ ).convert('''RGB''' )
return image
@require_torch
@require_vision
@slow
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
lowerCAmelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' )
lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = prepare_img()
lowerCAmelCase = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE )
with torch.no_grad():
lowerCAmelCase = model(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
lowerCAmelCase = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' )
lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = prepare_img()
lowerCAmelCase = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE )
with torch.no_grad():
lowerCAmelCase = model(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 338 | from ...processing_utils import ProcessorMixin
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = ["""image_processor""", """feature_extractor"""]
UpperCAmelCase_ : Optional[int] = """TvltImageProcessor"""
UpperCAmelCase_ : Optional[int] = """TvltFeatureExtractor"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
super().__init__(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = image_processor
lowerCAmelCase = feature_extractor
def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) ->List[Any]:
if images is None and audio is None:
raise ValueError('''You need to specify either an `images` or `audio` input to process.''' )
lowerCAmelCase = None
if images is not None:
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , mask_pixel=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if images_mixed is not None:
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , is_mixed=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if audio is not None:
lowerCAmelCase = self.feature_extractor(
__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , mask_audio=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {}
if audio is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
if images is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
if images_mixed_dict is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
return output_dict
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.image_processor.model_input_names
lowerCAmelCase = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 338 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = tempfile.mkdtemp()
lowerCAmelCase = BlipImageProcessor()
lowerCAmelCase = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' )
lowerCAmelCase = BlipaProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->List[str]:
return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).tokenizer
def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).image_processor
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
lowerCAmelCase = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 )
lowerCAmelCase = BlipaProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.prepare_image_inputs()
lowerCAmelCase = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' )
lowerCAmelCase = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = '''lower newer'''
lowerCAmelCase = processor(text=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = '''lower newer'''
lowerCAmelCase = self.prepare_image_inputs()
lowerCAmelCase = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE )
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
# test if it raises when no input is passed
with pytest.raises(__SCREAMING_SNAKE_CASE ):
processor()
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase = processor.batch_decode(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.get_image_processor()
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = '''lower newer'''
lowerCAmelCase = self.prepare_image_inputs()
lowerCAmelCase = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
| 338 | def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> List[str]:
lowerCAmelCase = len(snake_case__ )
for i in range(length - 1 ):
lowerCAmelCase = i
for k in range(i + 1 , snake_case__ ):
if collection[k] < collection[least]:
lowerCAmelCase = k
if least != i:
lowerCAmelCase , lowerCAmelCase = (collection[i], collection[least])
return collection
if __name__ == "__main__":
lowercase__ : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip()
lowercase__ : str = [int(item) for item in user_input.split(''',''')]
print(selection_sort(unsorted))
| 338 | 1 |
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> float:
return 1_0 - x * x
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> float:
# Bolzano theory in order to find if there is a root between a and b
if equation(snake_case__ ) * equation(snake_case__ ) >= 0:
raise ValueError('''Wrong space!''' )
lowerCAmelCase = a
while (b - a) >= 0.01:
# Find middle point
lowerCAmelCase = (a + b) / 2
# Check if middle point is root
if equation(snake_case__ ) == 0.0:
break
# Decide the side to repeat the steps
if equation(snake_case__ ) * equation(snake_case__ ) < 0:
lowerCAmelCase = c
else:
lowerCAmelCase = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 338 | import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class lowercase_ :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=19 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) ->Union[str, Any]:
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = EsmConfig(
vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__SCREAMING_SNAKE_CASE , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , )
return config
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = EsmForProteinFolding(config=__SCREAMING_SNAKE_CASE ).float()
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) )
self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowercase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = False
UpperCAmelCase_ : Dict = (EsmForProteinFolding,) if is_torch_available() else ()
UpperCAmelCase_ : List[Any] = ()
UpperCAmelCase_ : Tuple = {} if is_torch_available() else {}
UpperCAmelCase_ : List[str] = False
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = EsmFoldModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
@unittest.skip('''Does not support attention outputs''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
pass
@unittest.skip
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
pass
@unittest.skip('''Esm does not support embedding resizing''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
pass
@unittest.skip('''Esm does not support embedding resizing''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold does not support passing input embeds!''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
pass
@unittest.skip('''ESMFold does not output hidden states in the normal way.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
pass
@unittest.skip('''ESMfold does not output hidden states in the normal way.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
pass
@unittest.skip('''ESMFold only has one output format.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
pass
@unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
pass
@unittest.skip('''ESMFold does not support input chunking.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
pass
@unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold doesn\'t support data parallel.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
pass
@require_torch
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float()
model.eval()
lowerCAmelCase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )['''positions''']
lowerCAmelCase = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] , dtype=torch.floataa )
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 338 | 1 |
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
lowercase__ : str = ['''gpt2''']
lowercase__ : Dict = '''gpt2'''
if is_tf_available():
class lowercase_ ( tf.Module ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE ) ->str:
super().__init__()
lowerCAmelCase = tokenizer
lowerCAmelCase = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = TFGPTaLMHeadModel.from_config(__SCREAMING_SNAKE_CASE )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->int:
lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenized['''input_ids'''].to_tensor()
lowerCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
lowerCAmelCase = self.model(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['''logits''']
return outputs
@require_tf
@require_keras_nlp
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
super().setUp()
lowerCAmelCase = [GPTaTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
lowerCAmelCase = [TFGPTaTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
lowerCAmelCase = [
'''This is a straightforward English test sentence.''',
'''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''',
'''Now we\'re going to add some Chinese: 一 二 三 一二三''',
'''And some much more rare Chinese: 齉 堃 齉堃''',
'''Je vais aussi écrire en français pour tester les accents''',
'''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''',
]
lowerCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
lowerCAmelCase = tokenizer([test_inputs] , return_tensors='''tf''' )
lowerCAmelCase = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
lowerCAmelCase = python_outputs[key].numpy()
lowerCAmelCase = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(__SCREAMING_SNAKE_CASE , tf.intaa ) == tf_outputs_values ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
for tf_tokenizer in self.tf_tokenizers:
lowerCAmelCase = tf.function(__SCREAMING_SNAKE_CASE )
for test_inputs in self.test_sentences:
lowerCAmelCase = tf.constant(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = compiled_tokenizer(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tf_tokenizer(__SCREAMING_SNAKE_CASE )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
for tf_tokenizer in self.tf_tokenizers:
lowerCAmelCase = ModelToSave(tokenizer=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
lowerCAmelCase = model.serving(__SCREAMING_SNAKE_CASE ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
lowerCAmelCase = Path(__SCREAMING_SNAKE_CASE ) / '''saved.model'''
tf.saved_model.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , signatures={'''serving_default''': model.serving} )
lowerCAmelCase = tf.saved_model.load(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = loaded_model.signatures['''serving_default'''](__SCREAMING_SNAKE_CASE )['''output_0''']
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
for tf_tokenizer in self.tf_tokenizers:
lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
lowerCAmelCase = tf_tokenizer(__SCREAMING_SNAKE_CASE ) # Build model with some sample inputs
lowerCAmelCase = tf_tokenizer.get_config()
lowerCAmelCase = TFGPTaTokenizer.from_config(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model_from_config(__SCREAMING_SNAKE_CASE )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
lowerCAmelCase = 123123
for max_length in [3, 5, 1024]:
lowerCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
lowerCAmelCase = tf_tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = out['''input_ids'''].numpy().shape[1]
assert out_length == max_length
| 338 | import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = ["""image_processor""", """tokenizer"""]
UpperCAmelCase_ : int = """OwlViTImageProcessor"""
UpperCAmelCase_ : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Any:
lowerCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __SCREAMING_SNAKE_CASE , )
lowerCAmelCase = kwargs.pop('''feature_extractor''' )
lowerCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="max_length" , __SCREAMING_SNAKE_CASE="np" , **__SCREAMING_SNAKE_CASE ) ->int:
if text is None and query_images is None and images is None:
raise ValueError(
'''You have to specify at least one text or query image or image. All three cannot be none.''' )
if text is not None:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or (isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(text[0] , __SCREAMING_SNAKE_CASE )):
lowerCAmelCase = [self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )]
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(text[0] , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = []
# Maximum number of queries across batch
lowerCAmelCase = max([len(__SCREAMING_SNAKE_CASE ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__SCREAMING_SNAKE_CASE ) != max_num_queries:
lowerCAmelCase = t + [''' '''] * (max_num_queries - len(__SCREAMING_SNAKE_CASE ))
lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
encodings.append(__SCREAMING_SNAKE_CASE )
else:
raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' )
if return_tensors == "np":
lowerCAmelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
lowerCAmelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
lowerCAmelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
lowerCAmelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
lowerCAmelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 )
lowerCAmelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
lowerCAmelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
lowerCAmelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
else:
raise ValueError('''Target return tensor type could not be returned''' )
lowerCAmelCase = BatchEncoding()
lowerCAmelCase = input_ids
lowerCAmelCase = attention_mask
if query_images is not None:
lowerCAmelCase = BatchEncoding()
lowerCAmelCase = self.image_processor(
__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).pixel_values
lowerCAmelCase = query_pixel_values
if images is not None:
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if text is not None and images is not None:
lowerCAmelCase = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
lowerCAmelCase = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__SCREAMING_SNAKE_CASE ) , tensor_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Optional[int]:
return self.image_processor.post_process(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Any:
return self.image_processor.post_process_object_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Tuple:
return self.image_processor.post_process_image_guided_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->str:
return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __SCREAMING_SNAKE_CASE , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __SCREAMING_SNAKE_CASE , )
return self.image_processor
| 338 | 1 |
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
torch.manual_seed(0 )
lowerCAmelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = self.dummy_uncond_unet
lowerCAmelCase = KarrasVeScheduler()
lowerCAmelCase = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0]
lowerCAmelCase = image[0, -3:, -3:, -1]
lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
lowerCAmelCase = '''google/ncsnpp-celebahq-256'''
lowerCAmelCase = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = KarrasVeScheduler()
lowerCAmelCase = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
lowerCAmelCase = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 338 | import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : List[Any] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'''vocab_file''': '''spiece.model'''}
lowercase__ : Optional[int] = {
'''vocab_file''': {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''',
}
}
lowercase__ : Any = {
'''albert-base-v1''': 5_1_2,
'''albert-large-v1''': 5_1_2,
'''albert-xlarge-v1''': 5_1_2,
'''albert-xxlarge-v1''': 5_1_2,
'''albert-base-v2''': 5_1_2,
'''albert-large-v2''': 5_1_2,
'''albert-xlarge-v2''': 5_1_2,
'''albert-xxlarge-v2''': 5_1_2,
}
lowercase__ : Tuple = '''▁'''
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = VOCAB_FILES_NAMES
UpperCAmelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) ->None:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
lowerCAmelCase = (
AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE , normalized=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else mask_token
)
lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = do_lower_case
lowerCAmelCase = remove_space
lowerCAmelCase = keep_accents
lowerCAmelCase = vocab_file
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__SCREAMING_SNAKE_CASE )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
return len(self.sp_model )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) ->int:
lowerCAmelCase = self.__dict__.copy()
lowerCAmelCase = None
return state
def __setstate__( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
lowerCAmelCase = {}
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Any:
if self.remove_space:
lowerCAmelCase = ''' '''.join(inputs.strip().split() )
else:
lowerCAmelCase = inputs
lowerCAmelCase = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' )
if not self.keep_accents:
lowerCAmelCase = unicodedata.normalize('''NFKD''' , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = ''''''.join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE )] )
if self.do_lower_case:
lowerCAmelCase = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[str]:
lowerCAmelCase = self.preprocess_text(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = []
for piece in pieces:
if len(__SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit():
lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , '''''' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowerCAmelCase = cur_pieces[1:]
else:
lowerCAmelCase = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__SCREAMING_SNAKE_CASE )
else:
new_pieces.append(__SCREAMING_SNAKE_CASE )
return new_pieces
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->int:
return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->int:
return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
lowerCAmelCase = []
lowerCAmelCase = ''''''
lowerCAmelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token
lowerCAmelCase = True
lowerCAmelCase = []
else:
current_sub_tokens.append(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = False
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE )
return out_string.strip()
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ) ->List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE )
if token_ids_a is not None:
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Tuple[str]:
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCAmelCase = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi:
lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 338 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[Any] = logging.get_logger(__name__)
lowercase__ : Tuple = {
'''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''',
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = """wav2vec2"""
def __init__( self , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE="group" , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 512, 512, 512) , __SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) , __SCREAMING_SNAKE_CASE=(10, 3, 3, 3, 3, 2, 2) , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=128 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.0_5 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=320 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="sum" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 1500) , __SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) , __SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) ->Any:
super().__init__(**__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = hidden_size
lowerCAmelCase = feat_extract_norm
lowerCAmelCase = feat_extract_activation
lowerCAmelCase = list(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = list(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = list(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = conv_bias
lowerCAmelCase = num_conv_pos_embeddings
lowerCAmelCase = num_conv_pos_embedding_groups
lowerCAmelCase = len(self.conv_dim )
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_dropout
lowerCAmelCase = attention_dropout
lowerCAmelCase = activation_dropout
lowerCAmelCase = feat_proj_dropout
lowerCAmelCase = final_dropout
lowerCAmelCase = layerdrop
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = initializer_range
lowerCAmelCase = vocab_size
lowerCAmelCase = do_stable_layer_norm
lowerCAmelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"
F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCAmelCase = apply_spec_augment
lowerCAmelCase = mask_time_prob
lowerCAmelCase = mask_time_length
lowerCAmelCase = mask_time_min_masks
lowerCAmelCase = mask_feature_prob
lowerCAmelCase = mask_feature_length
lowerCAmelCase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowerCAmelCase = num_codevectors_per_group
lowerCAmelCase = num_codevector_groups
lowerCAmelCase = contrastive_logits_temperature
lowerCAmelCase = feat_quantizer_dropout
lowerCAmelCase = num_negatives
lowerCAmelCase = codevector_dim
lowerCAmelCase = proj_codevector_dim
lowerCAmelCase = diversity_loss_weight
# ctc loss
lowerCAmelCase = ctc_loss_reduction
lowerCAmelCase = ctc_zero_infinity
# adapter
lowerCAmelCase = add_adapter
lowerCAmelCase = adapter_kernel_size
lowerCAmelCase = adapter_stride
lowerCAmelCase = num_adapter_layers
lowerCAmelCase = output_hidden_size or hidden_size
lowerCAmelCase = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
lowerCAmelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
lowerCAmelCase = list(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = list(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = list(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = xvector_output_dim
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 338 | import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = (DEISMultistepScheduler,)
UpperCAmelCase_ : int = (("""num_inference_steps""", 25),)
def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->str:
lowerCAmelCase = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
}
config.update(**__SCREAMING_SNAKE_CASE )
return config
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE )
new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
lowerCAmelCase , lowerCAmelCase = sample, sample
for t in range(__SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ):
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
lowerCAmelCase = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals (must be after setting timesteps)
lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residual (must be after setting timesteps)
lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
lowerCAmelCase = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
if scheduler is None:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = 10
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample
return sample
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
if num_inference_steps is not None and hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
elif num_inference_steps is not None and not hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
lowerCAmelCase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
lowerCAmelCase = scheduler.timesteps[5]
lowerCAmelCase = scheduler.timesteps[6]
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
# make sure that iterating over schedulers with same config names gives same results
# for defaults
lowerCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() )
lowerCAmelCase = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config )
lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , algorithm_type='''deis''' , solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = self.full_loop(
solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , )
assert not torch.isnan(__SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers"
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE )
self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=__SCREAMING_SNAKE_CASE , time_step=0 )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.full_loop()
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
lowerCAmelCase = self.full_loop(prediction_type='''v_prediction''' )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(thresholding=__SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = 10
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter.half()
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample
assert sample.dtype == torch.floataa
| 338 | 1 |
def SCREAMING_SNAKE_CASE_ ( snake_case__ = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int:
try:
lowerCAmelCase = int(snake_case__ )
except (TypeError, ValueError):
raise TypeError('''Parameter n must be int or castable to int.''' )
if n <= 0:
raise ValueError('''Parameter n must be greater than or equal to one.''' )
lowerCAmelCase = 2
lowerCAmelCase = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
lowerCAmelCase = i
while n % i == 0:
lowerCAmelCase = n // i
i += 1
return int(snake_case__ )
if __name__ == "__main__":
print(f'{solution() = }')
| 338 | import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
torch.manual_seed(0 )
lowerCAmelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = self.dummy_uncond_unet
lowerCAmelCase = KarrasVeScheduler()
lowerCAmelCase = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0]
lowerCAmelCase = image[0, -3:, -3:, -1]
lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
lowerCAmelCase = '''google/ncsnpp-celebahq-256'''
lowerCAmelCase = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = KarrasVeScheduler()
lowerCAmelCase = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
lowerCAmelCase = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 338 | 1 |
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
lowercase__ : Tuple = 1.0_54_57_18_17e-34 # unit of ℏ : J * s
lowercase__ : Optional[Any] = 3e8 # unit of c : m * s^-1
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> dict[str, float]:
if (force, area, distance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if force < 0:
raise ValueError('''Magnitude of force can not be negative''' )
if distance < 0:
raise ValueError('''Distance can not be negative''' )
if area < 0:
raise ValueError('''Area can not be negative''' )
if force == 0:
lowerCAmelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
2_4_0 * (distance) ** 4
)
return {"force": force}
elif area == 0:
lowerCAmelCase = (2_4_0 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
lowerCAmelCase = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('''One and only one argument must be 0''' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
lowercase__ : Dict = logging.get_logger(__name__)
@add_end_docstrings(
UpperCamelCase_ , r"""
top_k (`int`, defaults to 5):
The number of predictions to return.
