code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import os
import string
import sys
a_ = 1 << 8
a_ = {
'''tab''': ord('''\t'''),
'''newline''': ord('''\r'''),
'''esc''': 27,
'''up''': 65 + ARROW_KEY_FLAG,
'''down''': 66 + ARROW_KEY_FLAG,
'''right''': 67 + ARROW_KEY_FLAG,
'''left''': 68 + ARROW_KEY_FLAG,
'''mod_int''': 91,
'''undefined''': sys.maxsize,
'''interrupt''': 3,
'''insert''': 50,
'''delete''': 51,
'''pg_up''': 53,
'''pg_down''': 54,
}
a_ = KEYMAP['''up''']
a_ = KEYMAP['''left''']
if sys.platform == "win32":
a_ = []
a_ = {
B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG,
B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG,
B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG,
B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG,
B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG,
B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG,
B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG,
B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG,
}
for i in range(10):
a_ = ord(str(i))
def _a ( ) -> Dict:
"""simple docstring"""
if os.name == "nt":
import msvcrt
lowerCAmelCase__ = "mbcs"
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(UpperCamelCase_ ) == 0:
# Read the keystroke
lowerCAmelCase__ = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
lowerCAmelCase__ = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
lowerCAmelCase__ = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) )
WIN_CH_BUFFER.append(UpperCamelCase_ )
if ord(UpperCamelCase_ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
lowerCAmelCase__ = chr(KEYMAP["esc"] )
except KeyError:
lowerCAmelCase__ = cha[1]
else:
lowerCAmelCase__ = ch.decode(UpperCamelCase_ )
else:
lowerCAmelCase__ = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
lowerCAmelCase__ = sys.stdin.fileno()
lowerCAmelCase__ = termios.tcgetattr(UpperCamelCase_ )
try:
tty.setraw(UpperCamelCase_ )
lowerCAmelCase__ = sys.stdin.read(1 )
finally:
termios.tcsetattr(UpperCamelCase_ , termios.TCSADRAIN , UpperCamelCase_ )
return ch
def _a ( ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ = get_raw_chars()
if ord(UpperCamelCase_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(UpperCamelCase_ ) == KEYMAP["esc"]:
lowerCAmelCase__ = get_raw_chars()
if ord(UpperCamelCase_ ) == KEYMAP["mod_int"]:
lowerCAmelCase__ = get_raw_chars()
if ord(UpperCamelCase_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCamelCase_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(UpperCamelCase_ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 340 |
from collections import defaultdict
def _a ( UpperCamelCase_ : int ) -> int:
"""simple docstring"""
lowerCAmelCase__ = 1
lowerCAmelCase__ = True
for v in tree[start]:
if v not in visited:
ret += dfs(UpperCamelCase_ )
if ret % 2 == 0:
cuts.append(UpperCamelCase_ )
return ret
def _a ( ) -> Optional[Any]:
"""simple docstring"""
dfs(1 )
if __name__ == "__main__":
a_, a_ = 10, 9
a_ = defaultdict(list)
a_ = {}
a_ = []
a_ = 0
a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1)
| 340 | 1 |
from ....utils import logging
a_ = logging.get_logger(__name__)
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=2048 )-> int:
'''simple docstring'''
lowerCAmelCase__ = config.__dict__
lowerCAmelCase__ = modal_hidden_size
if num_labels:
lowerCAmelCase__ = num_labels
| 340 |
import requests
from bsa import BeautifulSoup
def _a ( UpperCamelCase_ : str = "AAPL" ) -> str:
"""simple docstring"""
lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"
lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" )
lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)"
return soup.find("div" , class_=class_ ).find("span" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
| 340 | 1 |
from __future__ import annotations
import bisect
def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int , UpperCamelCase_ : int = 0 , UpperCamelCase_ : int = -1 ) -> int:
"""simple docstring"""
if hi < 0:
lowerCAmelCase__ = len(UpperCamelCase_ )
while lo < hi:
lowerCAmelCase__ = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
lowerCAmelCase__ = mid + 1
else:
lowerCAmelCase__ = mid
return lo
def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int , UpperCamelCase_ : int = 0 , UpperCamelCase_ : int = -1 ) -> int:
"""simple docstring"""
if hi < 0:
lowerCAmelCase__ = len(UpperCamelCase_ )
while lo < hi:
lowerCAmelCase__ = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
lowerCAmelCase__ = mid + 1
else:
lowerCAmelCase__ = mid
return lo
def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int , UpperCamelCase_ : int = 0 , UpperCamelCase_ : int = -1 ) -> None:
"""simple docstring"""
sorted_collection.insert(bisect_left(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int , UpperCamelCase_ : int = 0 , UpperCamelCase_ : int = -1 ) -> None:
"""simple docstring"""
sorted_collection.insert(bisect_right(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int ) -> int | None:
"""simple docstring"""
lowerCAmelCase__ = 0
lowerCAmelCase__ = len(UpperCamelCase_ ) - 1
while left <= right:
lowerCAmelCase__ = left + (right - left) // 2
lowerCAmelCase__ = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
lowerCAmelCase__ = midpoint - 1
else:
lowerCAmelCase__ = midpoint + 1
return None
def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int ) -> int | None:
"""simple docstring"""
lowerCAmelCase__ = bisect.bisect_left(UpperCamelCase_ , UpperCamelCase_ )
if index != len(UpperCamelCase_ ) and sorted_collection[index] == item:
return index
return None
def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> int | None:
"""simple docstring"""
if right < left:
return None
lowerCAmelCase__ = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , midpoint - 1 )
else:
return binary_search_by_recursion(UpperCamelCase_ , UpperCamelCase_ , midpoint + 1 , UpperCamelCase_ )
if __name__ == "__main__":
a_ = input('''Enter numbers separated by comma:\n''').strip()
a_ = sorted(int(item) for item in user_input.split(''','''))
a_ = int(input('''Enter a single number to be found in the list:\n'''))
a_ = binary_search(collection, target)
if result is None:
print(F"{target} was not found in {collection}.")
else:
print(F"{target} was found at position {result} in {collection}.")
| 340 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
a_ = (3, 9, -11, 0, 7, 5, 1, -1)
a_ = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class lowercase__ :
a_ =42
a_ =42
class lowercase__ :
def __init__( self , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = None
for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ):
lowerCAmelCase__ = Node(__UpperCAmelCase , self.head )
def __iter__( self )-> Iterator[int]:
'''simple docstring'''
lowerCAmelCase__ = self.head
while node:
yield node.data
lowerCAmelCase__ = node.next_node
def __len__( self )-> int:
'''simple docstring'''
return sum(1 for _ in self )
def __str__( self )-> str:
'''simple docstring'''
return " -> ".join([str(__UpperCAmelCase ) for node in self] )
def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList:
"""simple docstring"""
return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 340 | 1 |
import argparse
import os
import re
a_ = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
a_ = re.compile(r'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
a_ = re.compile(r'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
a_ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
a_ = re.compile(r'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
a_ = re.compile(r'''\[([^\]]+)\]''')
def _a ( UpperCamelCase_ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ = _re_indent.search(UpperCamelCase_ )
return "" if search is None else search.groups()[0]
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : Dict="" , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Union[str, Any]=None ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ = 0
lowerCAmelCase__ = code.split("\n" )
if start_prompt is not None:
while not lines[index].startswith(UpperCamelCase_ ):
index += 1
lowerCAmelCase__ = ["\n".join(lines[:index] )]
else:
lowerCAmelCase__ = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
lowerCAmelCase__ = [lines[index]]
index += 1
while index < len(UpperCamelCase_ ) and (end_prompt is None or not lines[index].startswith(UpperCamelCase_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(UpperCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ):
current_block.append(lines[index] )
blocks.append("\n".join(UpperCamelCase_ ) )
if index < len(UpperCamelCase_ ) - 1:
lowerCAmelCase__ = [lines[index + 1]]
index += 1
else:
lowerCAmelCase__ = []
else:
blocks.append("\n".join(UpperCamelCase_ ) )
lowerCAmelCase__ = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(UpperCamelCase_ ) > 0:
blocks.append("\n".join(UpperCamelCase_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(UpperCamelCase_ ):
blocks.append("\n".join(lines[index:] ) )
return blocks
def _a ( UpperCamelCase_ : Dict ) -> int:
"""simple docstring"""
def _inner(UpperCamelCase_ : Tuple ):
return key(UpperCamelCase_ ).lower().replace("_" , "" )
return _inner
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any]=None ) -> List[Any]:
"""simple docstring"""
def noop(UpperCamelCase_ : Union[str, Any] ):
return x
if key is None:
lowerCAmelCase__ = noop
# Constants are all uppercase, they go first.
lowerCAmelCase__ = [obj for obj in objects if key(UpperCamelCase_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
lowerCAmelCase__ = [obj for obj in objects if key(UpperCamelCase_ )[0].isupper() and not key(UpperCamelCase_ ).isupper()]
# Functions begin with a lowercase, they go last.
lowerCAmelCase__ = [obj for obj in objects if not key(UpperCamelCase_ )[0].isupper()]
lowerCAmelCase__ = ignore_underscore(UpperCamelCase_ )
return sorted(UpperCamelCase_ , key=UpperCamelCase_ ) + sorted(UpperCamelCase_ , key=UpperCamelCase_ ) + sorted(UpperCamelCase_ , key=UpperCamelCase_ )
def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]:
"""simple docstring"""
def _replace(UpperCamelCase_ : List[Any] ):
lowerCAmelCase__ = match.groups()[0]
if "," not in imports:
return F"[{imports}]"
lowerCAmelCase__ = [part.strip().replace("\"" , "" ) for part in imports.split("," )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowerCAmelCase__ = keys[:-1]
return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(UpperCamelCase_ )] ) + "]"
lowerCAmelCase__ = import_statement.split("\n" )
if len(UpperCamelCase_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
lowerCAmelCase__ = 2 if lines[1].strip() == "[" else 1
lowerCAmelCase__ = [(i, _re_strip_line.search(UpperCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
lowerCAmelCase__ = sort_objects(UpperCamelCase_ , key=lambda UpperCamelCase_ : x[1] )
lowerCAmelCase__ = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(UpperCamelCase_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
lowerCAmelCase__ = _re_bracket_content.sub(_replace , lines[1] )
else:
lowerCAmelCase__ = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowerCAmelCase__ = keys[:-1]
lowerCAmelCase__ = get_indent(lines[1] ) + ", ".join([F"\"{k}\"" for k in sort_objects(UpperCamelCase_ )] )
return "\n".join(UpperCamelCase_ )
else:
# Finally we have to deal with imports fitting on one line
lowerCAmelCase__ = _re_bracket_content.sub(_replace , UpperCamelCase_ )
return import_statement
def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any]=True ) -> List[str]:
"""simple docstring"""
with open(UpperCamelCase_ , "r" ) as f:
lowerCAmelCase__ = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
lowerCAmelCase__ = split_code_in_indented_blocks(
UpperCamelCase_ , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(UpperCamelCase_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
lowerCAmelCase__ = main_blocks[block_idx]
lowerCAmelCase__ = block.split("\n" )
# Get to the start of the imports.
lowerCAmelCase__ = 0
while line_idx < len(UpperCamelCase_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
lowerCAmelCase__ = len(UpperCamelCase_ )
else:
line_idx += 1
if line_idx >= len(UpperCamelCase_ ):
continue
# Ignore beginning and last line: they don't contain anything.
lowerCAmelCase__ = "\n".join(block_lines[line_idx:-1] )
lowerCAmelCase__ = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
lowerCAmelCase__ = split_code_in_indented_blocks(UpperCamelCase_ , indent_level=UpperCamelCase_ )
# We have two categories of import key: list or _import_structure[key].append/extend
lowerCAmelCase__ = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
lowerCAmelCase__ = [(pattern.search(UpperCamelCase_ ).groups()[0] if pattern.search(UpperCamelCase_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
lowerCAmelCase__ = [(i, key) for i, key in enumerate(UpperCamelCase_ ) if key is not None]
lowerCAmelCase__ = [x[0] for x in sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
lowerCAmelCase__ = 0
lowerCAmelCase__ = []
for i in range(len(UpperCamelCase_ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
lowerCAmelCase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(UpperCamelCase_ )
count += 1
# And we put our main block back together with its first and last line.
lowerCAmelCase__ = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(UpperCamelCase_ ):
if check_only:
return True
else:
print(F"Overwriting {file}." )
with open(UpperCamelCase_ , "w" ) as f:
f.write("\n".join(UpperCamelCase_ ) )
def _a ( UpperCamelCase_ : List[str]=True ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ = []
for root, _, files in os.walk(UpperCamelCase_ ):
if "__init__.py" in files:
lowerCAmelCase__ = sort_imports(os.path.join(UpperCamelCase_ , "__init__.py" ) , check_only=UpperCamelCase_ )
if result:
lowerCAmelCase__ = [os.path.join(UpperCamelCase_ , "__init__.py" )]
if len(UpperCamelCase_ ) > 0:
raise ValueError(F"Would overwrite {len(UpperCamelCase_ )} files, run `make style`." )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
a_ = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 340 |
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
a_ = {
'''n_samples''': 64,
'''horizon''': 32,
'''num_inference_steps''': 20,
'''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network
'''scale_grad_by_std''': True,
'''scale''': 0.1,
'''eta''': 0.0,
'''t_grad_cutoff''': 2,
'''device''': '''cpu''',
}
if __name__ == "__main__":
a_ = '''hopper-medium-v2'''
a_ = gym.make(env_name)
a_ = ValueGuidedRLPipeline.from_pretrained(
'''bglick13/hopper-medium-v2-value-function-hor32''',
env=env,
)
env.seed(0)
a_ = env.reset()
a_ = 0
a_ = 0
a_ = 1000
a_ = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
a_ = pipeline(obs, planning_horizon=32)
# execute action in environment
a_, a_, a_, a_ = env.step(denorm_actions)
a_ = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"
F" {total_score}"
)
# save observations for rendering
rollout.append(next_observation.copy())
a_ = next_observation
except KeyboardInterrupt:
pass
print(F"Total reward: {total_reward}")
| 340 | 1 |
def _a ( UpperCamelCase_ : str ) -> str:
"""simple docstring"""
return "".join(chr(ord(UpperCamelCase_ ) - 32 ) if "a" <= char <= "z" else char for char in word )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 340 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
a_ = '''src/transformers'''
a_ = '''docs/source/en/tasks'''
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple:
"""simple docstring"""
with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase__ = f.readlines()
# Find the start prompt.
lowerCAmelCase__ = 0
while not lines[start_index].startswith(UpperCamelCase_ ):
start_index += 1
start_index += 1
lowerCAmelCase__ = start_index
while not lines[end_index].startswith(UpperCamelCase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
a_ = direct_transformers_import(TRANSFORMERS_PATH)
a_ = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
a_ = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide]
lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() )
lowerCAmelCase__ = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n"
def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file(
filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , )
lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ )
if current_list != new_list:
if overwrite:
with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"
" to fix this." )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
a_ = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 340 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__UpperCAmelCase ) )
lowerCAmelCase__ = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = self.get_rust_tokenizer()
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = CLIPProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
lowerCAmelCase__ = CLIPProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase )
self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
lowerCAmelCase__ = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = CLIPProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" )
lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = CLIPProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = CLIPProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = CLIPProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase )
lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = CLIPProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 340 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
a_ = logging.get_logger(__name__)
a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS}
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]:
"""simple docstring"""
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." )
if tokenizer_name is None:
lowerCAmelCase__ = TOKENIZER_CLASSES
else:
lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )}
logger.info(F"Loading tokenizer classes: {tokenizer_names}" )
for tokenizer_name in tokenizer_names:
lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name]
lowerCAmelCase__ = True
if checkpoint_name is None:
lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() )
else:
lowerCAmelCase__ = [checkpoint_name]
logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" )
for checkpoint in checkpoint_names:
logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" )
# Load tokenizer
lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ )
# Save fast tokenizer
logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" )
# For organization names we create sub-directories
if "/" in checkpoint:
lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
elif add_prefix:
lowerCAmelCase__ = checkpoint
lowerCAmelCase__ = dump_path
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = dump_path
logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0]
if next_char == "/":
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = None
logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" )
lowerCAmelCase__ = tokenizer.save_pretrained(
UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ )
logger.info(F"=> File names {file_names}" )
for file_name in file_names:
if not file_name.endswith("tokenizer.json" ):
os.remove(UpperCamelCase_ )
logger.info(F"=> removing {file_name}" )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.'''
)
parser.add_argument(
'''--tokenizer_name''',
default=None,
type=str,
help=(
F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will "
'''download and convert all the checkpoints from AWS.'''
),
)
parser.add_argument(
'''--checkpoint_name''',
default=None,
type=str,
help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''',
)
parser.add_argument(
'''--force_download''',
action='''store_true''',
help='''Re-download checkpoints.''',
)
a_ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 340 | 1 |
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
a_ = TypeVar('''KT''')
a_ = TypeVar('''VT''')
class lowercase__ ( Generic[KT, VT] ):
def __init__( self , __UpperCAmelCase = "root" , __UpperCAmelCase = None )-> int:
'''simple docstring'''
lowerCAmelCase__ = key
lowerCAmelCase__ = value
lowerCAmelCase__ = []
def __repr__( self )-> str:
'''simple docstring'''
return F"Node({self.key}: {self.value})"
@property
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
return len(self.forward )
class lowercase__ ( Generic[KT, VT] ):
def __init__( self , __UpperCAmelCase = 0.5 , __UpperCAmelCase = 16 )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = Node[KT, VT]()
lowerCAmelCase__ = 0
lowerCAmelCase__ = p
lowerCAmelCase__ = max_level
def __str__( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = list(self )
if len(__UpperCAmelCase ) == 0:
return F"SkipList(level={self.level})"
lowerCAmelCase__ = max((len(str(__UpperCAmelCase ) ) for item in items) , default=4 )
lowerCAmelCase__ = max(__UpperCAmelCase , 4 ) + 4
lowerCAmelCase__ = self.head
lowerCAmelCase__ = []
lowerCAmelCase__ = node.forward.copy()
lines.append(F"[{node.key}]".ljust(__UpperCAmelCase , "-" ) + "* " * len(__UpperCAmelCase ) )
lines.append(" " * label_size + "| " * len(__UpperCAmelCase ) )
while len(node.forward ) != 0:
lowerCAmelCase__ = node.forward[0]
lines.append(
F"[{node.key}]".ljust(__UpperCAmelCase , "-" )
+ " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) )
lines.append(" " * label_size + "| " * len(__UpperCAmelCase ) )
lowerCAmelCase__ = node.forward
lines.append("None".ljust(__UpperCAmelCase ) + "* " * len(__UpperCAmelCase ) )
return F"SkipList(level={self.level})\n" + "\n".join(__UpperCAmelCase )
def __iter__( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = self.head
while len(node.forward ) != 0:
yield node.forward[0].key
lowerCAmelCase__ = node.forward[0]
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def UpperCAmelCase ( self , __UpperCAmelCase )-> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]:
'''simple docstring'''
lowerCAmelCase__ = []
lowerCAmelCase__ = self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
lowerCAmelCase__ = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(__UpperCAmelCase )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(__UpperCAmelCase )
if node is not None:
for i, update_node in enumerate(__UpperCAmelCase ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
lowerCAmelCase__ = node.forward[i]
else:
lowerCAmelCase__ = update_node.forward[:i]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Any:
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(__UpperCAmelCase )
if node is not None:
lowerCAmelCase__ = value
else:
lowerCAmelCase__ = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 , __UpperCAmelCase ):
update_vector.append(self.head )
lowerCAmelCase__ = level
lowerCAmelCase__ = Node(__UpperCAmelCase , __UpperCAmelCase )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(__UpperCAmelCase )
else:
lowerCAmelCase__ = new_node
def UpperCAmelCase ( self , __UpperCAmelCase )-> VT | None:
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(__UpperCAmelCase )
if node is not None:
return node.value
return None
def _a ( ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.insert("Key1" , 3 )
skip_list.insert("Key2" , 12 )
skip_list.insert("Key3" , 41 )
skip_list.insert("Key4" , -19 )
lowerCAmelCase__ = skip_list.head
lowerCAmelCase__ = {}
while node.level != 0:
lowerCAmelCase__ = node.forward[0]
lowerCAmelCase__ = node.value
assert len(UpperCamelCase_ ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 12
assert all_values["Key3"] == 41
assert all_values["Key4"] == -19
def _a ( ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.insert("Key1" , 10 )
skip_list.insert("Key1" , 12 )
skip_list.insert("Key5" , 7 )
skip_list.insert("Key7" , 10 )
skip_list.insert("Key10" , 5 )
skip_list.insert("Key7" , 7 )
skip_list.insert("Key5" , 5 )
skip_list.insert("Key10" , 10 )
lowerCAmelCase__ = skip_list.head
lowerCAmelCase__ = {}
while node.level != 0:
lowerCAmelCase__ = node.forward[0]
lowerCAmelCase__ = node.value
if len(UpperCamelCase_ ) != 4:
print()
assert len(UpperCamelCase_ ) == 4
assert all_values["Key1"] == 12
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 10
def _a ( ) -> str:
"""simple docstring"""
lowerCAmelCase__ = SkipList()
assert skip_list.find("Some key" ) is None
def _a ( ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.insert("Key2" , 20 )
assert skip_list.find("Key2" ) == 20
skip_list.insert("Some Key" , 10 )
skip_list.insert("Key2" , 8 )
skip_list.insert("V" , 13 )
assert skip_list.find("Y" ) is None
assert skip_list.find("Key2" ) == 8
assert skip_list.find("Some Key" ) == 10
assert skip_list.find("V" ) == 13
def _a ( ) -> Any:
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.delete("Some key" )
assert len(skip_list.head.forward ) == 0
def _a ( ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.insert("Key1" , 12 )