targets (`str` or `List[str]`, *optional*):
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting
token will be used (with a warning, and that might be slower).
""" , )
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray:
if self.framework == "tf":
lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE )
else:
raise ValueError('''Unsupported framework''' )
return masked_index
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray:
lowerCAmelCase = self.get_masked_index(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Dict[str, GenericTensor]:
if return_tensors is None:
lowerCAmelCase = self.framework
lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE )
self.ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = self.model(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model_inputs['''input_ids''']
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=None ) ->str:
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
lowerCAmelCase = target_ids.shape[0]
lowerCAmelCase = model_outputs['''input_ids'''][0]
lowerCAmelCase = model_outputs['''logits''']
if self.framework == "tf":
lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
lowerCAmelCase = outputs.numpy()
lowerCAmelCase = outputs[0, masked_index, :]
lowerCAmelCase = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 )
if target_ids is not None:
lowerCAmelCase = tf.gather_nd(tf.squeeze(__SCREAMING_SNAKE_CASE , 0 ) , target_ids.reshape(-1 , 1 ) )
lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE , 0 )
lowerCAmelCase = tf.math.top_k(__SCREAMING_SNAKE_CASE , k=__SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase = topk.values.numpy(), topk.indices.numpy()
else:
lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
lowerCAmelCase = outputs[0, masked_index, :]
lowerCAmelCase = logits.softmax(dim=-1 )
if target_ids is not None:
lowerCAmelCase = probs[..., target_ids]
lowerCAmelCase , lowerCAmelCase = probs.topk(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = []
lowerCAmelCase = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ):
lowerCAmelCase = []
for v, p in zip(_values , _predictions ):
# Copy is important since we're going to modify this array in place
lowerCAmelCase = input_ids.numpy().copy()
if target_ids is not None:
lowerCAmelCase = target_ids[p].tolist()
lowerCAmelCase = p
# Filter padding out:
lowerCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
lowerCAmelCase = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence}
row.append(__SCREAMING_SNAKE_CASE )
result.append(__SCREAMING_SNAKE_CASE )
if single_mask:
return result[0]
return result
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Optional[Any]:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = [targets]
try:
lowerCAmelCase = self.tokenizer.get_vocab()
except Exception:
lowerCAmelCase = {}
lowerCAmelCase = []
for target in targets:
lowerCAmelCase = vocab.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if id_ is None:
lowerCAmelCase = self.tokenizer(
__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , max_length=1 , truncation=__SCREAMING_SNAKE_CASE , )['''input_ids''']
if len(__SCREAMING_SNAKE_CASE ) == 0:
logger.warning(
F"The specified target token `{target}` does not exist in the model vocabulary. "
'''We cannot replace it with anything meaningful, ignoring it''' )
continue
lowerCAmelCase = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
F"The specified target token `{target}` does not exist in the model vocabulary. "
F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." )
target_ids.append(id_ )
lowerCAmelCase = list(set(__SCREAMING_SNAKE_CASE ) )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError('''At least one target must be provided when passed.''' )
lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
return target_ids
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) ->Dict:
lowerCAmelCase = {}
if targets is not None:
lowerCAmelCase = self.get_target_ids(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = target_ids
if top_k is not None:
lowerCAmelCase = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' )
return {}, {}, postprocess_params
def __call__( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
lowerCAmelCase = super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) == 1:
return outputs[0]
return outputs
| 338 | 1 |
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : List[Any] = {
'''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''',
'''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''',
'''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''',
}
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = """owlvit_text_model"""
def __init__( self , __SCREAMING_SNAKE_CASE=49408 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2048 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE="quick_gelu" , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=49406 , __SCREAMING_SNAKE_CASE=49407 , **__SCREAMING_SNAKE_CASE , ) ->List[Any]:
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = intermediate_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = hidden_act
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = attention_dropout
lowerCAmelCase = initializer_range
lowerCAmelCase = initializer_factor
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->"PretrainedConfig":
cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get('''model_type''' ) == "owlvit":
lowerCAmelCase = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = """owlvit_vision_model"""
def __init__( self , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=3072 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE="quick_gelu" , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=1.0 , **__SCREAMING_SNAKE_CASE , ) ->Union[str, Any]:
super().__init__(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = hidden_size
lowerCAmelCase = intermediate_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = num_channels
lowerCAmelCase = image_size
lowerCAmelCase = patch_size
lowerCAmelCase = hidden_act
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = attention_dropout
lowerCAmelCase = initializer_range
lowerCAmelCase = initializer_factor
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->"PretrainedConfig":
cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get('''model_type''' ) == "owlvit":
lowerCAmelCase = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = """owlvit"""
UpperCAmelCase_ : List[str] = True
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2.6_5_9_2 , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ) ->List[Any]:
super().__init__(**__SCREAMING_SNAKE_CASE )
if text_config is None:
lowerCAmelCase = {}
logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' )
if vision_config is None:
lowerCAmelCase = {}
logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' )
lowerCAmelCase = OwlViTTextConfig(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = OwlViTVisionConfig(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = projection_dim
lowerCAmelCase = logit_scale_init_value
lowerCAmelCase = return_dict
lowerCAmelCase = 1.0
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->"PretrainedConfig":
cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Any:
lowerCAmelCase = {}
lowerCAmelCase = text_config
lowerCAmelCase = vision_config
return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
lowerCAmelCase = copy.deepcopy(self.__dict__ )
lowerCAmelCase = self.text_config.to_dict()
lowerCAmelCase = self.vision_config.to_dict()
lowerCAmelCase = self.__class__.model_type
return output
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''sequence'''}),
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''attention_mask''', {0: '''batch''', 1: '''sequence'''}),
] )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('''logits_per_image''', {0: '''batch'''}),
('''logits_per_text''', {0: '''batch'''}),
('''text_embeds''', {0: '''batch'''}),
('''image_embeds''', {0: '''batch'''}),
] )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->float:
return 1e-4
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = None , ) ->Mapping[str, Any]:
lowerCAmelCase = super().generate_dummy_inputs(
processor.tokenizer , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = super().generate_dummy_inputs(
processor.image_processor , batch_size=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE )
return {**text_input_dict, **image_input_dict}
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
return 14
| 338 | from typing import TYPE_CHECKING
from ...utils import _LazyModule
lowercase__ : int = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
lowercase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 338 | 1 |
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , ) -> List[Any]:
if config_name_or_path is None:
lowerCAmelCase = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base'''
if generator_tokenizer_name_or_path is None:
lowerCAmelCase = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
lowerCAmelCase = question_encoder_name_or_path
lowerCAmelCase = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration
# Save model.
lowerCAmelCase = RagConfig.from_pretrained(snake_case__ )
lowerCAmelCase = AutoConfig.from_pretrained(snake_case__ )
lowerCAmelCase = AutoConfig.from_pretrained(snake_case__ )
lowerCAmelCase = gen_config
lowerCAmelCase = question_encoder_config
lowerCAmelCase = model_class.from_pretrained_question_encoder_generator(
snake_case__ , snake_case__ , config=snake_case__ )
rag_model.save_pretrained(snake_case__ )
# Sanity check.
model_class.from_pretrained(snake_case__ )