skip_list.insert("V" , 13 )
skip_list.insert("X" , 14 )
skip_list.insert("Key2" , 15 )
skip_list.delete("V" )
skip_list.delete("Key2" )
assert skip_list.find("V" ) is None
assert skip_list.find("Key2" ) is None
def _a ( ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.insert("Key1" , 12 )
skip_list.insert("V" , 13 )
skip_list.insert("X" , 14 )
skip_list.insert("Key2" , 15 )
skip_list.delete("V" )
assert skip_list.find("V" ) is None
assert skip_list.find("X" ) == 14
assert skip_list.find("Key1" ) == 12
assert skip_list.find("Key2" ) == 15
skip_list.delete("X" )
assert skip_list.find("V" ) is None
assert skip_list.find("X" ) is None
assert skip_list.find("Key1" ) == 12
assert skip_list.find("Key2" ) == 15
skip_list.delete("Key1" )
assert skip_list.find("V" ) is None
assert skip_list.find("X" ) is None
assert skip_list.find("Key1" ) is None
assert skip_list.find("Key2" ) == 15
skip_list.delete("Key2" )
assert skip_list.find("V" ) is None
assert skip_list.find("X" ) is None
assert skip_list.find("Key1" ) is None
assert skip_list.find("Key2" ) is None
def _a ( ) -> str:
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.insert("Key1" , 12 )
skip_list.insert("V" , 13 )
skip_list.insert("X" , 142 )
skip_list.insert("Key2" , 15 )
skip_list.delete("X" )
def traverse_keys(UpperCamelCase_ : Union[str, Any] ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(UpperCamelCase_ )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def _a ( ) -> List[str]:
"""simple docstring"""
def is_sorted(UpperCamelCase_ : Optional[Any] ):
return all(next_item >= item for item, next_item in zip(UpperCamelCase_ , lst[1:] ) )
lowerCAmelCase__ = SkipList()
for i in range(10 ):
skip_list.insert(UpperCamelCase_ , UpperCamelCase_ )
assert is_sorted(list(UpperCamelCase_ ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(UpperCamelCase_ ) )
skip_list.insert(-12 , -12 )
skip_list.insert(77 , 77 )
assert is_sorted(list(UpperCamelCase_ ) )
def _a ( ) -> Union[str, Any]:
"""simple docstring"""
for _ in range(100 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def _a ( ) -> str:
"""simple docstring"""
lowerCAmelCase__ = SkipList()
skip_list.insert(2 , "2" )
skip_list.insert(4 , "4" )
skip_list.insert(6 , "4" )
skip_list.insert(4 , "5" )
skip_list.insert(8 , "4" )
skip_list.insert(9 , "4" )
skip_list.delete(4 )
print(UpperCamelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 340 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ )
lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ )
lowerCAmelCase__ = tok.pad_token_id
def get_lens(UpperCamelCase_ : str ):
lowerCAmelCase__ = tqdm(
DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
lowerCAmelCase__ = []
for batch in dl:
lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist()
lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ):
max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) )
else:
max_lens.extend(UpperCamelCase_ )
return max_lens
lowerCAmelCase__ = get_lens(UpperCamelCase_ )
lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ )
lowerCAmelCase__ = get_lens(UpperCamelCase_ )
pickle_save(UpperCamelCase_ , train_ds.len_file )
pickle_save(UpperCamelCase_ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 340 | 1 |
from collections.abc import Sequence
def _a ( UpperCamelCase_ : Sequence[float] , UpperCamelCase_ : bool = False ) -> float:
"""simple docstring"""
if not arr:
return 0
lowerCAmelCase__ = 0 if allow_empty_subarrays else float("-inf" )
lowerCAmelCase__ = 0.0
for num in arr:
lowerCAmelCase__ = max(0 if allow_empty_subarrays else num , curr_sum + num )
lowerCAmelCase__ = max(UpperCamelCase_ , UpperCamelCase_ )
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
a_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(F"{max_subarray_sum(nums) = }")
| 340 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""xlnet"""
a_ =["""mems"""]
a_ ={
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int:
'''simple docstring'''
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = n_layer
lowerCAmelCase__ = n_head
if d_model % n_head != 0:
raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" )
lowerCAmelCase__ = d_model // n_head
lowerCAmelCase__ = ff_activation
lowerCAmelCase__ = d_inner
lowerCAmelCase__ = untie_r
lowerCAmelCase__ = attn_type
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = dropout
lowerCAmelCase__ = mem_len
lowerCAmelCase__ = reuse_len
lowerCAmelCase__ = bi_data
lowerCAmelCase__ = clamp_len
lowerCAmelCase__ = same_length
lowerCAmelCase__ = summary_type
lowerCAmelCase__ = summary_use_proj
lowerCAmelCase__ = summary_activation
lowerCAmelCase__ = summary_last_dropout
lowerCAmelCase__ = start_n_top
lowerCAmelCase__ = end_n_top
lowerCAmelCase__ = bos_token_id
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs["use_cache"]
lowerCAmelCase__ = use_mems_eval
lowerCAmelCase__ = use_mems_train
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." )
return -1
@max_position_embeddings.setter
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError(
F"The model {self.model_type} is one of the few models that has no sequence length limit." )
| 340 | 1 |
import sys
a_ = (
'''73167176531330624919225119674426574742355349194934'''
'''96983520312774506326239578318016984801869478851843'''
'''85861560789112949495459501737958331952853208805511'''
'''12540698747158523863050715693290963295227443043557'''
'''66896648950445244523161731856403098711121722383113'''
'''62229893423380308135336276614282806444486645238749'''
'''30358907296290491560440772390713810515859307960866'''
'''70172427121883998797908792274921901699720888093776'''
'''65727333001053367881220235421809751254540594752243'''
'''52584907711670556013604839586446706324415722155397'''
'''53697817977846174064955149290862569321978468622482'''
'''83972241375657056057490261407972968652414535100474'''
'''82166370484403199890008895243450658541227588666881'''
'''16427171479924442928230863465674813919123162824586'''
'''17866458359124566529476545682848912883142607690042'''
'''24219022671055626321111109370544217506941658960408'''
'''07198403850962455444362981230987879927244284909188'''
'''84580156166097919133875499200524063689912560717606'''
'''05886116467109405077541002256983155200055935729725'''
'''71636269561882670428252483600823257530420752963450'''
)
def _a ( UpperCamelCase_ : str ) -> int:
"""simple docstring"""
lowerCAmelCase__ = 1
for digit in s:
product *= int(UpperCamelCase_ )
return product
def _a ( UpperCamelCase_ : str = N ) -> int:
"""simple docstring"""
lowerCAmelCase__ = -sys.maxsize - 1
lowerCAmelCase__ = n[:13]
lowerCAmelCase__ = 13
while cur_index < len(UpperCamelCase_ ) - 13:
if int(n[cur_index] ) >= int(substr[0] ):
lowerCAmelCase__ = substr[1:] + n[cur_index]
cur_index += 1
else:
lowerCAmelCase__ = max(UpperCamelCase_ , str_eval(UpperCamelCase_ ) )
lowerCAmelCase__ = n[cur_index : cur_index + 13]
cur_index += 13
return largest_product
if __name__ == "__main__":
print(F"{solution() = }")
| 340 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("module.cls_token", "vit.embeddings.cls_token"),
("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("module.pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("module.norm.weight", "layernorm.weight"),
("module.norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase__ = ""
else:
lowerCAmelCase__ = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" )
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase__ = in_proj_bias[: config.hidden_size]
lowerCAmelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase__ = in_proj_bias[-config.hidden_size :]
def _a ( UpperCamelCase_ : Dict ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = [
"module.fc.fc1.weight",
"module.fc.fc1.bias",
"module.fc.bn1.weight",
"module.fc.bn1.bias",
"module.fc.bn1.running_mean",
"module.fc.bn1.running_var",
"module.fc.bn1.num_batches_tracked",
"module.fc.fc2.weight",
"module.fc.fc2.bias",
"module.fc.bn2.weight",
"module.fc.bn2.bias",
"module.fc.bn2.running_mean",
"module.fc.bn2.running_var",
"module.fc.bn2.num_batches_tracked",
"module.fc.fc3.weight",
"module.fc.fc3.bias",
]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = dct.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ViTMSNConfig()
lowerCAmelCase__ = 1_000
lowerCAmelCase__ = "datasets/huggingface/label-files"
lowerCAmelCase__ = "imagenet-1k-id2label.json"
lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) )
lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
lowerCAmelCase__ = idalabel
lowerCAmelCase__ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowerCAmelCase__ = 384
lowerCAmelCase__ = 1_536
lowerCAmelCase__ = 6
elif "l16" in checkpoint_url:
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
elif "b4" in checkpoint_url:
lowerCAmelCase__ = 4
elif "l7" in checkpoint_url:
lowerCAmelCase__ = 7
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ )
lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"]
lowerCAmelCase__ = ViTImageProcessor(size=config.image_size )
remove_projection_head(UpperCamelCase_ )
lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ )
for src, dest in rename_keys:
rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
lowerCAmelCase__ = ViTImageProcessor(
size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ )
lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" )
# forward pass
torch.manual_seed(2 )
lowerCAmelCase__ = model(**UpperCamelCase_ )
lowerCAmelCase__ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 )
print(F"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(UpperCamelCase_ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
a_ = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 340 | 1 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''')
class lowercase__ ( _UpperCAmelCase, unittest.TestCase ):
a_ =BartphoTokenizer
a_ =False
a_ =True
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
super().setUp()
lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"]
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] )
with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp:
for token in vocab_tokens:
fp.write(F"{token} {vocab_tokens[token]}\n" )
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "This is a<unk><unk> test"
return input_text, output_text
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split()
lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = tokens + [tokenizer.unk_token]
lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
| 340 |
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
a_ = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase )
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
requires_backends(self , "vision" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int:
'''simple docstring'''
return super().__call__(__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = {}
if "candidate_labels" in kwargs:
lowerCAmelCase__ = kwargs["candidate_labels"]
if "hypothesis_template" in kwargs:
lowerCAmelCase__ = kwargs["hypothesis_template"]
return preprocess_params, {}, {}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = load_image(__UpperCAmelCase )
lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework )
lowerCAmelCase__ = candidate_labels
lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels]
lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase )
lowerCAmelCase__ = [text_inputs]
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> int:
'''simple docstring'''
lowerCAmelCase__ = model_inputs.pop("candidate_labels" )
lowerCAmelCase__ = model_inputs.pop("text_inputs" )
if isinstance(text_inputs[0] , __UpperCAmelCase ):
lowerCAmelCase__ = text_inputs[0]
else:
# Batching case.
lowerCAmelCase__ = text_inputs[0][0]
lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase )
lowerCAmelCase__ = {
"candidate_labels": candidate_labels,
"logits": outputs.logits_per_image,
}
return model_outputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = model_outputs.pop("candidate_labels" )
lowerCAmelCase__ = model_outputs["logits"][0]
if self.framework == "pt":
lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 )
lowerCAmelCase__ = probs.tolist()
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = [scores]
elif self.framework == "tf":
lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 )
lowerCAmelCase__ = probs.numpy().tolist()
else:
raise ValueError(F"Unsupported framework: {self.framework}" )
lowerCAmelCase__ = [
{"score": score, "label": candidate_label}
for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] )
]
return result
| 340 | 1 |
from __future__ import annotations
import math
def _a ( UpperCamelCase_ : float , UpperCamelCase_ : int ) -> float:
"""simple docstring"""
lowerCAmelCase__ = u
for i in range(1 , UpperCamelCase_ ):
lowerCAmelCase__ = temp * (u - i)
return temp
def _a ( ) -> None:
"""simple docstring"""
lowerCAmelCase__ = int(input("enter the numbers of values: " ) )
lowerCAmelCase__ = []
for _ in range(UpperCamelCase_ ):
y.append([] )
for i in range(UpperCamelCase_ ):
for j in range(UpperCamelCase_ ):
y[i].append(UpperCamelCase_ )
lowerCAmelCase__ = 0
print("enter the values of parameters in a list: " )
lowerCAmelCase__ = list(map(UpperCamelCase_ , input().split() ) )
print("enter the values of corresponding parameters: " )
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = float(input() )
lowerCAmelCase__ = int(input("enter the value to interpolate: " ) )
lowerCAmelCase__ = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , UpperCamelCase_ ):
for j in range(n - i ):
lowerCAmelCase__ = y[j + 1][i - 1] - y[j][i - 1]
lowerCAmelCase__ = y[0][0]
for i in range(1 , UpperCamelCase_ ):
summ += (ucal(UpperCamelCase_ , UpperCamelCase_ ) * y[0][i]) / math.factorial(UpperCamelCase_ )
print(F"the value at {value} is {summ}" )
if __name__ == "__main__":
main()
| 340 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''')
class lowercase__ ( _UpperCAmelCase, unittest.TestCase ):
a_ =BartphoTokenizer
a_ =False
a_ =True
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
super().setUp()
lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"]
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] )
with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp:
for token in vocab_tokens:
fp.write(F"{token} {vocab_tokens[token]}\n" )
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "This is a<unk><unk> test"
return input_text, output_text
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split()
lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = tokens + [tokenizer.unk_token]
lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
| 340 | 1 |
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
a_ = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
a_ = [ord(letter) for letter in string.ascii_lowercase]
a_ = {ord(char) for char in VALID_CHARS}
a_ = ["the", "be", "to", "of", "and", "in", "that", "have"]
def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : tuple[int, ...] ) -> str | None:
"""simple docstring"""
lowerCAmelCase__ = ""
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
for keychar, cipherchar in zip(cycle(UpperCamelCase_ ) , UpperCamelCase_ ):
lowerCAmelCase__ = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(UpperCamelCase_ )
return decoded
def _a ( UpperCamelCase_ : list[int] ) -> list[str]:
"""simple docstring"""
lowerCAmelCase__ = []
for key in product(UpperCamelCase_ , repeat=3 ):
lowerCAmelCase__ = try_key(UpperCamelCase_ , UpperCamelCase_ )
if encoded is not None:
possibles.append(UpperCamelCase_ )
return possibles
def _a ( UpperCamelCase_ : list[str] , UpperCamelCase_ : str ) -> list[str]:
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def _a ( UpperCamelCase_ : str = "p059_cipher.txt" ) -> int:
"""simple docstring"""
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = Path(UpperCamelCase_ ).parent.joinpath(UpperCamelCase_ ).read_text(encoding="utf-8" )
lowerCAmelCase__ = [int(UpperCamelCase_ ) for number in data.strip().split("," )]
lowerCAmelCase__ = filter_valid_chars(UpperCamelCase_ )
for common_word in COMMON_WORDS:
lowerCAmelCase__ = filter_common_word(UpperCamelCase_ , UpperCamelCase_ )
if len(UpperCamelCase_ ) == 1:
break
lowerCAmelCase__ = possibles[0]
return sum(ord(UpperCamelCase_ ) for char in decoded_text )
if __name__ == "__main__":
print(F"{solution() = }")
| 340 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
a_ = logging.get_logger(__name__)
a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a_ = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
a_ = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
a_ = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class lowercase__ ( _UpperCAmelCase ):
a_ =VOCAB_FILES_NAMES
a_ =PRETRAINED_VOCAB_FILES_MAP
a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ =PRETRAINED_INIT_CONFIGURATION
a_ =["""input_ids""", """attention_mask"""]
a_ =DistilBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) )
lowerCAmelCase__ = do_lower_case
lowerCAmelCase__ = strip_accents
lowerCAmelCase__ = tokenize_chinese_chars
lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase )
lowerCAmelCase__ = do_lower_case
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]:
'''simple docstring'''
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]:
'''simple docstring'''
lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 340 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
a_ = logging.get_logger(__name__)
a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a_ = {
'''vocab_file''': {
'''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''',
'''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''',
'''junnyu/roformer_chinese_char_small''': (
'''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt'''
),
'''junnyu/roformer_chinese_char_base''': (
'''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt'''
),
'''junnyu/roformer_small_discriminator''': (
'''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt'''
),
'''junnyu/roformer_small_generator''': (
'''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt'''
),
}
}
a_ = {
'''junnyu/roformer_chinese_small''': 1536,
'''junnyu/roformer_chinese_base''': 1536,
'''junnyu/roformer_chinese_char_small''': 512,
'''junnyu/roformer_chinese_char_base''': 512,
'''junnyu/roformer_small_discriminator''': 128,
'''junnyu/roformer_small_generator''': 128,
}
a_ = {
'''junnyu/roformer_chinese_small''': {'''do_lower_case''': True},
'''junnyu/roformer_chinese_base''': {'''do_lower_case''': True},
'''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True},
'''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True},
'''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True},
'''junnyu/roformer_small_generator''': {'''do_lower_case''': True},
}
class lowercase__ ( _UpperCAmelCase ):
a_ =VOCAB_FILES_NAMES
a_ =PRETRAINED_VOCAB_FILES_MAP
a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ =PRETRAINED_INIT_CONFIGURATION
a_ =RoFormerTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> Dict:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case
or pre_tok_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents
):
lowerCAmelCase__ = getattr(__UpperCAmelCase , pre_tok_state.pop("type" ) )
lowerCAmelCase__ = do_lower_case
lowerCAmelCase__ = strip_accents
lowerCAmelCase__ = pre_tok_class(**__UpperCAmelCase )
lowerCAmelCase__ = do_lower_case
def __getstate__( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.__dict__.copy()
lowerCAmelCase__ = BertPreTokenizer()
return state
def __setstate__( self , __UpperCAmelCase )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = d
lowerCAmelCase__ = self.__dict__["_tokenizer"].get_vocab()
lowerCAmelCase__ = PreTokenizer.custom(JiebaPreTokenizer(__UpperCAmelCase ) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> int:
'''simple docstring'''
lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]:
'''simple docstring'''
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]:
'''simple docstring'''
lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , **__UpperCAmelCase , )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = BertPreTokenizer()
return super().save_pretrained(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase )
| 340 |
a_ = '''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 340 | 1 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing the experiment tracking capability,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
a_ = 16
a_ = 32
def _a ( UpperCamelCase_ : Accelerator , UpperCamelCase_ : int = 16 ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" )
lowerCAmelCase__ = load_dataset("glue" , "mrpc" )
def tokenize_function(UpperCamelCase_ : str ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowerCAmelCase__ = datasets.map(
UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCAmelCase__ = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(UpperCamelCase_ : Union[str, Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowerCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowerCAmelCase__ = 16
elif accelerator.mixed_precision != "no":
lowerCAmelCase__ = 8
else:
lowerCAmelCase__ = None
return tokenizer.pad(
UpperCamelCase_ , padding="longest" , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors="pt" , )
# Instantiate dataloaders.
lowerCAmelCase__ = DataLoader(
tokenized_datasets["train"] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ )
lowerCAmelCase__ = DataLoader(
tokenized_datasets["validation"] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
a_ = mocked_dataloaders # noqa: F811
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str:
"""simple docstring"""
if os.environ.get("TESTING_MOCKED_DATALOADERS" , UpperCamelCase_ ) == "1":
lowerCAmelCase__ = 2
# Initialize Accelerator
# New Code #
# We pass in "all" to `log_with` to grab all available trackers in the environment
# Note: If using a custom `Tracker` class, should be passed in here such as:
# >>> log_with = ["all", MyCustomTrackerClassInstance()]
if args.with_tracking:
lowerCAmelCase__ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir )
else:
lowerCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCAmelCase__ = config["lr"]
lowerCAmelCase__ = int(config["num_epochs"] )
lowerCAmelCase__ = int(config["seed"] )
lowerCAmelCase__ = int(config["batch_size"] )
set_seed(UpperCamelCase_ )
lowerCAmelCase__ , lowerCAmelCase__ = get_dataloaders(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = evaluate.load("glue" , "mrpc" )
# If the batch size is too big we use gradient accumulation
lowerCAmelCase__ = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
lowerCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE
lowerCAmelCase__ = MAX_GPU_BATCH_SIZE
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=UpperCamelCase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCAmelCase__ = model.to(accelerator.device )
# Instantiate optimizer
lowerCAmelCase__ = AdamW(params=model.parameters() , lr=UpperCamelCase_ )
# Instantiate scheduler
lowerCAmelCase__ = get_linear_schedule_with_warmup(
optimizer=UpperCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# New Code #
# We need to initialize the trackers we use. Overall configurations can also be stored
if args.with_tracking:
lowerCAmelCase__ = os.path.split(UpperCamelCase_ )[-1].split("." )[0]
accelerator.init_trackers(UpperCamelCase_ , UpperCamelCase_ )
# Now we train the model
for epoch in range(UpperCamelCase_ ):
model.train()
# New Code #
# For our tracking example, we will log the total loss of each epoch
if args.with_tracking:
lowerCAmelCase__ = 0
for step, batch in enumerate(UpperCamelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowerCAmelCase__ = model(**UpperCamelCase_ )
lowerCAmelCase__ = outputs.loss
# New Code #
if args.with_tracking:
total_loss += loss.detach().float()
lowerCAmelCase__ = loss / gradient_accumulation_steps
accelerator.backward(UpperCamelCase_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(UpperCamelCase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True` (the default).
batch.to(accelerator.device )
with torch.no_grad():
lowerCAmelCase__ = model(**UpperCamelCase_ )
lowerCAmelCase__ = outputs.logits.argmax(dim=-1 )
lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["labels"]) )
metric.add_batch(
predictions=UpperCamelCase_ , references=UpperCamelCase_ , )
lowerCAmelCase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"epoch {epoch}:" , UpperCamelCase_ )
# New Code #
# To actually log, we call `Accelerator.log`
# The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int`
if args.with_tracking:
accelerator.log(
{
"accuracy": eval_metric["accuracy"],
"f1": eval_metric["f1"],
"train_loss": total_loss.item() / len(UpperCamelCase_ ),
"epoch": epoch,
} , step=UpperCamelCase_ , )
# New Code #
# When a run is finished, you should call `accelerator.end_training()`
# to close all of the open trackers
if args.with_tracking:
accelerator.end_training()
def _a ( ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision" , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
parser.add_argument(
"--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , )
parser.add_argument(
"--project_dir" , type=UpperCamelCase_ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , )
lowerCAmelCase__ = parser.parse_args()
lowerCAmelCase__ = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
training_function(UpperCamelCase_ , UpperCamelCase_ )
if __name__ == "__main__":
main()
| 340 |
import collections
import importlib.util
import os
import re
from pathlib import Path
a_ = '''src/transformers'''
# Matches is_xxx_available()
a_ = re.compile(r'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
a_ = re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
a_ = re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
a_ = re.compile(r'''^\s*try:''')
# Catches a line with else:
a_ = re.compile(r'''^\s*else:''')
def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
if _re_test_backend.search(UpperCamelCase_ ) is None:
return None
lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )]
backends.sort()
return "_and_".join(UpperCamelCase_ )
def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple:
"""simple docstring"""
with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase__ = f.readlines()
lowerCAmelCase__ = 0
while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(UpperCamelCase_ ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCAmelCase__ = []
while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None:
lowerCAmelCase__ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(UpperCamelCase_ ):
lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0]
lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(", " )] )
line_index += 1
continue
lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ )
if single_line_import_search is not None:
lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
line_index += 1
lowerCAmelCase__ = {"none": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("if TYPE_CHECKING" ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCAmelCase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ):
lowerCAmelCase__ = lines[line_index]
if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None:
objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] )
elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None:
lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " )
lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif _re_between_brackets.search(UpperCamelCase_ ) is not None:
lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " )
lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif _re_quote_object.search(UpperCamelCase_ ) is not None:
objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
elif line.startswith(" " * 12 + "\"" ):
objects.append(line[13:-3] )
line_index += 1
lowerCAmelCase__ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCAmelCase__ = []
while (
line_index < len(UpperCamelCase_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("else" )
):
lowerCAmelCase__ = lines[line_index]
lowerCAmelCase__ = _re_import.search(UpperCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCAmelCase__ = {"none": objects}
# Let's continue with backend-specific objects
while line_index < len(UpperCamelCase_ ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCAmelCase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ):
lowerCAmelCase__ = lines[line_index]
lowerCAmelCase__ = _re_import.search(UpperCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowerCAmelCase__ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str:
"""simple docstring"""
def find_duplicates(UpperCamelCase_ : str ):
return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCAmelCase__ = []
for key in import_dict_objects.keys():
lowerCAmelCase__ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" )
lowerCAmelCase__ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend"
errors.append(F"Differences for {name}:" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F" {a} in TYPE_HINT but not in _import_structure." )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F" {a} in _import_structure but not in TYPE_HINT." )
return errors
def _a ( ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = []
for root, _, files in os.walk(UpperCamelCase_ ):
if "__init__.py" in files:
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" )
lowerCAmelCase__ = parse_init(UpperCamelCase_ )
if objects is not None:
lowerCAmelCase__ = analyze_results(*UpperCamelCase_ )
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"
failures.append("\n".join(UpperCamelCase_ ) )
if len(UpperCamelCase_ ) > 0:
raise ValueError("\n\n".join(UpperCamelCase_ ) )
def _a ( ) -> str:
"""simple docstring"""
lowerCAmelCase__ = []
for path, directories, files in os.walk(UpperCamelCase_ ):
for folder in directories:
# Ignore private modules
if folder.startswith("_" ):
directories.remove(UpperCamelCase_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0:
continue
lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) )
lowerCAmelCase__ = short_path.replace(os.path.sep , "." )
submodules.append(UpperCamelCase_ )
for fname in files:
if fname == "__init__.py":
continue
lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) )
lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." )
if len(submodule.split("." ) ) == 1:
submodules.append(UpperCamelCase_ )
return submodules
a_ = [
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def _a ( ) -> int:
"""simple docstring"""
lowerCAmelCase__ = importlib.util.spec_from_file_location(
"transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
lowerCAmelCase__ = spec.loader.load_module()
lowerCAmelCase__ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered )
raise ValueError(
"The following submodules are not properly registered in the main init of Transformers:\n"
F"{list_of_modules}\n"
"Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 340 | 1 |
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
a_ = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase )
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
requires_backends(self , "vision" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int:
'''simple docstring'''
return super().__call__(__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = {}
if "candidate_labels" in kwargs:
lowerCAmelCase__ = kwargs["candidate_labels"]
if "hypothesis_template" in kwargs:
lowerCAmelCase__ = kwargs["hypothesis_template"]
return preprocess_params, {}, {}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = load_image(__UpperCAmelCase )
lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework )
lowerCAmelCase__ = candidate_labels
lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels]
lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase )
lowerCAmelCase__ = [text_inputs]
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> int:
'''simple docstring'''
lowerCAmelCase__ = model_inputs.pop("candidate_labels" )
lowerCAmelCase__ = model_inputs.pop("text_inputs" )
if isinstance(text_inputs[0] , __UpperCAmelCase ):
lowerCAmelCase__ = text_inputs[0]
else:
# Batching case.
lowerCAmelCase__ = text_inputs[0][0]
lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase )
lowerCAmelCase__ = {
"candidate_labels": candidate_labels,
"logits": outputs.logits_per_image,
}
return model_outputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = model_outputs.pop("candidate_labels" )
lowerCAmelCase__ = model_outputs["logits"][0]
if self.framework == "pt":
lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 )
lowerCAmelCase__ = probs.tolist()
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = [scores]
elif self.framework == "tf":
lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 )
lowerCAmelCase__ = probs.numpy().tolist()
else:
raise ValueError(F"Unsupported framework: {self.framework}" )
lowerCAmelCase__ = [
{"score": score, "label": candidate_label}
for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] )
]
return result
| 340 |
from __future__ import annotations
import os
from collections.abc import Mapping
a_ = tuple[int, int]
class lowercase__ :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = vertices
lowerCAmelCase__ = {
(min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items()
}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None:
'''simple docstring'''
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
lowerCAmelCase__ = weight
def UpperCAmelCase ( self )-> Graph:
'''simple docstring'''
lowerCAmelCase__ = Graph({min(self.vertices )} , {} )
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
while len(subgraph.vertices ) < len(self.vertices ):
lowerCAmelCase__ = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowerCAmelCase__ = edge
lowerCAmelCase__ = weight
subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase )
return subgraph
def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int:
"""simple docstring"""
lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = {}
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
with open(UpperCamelCase_ ) as f:
lowerCAmelCase__ = f.read().strip().split("\n" )
lowerCAmelCase__ = [line.split("," ) for line in data]
for edgea in range(1 , len(UpperCamelCase_ ) ):
for edgea in range(UpperCamelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] )
lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ )
lowerCAmelCase__ = graph.prims_algorithm()
lowerCAmelCase__ = sum(graph.edges.values() )
lowerCAmelCase__ = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"{solution() = }")
| 340 | 1 |
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> str:
"""simple docstring"""
lowerCAmelCase__ = len(UpperCamelCase_ )
lowerCAmelCase__ = len(UpperCamelCase_ )
lowerCAmelCase__ = (
first_str_length if first_str_length > second_str_length else second_str_length
)
lowerCAmelCase__ = []
for char_count in range(UpperCamelCase_ ):
if char_count < first_str_length:
output_list.append(first_str[char_count] )
if char_count < second_str_length:
output_list.append(second_str[char_count] )
return "".join(UpperCamelCase_ )
if __name__ == "__main__":
print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
| 340 |
from collections import defaultdict
from math import gcd
def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int:
"""simple docstring"""
lowerCAmelCase__ = defaultdict(UpperCamelCase_ )
lowerCAmelCase__ = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ):
if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1:
continue
lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"{solution() = }")
| 340 | 1 |
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
a_ = logging.get_logger(__name__)
def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] ) -> Any:
"""simple docstring"""
lowerCAmelCase__ = UniSpeechSatForSequenceClassification.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ )
lowerCAmelCase__ = downstream_dict["projector.weight"]
lowerCAmelCase__ = downstream_dict["projector.bias"]
lowerCAmelCase__ = downstream_dict["model.post_net.linear.weight"]
lowerCAmelCase__ = downstream_dict["model.post_net.linear.bias"]
return model
def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = UniSpeechSatForAudioFrameClassification.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ )
lowerCAmelCase__ = downstream_dict["model.linear.weight"]
lowerCAmelCase__ = downstream_dict["model.linear.bias"]
return model
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[str] ) -> Any:
"""simple docstring"""
lowerCAmelCase__ = UniSpeechSatForXVector.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ )
lowerCAmelCase__ = downstream_dict["connector.weight"]
lowerCAmelCase__ = downstream_dict["connector.bias"]
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
lowerCAmelCase__ = downstream_dict[
F"model.framelevel_feature_extractor.module.{i}.kernel.weight"
]
lowerCAmelCase__ = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"]
lowerCAmelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"]
lowerCAmelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"]
lowerCAmelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"]
lowerCAmelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"]
lowerCAmelCase__ = downstream_dict["objective.W"]
return model
@torch.no_grad()
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )
lowerCAmelCase__ = checkpoint["Downstream"]
lowerCAmelCase__ = UniSpeechSatConfig.from_pretrained(UpperCamelCase_ )
lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained(
UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , do_normalize=UpperCamelCase_ )
lowerCAmelCase__ = hf_config.architectures[0]
if arch.endswith("ForSequenceClassification" ):
lowerCAmelCase__ = convert_classification(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
elif arch.endswith("ForAudioFrameClassification" ):
lowerCAmelCase__ = convert_diarization(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
elif arch.endswith("ForXVector" ):
lowerCAmelCase__ = convert_xvector(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
else:
raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" )
if hf_config.use_weighted_layer_sum:
lowerCAmelCase__ = checkpoint["Featurizer"]["weights"]
hf_feature_extractor.save_pretrained(UpperCamelCase_ )
hf_model.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument(
'''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.'''
)
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''')
parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''')
a_ = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 340 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase__ ( _UpperCAmelCase ):
a_ =["""image_processor""", """tokenizer"""]
a_ ="""LayoutLMv2ImageProcessor"""
a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""")
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple:
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs.pop("feature_extractor" )
lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes "
"if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." )
# first, apply the image processor
lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension)
lowerCAmelCase__ = features["words"]
lowerCAmelCase__ = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , )
# add pixel values
lowerCAmelCase__ = features.pop("pixel_values" )
if return_overflowing_tokens is True:
lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] )
lowerCAmelCase__ = images
return encoded_inputs
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" )
return images_with_overflow
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , )
return self.image_processor
| 340 | 1 |
import unittest
from transformers import DebertaVaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaVaForMaskedLM,
DebertaVaForMultipleChoice,
DebertaVaForQuestionAnswering,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaModel,
)
from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="None" , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , )-> int:
'''simple docstring'''
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = seq_length
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_input_mask
lowerCAmelCase__ = use_token_type_ids
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = type_vocab_size
lowerCAmelCase__ = type_sequence_label_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = num_labels
lowerCAmelCase__ = num_choices
lowerCAmelCase__ = relative_attention
lowerCAmelCase__ = position_biased_input
lowerCAmelCase__ = pos_att_type
lowerCAmelCase__ = scope
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase__ = None
if self.use_input_mask:
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
lowerCAmelCase__ = None
if self.use_token_type_ids:
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase__ = None
lowerCAmelCase__ = None
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
return DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple:
'''simple docstring'''
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> int:
'''simple docstring'''
lowerCAmelCase__ = DebertaVaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0]
lowerCAmelCase__ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0]
lowerCAmelCase__ = model(__UpperCAmelCase )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> int:
'''simple docstring'''
lowerCAmelCase__ = DebertaVaForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> int:
'''simple docstring'''
lowerCAmelCase__ = self.num_labels
lowerCAmelCase__ = DebertaVaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = self.num_labels
lowerCAmelCase__ = DebertaVaForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> int:
'''simple docstring'''
lowerCAmelCase__ = DebertaVaForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCAmelCase__ = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = DebertaVaForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase__ = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = self.prepare_config_and_inputs()
(
(
lowerCAmelCase__
) , (
lowerCAmelCase__
) , (
lowerCAmelCase__
) , (
lowerCAmelCase__
) , (
lowerCAmelCase__
) , (
lowerCAmelCase__
) , (
lowerCAmelCase__
) ,
) = config_and_inputs
lowerCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class lowercase__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase ):
a_ =(
(
DebertaVaModel,
DebertaVaForMaskedLM,
DebertaVaForSequenceClassification,
DebertaVaForTokenClassification,
DebertaVaForQuestionAnswering,
DebertaVaForMultipleChoice,
)
if is_torch_available()
else ()
)
a_ =(
{
"""feature-extraction""": DebertaVaModel,
"""fill-mask""": DebertaVaForMaskedLM,
"""question-answering""": DebertaVaForQuestionAnswering,
"""text-classification""": DebertaVaForSequenceClassification,
"""token-classification""": DebertaVaForTokenClassification,
"""zero-shot""": DebertaVaForSequenceClassification,
}
if is_torch_available()
else {}
)
a_ =True
a_ =False
a_ =False
a_ =False
a_ =False
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = DebertaVaModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*__UpperCAmelCase )
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCAmelCase )
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCAmelCase )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCAmelCase )
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCAmelCase )
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_multiple_choice(*__UpperCAmelCase )
@slow
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase__ = DebertaVaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase__ ( unittest.TestCase ):
@unittest.skip(reason="Model not available yet" )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
pass
@slow
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = DebertaVaModel.from_pretrained("microsoft/deberta-v2-xlarge" )
lowerCAmelCase__ = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] )
lowerCAmelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0]