# Save tokenizers.
lowerCAmelCase = AutoTokenizer.from_pretrained(snake_case__ )
gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' )
lowerCAmelCase = AutoTokenizer.from_pretrained(snake_case__ )
question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' )
if __name__ == "__main__":
lowercase__ : Dict = argparse.ArgumentParser()
parser.add_argument(
'''--model_type''',
choices=['''rag_sequence''', '''rag_token'''],
required=True,
type=str,
help='''RAG model type: rag_sequence, rag_token''',
)
parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''')
parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''')
parser.add_argument(
'''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier'''
)
parser.add_argument(
'''--generator_tokenizer_name_or_path''',
type=str,
help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''',
)
parser.add_argument(
'''--question_encoder_tokenizer_name_or_path''',
type=str,
help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''',
)
parser.add_argument(
'''--config_name_or_path''',
type=str,
help=(
'''Identifier of the model config to use, if not provided, resolves to a base config for a given'''
''' ``model_type``'''
),
)
lowercase__ : Tuple = parser.parse_args()
lowercase__ : Optional[Any] = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 338 | lowercase__ : Optional[int] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ'''
def SCREAMING_SNAKE_CASE_ ( ) -> None:
lowerCAmelCase = input('''Enter message: ''' )
lowerCAmelCase = input('''Enter key [alphanumeric]: ''' )
lowerCAmelCase = input('''Encrypt/Decrypt [e/d]: ''' )
if mode.lower().startswith('''e''' ):
lowerCAmelCase = '''encrypt'''
lowerCAmelCase = encrypt_message(snake_case__ , snake_case__ )
elif mode.lower().startswith('''d''' ):
lowerCAmelCase = '''decrypt'''
lowerCAmelCase = decrypt_message(snake_case__ , snake_case__ )
print(f"\n{mode.title()}ed message:" )
print(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
return translate_message(snake_case__ , snake_case__ , '''encrypt''' )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
return translate_message(snake_case__ , snake_case__ , '''decrypt''' )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> str:
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = key.upper()
for symbol in message:
lowerCAmelCase = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(snake_case__ )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(snake_case__ ):
lowerCAmelCase = 0
else:
translated.append(snake_case__ )
return "".join(snake_case__ )
if __name__ == "__main__":
main()
| 338 | 1 |
import math
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> list:
lowerCAmelCase = [True] * n
lowerCAmelCase = False
lowerCAmelCase = False
lowerCAmelCase = True
for i in range(3 , int(n**0.5 + 1 ) , 2 ):
lowerCAmelCase = i * 2
while index < n:
lowerCAmelCase = False
lowerCAmelCase = index + i
lowerCAmelCase = [2]
for i in range(3 , snake_case__ , 2 ):
if is_prime[i]:
primes.append(snake_case__ )
return primes
def SCREAMING_SNAKE_CASE_ ( snake_case__ = 9_9_9_9_6_6_6_6_3_3_3_3 ) -> int:
lowerCAmelCase = math.floor(math.sqrt(snake_case__ ) ) + 1_0_0
lowerCAmelCase = prime_sieve(snake_case__ )
lowerCAmelCase = 0
lowerCAmelCase = 0
lowerCAmelCase = primes[prime_index]
while (last_prime**2) <= limit:
lowerCAmelCase = primes[prime_index + 1]
lowerCAmelCase = last_prime**2
lowerCAmelCase = next_prime**2
# Get numbers divisible by lps(current)
lowerCAmelCase = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
lowerCAmelCase = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
lowerCAmelCase = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
lowerCAmelCase = next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 338 | from collections import defaultdict
from math import ceil, sqrt
def SCREAMING_SNAKE_CASE_ ( snake_case__ = 1_0_0_0_0_0_0 , snake_case__ = 1_0 ) -> int:
lowerCAmelCase = defaultdict(snake_case__ )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
lowerCAmelCase = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
lowerCAmelCase = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(snake_case__ , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 1_0 )
if __name__ == "__main__":
print(f'{solution() = }')
| 338 | 1 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class lowercase_ ( datasets.BeamBasedBuilder ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
return datasets.DatasetInfo(
features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=__SCREAMING_SNAKE_CASE , )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )]
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Dict:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(__SCREAMING_SNAKE_CASE )
class lowercase_ ( datasets.BeamBasedBuilder ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
return datasets.DatasetInfo(
features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=__SCREAMING_SNAKE_CASE , )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} )
]
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->str:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( ) -> str:
return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )]
def SCREAMING_SNAKE_CASE_ ( ) -> Tuple:
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )]
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
@require_beam
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
lowerCAmelCase = DummyBeamDataset(cache_dir=__SCREAMING_SNAKE_CASE , beam_runner='''DirectRunner''' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , F"{builder.name}-train.arrow" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) )
lowerCAmelCase = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , __SCREAMING_SNAKE_CASE )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __SCREAMING_SNAKE_CASE )
self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
@require_beam
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
import apache_beam as beam
lowerCAmelCase = beam.io.parquetio.WriteToParquet
lowerCAmelCase = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
lowerCAmelCase = DummyBeamDataset(cache_dir=__SCREAMING_SNAKE_CASE , beam_runner='''DirectRunner''' )
with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock:
lowerCAmelCase = partial(__SCREAMING_SNAKE_CASE , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , F"{builder.name}-train-00000-of-00002.arrow" ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , F"{builder.name}-train-00000-of-00002.arrow" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) )
lowerCAmelCase = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , __SCREAMING_SNAKE_CASE )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __SCREAMING_SNAKE_CASE )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) )
self.assertTrue(
os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
@require_beam
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
with tempfile.TemporaryDirectory() as tmp_cache_dir:
lowerCAmelCase = DummyBeamDataset(cache_dir=__SCREAMING_SNAKE_CASE )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
lowerCAmelCase = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
lowerCAmelCase = NestedBeamDataset(cache_dir=__SCREAMING_SNAKE_CASE , beam_runner='''DirectRunner''' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , F"{builder.name}-train.arrow" ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) )
lowerCAmelCase = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , __SCREAMING_SNAKE_CASE )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __SCREAMING_SNAKE_CASE )
self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
| 338 | import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Union[str, Any]:
assert isinstance(snake_case__ , snake_case__ )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''text''': '''string'''},
{'''text''': '''int32'''},
{'''text''': '''float32'''},
] , )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = features.copy() if features else default_expected_features
lowerCAmelCase = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCAmelCase = TextDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]:
if issubclass(snake_case__ , snake_case__ ):
lowerCAmelCase = text_path
elif issubclass(snake_case__ , snake_case__ ):
lowerCAmelCase = [text_path]
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__=("train",) ) -> Optional[Any]:
assert isinstance(snake_case__ , snake_case__ )
for split in splits:
lowerCAmelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCAmelCase = TextDatasetReader({'''train''': text_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_text_datasetdict(snake_case__ , snake_case__ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''text''': '''string'''},
{'''text''': '''int32'''},
{'''text''': '''float32'''},
] , )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]:
lowerCAmelCase = tmp_path / '''cache'''
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = features.copy() if features else default_expected_features
lowerCAmelCase = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCAmelCase = TextDatasetReader({'''train''': text_path} , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_text_datasetdict(snake_case__ , snake_case__ )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Any:
if split:
lowerCAmelCase = {split: text_path}
else:
lowerCAmelCase = '''train'''
lowerCAmelCase = {'''train''': text_path, '''test''': text_path}
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ ).read()
_check_text_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 338 | 1 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase_ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = RobertaTokenizer
UpperCAmelCase_ : int = RobertaTokenizerFast
UpperCAmelCase_ : Union[str, Any] = True
UpperCAmelCase_ : Dict = {"""cls_token""": """<s>"""}
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowerCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
lowerCAmelCase = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) )
lowerCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
lowerCAmelCase = {'''unk_token''': '''<unk>'''}
lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) )
def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->str:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->Optional[int]:
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Dict:
lowerCAmelCase = '''lower newer'''
lowerCAmelCase = '''lower newer'''
return input_text, output_text
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowerCAmelCase = '''lower newer'''
lowerCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
lowerCAmelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True)
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokens + [tokenizer.unk_token]
lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 31414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , )
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.tokenizer_class.from_pretrained('''roberta-base''' )
lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = '''Encode this sequence.'''
lowerCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]]
# Testing encoder arguments
lowerCAmelCase = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} )
lowerCAmelCase = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Testing spaces after special tokens
lowerCAmelCase = '''<mask>'''
tokenizer.add_special_tokens(
{'''mask_token''': AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space
lowerCAmelCase = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = '''Encode <mask> sequence'''
lowerCAmelCase = '''Encode <mask>sequence'''
lowerCAmelCase = tokenizer.encode(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = encoded.index(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer.encode(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = encoded.index(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
pass
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
lowerCAmelCase = '''A, <mask> AllenNLP sentence.'''
lowerCAmelCase = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(
__SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
__SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
lowerCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE )
self.assertEqual(post_processor_state['''add_prefix_space'''] , __SCREAMING_SNAKE_CASE )
self.assertEqual(post_processor_state['''trim_offsets'''] , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name`
lowerCAmelCase = F"{text_of_1_token} {text_of_1_token}"
lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
lowerCAmelCase = F" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
| 338 | def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str:
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('''\'float\' object cannot be interpreted as an integer''' )
if isinstance(snake_case__ , snake_case__ ):
raise TypeError('''\'str\' object cannot be interpreted as an integer''' )
if num == 0:
return "0b0"
lowerCAmelCase = False
if num < 0:
lowerCAmelCase = True
lowerCAmelCase = -num
lowerCAmelCase = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(snake_case__ ) for e in binary )
return "0b" + "".join(str(snake_case__ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | 1 |
lowercase__ : Optional[int] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ'''
def SCREAMING_SNAKE_CASE_ ( ) -> None:
lowerCAmelCase = input('''Enter message: ''' )
lowerCAmelCase = input('''Enter key [alphanumeric]: ''' )
lowerCAmelCase = input('''Encrypt/Decrypt [e/d]: ''' )
if mode.lower().startswith('''e''' ):
lowerCAmelCase = '''encrypt'''
lowerCAmelCase = encrypt_message(snake_case__ , snake_case__ )
elif mode.lower().startswith('''d''' ):
lowerCAmelCase = '''decrypt'''
lowerCAmelCase = decrypt_message(snake_case__ , snake_case__ )
print(f"\n{mode.title()}ed message:" )
print(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
return translate_message(snake_case__ , snake_case__ , '''encrypt''' )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
return translate_message(snake_case__ , snake_case__ , '''decrypt''' )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> str:
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = key.upper()
for symbol in message:
lowerCAmelCase = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(snake_case__ )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(snake_case__ ):
lowerCAmelCase = 0
else:
translated.append(snake_case__ )
return "".join(snake_case__ )
if __name__ == "__main__":
main()
| 338 | class lowercase_ :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Any:
lowerCAmelCase = name
lowerCAmelCase = value
lowerCAmelCase = weight
def __repr__( self ) ->str:
return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})"
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
return self.value
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
return self.name
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
return self.weight
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
return self.value / self.weight
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> int:
lowerCAmelCase = []
for i in range(len(snake_case__ ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]:
lowerCAmelCase = sorted(snake_case__ , key=snake_case__ , reverse=snake_case__ )
lowerCAmelCase = []
lowerCAmelCase , lowerCAmelCase = 0.0, 0.0
for i in range(len(snake_case__ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | 1 |
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : List[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
lowercase__ : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowercase_ :
"""simple docstring"""
UpperCAmelCase_ : str = field(
default=UpperCamelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(UpperCamelCase_ )} )
UpperCAmelCase_ : str = field(
default=UpperCamelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} )
UpperCAmelCase_ : int = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
UpperCAmelCase_ : int = field(
default=128 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , )
UpperCAmelCase_ : int = field(
default=64 , metadata={
"""help""": (
"""The maximum number of tokens for the question. Questions longer than this will """
"""be truncated to this length."""
)
} , )
UpperCAmelCase_ : int = field(
default=30 , metadata={
"""help""": (
"""The maximum length of an answer that can be generated. This is needed because the start """
"""and end predictions are not conditioned on one another."""
)
} , )
UpperCAmelCase_ : bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
UpperCAmelCase_ : bool = field(
default=UpperCamelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} )
UpperCAmelCase_ : float = field(
default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} )
UpperCAmelCase_ : int = field(
default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} )
UpperCAmelCase_ : int = field(
default=0 , metadata={
"""help""": (
"""language id of input for language-specific xlm models (see"""
""" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"""
)
} , )
UpperCAmelCase_ : int = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} )
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Tuple = """train"""
UpperCAmelCase_ : Dict = """dev"""
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : SquadDataTrainingArguments
UpperCAmelCase_ : List[SquadFeatures]
UpperCAmelCase_ : Split
UpperCAmelCase_ : bool
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = Split.train , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pt" , ) ->str:
lowerCAmelCase = args
lowerCAmelCase = is_language_sensitive
lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
try:
lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError('''mode is not a valid split name''' )
lowerCAmelCase = mode
# Load data features from cache or dataset file
lowerCAmelCase = '''v2''' if args.version_2_with_negative else '''v1'''
lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCAmelCase = cached_features_file + '''.lock'''
with FileLock(__SCREAMING_SNAKE_CASE ):
if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache:
lowerCAmelCase = time.time()
lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCAmelCase = self.old_features['''features''']
lowerCAmelCase = self.old_features.get('''dataset''' , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.old_features.get('''examples''' , __SCREAMING_SNAKE_CASE )
logger.info(
F"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
''' future run''' )
else:
if mode == Split.dev:
lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
else:
lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
lowerCAmelCase , lowerCAmelCase = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__SCREAMING_SNAKE_CASE , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = time.time()
torch.save(
{'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , __SCREAMING_SNAKE_CASE , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self ) ->Optional[Any]:
return len(self.features )
def __getitem__( self , __SCREAMING_SNAKE_CASE ) ->Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
lowerCAmelCase = self.features[i]
lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long )
lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long )
lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long )
lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long )
lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float )
lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float )
lowerCAmelCase = {
'''input_ids''': input_ids,
'''attention_mask''': attention_mask,
'''token_type_ids''': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'''is_impossible''': is_impossible} )
if self.is_language_sensitive:
inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long )
lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} )
return inputs
| 338 | import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
lowercase__ : Dict = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
lowercase__ : Optional[int] = [0, 2_5, 5_0]
lowercase__ : Union[str, Any] = [2_5, 5_0, 7_5]
lowercase__ : int = fuzz.membership.trimf(X, abca)
lowercase__ : Tuple = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
lowercase__ : List[str] = np.ones(7_5)
lowercase__ : Any = np.zeros((7_5,))
# 1. Union = max(µA(x), µB(x))
lowercase__ : Union[str, Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
lowercase__ : int = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
lowercase__ : Union[str, Any] = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
lowercase__ : Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
lowercase__ : Any = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
lowercase__ : str = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
lowercase__ : Tuple = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
lowercase__ : Tuple = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('''Young''')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('''Middle aged''')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('''union''')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('''intersection''')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('''complement_a''')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('''difference a/b''')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('''alg_sum''')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('''alg_product''')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('''bdd_sum''')
plt.grid(True)
plt.subplot(4, 3, 1_0)
plt.plot(X, bdd_difference)
plt.title('''bdd_difference''')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 338 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
lowercase__ : str = logging.getLogger(__name__)
@dataclass
class lowercase_ :
"""simple docstring"""
UpperCAmelCase_ : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
UpperCAmelCase_ : Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
UpperCAmelCase_ : Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
UpperCAmelCase_ : Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
UpperCAmelCase_ : bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
UpperCAmelCase_ : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
UpperCAmelCase_ : bool = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
@dataclass
class lowercase_ :
"""simple docstring"""
UpperCAmelCase_ : Optional[str] = field(default=UpperCamelCase_ , metadata={"""help""": """The input training data file (a text file)."""} )
UpperCAmelCase_ : Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , )
UpperCAmelCase_ : bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
UpperCAmelCase_ : Optional[int] = field(
default=UpperCamelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
UpperCAmelCase_ : Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. If passed, sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
UpperCAmelCase_ : bool = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to the maximum sentence length. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch. More """
"""efficient on GPU but very bad for TPU."""
)
} , )
UpperCAmelCase_ : Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
UpperCAmelCase_ : Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
if self.train_file is not None:
lowerCAmelCase = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
lowerCAmelCase = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class lowercase_ :
"""simple docstring"""
UpperCAmelCase_ : PreTrainedTokenizerBase
UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = True
UpperCAmelCase_ : Optional[int] = None
UpperCAmelCase_ : Optional[int] = None
def __call__( self , __SCREAMING_SNAKE_CASE ) ->List[Any]:
lowerCAmelCase = '''label''' if '''label''' in features[0].keys() else '''labels'''
lowerCAmelCase = [feature.pop(__SCREAMING_SNAKE_CASE ) for feature in features]
lowerCAmelCase = len(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = len(features[0]['''input_ids'''] )
lowerCAmelCase = [
[{k: v[i] for k, v in feature.items()} for i in range(__SCREAMING_SNAKE_CASE )] for feature in features
]
lowerCAmelCase = list(chain(*__SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = self.tokenizer.pad(
__SCREAMING_SNAKE_CASE , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , )
# Un-flatten
lowerCAmelCase = {k: v.view(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , -1 ) for k, v in batch.items()}
# Add back labels
lowerCAmelCase = torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.intaa )
return batch
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_swag''' , snake_case__ , snake_case__ )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCAmelCase = training_args.get_process_log_level()
logger.setLevel(snake_case__ )
datasets.utils.logging.set_verbosity(snake_case__ )
transformers.utils.logging.set_verbosity(snake_case__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
lowerCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
lowerCAmelCase = {}
if data_args.train_file is not None:
lowerCAmelCase = data_args.train_file
if data_args.validation_file is not None:
lowerCAmelCase = data_args.validation_file
lowerCAmelCase = data_args.train_file.split('''.''' )[-1]
lowerCAmelCase = load_dataset(
snake_case__ , data_files=snake_case__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
lowerCAmelCase = load_dataset(
'''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCAmelCase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCAmelCase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
lowerCAmelCase = [f"ending{i}" for i in range(4 )]
lowerCAmelCase = '''sent1'''
lowerCAmelCase = '''sent2'''
if data_args.max_seq_length is None:
lowerCAmelCase = tokenizer.model_max_length
if max_seq_length > 1_0_2_4:
logger.warning(
'''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'''
''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'''
''' override this default with `--block_size xxx`.''' )
lowerCAmelCase = 1_0_2_4
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(snake_case__ ):
lowerCAmelCase = [[context] * 4 for context in examples[context_name]]
lowerCAmelCase = examples[question_header_name]
lowerCAmelCase = [
[f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(snake_case__ )
]
# Flatten out
lowerCAmelCase = list(chain(*snake_case__ ) )
lowerCAmelCase = list(chain(*snake_case__ ) )
# Tokenize
lowerCAmelCase = tokenizer(
snake_case__ , snake_case__ , truncation=snake_case__ , max_length=snake_case__ , padding='''max_length''' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(snake_case__ ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCAmelCase = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCAmelCase = min(len(snake_case__ ) , data_args.max_train_samples )
lowerCAmelCase = train_dataset.select(range(snake_case__ ) )
with training_args.main_process_first(desc='''train dataset map pre-processing''' ):
lowerCAmelCase = train_dataset.map(
snake_case__ , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCAmelCase = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCAmelCase = min(len(snake_case__ ) , data_args.max_eval_samples )
lowerCAmelCase = eval_dataset.select(range(snake_case__ ) )
with training_args.main_process_first(desc='''validation dataset map pre-processing''' ):
lowerCAmelCase = eval_dataset.map(
snake_case__ , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
lowerCAmelCase = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=snake_case__ , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(snake_case__ ):
lowerCAmelCase , lowerCAmelCase = eval_predictions
lowerCAmelCase = np.argmax(snake_case__ , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
lowerCAmelCase = Trainer(
model=snake_case__ , args=snake_case__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=snake_case__ , data_collator=snake_case__ , compute_metrics=snake_case__ , )
# Training
if training_args.do_train:
lowerCAmelCase = None
if training_args.resume_from_checkpoint is not None:
lowerCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCAmelCase = last_checkpoint
lowerCAmelCase = trainer.train(resume_from_checkpoint=snake_case__ )
trainer.save_model() # Saves the tokenizer too for easy upload
lowerCAmelCase = train_result.metrics
lowerCAmelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case__ )
)
lowerCAmelCase = min(snake_case__ , len(snake_case__ ) )
trainer.log_metrics('''train''' , snake_case__ )
trainer.save_metrics('''train''' , snake_case__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCAmelCase = trainer.evaluate()
lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(snake_case__ )
lowerCAmelCase = min(snake_case__ , len(snake_case__ ) )
trainer.log_metrics('''eval''' , snake_case__ )
trainer.save_metrics('''eval''' , snake_case__ )
lowerCAmelCase = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''multiple-choice''',
'''dataset_tags''': '''swag''',
'''dataset_args''': '''regular''',
'''dataset''': '''SWAG''',
'''language''': '''en''',
}
if training_args.push_to_hub:
trainer.push_to_hub(**snake_case__ )
else:
trainer.create_model_card(**snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 338 | import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : str = (DDPMScheduler,)
def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->Optional[Any]:
lowerCAmelCase = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**__SCREAMING_SNAKE_CASE )
return config
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
for t in [0, 500, 999]:
self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = len(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(__SCREAMING_SNAKE_CASE ) ):
# 1. predict noise residual
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase = pred_prev_sample
lowerCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = len(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(__SCREAMING_SNAKE_CASE ) ):
# 1. predict noise residual
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase = pred_prev_sample
lowerCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler.timesteps
for i, timestep in enumerate(__SCREAMING_SNAKE_CASE ):
if i == len(__SCREAMING_SNAKE_CASE ) - 1:
lowerCAmelCase = -1
else:
lowerCAmelCase = timesteps[i + 1]
lowerCAmelCase = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = prev_t.item()
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [100, 87, 50, 51, 0]
with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [100, 87, 50, 1, 0]
lowerCAmelCase = len(__SCREAMING_SNAKE_CASE )
with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
__SCREAMING_SNAKE_CASE , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
| 338 | 1 |
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowercase__ : int = logging.get_logger(__name__)
lowercase__ : Optional[int] = {'''vocab_file''': '''spiece.model'''}
lowercase__ : Dict = {
'''vocab_file''': {
'''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''',
'''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''',
'''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''',
'''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''',
'''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''',
}
}
lowercase__ : Tuple = {
'''AI-Sweden/gpt-sw3-126m''': 2_0_4_8,
'''AI-Sweden/gpt-sw3-350m''': 2_0_4_8,
'''AI-Sweden/gpt-sw3-1.6b''': 2_0_4_8,
'''AI-Sweden/gpt-sw3-6.7b''': 2_0_4_8,
'''AI-Sweden/gpt-sw3-20b''': 2_0_4_8,
}
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = VOCAB_FILES_NAMES
UpperCAmelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : str = ["""input_ids""", """attention_mask"""]
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) ->None:
lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
lowerCAmelCase = kwargs.get('''name_or_path''' )
if name_or_path is None:
logger.warning(
'''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'''
''' you are testing the model, this can safely be ignored''' )
lowerCAmelCase = '''None'''
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
lowerCAmelCase = '''<|endoftext|>''' if eos_token is None else eos_token
lowerCAmelCase = '''<unk>''' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
lowerCAmelCase = unk_token if pad_token is None else pad_token
lowerCAmelCase = eos_token if bos_token is None else bos_token
else:
lowerCAmelCase = '''<pad>''' if pad_token is None else pad_token
lowerCAmelCase = '''<s>''' if bos_token is None else bos_token
super().__init__(
do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = do_lower_case
lowerCAmelCase = remove_space
lowerCAmelCase = keep_accents
lowerCAmelCase = vocab_file
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__SCREAMING_SNAKE_CASE )
# Used for whitespace normalization in input texts
# fmt : off
lowerCAmelCase = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', ''''''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
lowerCAmelCase = re.compile(
F"[{''.join(map(__SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]" )
def __getstate__( self ) ->Any:
lowerCAmelCase = self.__dict__.copy()
lowerCAmelCase = None
return state
def __setstate__( self , __SCREAMING_SNAKE_CASE ) ->str:
lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
lowerCAmelCase = {}
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
return len(self.sp_model )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str:
lowerCAmelCase = self.non_printing_characters_re.sub('''''' , __SCREAMING_SNAKE_CASE )
# Normalize whitespaces
lowerCAmelCase = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] )
# NFC Unicode normalization
lowerCAmelCase = unicodedata.normalize('''NFC''' , __SCREAMING_SNAKE_CASE )
return text
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[str]:
lowerCAmelCase = self.preprocess_text(__SCREAMING_SNAKE_CASE )
return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->int:
return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str:
return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( __SCREAMING_SNAKE_CASE ) ->str:
return out_string
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str:
lowerCAmelCase = []
lowerCAmelCase = ''''''
lowerCAmelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token
lowerCAmelCase = True
lowerCAmelCase = []
else:
current_sub_tokens.append(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = False
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE )
return out_string
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict[str, int]:
lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Tuple[str]:
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCAmelCase = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi:
lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ) ->Union[List[int], List[List[int]], "torch.Tensor"]:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = self.preprocess_text(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.sp_model.encode(__SCREAMING_SNAKE_CASE )
else:
lowerCAmelCase = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text]
lowerCAmelCase = self.sp_model.encode(__SCREAMING_SNAKE_CASE )
if return_tensors is True or return_tensors == "pt":
lowerCAmelCase = torch.tensor(__SCREAMING_SNAKE_CASE )
return token_ids
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str:
return self.sp_model.decode(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[int]:
lowerCAmelCase = [F"User: {text}" if is_user else F"Bot: {text}" for is_user, text in conversation.iter_texts()]
lowerCAmelCase = (
F"{self.eos_token}{self.bos_token}" + F"{self.bos_token}".join(__SCREAMING_SNAKE_CASE ) + F"{self.bos_token}Bot:"
)
return self.encode(text=__SCREAMING_SNAKE_CASE )
| 338 | import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
lowercase__ : str = logging.get_logger(__name__)
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = """AutoTokenizer"""
UpperCAmelCase_ : Optional[int] = ["""tokenizer"""]
UpperCAmelCase_ : str = {
"""semantic_prompt""": 1,
"""coarse_prompt""": 2,
"""fine_prompt""": 2,
}
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Optional[Any]:
super().__init__(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = speaker_embeddings
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , **__SCREAMING_SNAKE_CASE ) ->Tuple:
if speaker_embeddings_dict_path is not None:
lowerCAmelCase = get_file_from_repo(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , subfolder=kwargs.pop('''subfolder''' , __SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop('''cache_dir''' , __SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop('''force_download''' , __SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop('''proxies''' , __SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop('''resume_download''' , __SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop('''local_files_only''' , __SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop('''use_auth_token''' , __SCREAMING_SNAKE_CASE ) , revision=kwargs.pop('''revision''' , __SCREAMING_SNAKE_CASE ) , )
if speaker_embeddings_path is None:
logger.warning(
F"`{os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." )
lowerCAmelCase = None
else:
with open(__SCREAMING_SNAKE_CASE ) as speaker_embeddings_json:
lowerCAmelCase = json.load(__SCREAMING_SNAKE_CASE )
else:
lowerCAmelCase = None
lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
return cls(tokenizer=__SCREAMING_SNAKE_CASE , speaker_embeddings=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , __SCREAMING_SNAKE_CASE="speaker_embeddings" , __SCREAMING_SNAKE_CASE = False , **__SCREAMING_SNAKE_CASE , ) ->int:
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '''v2''' ) , exist_ok=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {}
lowerCAmelCase = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
lowerCAmelCase = self._load_voice_preset(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict['''repo_or_path'''] , __SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}.npy" )
lowerCAmelCase = tmp_dict
with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , '''w''' ) as fp:
json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE ) ->List[str]:
lowerCAmelCase = self.speaker_embeddings[voice_preset]
lowerCAmelCase = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." )
lowerCAmelCase = get_file_from_repo(
self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , __SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop('''cache_dir''' , __SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop('''force_download''' , __SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop('''proxies''' , __SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop('''resume_download''' , __SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop('''local_files_only''' , __SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop('''use_auth_token''' , __SCREAMING_SNAKE_CASE ) , revision=kwargs.pop('''revision''' , __SCREAMING_SNAKE_CASE ) , )
if path is None:
raise ValueError(
F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." )
lowerCAmelCase = np.load(__SCREAMING_SNAKE_CASE )
return voice_preset_dict
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE = None ) ->Tuple:
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(F"Voice preset unrecognized, missing {key} as a key." )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." )
def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="pt" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) ->int:
if voice_preset is not None and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
lowerCAmelCase = self._load_voice_preset(__SCREAMING_SNAKE_CASE )
else:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not voice_preset.endswith('''.npz''' ):
lowerCAmelCase = voice_preset + '''.npz'''
lowerCAmelCase = np.load(__SCREAMING_SNAKE_CASE )
if voice_preset is not None:
self._validate_voice_preset_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
lowerCAmelCase = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.tokenizer(
__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
if voice_preset is not None:
lowerCAmelCase = voice_preset
return encoded_text
| 338 | 1 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
lowercase__ : str = logging.get_logger(__name__)
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = """upernet"""
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=[1, 2, 3, 6] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.4 , __SCREAMING_SNAKE_CASE=384 , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=255 , **__SCREAMING_SNAKE_CASE , ) ->Optional[Any]:
super().__init__(**__SCREAMING_SNAKE_CASE )
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
lowerCAmelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] )
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = backbone_config.get('''model_type''' )
lowerCAmelCase = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase = config_class.from_dict(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = backbone_config
lowerCAmelCase = hidden_size
lowerCAmelCase = initializer_range
lowerCAmelCase = pool_scales
lowerCAmelCase = use_auxiliary_head
lowerCAmelCase = auxiliary_loss_weight
lowerCAmelCase = auxiliary_in_channels
lowerCAmelCase = auxiliary_channels
lowerCAmelCase = auxiliary_num_convs
lowerCAmelCase = auxiliary_concat_input
lowerCAmelCase = loss_ignore_index
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
lowerCAmelCase = copy.deepcopy(self.__dict__ )
lowerCAmelCase = self.backbone_config.to_dict()
lowerCAmelCase = self.__class__.model_type
return output
| 338 | import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
'''The `inpainting.py` script is outdated. Please use directly `from diffusers import'''
''' StableDiffusionInpaintPipeline` instead.'''