# compare the actual values for a slice.
lowerCAmelCase__ = torch.tensor(
[[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 ) , F"{output[:, 1:4, 1:4]}" )
| 340 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__UpperCAmelCase ) )
lowerCAmelCase__ = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = self.get_rust_tokenizer()
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase )
self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" )
lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = processor(text=__UpperCAmelCase , return_tensors="np" )
lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = ["cat", "nasa badge"]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = [["cat", "nasa badge"], ["person"]]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
lowerCAmelCase__ = len(__UpperCAmelCase )
lowerCAmelCase__ = max([len(__UpperCAmelCase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = ["cat", "nasa badge"]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
lowerCAmelCase__ = inputs["input_ids"]
lowerCAmelCase__ = [
[49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase )
lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
| 340 | 1 |
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def _a ( UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for param in module.parameters():
lowerCAmelCase__ = False
def _a ( ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
lowerCAmelCase__ = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def _a ( UpperCamelCase_ : Any ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = plt.imshow(UpperCamelCase_ )
fig.axes.get_xaxis().set_visible(UpperCamelCase_ )
fig.axes.get_yaxis().set_visible(UpperCamelCase_ )
plt.show()
def _a ( ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = datetime.now()
lowerCAmelCase__ = current_time.strftime("%H:%M:%S" )
return timestamp
| 340 |
from __future__ import annotations
from cmath import sqrt
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]:
"""simple docstring"""
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
lowerCAmelCase__ = b * b - 4 * a * c
lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a)
lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def _a ( ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main()
| 340 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
a_ = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
a_ = TaTokenizerFast
a_ = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''MT5EncoderModel''',
'''MT5ForConditionalGeneration''',
'''MT5ForQuestionAnswering''',
'''MT5Model''',
'''MT5PreTrainedModel''',
'''MT5Stack''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model''']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
a_ = _LazyModule(
__name__,
globals()['''__file__'''],
_import_structure,
extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast},
module_spec=__spec__,
)
| 340 |
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts:
"""simple docstring"""
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise TypeError("number of qubits must be a integer." )
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0." )
if math.floor(UpperCamelCase_ ) != number_of_qubits:
raise ValueError("number of qubits must be exact integer." )
if number_of_qubits > 10:
raise ValueError("number of qubits too large to simulate(>10)." )
lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" )
lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" )
lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = number_of_qubits
for i in range(UpperCamelCase_ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(UpperCamelCase_ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ )
# simulate with 10000 shots
lowerCAmelCase__ = Aer.get_backend("qasm_simulator" )
lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 )
return job.result().get_counts(UpperCamelCase_ )
if __name__ == "__main__":
print(
F"Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"
)
| 340 | 1 |
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
a_ = {
'''n_samples''': 64,
'''horizon''': 32,
'''num_inference_steps''': 20,
'''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network
'''scale_grad_by_std''': True,
'''scale''': 0.1,
'''eta''': 0.0,
'''t_grad_cutoff''': 2,
'''device''': '''cpu''',
}
if __name__ == "__main__":
a_ = '''hopper-medium-v2'''
a_ = gym.make(env_name)
a_ = ValueGuidedRLPipeline.from_pretrained(
'''bglick13/hopper-medium-v2-value-function-hor32''',
env=env,
)
env.seed(0)
a_ = env.reset()
a_ = 0
a_ = 0
a_ = 1000
a_ = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
a_ = pipeline(obs, planning_horizon=32)
# execute action in environment
a_, a_, a_, a_ = env.step(denorm_actions)
a_ = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"
F" {total_score}"
)
# save observations for rendering
rollout.append(next_observation.copy())
a_ = next_observation
except KeyboardInterrupt:
pass
print(F"Total reward: {total_reward}")
| 340 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowercase__ ( _UpperCAmelCase ):
a_ ="""char"""
a_ ="""bpe"""
a_ ="""wp"""
a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowercase__ ( _UpperCAmelCase ):
a_ =["""image_processor""", """char_tokenizer"""]
a_ ="""ViTImageProcessor"""
a_ ="""MgpstrTokenizer"""
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs.pop("feature_extractor" )
lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
lowerCAmelCase__ = tokenizer
lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" )
lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]:
'''simple docstring'''
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None:
lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
lowerCAmelCase__ = encodings["input_ids"]
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences
lowerCAmelCase__ = char_preds.size(0 )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for i in range(__UpperCAmelCase ):
lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]]
lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]]
lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
lowerCAmelCase__ = {}
lowerCAmelCase__ = final_strs
lowerCAmelCase__ = final_scores
lowerCAmelCase__ = char_strs
lowerCAmelCase__ = bpe_strs
lowerCAmelCase__ = wp_strs
return out
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
if format == DecodeType.CHARACTER:
lowerCAmelCase__ = self.char_decode
lowerCAmelCase__ = 1
lowerCAmelCase__ = "[s]"
elif format == DecodeType.BPE:
lowerCAmelCase__ = self.bpe_decode
lowerCAmelCase__ = 2
lowerCAmelCase__ = "#"
elif format == DecodeType.WORDPIECE:
lowerCAmelCase__ = self.wp_decode
lowerCAmelCase__ = 102
lowerCAmelCase__ = "[SEP]"
else:
raise ValueError(F"Format {format} is not supported." )
lowerCAmelCase__ , lowerCAmelCase__ = [], []
lowerCAmelCase__ = pred_logits.size(0 )
lowerCAmelCase__ = pred_logits.size(1 )
lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase )
lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:]
lowerCAmelCase__ = decoder(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 )
lowerCAmelCase__ = preds_max_prob[:, 1:]
for index in range(__UpperCAmelCase ):
lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase )
lowerCAmelCase__ = preds_str[index][:pred_eos]
lowerCAmelCase__ = preds_index[index].cpu().tolist()
lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1
lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1]
lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__UpperCAmelCase )
conf_scores.append(__UpperCAmelCase )
return dec_strs, conf_scores
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
| 340 | 1 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''huggingface/time-series-transformer-tourism-monthly''': (
'''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'''
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""time_series_transformer"""
a_ ={
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
"""num_hidden_layers""": """encoder_layers""",
}
def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "student_t" , __UpperCAmelCase = "nll" , __UpperCAmelCase = 1 , __UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7] , __UpperCAmelCase = "mean" , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 32 , __UpperCAmelCase = 32 , __UpperCAmelCase = 2 , __UpperCAmelCase = 2 , __UpperCAmelCase = 2 , __UpperCAmelCase = 2 , __UpperCAmelCase = True , __UpperCAmelCase = "gelu" , __UpperCAmelCase = 64 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 100 , __UpperCAmelCase = 0.02 , __UpperCAmelCase=True , **__UpperCAmelCase , )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = prediction_length
lowerCAmelCase__ = context_length or prediction_length
lowerCAmelCase__ = distribution_output
lowerCAmelCase__ = loss
lowerCAmelCase__ = input_size
lowerCAmelCase__ = num_time_features
lowerCAmelCase__ = lags_sequence
lowerCAmelCase__ = scaling
lowerCAmelCase__ = num_dynamic_real_features
lowerCAmelCase__ = num_static_real_features
lowerCAmelCase__ = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(__UpperCAmelCase ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
lowerCAmelCase__ = cardinality
else:
lowerCAmelCase__ = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(__UpperCAmelCase ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
lowerCAmelCase__ = embedding_dimension
else:
lowerCAmelCase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
lowerCAmelCase__ = num_parallel_samples
# Transformer architecture configuration
lowerCAmelCase__ = input_size * len(__UpperCAmelCase ) + self._number_of_features
lowerCAmelCase__ = d_model
lowerCAmelCase__ = encoder_attention_heads
lowerCAmelCase__ = decoder_attention_heads
lowerCAmelCase__ = encoder_ffn_dim
lowerCAmelCase__ = decoder_ffn_dim
lowerCAmelCase__ = encoder_layers
lowerCAmelCase__ = decoder_layers
lowerCAmelCase__ = dropout
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = activation_dropout
lowerCAmelCase__ = encoder_layerdrop
lowerCAmelCase__ = decoder_layerdrop
lowerCAmelCase__ = activation_function
lowerCAmelCase__ = init_std
lowerCAmelCase__ = use_cache
super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 340 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ = {
'''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''],
'''tokenization_convbert''': ['''ConvBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['''ConvBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConvBertForMaskedLM''',
'''ConvBertForMultipleChoice''',
'''ConvBertForQuestionAnswering''',
'''ConvBertForSequenceClassification''',
'''ConvBertForTokenClassification''',
'''ConvBertLayer''',
'''ConvBertModel''',
'''ConvBertPreTrainedModel''',
'''load_tf_weights_in_convbert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFConvBertForMaskedLM''',
'''TFConvBertForMultipleChoice''',
'''TFConvBertForQuestionAnswering''',
'''TFConvBertForSequenceClassification''',
'''TFConvBertForTokenClassification''',
'''TFConvBertLayer''',
'''TFConvBertModel''',
'''TFConvBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 340 | 1 |
import math
def _a ( UpperCamelCase_ : int ) -> bool:
"""simple docstring"""
return math.sqrt(UpperCamelCase_ ) * math.sqrt(UpperCamelCase_ ) == num
def _a ( UpperCamelCase_ : int ) -> bool:
"""simple docstring"""
lowerCAmelCase__ = 0
lowerCAmelCase__ = n
while left <= right:
lowerCAmelCase__ = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
lowerCAmelCase__ = mid - 1
else:
lowerCAmelCase__ = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 340 |
from collections import defaultdict
def _a ( UpperCamelCase_ : int ) -> int:
"""simple docstring"""
lowerCAmelCase__ = 1
lowerCAmelCase__ = True
for v in tree[start]:
if v not in visited:
ret += dfs(UpperCamelCase_ )
if ret % 2 == 0:
cuts.append(UpperCamelCase_ )
return ret
def _a ( ) -> Optional[Any]:
"""simple docstring"""
dfs(1 )
if __name__ == "__main__":
a_, a_ = 10, 9
a_ = defaultdict(list)
a_ = {}
a_ = []
a_ = 0
a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1)
| 340 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
a_ = logging.get_logger(__name__)
a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a_ = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
a_ = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
a_ = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class lowercase__ ( _UpperCAmelCase ):
a_ =VOCAB_FILES_NAMES
a_ =PRETRAINED_VOCAB_FILES_MAP
a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ =PRETRAINED_INIT_CONFIGURATION
a_ =["""input_ids""", """attention_mask"""]
a_ =DistilBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) )
lowerCAmelCase__ = do_lower_case
lowerCAmelCase__ = strip_accents
lowerCAmelCase__ = tokenize_chinese_chars
lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase )
lowerCAmelCase__ = do_lower_case
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]:
'''simple docstring'''
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]:
'''simple docstring'''
lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 340 |
import requests
from bsa import BeautifulSoup
def _a ( UpperCamelCase_ : str = "AAPL" ) -> str:
"""simple docstring"""
lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"
lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" )
lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)"
return soup.find("div" , class_=class_ ).find("span" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
| 340 | 1 |
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class lowercase__ ( _UpperCAmelCase ):
a_ ="""EncodecFeatureExtractor"""
a_ =("""T5Tokenizer""", """T5TokenizerFast""")
def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> int:
'''simple docstring'''
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = self.feature_extractor
lowerCAmelCase__ = False
def UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True )-> int:
'''simple docstring'''
return self.tokenizer.get_decoder_prompt_ids(task=__UpperCAmelCase , language=__UpperCAmelCase , no_timestamps=__UpperCAmelCase )
def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase )-> str:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase )
lowerCAmelCase__ = kwargs.pop("audio" , __UpperCAmelCase )
lowerCAmelCase__ = kwargs.pop("sampling_rate" , __UpperCAmelCase )
lowerCAmelCase__ = kwargs.pop("text" , __UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
lowerCAmelCase__ = args[0]
lowerCAmelCase__ = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process." )
if text is not None:
lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase )
if audio is not None:
lowerCAmelCase__ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
lowerCAmelCase__ = audio_inputs["input_values"]
if "padding_mask" in audio_inputs:
lowerCAmelCase__ = audio_inputs["padding_mask"]
return inputs
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = kwargs.pop("audio" , __UpperCAmelCase )
lowerCAmelCase__ = kwargs.pop("padding_mask" , __UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
lowerCAmelCase__ = args[0]
lowerCAmelCase__ = args[1:]
if audio_values is not None:
return self._decode_audio(__UpperCAmelCase , padding_mask=__UpperCAmelCase )
else:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> int:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[np.ndarray]:
'''simple docstring'''
lowerCAmelCase__ = to_numpy(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = audio_values.shape
if padding_mask is None:
return list(__UpperCAmelCase )
lowerCAmelCase__ = to_numpy(__UpperCAmelCase )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
lowerCAmelCase__ = seq_len - padding_mask.shape[-1]
lowerCAmelCase__ = 1 - self.feature_extractor.padding_value
lowerCAmelCase__ = np.pad(__UpperCAmelCase , ((0, 0), (0, difference)) , "constant" , constant_values=__UpperCAmelCase )
lowerCAmelCase__ = audio_values.tolist()
for i in range(__UpperCAmelCase ):
lowerCAmelCase__ = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
lowerCAmelCase__ = sliced_audio.reshape(__UpperCAmelCase , -1 )
return audio_values
| 340 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
a_ = (3, 9, -11, 0, 7, 5, 1, -1)
a_ = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class lowercase__ :
a_ =42
a_ =42
class lowercase__ :
def __init__( self , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = None
for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ):
lowerCAmelCase__ = Node(__UpperCAmelCase , self.head )
def __iter__( self )-> Iterator[int]:
'''simple docstring'''
lowerCAmelCase__ = self.head
while node:
yield node.data
lowerCAmelCase__ = node.next_node
def __len__( self )-> int:
'''simple docstring'''
return sum(1 for _ in self )
def __str__( self )-> str:
'''simple docstring'''
return " -> ".join([str(__UpperCAmelCase ) for node in self] )
def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList:
"""simple docstring"""
return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 340 | 1 |
from random import shuffle
import tensorflow as tf
from numpy import array
def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] ) -> str:
"""simple docstring"""
lowerCAmelCase__ = int(UpperCamelCase_ )
assert noofclusters < len(UpperCamelCase_ )
# Find out the dimensionality
lowerCAmelCase__ = len(vectors[0] )
# Will help select random centroids from among the available vectors
lowerCAmelCase__ = list(range(len(UpperCamelCase_ ) ) )
shuffle(UpperCamelCase_ )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
lowerCAmelCase__ = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
lowerCAmelCase__ = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
lowerCAmelCase__ = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(UpperCamelCase_ )
]
##These nodes will assign the centroid Variables the appropriate
##values
lowerCAmelCase__ = tf.placeholder("float64" , [dim] )
lowerCAmelCase__ = []
for centroid in centroids:
cent_assigns.append(tf.assign(UpperCamelCase_ , UpperCamelCase_ ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
lowerCAmelCase__ = [tf.Variable(0 ) for i in range(len(UpperCamelCase_ ) )]
##These nodes will assign an assignment Variable the appropriate
##value
lowerCAmelCase__ = tf.placeholder("int32" )
lowerCAmelCase__ = []
for assignment in assignments:
cluster_assigns.append(tf.assign(UpperCamelCase_ , UpperCamelCase_ ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
lowerCAmelCase__ = tf.placeholder("float" , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
lowerCAmelCase__ = tf.reduce_mean(UpperCamelCase_ , 0 )
##Node for computing Euclidean distances
# Placeholders for input
lowerCAmelCase__ = tf.placeholder("float" , [dim] )
lowerCAmelCase__ = tf.placeholder("float" , [dim] )
lowerCAmelCase__ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(UpperCamelCase_ , UpperCamelCase_ ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
lowerCAmelCase__ = tf.placeholder("float" , [noofclusters] )
lowerCAmelCase__ = tf.argmin(UpperCamelCase_ , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
lowerCAmelCase__ = tf.initialize_all_variables()
# Initialize all variables
sess.run(UpperCamelCase_ )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
lowerCAmelCase__ = 100
for _ in range(UpperCamelCase_ ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(UpperCamelCase_ ) ):
lowerCAmelCase__ = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
lowerCAmelCase__ = [
sess.run(UpperCamelCase_ , feed_dict={va: vect, va: sess.run(UpperCamelCase_ )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
lowerCAmelCase__ = sess.run(
UpperCamelCase_ , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(UpperCamelCase_ ):
# Collect all the vectors assigned to this cluster
lowerCAmelCase__ = [
vectors[i]
for i in range(len(UpperCamelCase_ ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
lowerCAmelCase__ = sess.run(
UpperCamelCase_ , feed_dict={mean_input: array(UpperCamelCase_ )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
lowerCAmelCase__ = sess.run(UpperCamelCase_ )
lowerCAmelCase__ = sess.run(UpperCamelCase_ )
return centroids, assignments
| 340 |
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
a_ = {
'''n_samples''': 64,
'''horizon''': 32,
'''num_inference_steps''': 20,
'''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network
'''scale_grad_by_std''': True,
'''scale''': 0.1,
'''eta''': 0.0,
'''t_grad_cutoff''': 2,
'''device''': '''cpu''',
}
if __name__ == "__main__":
a_ = '''hopper-medium-v2'''
a_ = gym.make(env_name)
a_ = ValueGuidedRLPipeline.from_pretrained(
'''bglick13/hopper-medium-v2-value-function-hor32''',
env=env,
)
env.seed(0)
a_ = env.reset()
a_ = 0
a_ = 0
a_ = 1000
a_ = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
a_ = pipeline(obs, planning_horizon=32)
# execute action in environment
a_, a_, a_, a_ = env.step(denorm_actions)
a_ = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"
F" {total_score}"
)
# save observations for rendering
rollout.append(next_observation.copy())
a_ = next_observation
except KeyboardInterrupt:
pass
print(F"Total reward: {total_reward}")
| 340 | 1 |
import collections
import importlib.util
import os
import re
from pathlib import Path
a_ = '''src/transformers'''
# Matches is_xxx_available()
a_ = re.compile(r'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
a_ = re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
a_ = re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
a_ = re.compile(r'''^\s*try:''')
# Catches a line with else:
a_ = re.compile(r'''^\s*else:''')
def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
if _re_test_backend.search(UpperCamelCase_ ) is None:
return None
lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )]
backends.sort()
return "_and_".join(UpperCamelCase_ )
def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple:
"""simple docstring"""
with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase__ = f.readlines()
lowerCAmelCase__ = 0
while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(UpperCamelCase_ ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCAmelCase__ = []
while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None:
lowerCAmelCase__ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(UpperCamelCase_ ):
lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0]
lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(", " )] )
line_index += 1
continue
lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ )
if single_line_import_search is not None:
lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
line_index += 1
lowerCAmelCase__ = {"none": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("if TYPE_CHECKING" ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCAmelCase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ):
lowerCAmelCase__ = lines[line_index]
if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None:
objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] )
elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None:
lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " )
lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif _re_between_brackets.search(UpperCamelCase_ ) is not None:
lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " )
lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif _re_quote_object.search(UpperCamelCase_ ) is not None:
objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
elif line.startswith(" " * 12 + "\"" ):
objects.append(line[13:-3] )
line_index += 1
lowerCAmelCase__ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCAmelCase__ = []
while (
line_index < len(UpperCamelCase_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("else" )
):
lowerCAmelCase__ = lines[line_index]
lowerCAmelCase__ = _re_import.search(UpperCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCAmelCase__ = {"none": objects}
# Let's continue with backend-specific objects
while line_index < len(UpperCamelCase_ ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCAmelCase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ):
lowerCAmelCase__ = lines[line_index]
lowerCAmelCase__ = _re_import.search(UpperCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowerCAmelCase__ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str:
"""simple docstring"""
def find_duplicates(UpperCamelCase_ : str ):
return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCAmelCase__ = []
for key in import_dict_objects.keys():
lowerCAmelCase__ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" )
lowerCAmelCase__ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend"
errors.append(F"Differences for {name}:" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F" {a} in TYPE_HINT but not in _import_structure." )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F" {a} in _import_structure but not in TYPE_HINT." )
return errors
def _a ( ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = []
for root, _, files in os.walk(UpperCamelCase_ ):
if "__init__.py" in files:
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" )
lowerCAmelCase__ = parse_init(UpperCamelCase_ )
if objects is not None:
lowerCAmelCase__ = analyze_results(*UpperCamelCase_ )
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"
failures.append("\n".join(UpperCamelCase_ ) )
if len(UpperCamelCase_ ) > 0:
raise ValueError("\n\n".join(UpperCamelCase_ ) )
def _a ( ) -> str:
"""simple docstring"""
lowerCAmelCase__ = []
for path, directories, files in os.walk(UpperCamelCase_ ):
for folder in directories:
# Ignore private modules
if folder.startswith("_" ):
directories.remove(UpperCamelCase_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0:
continue
lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) )
lowerCAmelCase__ = short_path.replace(os.path.sep , "." )
submodules.append(UpperCamelCase_ )
for fname in files:
if fname == "__init__.py":
continue
lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) )
lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." )
if len(submodule.split("." ) ) == 1:
submodules.append(UpperCamelCase_ )
return submodules
a_ = [
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def _a ( ) -> int:
"""simple docstring"""
lowerCAmelCase__ = importlib.util.spec_from_file_location(
"transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
lowerCAmelCase__ = spec.loader.load_module()
lowerCAmelCase__ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered )
raise ValueError(
"The following submodules are not properly registered in the main init of Transformers:\n"
F"{list_of_modules}\n"
"Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 340 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
a_ = '''src/transformers'''
a_ = '''docs/source/en/tasks'''
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple:
"""simple docstring"""
with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase__ = f.readlines()
# Find the start prompt.
lowerCAmelCase__ = 0
while not lines[start_index].startswith(UpperCamelCase_ ):
start_index += 1
start_index += 1
lowerCAmelCase__ = start_index
while not lines[end_index].startswith(UpperCamelCase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
a_ = direct_transformers_import(TRANSFORMERS_PATH)
a_ = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
a_ = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide]
lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() )
lowerCAmelCase__ = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n"
def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file(
filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , )
lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ )
if current_list != new_list:
if overwrite:
with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"
" to fix this." )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
a_ = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 340 | 1 |
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
a_ = logging.get_logger(__name__)
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase )-> None:
'''simple docstring'''
warnings.warn(
"The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use PoolFormerImageProcessor instead." , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 340 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
a_ = logging.get_logger(__name__)
a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS}
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]:
"""simple docstring"""
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." )
if tokenizer_name is None:
lowerCAmelCase__ = TOKENIZER_CLASSES
else:
lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )}
logger.info(F"Loading tokenizer classes: {tokenizer_names}" )
for tokenizer_name in tokenizer_names:
lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name]
lowerCAmelCase__ = True
if checkpoint_name is None:
lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() )
else:
lowerCAmelCase__ = [checkpoint_name]
logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" )
for checkpoint in checkpoint_names:
logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" )
# Load tokenizer
lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ )
# Save fast tokenizer
logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" )
# For organization names we create sub-directories
if "/" in checkpoint:
lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
elif add_prefix:
lowerCAmelCase__ = checkpoint
lowerCAmelCase__ = dump_path
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = dump_path
logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0]
if next_char == "/":
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = None
logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" )
lowerCAmelCase__ = tokenizer.save_pretrained(
UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ )
logger.info(F"=> File names {file_names}" )
for file_name in file_names:
if not file_name.endswith("tokenizer.json" ):
os.remove(UpperCamelCase_ )
logger.info(F"=> removing {file_name}" )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.'''
)
parser.add_argument(
'''--tokenizer_name''',
default=None,
type=str,
help=(
F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will "
'''download and convert all the checkpoints from AWS.'''