)
| 338 | 1 |
import math
lowercase__ : List[Any] = 1_0
lowercase__ : List[str] = 7
lowercase__ : Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS
def SCREAMING_SNAKE_CASE_ ( snake_case__ = 2_0 ) -> str:
lowerCAmelCase = math.comb(snake_case__ , snake_case__ )
lowerCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , snake_case__ )
lowerCAmelCase = NUM_COLOURS * (1 - missing_colour / total)
return f"{result:.9f}"
if __name__ == "__main__":
print(solution(2_0))
| 338 | import os
import re
import shutil
import sys
import tempfile
import unittest
import black
lowercase__ : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
lowercase__ : Dict = ''' def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
'''
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = tempfile.mkdtemp()
os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) )
lowerCAmelCase = self.transformer_dir
shutil.copy(
os.path.join(__SCREAMING_SNAKE_CASE , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = '''src/transformers'''
shutil.rmtree(self.transformer_dir )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Union[str, Any]:
lowerCAmelCase = comment + F"\nclass {class_name}(nn.Module):\n" + class_code
if overwrite_result is not None:
lowerCAmelCase = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result
lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
lowerCAmelCase = black.format_str(__SCREAMING_SNAKE_CASE , mode=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = os.path.join(self.transformer_dir , '''new_code.py''' )
with open(__SCREAMING_SNAKE_CASE , '''w''' , newline='''\n''' ) as f:
f.write(__SCREAMING_SNAKE_CASE )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(__SCREAMING_SNAKE_CASE ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=__SCREAMING_SNAKE_CASE )
with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f:
self.assertTrue(f.read() , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
# Base copy consistency
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , __SCREAMING_SNAKE_CASE , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , __SCREAMING_SNAKE_CASE ) , )
# Copy consistency with a really long name
lowerCAmelCase = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub('''Bert''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , __SCREAMING_SNAKE_CASE , overwrite_result=re.sub('''Bert''' , '''TestModel''' , __SCREAMING_SNAKE_CASE ) , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
lowerCAmelCase = check_copies.LOCALIZED_READMES['''README_zh-hans.md''']
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),'''
''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**'''
''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders'''
''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang'''
''' Luong, Quoc V. Le, Christopher D. Manning.'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文'''
''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自'''
''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather'''
''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,'''
''' Christopher D. Manning 发布。\n'''
)
lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] )
self.assertFalse(__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] )
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and'''
''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
lowerCAmelCase = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] )
# Check if the model link is synchronized.
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 338 | 1 |
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
lowercase__ : str = '''platform'''
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class lowercase_ :
"""simple docstring"""
UpperCAmelCase_ : str = PegasusConfig
UpperCAmelCase_ : List[Any] = {}
UpperCAmelCase_ : Optional[Any] = """gelu"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=20 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , ) ->List[Any]:
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = eos_token_id
lowerCAmelCase = pad_token_id
lowerCAmelCase = bos_token_id
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
lowerCAmelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase = np.concatenate([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowerCAmelCase = prepare_pegasus_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
lowerCAmelCase = 20
lowerCAmelCase = model_class_name(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model.encode(inputs_dict['''input_ids'''] )
lowerCAmelCase , lowerCAmelCase = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
lowerCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
lowerCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCAmelCase = model.decode(
decoder_input_ids[:, :-1] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
lowerCAmelCase = model.decode(
decoder_input_ids[:, -1:] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = model.decode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Any:
lowerCAmelCase = 20
lowerCAmelCase = model_class_name(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model.encode(inputs_dict['''input_ids'''] )
lowerCAmelCase , lowerCAmelCase = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
lowerCAmelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
lowerCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCAmelCase = model.decode(
decoder_input_ids[:, :-1] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
lowerCAmelCase = model.decode(
decoder_input_ids[:, -1:] , __SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = model.decode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F"Max diff is {diff}" )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ) -> Optional[int]:
if attention_mask is None:
lowerCAmelCase = np.not_equal(snake_case__ , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
lowerCAmelCase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class lowercase_ ( UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
UpperCAmelCase_ : int = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
UpperCAmelCase_ : int = True
UpperCAmelCase_ : str = False
UpperCAmelCase_ : Dict = False
UpperCAmelCase_ : Tuple = False
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = FlaxPegasusModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCAmelCase = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE )
@jax.jit
def encode_jitted(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ):
return model.encode(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )
with self.subTest('''JIT Enabled''' ):
lowerCAmelCase = encode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
lowerCAmelCase = encode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple()
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) )
for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(jitted_output.shape , output.shape )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] )
lowerCAmelCase = {
'''decoder_input_ids''': inputs_dict['''decoder_input_ids'''],
'''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''],
'''encoder_outputs''': encoder_outputs,
}
@jax.jit
def decode_jitted(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return model.decode(
decoder_input_ids=__SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , encoder_outputs=__SCREAMING_SNAKE_CASE , )
with self.subTest('''JIT Enabled''' ):
lowerCAmelCase = decode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
lowerCAmelCase = decode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple()
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) )
for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
for model_class_name in self.all_model_classes:
lowerCAmelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.ones((1, 1) )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' )
lowerCAmelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' )
lowerCAmelCase = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
lowerCAmelCase = [
'''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''',
'''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''',
]
lowerCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''np''' , truncation=__SCREAMING_SNAKE_CASE , max_length=512 , padding=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model.generate(**__SCREAMING_SNAKE_CASE , num_beams=2 ).sequences
lowerCAmelCase = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
assert tgt_text == decoded
| 338 | import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'''split_dict''' , [
SplitDict(),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name='''my_dataset''' )} ),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 )} ),
SplitDict({'''train''': SplitInfo()} ),
] , )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase = split_dict._to_yaml_list()
assert len(snake_case__ ) == len(snake_case__ )
lowerCAmelCase = SplitDict._from_yaml_list(snake_case__ )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
lowerCAmelCase = None
# the split name of split_dict takes over the name of the split info object
lowerCAmelCase = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'''split_info''' , [SplitInfo(), SplitInfo(dataset_name=snake_case__ ), SplitInfo(dataset_name='''my_dataset''' )] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
lowerCAmelCase = asdict(SplitDict({'''train''': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 338 | 1 |
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Union[str, Any]:
assert isinstance(snake_case__ , snake_case__ )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''text''': '''string'''},
{'''text''': '''int32'''},
{'''text''': '''float32'''},
] , )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = features.copy() if features else default_expected_features
lowerCAmelCase = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCAmelCase = TextDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]:
if issubclass(snake_case__ , snake_case__ ):
lowerCAmelCase = text_path
elif issubclass(snake_case__ , snake_case__ ):
lowerCAmelCase = [text_path]
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ ).read()
_check_text_dataset(snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__=("train",) ) -> Optional[Any]:
assert isinstance(snake_case__ , snake_case__ )
for split in splits:
lowerCAmelCase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]:
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCAmelCase = TextDatasetReader({'''train''': text_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read()
_check_text_datasetdict(snake_case__ , snake_case__ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''text''': '''string'''},
{'''text''': '''int32'''},
{'''text''': '''float32'''},
] , )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]:
lowerCAmelCase = tmp_path / '''cache'''
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = features.copy() if features else default_expected_features
lowerCAmelCase = (
Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCAmelCase = TextDatasetReader({'''train''': text_path} , features=snake_case__ , cache_dir=snake_case__ ).read()
_check_text_datasetdict(snake_case__ , snake_case__ )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Any:
if split:
lowerCAmelCase = {split: text_path}
else:
lowerCAmelCase = '''train'''
lowerCAmelCase = {'''train''': text_path, '''test''': text_path}
lowerCAmelCase = tmp_path / '''cache'''
lowerCAmelCase = {'''text''': '''string'''}
lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ ).read()
_check_text_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 338 | import unittest
import numpy as np
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ) -> np.ndarray:
lowerCAmelCase = np.shape(snake_case__ )
lowerCAmelCase = np.shape(snake_case__ )
lowerCAmelCase = np.shape(snake_case__ )
if shape_a[0] != shape_b[0]:
lowerCAmelCase = (
'''Expected the same number of rows for A and B. '''
f"Instead found A of size {shape_a} and B of size {shape_b}"
)
raise ValueError(snake_case__ )
if shape_b[1] != shape_c[1]:
lowerCAmelCase = (
'''Expected the same number of columns for B and C. '''
f"Instead found B of size {shape_b} and C of size {shape_c}"
)
raise ValueError(snake_case__ )
lowerCAmelCase = pseudo_inv
if a_inv is None:
try:
lowerCAmelCase = np.linalg.inv(snake_case__ )
except np.linalg.LinAlgError:
raise ValueError(
'''Input matrix A is not invertible. Cannot compute Schur complement.''' )
return mat_c - mat_b.T @ a_inv @ mat_b
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->None:
lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCAmelCase = np.array([[2, 1], [6, 3]] )
lowerCAmelCase = schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.block([[a, b], [b.T, c]] )
lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.linalg.det(__SCREAMING_SNAKE_CASE )
self.assertAlmostEqual(__SCREAMING_SNAKE_CASE , det_a * det_s )
def SCREAMING_SNAKE_CASE_ ( self ) ->None:
lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCAmelCase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->None:
lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] )
lowerCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
schur_complement(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 338 | 1 |
import random
from typing import Any
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> list[Any]:
for _ in range(len(snake_case__ ) ):
lowerCAmelCase = random.randint(0 , len(snake_case__ ) - 1 )
lowerCAmelCase = random.randint(0 , len(snake_case__ ) - 1 )
lowerCAmelCase , lowerCAmelCase = data[b], data[a]
return data
if __name__ == "__main__":
lowercase__ : Union[str, Any] = [0, 1, 2, 3, 4, 5, 6, 7]
lowercase__ : Dict = ['''python''', '''says''', '''hello''', '''!''']
print('''Fisher-Yates Shuffle:''')
print('''List''', integers, strings)
print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 338 | import argparse
import hashlib
import os
import urllib
import warnings
import torch
from torch import nn
from tqdm import tqdm
from transformers import WhisperConfig, WhisperForConditionalGeneration
lowercase__ : Any = {
'''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''',
'''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''',
'''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''',
'''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''',
'''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''',
'''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''',
'''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''',
'''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''',
'''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''',
'''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''',
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str:
lowerCAmelCase = ['''layers''', '''blocks''']
for k in ignore_keys:
state_dict.pop(snake_case__ , snake_case__ )
lowercase__ : List[Any] = {
'''blocks''': '''layers''',
'''mlp.0''': '''fc1''',
'''mlp.2''': '''fc2''',
'''mlp_ln''': '''final_layer_norm''',
'''.attn.query''': '''.self_attn.q_proj''',
'''.attn.key''': '''.self_attn.k_proj''',
'''.attn.value''': '''.self_attn.v_proj''',
'''.attn_ln''': '''.self_attn_layer_norm''',
'''.attn.out''': '''.self_attn.out_proj''',
'''.cross_attn.query''': '''.encoder_attn.q_proj''',
'''.cross_attn.key''': '''.encoder_attn.k_proj''',
'''.cross_attn.value''': '''.encoder_attn.v_proj''',
'''.cross_attn_ln''': '''.encoder_attn_layer_norm''',
'''.cross_attn.out''': '''.encoder_attn.out_proj''',
'''decoder.ln.''': '''decoder.layer_norm.''',
'''encoder.ln.''': '''encoder.layer_norm.''',
'''token_embedding''': '''embed_tokens''',
'''encoder.positional_embedding''': '''encoder.embed_positions.weight''',
'''decoder.positional_embedding''': '''decoder.embed_positions.weight''',
'''ln_post''': '''layer_norm''',
}
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase = list(s_dict.keys() )
for key in keys:
lowerCAmelCase = key
for k, v in WHISPER_MAPPING.items():
if k in key:
lowerCAmelCase = new_key.replace(snake_case__ , snake_case__ )
print(f"{key} -> {new_key}" )
lowerCAmelCase = s_dict.pop(snake_case__ )
return s_dict
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
lowerCAmelCase , lowerCAmelCase = emb.weight.shape
lowerCAmelCase = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ )
lowerCAmelCase = emb.weight.data
return lin_layer
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> bytes:
os.makedirs(snake_case__ , exist_ok=snake_case__ )
lowerCAmelCase = os.path.basename(snake_case__ )
lowerCAmelCase = url.split('''/''' )[-2]
lowerCAmelCase = os.path.join(snake_case__ , snake_case__ )
if os.path.exists(snake_case__ ) and not os.path.isfile(snake_case__ ):
raise RuntimeError(f"{download_target} exists and is not a regular file" )
if os.path.isfile(snake_case__ ):
lowerCAmelCase = open(snake_case__ , '''rb''' ).read()
if hashlib.shaaaa(snake_case__ ).hexdigest() == expected_shaaaa:
return model_bytes
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" )
with urllib.request.urlopen(snake_case__ ) as source, open(snake_case__ , '''wb''' ) as output:
with tqdm(
total=int(source.info().get('''Content-Length''' ) ) , ncols=8_0 , unit='''iB''' , unit_scale=snake_case__ , unit_divisor=1_0_2_4 ) as loop:
while True:
lowerCAmelCase = source.read(8_1_9_2 )
if not buffer:
break
output.write(snake_case__ )
loop.update(len(snake_case__ ) )
lowerCAmelCase = open(snake_case__ , '''rb''' ).read()
if hashlib.shaaaa(snake_case__ ).hexdigest() != expected_shaaaa:
raise RuntimeError(
'''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' )
return model_bytes
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
if ".pt" not in checkpoint_path:
lowerCAmelCase = _download(_MODELS[checkpoint_path] )
else:
lowerCAmelCase = torch.load(snake_case__ , map_location='''cpu''' )
lowerCAmelCase = original_checkpoint['''dims''']
lowerCAmelCase = original_checkpoint['''model_state_dict''']
lowerCAmelCase = state_dict['''decoder.token_embedding.weight''']
remove_ignore_keys_(snake_case__ )
rename_keys(snake_case__ )
lowerCAmelCase = True
lowerCAmelCase = state_dict['''decoder.layers.0.fc1.weight'''].shape[0]
lowerCAmelCase = WhisperConfig(
vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=snake_case__ , decoder_ffn_dim=snake_case__ , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , )
lowerCAmelCase = WhisperForConditionalGeneration(snake_case__ )
lowerCAmelCase , lowerCAmelCase = model.model.load_state_dict(snake_case__ , strict=snake_case__ )
if len(snake_case__ ) > 0 and not set(snake_case__ ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'''
f" but all the following weights are missing {missing}" )
if tie_embeds:
lowerCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
lowerCAmelCase = proj_out_weights
model.save_pretrained(snake_case__ )
if __name__ == "__main__":
lowercase__ : List[str] = argparse.ArgumentParser()
# # Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''')
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
lowercase__ : int = parser.parse_args()
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
| 338 | 1 |
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> bool:
if not all(x.isalpha() for x in string ):
raise ValueError('''String must only contain alphabetic characters.''' )
lowerCAmelCase = sorted(string.lower() )
return len(snake_case__ ) == len(set(snake_case__ ) )
if __name__ == "__main__":
lowercase__ : List[str] = input('''Enter a string ''').strip()
lowercase__ : int = is_isogram(input_str)
print(f'{input_str} is {"an" if isogram else "not an"} isogram.')
| 338 | from ...processing_utils import ProcessorMixin
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = ["""image_processor""", """feature_extractor"""]
UpperCAmelCase_ : Optional[int] = """TvltImageProcessor"""
UpperCAmelCase_ : Optional[int] = """TvltFeatureExtractor"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
super().__init__(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = image_processor
lowerCAmelCase = feature_extractor
def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) ->List[Any]:
if images is None and audio is None:
raise ValueError('''You need to specify either an `images` or `audio` input to process.''' )
lowerCAmelCase = None
if images is not None:
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , mask_pixel=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if images_mixed is not None:
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , is_mixed=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if audio is not None:
lowerCAmelCase = self.feature_extractor(
__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , mask_audio=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {}
if audio is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
if images is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
if images_mixed_dict is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
return output_dict
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.image_processor.model_input_names
lowerCAmelCase = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 338 | 1 |
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
# vision encoder
if "img_encoder.pos_embed" in name:
lowerCAmelCase = name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''' )
if "img_encoder.patch_embed.proj" in name:
lowerCAmelCase = name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''' )
if "img_encoder.patch_embed.norm" in name:
lowerCAmelCase = name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''' )
if "img_encoder.layers" in name:
lowerCAmelCase = name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''' )
if "blocks" in name and "res" not in name:
lowerCAmelCase = name.replace('''blocks''' , '''layers''' )
if "attn" in name and "pre_assign" not in name:
lowerCAmelCase = name.replace('''attn''' , '''self_attn''' )
if "proj" in name and "self_attn" in name and "text" not in name:
lowerCAmelCase = name.replace('''proj''' , '''out_proj''' )
if "pre_assign_attn.attn.proj" in name:
lowerCAmelCase = name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''' )
if "norm1" in name:
lowerCAmelCase = name.replace('''norm1''' , '''layer_norm1''' )
if "norm2" in name and "pre_assign" not in name:
lowerCAmelCase = name.replace('''norm2''' , '''layer_norm2''' )
if "img_encoder.norm" in name:
lowerCAmelCase = name.replace('''img_encoder.norm''' , '''vision_model.layernorm''' )
# text encoder
if "text_encoder.token_embedding" in name:
lowerCAmelCase = name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''' )
if "text_encoder.positional_embedding" in name:
lowerCAmelCase = name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' )
if "text_encoder.transformer.resblocks." in name:
lowerCAmelCase = name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''' )
if "ln_1" in name:
lowerCAmelCase = name.replace('''ln_1''' , '''layer_norm1''' )
if "ln_2" in name:
lowerCAmelCase = name.replace('''ln_2''' , '''layer_norm2''' )
if "c_fc" in name:
lowerCAmelCase = name.replace('''c_fc''' , '''fc1''' )
if "c_proj" in name:
lowerCAmelCase = name.replace('''c_proj''' , '''fc2''' )
if "text_encoder" in name:
lowerCAmelCase = name.replace('''text_encoder''' , '''text_model''' )
if "ln_final" in name:
lowerCAmelCase = name.replace('''ln_final''' , '''final_layer_norm''' )
# projection layers
if "img_projector.linear_hidden." in name:
lowerCAmelCase = name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''' )
if "img_projector.linear_out." in name:
lowerCAmelCase = name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''' )
if "text_projector.linear_hidden" in name:
lowerCAmelCase = name.replace('''text_projector.linear_hidden''' , '''text_projection''' )
if "text_projector.linear_out" in name:
lowerCAmelCase = name.replace('''text_projector.linear_out''' , '''text_projection.3''' )
return name
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> int:
for key in orig_state_dict.copy().keys():
lowerCAmelCase = orig_state_dict.pop(snake_case__ )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowerCAmelCase = key.split('''.''' )
lowerCAmelCase , lowerCAmelCase = int(key_split[2] ), int(key_split[4] )
lowerCAmelCase = config.vision_config.hidden_size
if "weight" in key:
lowerCAmelCase = val[:dim, :]
lowerCAmelCase = val[dim : dim * 2, :]
lowerCAmelCase = val[-dim:, :]
else:
lowerCAmelCase = val[:dim]
lowerCAmelCase = val[dim : dim * 2]
lowerCAmelCase = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowerCAmelCase = key.split('''.''' )
lowerCAmelCase = int(key_split[3] )
lowerCAmelCase = config.text_config.hidden_size
if "weight" in key:
lowerCAmelCase = val[:dim, :]
lowerCAmelCase = val[
dim : dim * 2, :
]
lowerCAmelCase = val[-dim:, :]
else:
lowerCAmelCase = val[:dim]
lowerCAmelCase = val[dim : dim * 2]
lowerCAmelCase = val[-dim:]
else:
lowerCAmelCase = rename_key(snake_case__ )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
lowerCAmelCase = val.squeeze_()
else:
lowerCAmelCase = val
return orig_state_dict
def SCREAMING_SNAKE_CASE_ ( ) -> Any:
lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCAmelCase = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__="groupvit-gcc-yfcc" , snake_case__=False ) -> Tuple:
lowerCAmelCase = GroupViTConfig()
lowerCAmelCase = GroupViTModel(snake_case__ ).eval()
lowerCAmelCase = torch.load(snake_case__ , map_location='''cpu''' )['''model''']
lowerCAmelCase = convert_state_dict(snake_case__ , snake_case__ )
lowerCAmelCase , lowerCAmelCase = model.load_state_dict(snake_case__ , strict=snake_case__ )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(snake_case__ ) == 0)
# verify result
lowerCAmelCase = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
lowerCAmelCase = prepare_img()
lowerCAmelCase = processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=snake_case__ , padding=snake_case__ , return_tensors='''pt''' )
with torch.no_grad():
lowerCAmelCase = model(**snake_case__ )
if model_name == "groupvit-gcc-yfcc":
lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] )
elif model_name == "groupvit-gcc-redcaps":
lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] )
else:
raise ValueError(f"Model name {model_name} not supported." )
assert torch.allclose(outputs.logits_per_image , snake_case__ , atol=1E-3 )
processor.save_pretrained(snake_case__ )
model.save_pretrained(snake_case__ )
print('''Successfully saved processor and model to''' , snake_case__ )
if push_to_hub:
print('''Pushing to the hub...''' )
processor.push_to_hub(snake_case__ , organization='''nielsr''' )
model.push_to_hub(snake_case__ , organization='''nielsr''' )
if __name__ == "__main__":
lowercase__ : Any = argparse.ArgumentParser()
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.'''
)
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''')
parser.add_argument(
'''--model_name''',
default='''groupvit-gccy-fcc''',
type=str,
help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''',
)
lowercase__ : Union[str, Any] = parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 338 | def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> List[str]:
lowerCAmelCase = len(snake_case__ )
for i in range(length - 1 ):
lowerCAmelCase = i
for k in range(i + 1 , snake_case__ ):
if collection[k] < collection[least]:
lowerCAmelCase = k
if least != i:
lowerCAmelCase , lowerCAmelCase = (collection[i], collection[least])
return collection
if __name__ == "__main__":
lowercase__ : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip()
lowercase__ : str = [int(item) for item in user_input.split(''',''')]
print(selection_sort(unsorted))
| 338 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
lowercase__ : Dict = {
'''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''],
'''processing_trocr''': ['''TrOCRProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Optional[int] = [
'''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrOCRForCausalLM''',
'''TrOCRPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
lowercase__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 338 | import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class lowercase_ :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=19 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) ->Union[str, Any]:
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = EsmConfig(
vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__SCREAMING_SNAKE_CASE , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , )
return config
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = EsmForProteinFolding(config=__SCREAMING_SNAKE_CASE ).float()
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) )
self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowercase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = False
UpperCAmelCase_ : Dict = (EsmForProteinFolding,) if is_torch_available() else ()
UpperCAmelCase_ : List[Any] = ()
UpperCAmelCase_ : Tuple = {} if is_torch_available() else {}
UpperCAmelCase_ : List[str] = False
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = EsmFoldModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
@unittest.skip('''Does not support attention outputs''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
pass
@unittest.skip
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
pass
@unittest.skip('''Esm does not support embedding resizing''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
pass
@unittest.skip('''Esm does not support embedding resizing''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold does not support passing input embeds!''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
pass
@unittest.skip('''ESMFold does not support head pruning.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
pass
@unittest.skip('''ESMFold does not output hidden states in the normal way.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple:
pass
@unittest.skip('''ESMfold does not output hidden states in the normal way.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
pass
@unittest.skip('''ESMFold only has one output format.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
pass
@unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
pass
@unittest.skip('''ESMFold does not support input chunking.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
pass
@unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
pass
@unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''ESMFold doesn\'t support data parallel.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
pass
@require_torch
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
@slow
def SCREAMING_SNAKE_CASE_ ( self ) ->str:
lowerCAmelCase = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float()
model.eval()
lowerCAmelCase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )['''positions''']
lowerCAmelCase = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] , dtype=torch.floataa )
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 338 | 1 |
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=5 ) -> Dict:
# Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py
assert masked_input.count('''<mask>''' ) == 1
lowerCAmelCase = torch.tensor(tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ).unsqueeze(0 ) # Batch size 1
lowerCAmelCase = model(snake_case__ )[0] # The last hidden-state is the first element of the output tuple
lowerCAmelCase = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
lowerCAmelCase = logits[0, masked_index, :]
lowerCAmelCase = logits.softmax(dim=0 )
lowerCAmelCase , lowerCAmelCase = prob.topk(k=snake_case__ , dim=0 )
lowerCAmelCase = ''' '''.join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(snake_case__ ) )] )
lowerCAmelCase = tokenizer.mask_token
lowerCAmelCase = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ):
lowerCAmelCase = predicted_token_bpe.replace('''\u2581''' , ''' ''' )
if " {0}".format(snake_case__ ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(''' {0}'''.format(snake_case__ ) , snake_case__ ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(snake_case__ , snake_case__ ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
lowercase__ : str = CamembertTokenizer.from_pretrained('''camembert-base''')
lowercase__ : List[str] = CamembertForMaskedLM.from_pretrained('''camembert-base''')
model.eval()
lowercase__ : str = '''Le camembert est <mask> :)'''
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 338 | import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = ["""image_processor""", """tokenizer"""]
UpperCAmelCase_ : int = """OwlViTImageProcessor"""
UpperCAmelCase_ : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Any:
lowerCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __SCREAMING_SNAKE_CASE , )
lowerCAmelCase = kwargs.pop('''feature_extractor''' )
lowerCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="max_length" , __SCREAMING_SNAKE_CASE="np" , **__SCREAMING_SNAKE_CASE ) ->int:
if text is None and query_images is None and images is None:
raise ValueError(
'''You have to specify at least one text or query image or image. All three cannot be none.''' )
if text is not None:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or (isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(text[0] , __SCREAMING_SNAKE_CASE )):
lowerCAmelCase = [self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )]
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(text[0] , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = []
# Maximum number of queries across batch
lowerCAmelCase = max([len(__SCREAMING_SNAKE_CASE ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__SCREAMING_SNAKE_CASE ) != max_num_queries:
lowerCAmelCase = t + [''' '''] * (max_num_queries - len(__SCREAMING_SNAKE_CASE ))
lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
encodings.append(__SCREAMING_SNAKE_CASE )
else:
raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' )
if return_tensors == "np":
lowerCAmelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
lowerCAmelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
lowerCAmelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
lowerCAmelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
lowerCAmelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 )
lowerCAmelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
lowerCAmelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
lowerCAmelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
else:
raise ValueError('''Target return tensor type could not be returned''' )
lowerCAmelCase = BatchEncoding()
lowerCAmelCase = input_ids
lowerCAmelCase = attention_mask
if query_images is not None:
lowerCAmelCase = BatchEncoding()
lowerCAmelCase = self.image_processor(
__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).pixel_values
lowerCAmelCase = query_pixel_values
if images is not None:
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if text is not None and images is not None:
lowerCAmelCase = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
lowerCAmelCase = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__SCREAMING_SNAKE_CASE ) , tensor_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Optional[int]:
return self.image_processor.post_process(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Any:
return self.image_processor.post_process_object_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->Tuple:
return self.image_processor.post_process_image_guided_detection(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->str:
return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __SCREAMING_SNAKE_CASE , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __SCREAMING_SNAKE_CASE , )
return self.image_processor
| 338 | 1 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> bool:
return len(set(snake_case__ ) ) == len(snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 338 | import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : List[Any] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'''vocab_file''': '''spiece.model'''}
lowercase__ : Optional[int] = {
'''vocab_file''': {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''',
}
}
lowercase__ : Any = {
'''albert-base-v1''': 5_1_2,
'''albert-large-v1''': 5_1_2,
'''albert-xlarge-v1''': 5_1_2,
'''albert-xxlarge-v1''': 5_1_2,
'''albert-base-v2''': 5_1_2,
'''albert-large-v2''': 5_1_2,
'''albert-xlarge-v2''': 5_1_2,
'''albert-xxlarge-v2''': 5_1_2,
}
lowercase__ : Tuple = '''▁'''
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = VOCAB_FILES_NAMES
UpperCAmelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) ->None:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
lowerCAmelCase = (
AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE , normalized=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else mask_token
)
lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = do_lower_case
lowerCAmelCase = remove_space
lowerCAmelCase = keep_accents
lowerCAmelCase = vocab_file
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__SCREAMING_SNAKE_CASE )
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
return len(self.sp_model )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) ->int:
lowerCAmelCase = self.__dict__.copy()
lowerCAmelCase = None
return state
def __setstate__( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
lowerCAmelCase = {}
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Any:
if self.remove_space:
lowerCAmelCase = ''' '''.join(inputs.strip().split() )
else:
lowerCAmelCase = inputs
lowerCAmelCase = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' )
if not self.keep_accents:
lowerCAmelCase = unicodedata.normalize('''NFKD''' , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = ''''''.join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE )] )
if self.do_lower_case:
lowerCAmelCase = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[str]:
lowerCAmelCase = self.preprocess_text(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = []
for piece in pieces:
if len(__SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit():
lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , '''''' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowerCAmelCase = cur_pieces[1:]
else:
lowerCAmelCase = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__SCREAMING_SNAKE_CASE )
else:
new_pieces.append(__SCREAMING_SNAKE_CASE )
return new_pieces
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->int:
return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->int:
return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
lowerCAmelCase = []
lowerCAmelCase = ''''''
lowerCAmelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token
lowerCAmelCase = True
lowerCAmelCase = []
else:
current_sub_tokens.append(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = False
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE )
return out_string.strip()
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ) ->List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE )
if token_ids_a is not None:
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->List[int]:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Tuple[str]:
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCAmelCase = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi:
lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 338 | 1 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , )
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6},
},
{
"""framework""": """pytorch""",
"""script""": """run_ddp.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6},
},
{
"""framework""": """tensorflow""",
"""script""": """run_tf_dist.py""",
"""model_name_or_path""": """distilbert-base-cased""",
"""instance_type""": """ml.p3.16xlarge""",
"""results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7},
},
] )
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
if self.framework == "pytorch":
subprocess.run(
F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='''utf-8''' , check=__SCREAMING_SNAKE_CASE , )
assert hasattr(self , '''env''' )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Optional[Any]:
lowerCAmelCase = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}"
# distributed data settings
lowerCAmelCase = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__SCREAMING_SNAKE_CASE , instance_count=__SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=__SCREAMING_SNAKE_CASE , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__SCREAMING_SNAKE_CASE , py_version='''py36''' , )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[Any]:
TrainingJobAnalytics(__SCREAMING_SNAKE_CASE ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" )
@parameterized.expand([(2,)] )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
# create estimator
lowerCAmelCase = self.create_estimator(__SCREAMING_SNAKE_CASE )
# run training
estimator.fit()
# result dataframe
lowerCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowerCAmelCase = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"{estimator.latest_training_job.name}.json" , '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __SCREAMING_SNAKE_CASE )
| 338 | import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = (DEISMultistepScheduler,)
UpperCAmelCase_ : int = (("""num_inference_steps""", 25),)
def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->str:
lowerCAmelCase = {
'''num_train_timesteps''': 1000,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
}
config.update(**__SCREAMING_SNAKE_CASE )
return config
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE )
new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
lowerCAmelCase , lowerCAmelCase = sample, sample
for t in range(__SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ):
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
lowerCAmelCase = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals (must be after setting timesteps)
lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residual (must be after setting timesteps)
lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
lowerCAmelCase = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
if scheduler is None:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = 10
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample
return sample
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
if num_inference_steps is not None and hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
elif num_inference_steps is not None and not hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
lowerCAmelCase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order]
lowerCAmelCase = scheduler.timesteps[5]
lowerCAmelCase = scheduler.timesteps[6]
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
# make sure that iterating over schedulers with same config names gives same results
# for defaults
lowerCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() )
lowerCAmelCase = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config )
lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase = self.full_loop(scheduler=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]:
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , algorithm_type='''deis''' , solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , )
def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]:
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , )
lowerCAmelCase = self.full_loop(
solver_order=__SCREAMING_SNAKE_CASE , solver_type=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , algorithm_type=__SCREAMING_SNAKE_CASE , )
assert not torch.isnan(__SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers"
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE )
self.check_over_configs(lower_order_final=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=__SCREAMING_SNAKE_CASE , time_step=0 )
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.full_loop()
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
lowerCAmelCase = self.full_loop(prediction_type='''v_prediction''' )
lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self ) ->Dict:
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(thresholding=__SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 )
lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = 10
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter.half()
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample
assert sample.dtype == torch.floataa
| 338 | 1 |
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Any:
lowerCAmelCase = ''''''
for i in table:
res += inp[i - 1]
return res
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]:
return data[1:] + data[0]
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Optional[Any]:
lowerCAmelCase = ''''''
for i in range(len(snake_case__ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
lowerCAmelCase = int('''0b''' + data[0] + data[-1] , 2 )
lowerCAmelCase = int('''0b''' + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Dict:
lowerCAmelCase = message[:4]
lowerCAmelCase = message[4:]
lowerCAmelCase = apply_table(snake_case__ , snake_case__ )
lowerCAmelCase = xor(snake_case__ , snake_case__ )
lowerCAmelCase = apply_sbox(snake_case__ , temp[:4] ) # noqa: E741
lowerCAmelCase = apply_sbox(snake_case__ , temp[4:] )
lowerCAmelCase = '''0''' * (2 - len(snake_case__ )) + l # noqa: E741
lowerCAmelCase = '''0''' * (2 - len(snake_case__ )) + r
lowerCAmelCase = apply_table(l + r , snake_case__ )
lowerCAmelCase = xor(snake_case__ , snake_case__ )
return temp + right
if __name__ == "__main__":
lowercase__ : Optional[int] = input('''Enter 10 bit key: ''')
lowercase__ : Optional[int] = input('''Enter 8 bit message: ''')
lowercase__ : List[Any] = [6, 3, 7, 4, 8, 5, 1_0, 9]
lowercase__ : Optional[int] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6]
lowercase__ : List[str] = [2, 4, 3, 1]
lowercase__ : Any = [2, 6, 3, 1, 4, 8, 5, 7]
lowercase__ : str = [4, 1, 3, 5, 7, 2, 8, 6]
lowercase__ : Union[str, Any] = [4, 1, 2, 3, 2, 3, 4, 1]
lowercase__ : Dict = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
lowercase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
lowercase__ : Optional[int] = apply_table(key, paa_table)
lowercase__ : Union[str, Any] = temp[:5]
lowercase__ : Any = temp[5:]
lowercase__ : Union[str, Any] = left_shift(left)
lowercase__ : Any = left_shift(right)
lowercase__ : str = apply_table(left + right, pa_table)
lowercase__ : str = left_shift(left)
lowercase__ : Union[str, Any] = left_shift(right)
lowercase__ : Any = left_shift(left)
lowercase__ : Dict = left_shift(right)
lowercase__ : List[str] = apply_table(left + right, pa_table)
# encryption
lowercase__ : Optional[Any] = apply_table(message, IP)
lowercase__ : Dict = function(expansion, sa, sa, keya, temp)
lowercase__ : Union[str, Any] = temp[4:] + temp[:4]
lowercase__ : int = function(expansion, sa, sa, keya, temp)
lowercase__ : List[Any] = apply_table(temp, IP_inv)
print('''Cipher text is:''', CT)
# decryption
lowercase__ : List[Any] = apply_table(CT, IP)
lowercase__ : Union[str, Any] = function(expansion, sa, sa, keya, temp)
lowercase__ : Dict = temp[4:] + temp[:4]
lowercase__ : int = function(expansion, sa, sa, keya, temp)
lowercase__ : Dict = apply_table(temp, IP_inv)
print('''Plain text after decypting is:''', PT)
| 338 | import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]:
torch.manual_seed(0 )
lowerCAmelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def SCREAMING_SNAKE_CASE_ ( self ) ->int:
lowerCAmelCase = self.dummy_uncond_unet
lowerCAmelCase = KarrasVeScheduler()
lowerCAmelCase = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=2 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' , return_dict=__SCREAMING_SNAKE_CASE )[0]
lowerCAmelCase = image[0, -3:, -3:, -1]
lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]:
lowerCAmelCase = '''google/ncsnpp-celebahq-256'''
lowerCAmelCase = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = KarrasVeScheduler()
lowerCAmelCase = KarrasVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
lowerCAmelCase = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 338 | 1 |
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]:
lowerCAmelCase , lowerCAmelCase = 9, 1_4 # noqa: F841
lowerCAmelCase = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 1_4],
[3, 4, 9],
[5, 4, 1_0],
[1, 7, 1_1],
]
lowerCAmelCase = defaultdict(snake_case__ )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
lowerCAmelCase = mst(snake_case__ )
lowerCAmelCase = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
lowerCAmelCase = tuple(answer[:2] )
lowerCAmelCase = tuple(edge[::-1] )
assert edge in result or reverse in result
| 338 | from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
lowercase__ : Dict = logging.get_logger(__name__)
@add_end_docstrings(
UpperCamelCase_ , r"""
top_k (`int`, defaults to 5):
The number of predictions to return.
targets (`str` or `List[str]`, *optional*):
When passed, the model will limit the scores to the passed targets instead of looking up in the whole
vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting
token will be used (with a warning, and that might be slower).
""" , )
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray:
if self.framework == "tf":
lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE )
else:
raise ValueError('''Unsupported framework''' )
return masked_index
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray:
lowerCAmelCase = self.get_masked_index(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Dict[str, GenericTensor]:
if return_tensors is None:
lowerCAmelCase = self.framework
lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE )
self.ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple:
lowerCAmelCase = self.model(**__SCREAMING_SNAKE_CASE )
lowerCAmelCase = model_inputs['''input_ids''']
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=None ) ->str:
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
lowerCAmelCase = target_ids.shape[0]
lowerCAmelCase = model_outputs['''input_ids'''][0]
lowerCAmelCase = model_outputs['''logits''']
if self.framework == "tf":
lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
lowerCAmelCase = outputs.numpy()
lowerCAmelCase = outputs[0, masked_index, :]
lowerCAmelCase = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 )
if target_ids is not None:
lowerCAmelCase = tf.gather_nd(tf.squeeze(__SCREAMING_SNAKE_CASE , 0 ) , target_ids.reshape(-1 , 1 ) )
lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE , 0 )
lowerCAmelCase = tf.math.top_k(__SCREAMING_SNAKE_CASE , k=__SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase = topk.values.numpy(), topk.indices.numpy()
else:
lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
lowerCAmelCase = outputs[0, masked_index, :]
lowerCAmelCase = logits.softmax(dim=-1 )
if target_ids is not None:
lowerCAmelCase = probs[..., target_ids]
lowerCAmelCase , lowerCAmelCase = probs.topk(__SCREAMING_SNAKE_CASE )
lowerCAmelCase = []
lowerCAmelCase = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ):
lowerCAmelCase = []
for v, p in zip(_values , _predictions ):
# Copy is important since we're going to modify this array in place
lowerCAmelCase = input_ids.numpy().copy()
if target_ids is not None:
lowerCAmelCase = target_ids[p].tolist()
lowerCAmelCase = p
# Filter padding out:
lowerCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
lowerCAmelCase = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence}
row.append(__SCREAMING_SNAKE_CASE )
result.append(__SCREAMING_SNAKE_CASE )
if single_mask:
return result[0]
return result
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Optional[Any]:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowerCAmelCase = [targets]
try:
lowerCAmelCase = self.tokenizer.get_vocab()
except Exception:
lowerCAmelCase = {}
lowerCAmelCase = []
for target in targets:
lowerCAmelCase = vocab.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if id_ is None:
lowerCAmelCase = self.tokenizer(
__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , max_length=1 , truncation=__SCREAMING_SNAKE_CASE , )['''input_ids''']
if len(__SCREAMING_SNAKE_CASE ) == 0:
logger.warning(
F"The specified target token `{target}` does not exist in the model vocabulary. "
'''We cannot replace it with anything meaningful, ignoring it''' )
continue
lowerCAmelCase = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
F"The specified target token `{target}` does not exist in the model vocabulary. "
F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." )
target_ids.append(id_ )
lowerCAmelCase = list(set(__SCREAMING_SNAKE_CASE ) )
if len(__SCREAMING_SNAKE_CASE ) == 0:
raise ValueError('''At least one target must be provided when passed.''' )
lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
return target_ids
def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) ->Dict:
lowerCAmelCase = {}
if targets is not None:
lowerCAmelCase = self.get_target_ids(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowerCAmelCase = target_ids
if top_k is not None:
lowerCAmelCase = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
'''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' )
return {}, {}, postprocess_params
def __call__( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]:
lowerCAmelCase = super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) == 1:
return outputs[0]
return outputs
| 338 | 1 |
from ...processing_utils import ProcessorMixin
class lowercase_ ( UpperCamelCase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = ["""image_processor""", """feature_extractor"""]
UpperCAmelCase_ : Optional[int] = """TvltImageProcessor"""
UpperCAmelCase_ : Optional[int] = """TvltFeatureExtractor"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[int]:
super().__init__(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE )
lowerCAmelCase = image_processor
lowerCAmelCase = feature_extractor
def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) ->List[Any]:
if images is None and audio is None:
raise ValueError('''You need to specify either an `images` or `audio` input to process.''' )
lowerCAmelCase = None
if images is not None:
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , mask_pixel=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if images_mixed is not None:
lowerCAmelCase = self.image_processor(__SCREAMING_SNAKE_CASE , is_mixed=__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if audio is not None:
lowerCAmelCase = self.feature_extractor(
__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , mask_audio=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
lowerCAmelCase = {}
if audio is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
if images is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
if images_mixed_dict is not None:
output_dict.update(__SCREAMING_SNAKE_CASE )
return output_dict
@property
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
lowerCAmelCase = self.image_processor.model_input_names
lowerCAmelCase = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 338 | from typing import TYPE_CHECKING
from ...utils import _LazyModule
lowercase__ : int = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
lowercase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 338 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Tuple:
lowerCAmelCase = DPTConfig(embedding_type='''hybrid''' )
if "large" in checkpoint_url:
lowerCAmelCase = 1_0_2_4
lowerCAmelCase = 4_0_9_6
lowerCAmelCase = 2_4
lowerCAmelCase = 1_6
lowerCAmelCase = [5, 1_1, 1_7, 2_3]
lowerCAmelCase = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4]
lowerCAmelCase = (1, 3_8_4, 3_8_4)
if "nyu" or "midas" in checkpoint_url:
lowerCAmelCase = 7_6_8
lowerCAmelCase = [1, 1, 1, 0.5]
lowerCAmelCase = [2_5_6, 5_1_2, 7_6_8, 7_6_8]
lowerCAmelCase = 1_5_0
lowerCAmelCase = 1_6
lowerCAmelCase = (1, 3_8_4, 3_8_4)
lowerCAmelCase = False
lowerCAmelCase = '''project'''
if "ade" in checkpoint_url:
lowerCAmelCase = True
lowerCAmelCase = 7_6_8
lowerCAmelCase = [1, 1, 1, 0.5]
lowerCAmelCase = 1_5_0
lowerCAmelCase = 1_6
lowerCAmelCase = '''huggingface/label-files'''
lowerCAmelCase = '''ade20k-id2label.json'''
lowerCAmelCase = json.load(open(cached_download(hf_hub_url(snake_case__ , snake_case__ , repo_type='''dataset''' ) ) , '''r''' ) )
lowerCAmelCase = {int(snake_case__ ): v for k, v in idalabel.items()}
lowerCAmelCase = idalabel
lowerCAmelCase = {v: k for k, v in idalabel.items()}
lowerCAmelCase = [1, 1_5_0, 4_8_0, 4_8_0]
return config, expected_shape
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Any:
lowerCAmelCase = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias''']
for k in ignore_keys:
state_dict.pop(snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Dict:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowerCAmelCase = name.replace('''pretrained.model''' , '''dpt.encoder''' )
if "pretrained.model" in name:
lowerCAmelCase = name.replace('''pretrained.model''' , '''dpt.embeddings''' )
if "patch_embed" in name:
lowerCAmelCase = name.replace('''patch_embed''' , '''''' )
if "pos_embed" in name:
lowerCAmelCase = name.replace('''pos_embed''' , '''position_embeddings''' )
if "attn.proj" in name:
lowerCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "proj" in name and "project" not in name:
lowerCAmelCase = name.replace('''proj''' , '''projection''' )
if "blocks" in name:
lowerCAmelCase = name.replace('''blocks''' , '''layer''' )
if "mlp.fc1" in name:
lowerCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
lowerCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' )
if "norm1" in name and "backbone" not in name:
lowerCAmelCase = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name and "backbone" not in name:
lowerCAmelCase = name.replace('''norm2''' , '''layernorm_after''' )
if "scratch.output_conv" in name:
lowerCAmelCase = name.replace('''scratch.output_conv''' , '''head''' )
if "scratch" in name:
lowerCAmelCase = name.replace('''scratch''' , '''neck''' )
if "layer1_rn" in name:
lowerCAmelCase = name.replace('''layer1_rn''' , '''convs.0''' )
if "layer2_rn" in name:
lowerCAmelCase = name.replace('''layer2_rn''' , '''convs.1''' )
if "layer3_rn" in name:
lowerCAmelCase = name.replace('''layer3_rn''' , '''convs.2''' )
if "layer4_rn" in name:
lowerCAmelCase = name.replace('''layer4_rn''' , '''convs.3''' )
if "refinenet" in name:
lowerCAmelCase = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowerCAmelCase = name.replace(f"refinenet{layer_idx}" , f"fusion_stage.layers.{abs(layer_idx-4 )}" )
if "out_conv" in name:
lowerCAmelCase = name.replace('''out_conv''' , '''projection''' )
if "resConfUnit1" in name:
lowerCAmelCase = name.replace('''resConfUnit1''' , '''residual_layer1''' )
if "resConfUnit2" in name:
lowerCAmelCase = name.replace('''resConfUnit2''' , '''residual_layer2''' )
if "conv1" in name:
lowerCAmelCase = name.replace('''conv1''' , '''convolution1''' )
if "conv2" in name:
lowerCAmelCase = name.replace('''conv2''' , '''convolution2''' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowerCAmelCase = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' )
if "pretrained.act_postprocess2.0.project.0" in name:
lowerCAmelCase = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' )
if "pretrained.act_postprocess3.0.project.0" in name:
lowerCAmelCase = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' )
if "pretrained.act_postprocess4.0.project.0" in name:
lowerCAmelCase = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowerCAmelCase = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' )
if "pretrained.act_postprocess1.4" in name:
lowerCAmelCase = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' )
if "pretrained.act_postprocess2.3" in name:
lowerCAmelCase = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' )
if "pretrained.act_postprocess2.4" in name:
lowerCAmelCase = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' )
if "pretrained.act_postprocess3.3" in name:
lowerCAmelCase = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' )
if "pretrained.act_postprocess4.3" in name:
lowerCAmelCase = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' )
if "pretrained.act_postprocess4.4" in name:
lowerCAmelCase = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' )
if "pretrained" in name:
lowerCAmelCase = name.replace('''pretrained''' , '''dpt''' )
if "bn" in name:
lowerCAmelCase = name.replace('''bn''' , '''batch_norm''' )
if "head" in name:
lowerCAmelCase = name.replace('''head''' , '''head.head''' )
if "encoder.norm" in name:
lowerCAmelCase = name.replace('''encoder.norm''' , '''layernorm''' )
if "auxlayer" in name:
lowerCAmelCase = name.replace('''auxlayer''' , '''auxiliary_head.head''' )
if "backbone" in name:
lowerCAmelCase = name.replace('''backbone''' , '''backbone.bit.encoder''' )
if ".." in name:
lowerCAmelCase = name.replace('''..''' , '''.''' )
if "stem.conv" in name:
lowerCAmelCase = name.replace('''stem.conv''' , '''bit.embedder.convolution''' )
if "blocks" in name:
lowerCAmelCase = name.replace('''blocks''' , '''layers''' )
if "convolution" in name and "backbone" in name:
lowerCAmelCase = name.replace('''convolution''' , '''conv''' )
if "layer" in name and "backbone" in name:
lowerCAmelCase = name.replace('''layer''' , '''layers''' )
if "backbone.bit.encoder.bit" in name:
lowerCAmelCase = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' )
if "embedder.conv" in name:
lowerCAmelCase = name.replace('''embedder.conv''' , '''embedder.convolution''' )
if "backbone.bit.encoder.stem.norm" in name:
lowerCAmelCase = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' )
return name
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Union[str, Any]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" )
lowerCAmelCase = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase = in_proj_weight[: config.hidden_size, :]
lowerCAmelCase = in_proj_bias[: config.hidden_size]
lowerCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]:
lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
lowerCAmelCase = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]:
lowerCAmelCase , lowerCAmelCase = get_dpt_config(snake_case__ )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
lowerCAmelCase = torch.load(snake_case__ , map_location='''cpu''' )
# remove certain keys
remove_ignore_keys_(snake_case__ )
# rename keys
for key in state_dict.copy().keys():
lowerCAmelCase = state_dict.pop(snake_case__ )
lowerCAmelCase = val
# read in qkv matrices
read_in_q_k_v(snake_case__ , snake_case__ )
# load HuggingFace model
lowerCAmelCase = DPTForSemanticSegmentation(snake_case__ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(snake_case__ )
model.load_state_dict(snake_case__ )
model.eval()
# Check outputs on an image
lowerCAmelCase = 4_8_0 if '''ade''' in checkpoint_url else 3_8_4
lowerCAmelCase = DPTImageProcessor(size=snake_case__ )
lowerCAmelCase = prepare_img()
lowerCAmelCase = image_processor(snake_case__ , return_tensors='''pt''' )
# forward pass
lowerCAmelCase = model(**snake_case__ ).logits if '''ade''' in checkpoint_url else model(**snake_case__ ).predicted_depth
if show_prediction:
lowerCAmelCase = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=snake_case__ , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show()
if pytorch_dump_folder_path is not None:
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
print(f"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(snake_case__ )
if push_to_hub:
model.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
if __name__ == "__main__":
lowercase__ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=False,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
parser.add_argument(
'''--show_prediction''',
action='''store_true''',
)
lowercase__ : int = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 338 | lowercase__ : Optional[int] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ'''
def SCREAMING_SNAKE_CASE_ ( ) -> None:
lowerCAmelCase = input('''Enter message: ''' )
lowerCAmelCase = input('''Enter key [alphanumeric]: ''' )
lowerCAmelCase = input('''Encrypt/Decrypt [e/d]: ''' )
if mode.lower().startswith('''e''' ):
lowerCAmelCase = '''encrypt'''
lowerCAmelCase = encrypt_message(snake_case__ , snake_case__ )
elif mode.lower().startswith('''d''' ):
lowerCAmelCase = '''decrypt'''
lowerCAmelCase = decrypt_message(snake_case__ , snake_case__ )
print(f"\n{mode.title()}ed message:" )
print(snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
return translate_message(snake_case__ , snake_case__ , '''encrypt''' )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str:
return translate_message(snake_case__ , snake_case__ , '''decrypt''' )
def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> str:
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = key.upper()
for symbol in message:
lowerCAmelCase = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(snake_case__ )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(snake_case__ ):
lowerCAmelCase = 0
else:
translated.append(snake_case__ )
return "".join(snake_case__ )
if __name__ == "__main__":
main()
| 338 | 1 |
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.17.0.dev0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''')
lowercase__ : Dict = logging.getLogger(__name__)
@dataclass
class lowercase_ :
"""simple docstring"""
UpperCAmelCase_ : Optional[str] = field(
default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
UpperCAmelCase_ : Optional[str] = field(
default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , )
UpperCAmelCase_ : int = field(
default=1024 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
UpperCAmelCase_ : bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} )
UpperCAmelCase_ : bool = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
UpperCAmelCase_ : Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
UpperCAmelCase_ : Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
UpperCAmelCase_ : Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of prediction examples to this """
"""value if set."""
)
} , )
UpperCAmelCase_ : Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} )
UpperCAmelCase_ : Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} )
UpperCAmelCase_ : Optional[str] = field(default=UpperCamelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} )
def SCREAMING_SNAKE_CASE_ ( self ) ->Any:
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' )
else:
lowerCAmelCase = self.train_file.split('''.''' )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
lowerCAmelCase = self.validation_file.split('''.''' )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class lowercase_ :
"""simple docstring"""
UpperCAmelCase_ : str = field(
default=UpperCamelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
UpperCAmelCase_ : Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
UpperCAmelCase_ : Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
UpperCAmelCase_ : Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
UpperCAmelCase_ : bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
UpperCAmelCase_ : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
UpperCAmelCase_ : bool = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def SCREAMING_SNAKE_CASE_ ( ) -> Dict:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
lowerCAmelCase = training_args.get_process_log_level()
logger.setLevel(snake_case__ )
datasets.utils.logging.set_verbosity(snake_case__ )
transformers.utils.logging.set_verbosity(snake_case__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
lowerCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
lowerCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
lowerCAmelCase = {'''train''': data_args.train_file, '''validation''': data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
lowerCAmelCase = data_args.train_file.split('''.''' )[-1]
lowerCAmelCase = data_args.test_file.split('''.''' )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
lowerCAmelCase = data_args.test_file
else:
raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' )
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}" )
if data_args.train_file.endswith('''.csv''' ):
# Loading a dataset from local csv files
lowerCAmelCase = load_dataset('''csv''' , data_files=snake_case__ , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
lowerCAmelCase = load_dataset('''json''' , data_files=snake_case__ , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
lowerCAmelCase = raw_datasets['''train'''].features['''label'''].names
lowerCAmelCase = len(snake_case__ )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
lowerCAmelCase = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=snake_case__ , )
lowerCAmelCase = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
lowerCAmelCase = '''max_length'''
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
lowerCAmelCase = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
lowerCAmelCase = {'''Refused''': 0, '''Entailed''': 1}
lowerCAmelCase = {0: '''Refused''', 1: '''Entailed'''}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(snake_case__ ):
# Tokenize the texts
def _convert_table_text_to_pandas(snake_case__ ):
lowerCAmelCase = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )]
lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
lowerCAmelCase = examples['''statement''']
lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) )
lowerCAmelCase = tokenizer(snake_case__ , snake_case__ , padding=snake_case__ , max_length=snake_case__ , truncation=snake_case__ )
lowerCAmelCase = examples['''label''']
return result
with training_args.main_process_first(desc='''dataset map pre-processing''' ):
lowerCAmelCase = raw_datasets.map(
snake_case__ , batched=snake_case__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
lowerCAmelCase = raw_datasets['''train''']
if data_args.max_train_samples is not None:
lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
lowerCAmelCase = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError('''--do_predict requires a test dataset''' )
lowerCAmelCase = raw_datasets['''test''']
if data_args.max_predict_samples is not None:
lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(snake_case__ ) ) , 3 ):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}." )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(snake_case__ ):
lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , snake_case__ ) else p.predictions
lowerCAmelCase = np.argmax(snake_case__ , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
lowerCAmelCase = default_data_collator
elif training_args.fpaa:
lowerCAmelCase = DataCollatorWithPadding(snake_case__ , pad_to_multiple_of=8 )
else:
lowerCAmelCase = None
# Initialize our Trainer
lowerCAmelCase = Trainer(
model=snake_case__ , args=snake_case__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=snake_case__ , tokenizer=snake_case__ , data_collator=snake_case__ , )
# Training
if training_args.do_train:
lowerCAmelCase = None
if training_args.resume_from_checkpoint is not None:
lowerCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCAmelCase = last_checkpoint
lowerCAmelCase = trainer.train(resume_from_checkpoint=snake_case__ )
lowerCAmelCase = train_result.metrics
lowerCAmelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case__ )
)
lowerCAmelCase = min(snake_case__ , len(snake_case__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('''train''' , snake_case__ )
trainer.save_metrics('''train''' , snake_case__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
lowerCAmelCase = trainer.evaluate(eval_dataset=snake_case__ )
lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(snake_case__ )
lowerCAmelCase = min(snake_case__ , len(snake_case__ ) )
trainer.log_metrics('''eval''' , snake_case__ )
trainer.save_metrics('''eval''' , snake_case__ )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
lowerCAmelCase = predict_dataset.remove_columns('''label''' )
lowerCAmelCase = trainer.predict(snake_case__ , metric_key_prefix='''predict''' ).predictions
lowerCAmelCase = np.argmax(snake_case__ , axis=1 )
lowerCAmelCase = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' )
if trainer.is_world_process_zero():
with open(snake_case__ , '''w''' ) as writer:
logger.info('''***** Predict Results *****''' )
writer.write('''index\tprediction\n''' )
for index, item in enumerate(snake_case__ ):
lowerCAmelCase = label_list[item]
writer.write(f"{index}\t{item}\n" )
lowerCAmelCase = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''}
if training_args.push_to_hub:
trainer.push_to_hub(**snake_case__ )
else:
trainer.create_model_card(**snake_case__ )
def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 338 | from collections import defaultdict
from math import ceil, sqrt
def SCREAMING_SNAKE_CASE_ ( snake_case__ = 1_0_0_0_0_0_0 , snake_case__ = 1_0 ) -> int:
lowerCAmelCase = defaultdict(snake_case__ )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
lowerCAmelCase = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
lowerCAmelCase = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(snake_case__ , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 1_0 )
if __name__ == "__main__":
print(f'{solution() = }')
| 338 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.