),
)
parser.add_argument(
'''--checkpoint_name''',
default=None,
type=str,
help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''',
)
parser.add_argument(
'''--force_download''',
action='''store_true''',
help='''Re-download checkpoints.''',
)
a_ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 340 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a_ = {
'''configuration_clipseg''': [
'''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''CLIPSegConfig''',
'''CLIPSegTextConfig''',
'''CLIPSegVisionConfig''',
],
'''processing_clipseg''': ['''CLIPSegProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CLIPSegModel''',
'''CLIPSegPreTrainedModel''',
'''CLIPSegTextModel''',
'''CLIPSegVisionModel''',
'''CLIPSegForImageSegmentation''',
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 340 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ )
lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ )
lowerCAmelCase__ = tok.pad_token_id
def get_lens(UpperCamelCase_ : str ):
lowerCAmelCase__ = tqdm(
DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
lowerCAmelCase__ = []
for batch in dl:
lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist()
lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ):
max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) )
else:
max_lens.extend(UpperCamelCase_ )
return max_lens
lowerCAmelCase__ = get_lens(UpperCamelCase_ )
lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ )
lowerCAmelCase__ = get_lens(UpperCamelCase_ )
pickle_save(UpperCamelCase_ , train_ds.len_file )
pickle_save(UpperCamelCase_ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 340 | 1 |
import logging
from transformers.configuration_utils import PretrainedConfig
a_ = logging.getLogger(__name__)
class lowercase__ ( _UpperCAmelCase ):
a_ ="""masked_bert"""
def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0 , __UpperCAmelCase="topK" , __UpperCAmelCase="constant" , __UpperCAmelCase=0.0 , **__UpperCAmelCase , )-> Optional[Any]:
'''simple docstring'''
super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = type_vocab_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = pruning_method
lowerCAmelCase__ = mask_init
lowerCAmelCase__ = mask_scale
| 340 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""xlnet"""
a_ =["""mems"""]
a_ ={
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int:
'''simple docstring'''
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = n_layer
lowerCAmelCase__ = n_head
if d_model % n_head != 0:
raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" )
lowerCAmelCase__ = d_model // n_head
lowerCAmelCase__ = ff_activation
lowerCAmelCase__ = d_inner
lowerCAmelCase__ = untie_r
lowerCAmelCase__ = attn_type
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = dropout
lowerCAmelCase__ = mem_len
lowerCAmelCase__ = reuse_len
lowerCAmelCase__ = bi_data
lowerCAmelCase__ = clamp_len
lowerCAmelCase__ = same_length
lowerCAmelCase__ = summary_type
lowerCAmelCase__ = summary_use_proj
lowerCAmelCase__ = summary_activation
lowerCAmelCase__ = summary_last_dropout
lowerCAmelCase__ = start_n_top
lowerCAmelCase__ = end_n_top
lowerCAmelCase__ = bos_token_id
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs["use_cache"]
lowerCAmelCase__ = use_mems_eval
lowerCAmelCase__ = use_mems_train
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." )
return -1
@max_position_embeddings.setter
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError(
F"The model {self.model_type} is one of the few models that has no sequence length limit." )
| 340 | 1 |
def _a ( UpperCamelCase_ : int ) -> str:
"""simple docstring"""
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise TypeError("'float' object cannot be interpreted as an integer" )
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise TypeError("'str' object cannot be interpreted as an integer" )
if num == 0:
return "0b0"
lowerCAmelCase__ = False
if num < 0:
lowerCAmelCase__ = True
lowerCAmelCase__ = -num
lowerCAmelCase__ = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(UpperCamelCase_ ) for e in binary )
return "0b" + "".join(str(UpperCamelCase_ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 340 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("module.cls_token", "vit.embeddings.cls_token"),
("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("module.pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("module.norm.weight", "layernorm.weight"),
("module.norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase__ = ""
else:
lowerCAmelCase__ = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" )
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase__ = in_proj_bias[: config.hidden_size]
lowerCAmelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase__ = in_proj_bias[-config.hidden_size :]
def _a ( UpperCamelCase_ : Dict ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = [
"module.fc.fc1.weight",
"module.fc.fc1.bias",
"module.fc.bn1.weight",
"module.fc.bn1.bias",
"module.fc.bn1.running_mean",
"module.fc.bn1.running_var",
"module.fc.bn1.num_batches_tracked",
"module.fc.fc2.weight",
"module.fc.fc2.bias",
"module.fc.bn2.weight",
"module.fc.bn2.bias",
"module.fc.bn2.running_mean",
"module.fc.bn2.running_var",
"module.fc.bn2.num_batches_tracked",
"module.fc.fc3.weight",
"module.fc.fc3.bias",
]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = dct.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ViTMSNConfig()
lowerCAmelCase__ = 1_000
lowerCAmelCase__ = "datasets/huggingface/label-files"
lowerCAmelCase__ = "imagenet-1k-id2label.json"
lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) )
lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
lowerCAmelCase__ = idalabel
lowerCAmelCase__ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowerCAmelCase__ = 384
lowerCAmelCase__ = 1_536
lowerCAmelCase__ = 6
elif "l16" in checkpoint_url:
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
elif "b4" in checkpoint_url:
lowerCAmelCase__ = 4
elif "l7" in checkpoint_url:
lowerCAmelCase__ = 7
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ )
lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"]
lowerCAmelCase__ = ViTImageProcessor(size=config.image_size )
remove_projection_head(UpperCamelCase_ )
lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ )
for src, dest in rename_keys:
rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
lowerCAmelCase__ = ViTImageProcessor(
size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ )
lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" )
# forward pass
torch.manual_seed(2 )
lowerCAmelCase__ = model(**UpperCamelCase_ )
lowerCAmelCase__ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 )
print(F"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(UpperCamelCase_ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
a_ = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 340 | 1 |
import numpy as np
import datasets
a_ = '''
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
'''
a_ = '''\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
'''
a_ = '''
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric("mahalanobis")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{\'mahalanobis\': array([0.5])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class lowercase__ ( datasets.Metric ):
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> int:
'''simple docstring'''
lowerCAmelCase__ = np.array(__UpperCAmelCase )
lowerCAmelCase__ = np.array(__UpperCAmelCase )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
lowerCAmelCase__ = X - np.mean(__UpperCAmelCase )
lowerCAmelCase__ = np.cov(reference_distribution.T )
try:
lowerCAmelCase__ = np.linalg.inv(__UpperCAmelCase )
except np.linalg.LinAlgError:
lowerCAmelCase__ = np.linalg.pinv(__UpperCAmelCase )
lowerCAmelCase__ = np.dot(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = np.dot(__UpperCAmelCase , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 340 |
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
a_ = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase )
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
requires_backends(self , "vision" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int:
'''simple docstring'''
return super().__call__(__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = {}
if "candidate_labels" in kwargs:
lowerCAmelCase__ = kwargs["candidate_labels"]
if "hypothesis_template" in kwargs:
lowerCAmelCase__ = kwargs["hypothesis_template"]
return preprocess_params, {}, {}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = load_image(__UpperCAmelCase )
lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework )
lowerCAmelCase__ = candidate_labels
lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels]
lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase )
lowerCAmelCase__ = [text_inputs]
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> int:
'''simple docstring'''
lowerCAmelCase__ = model_inputs.pop("candidate_labels" )
lowerCAmelCase__ = model_inputs.pop("text_inputs" )
if isinstance(text_inputs[0] , __UpperCAmelCase ):
lowerCAmelCase__ = text_inputs[0]
else:
# Batching case.
lowerCAmelCase__ = text_inputs[0][0]
lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase )
lowerCAmelCase__ = {
"candidate_labels": candidate_labels,
"logits": outputs.logits_per_image,
}
return model_outputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = model_outputs.pop("candidate_labels" )
lowerCAmelCase__ = model_outputs["logits"][0]
if self.framework == "pt":
lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 )
lowerCAmelCase__ = probs.tolist()
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = [scores]
elif self.framework == "tf":
lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 )
lowerCAmelCase__ = probs.numpy().tolist()
else:
raise ValueError(F"Unsupported framework: {self.framework}" )
lowerCAmelCase__ = [
{"score": score, "label": candidate_label}
for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] )
]
return result
| 340 | 1 |
from __future__ import annotations
def _a ( UpperCamelCase_ : int ) -> bool:
"""simple docstring"""
lowerCAmelCase__ = str(UpperCamelCase_ )
return len(UpperCamelCase_ ) == 9 and set(UpperCamelCase_ ) == set("123456789" )
def _a ( ) -> int | None:
"""simple docstring"""
for base_num in range(9_999 , 4_999 , -1 ):
lowerCAmelCase__ = 100_002 * base_num
if is_9_pandigital(UpperCamelCase_ ):
return candidate
for base_num in range(333 , 99 , -1 ):
lowerCAmelCase__ = 1_002_003 * base_num
if is_9_pandigital(UpperCamelCase_ ):
return candidate
return None
if __name__ == "__main__":
print(F"{solution() = }")
| 340 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''')
class lowercase__ ( _UpperCAmelCase, unittest.TestCase ):
a_ =BartphoTokenizer
a_ =False
a_ =True
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
super().setUp()
lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"]
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] )
with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp:
for token in vocab_tokens:
fp.write(F"{token} {vocab_tokens[token]}\n" )
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "This is a<unk><unk> test"
return input_text, output_text
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split()
lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = tokens + [tokenizer.unk_token]
lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
| 340 | 1 |
from sklearn.metrics import matthews_corrcoef
import datasets
a_ = '''
Compute the Matthews correlation coefficient (MCC)
The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary and multiclass classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of
very different sizes. The MCC is in essence a correlation coefficient value
between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
an average random prediction and -1 an inverse prediction. The statistic
is also known as the phi coefficient. [source: Wikipedia]
'''
a_ = '''
Args:
predictions (list of int): Predicted labels, as returned by a model.
references (list of int): Ground truth labels.
sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.
Returns:
matthews_correlation (dict containing float): Matthews correlation.
Examples:
Example 1, a basic example with only predictions and references as inputs:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3])
>>> print(round(results[\'matthews_correlation\'], 2))
0.54
Example 2, the same example as above, but also including sample weights:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 3, 1, 1, 1, 2])
>>> print(round(results[\'matthews_correlation\'], 2))
0.1
Example 3, the same example as above, but with sample weights that cause a negative correlation:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 1, 0, 0, 0, 1])
>>> print(round(results[\'matthews_correlation\'], 2))
-0.25
'''
a_ = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class lowercase__ ( datasets.Metric ):
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("int32" ),
"references": datasets.Value("int32" ),
} ) , reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html"
] , )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None )-> Union[str, Any]:
'''simple docstring'''
return {
"matthews_correlation": float(matthews_corrcoef(__UpperCAmelCase , __UpperCAmelCase , sample_weight=__UpperCAmelCase ) ),
}
| 340 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
a_ = logging.get_logger(__name__)
a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a_ = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
a_ = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
a_ = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class lowercase__ ( _UpperCAmelCase ):
a_ =VOCAB_FILES_NAMES
a_ =PRETRAINED_VOCAB_FILES_MAP
a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ =PRETRAINED_INIT_CONFIGURATION
a_ =["""input_ids""", """attention_mask"""]
a_ =DistilBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) )
lowerCAmelCase__ = do_lower_case
lowerCAmelCase__ = strip_accents
lowerCAmelCase__ = tokenize_chinese_chars
lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase )
lowerCAmelCase__ = do_lower_case
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]:
'''simple docstring'''
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]:
'''simple docstring'''
lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 340 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
a_ = logging.get_logger(__name__)
a_ = {'''vocab_file''': '''vocab.txt'''}
a_ = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
a_ = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
a_ = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class lowercase__ ( _UpperCAmelCase ):
a_ =VOCAB_FILES_NAMES
a_ =PRETRAINED_VOCAB_FILES_MAP
a_ =PRETRAINED_INIT_CONFIGURATION
a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ =ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> Dict:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) )
lowerCAmelCase__ = do_lower_case
lowerCAmelCase__ = strip_accents
lowerCAmelCase__ = tokenize_chinese_chars
lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase )
lowerCAmelCase__ = do_lower_case
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]:
'''simple docstring'''
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]:
'''simple docstring'''
lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 340 |
a_ = '''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 340 | 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
a_ = (720, 1280) # Height, Width
a_ = (0.4, 0.6) # if height or width lower than this scale, drop it.
a_ = 1 / 100
a_ = ''''''
a_ = ''''''
a_ = ''''''
a_ = 250
def _a ( ) -> None:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ = get_dataset(UpperCamelCase_ , UpperCamelCase_ )
for index in range(UpperCamelCase_ ):
lowerCAmelCase__ = random.sample(range(len(UpperCamelCase_ ) ) , 4 )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = update_image_and_anno(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , filter_scale=UpperCamelCase_ , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
lowerCAmelCase__ = random_chars(32 )
lowerCAmelCase__ = path.split(os.sep )[-1].rsplit("." , 1 )[0]
lowerCAmelCase__ = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}"
cva.imwrite(F"{file_root}.jpg" , UpperCamelCase_ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" )
lowerCAmelCase__ = []
for anno in new_annos:
lowerCAmelCase__ = anno[3] - anno[1]
lowerCAmelCase__ = anno[4] - anno[2]
lowerCAmelCase__ = anno[1] + width / 2
lowerCAmelCase__ = anno[2] + height / 2
lowerCAmelCase__ = F"{anno[0]} {x_center} {y_center} {width} {height}"
annos_list.append(UpperCamelCase_ )
with open(F"{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> tuple[list, list]:
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for label_file in glob.glob(os.path.join(UpperCamelCase_ , "*.txt" ) ):
lowerCAmelCase__ = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(UpperCamelCase_ ) as in_file:
lowerCAmelCase__ = in_file.readlines()
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , F"{label_name}.jpg" )
lowerCAmelCase__ = []
for obj_list in obj_lists:
lowerCAmelCase__ = obj_list.rstrip("\n" ).split(" " )
lowerCAmelCase__ = float(obj[1] ) - float(obj[3] ) / 2
lowerCAmelCase__ = float(obj[2] ) - float(obj[4] ) / 2
lowerCAmelCase__ = float(obj[1] ) + float(obj[3] ) / 2
lowerCAmelCase__ = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(UpperCamelCase_ )
labels.append(UpperCamelCase_ )
return img_paths, labels
def _a ( UpperCamelCase_ : list , UpperCamelCase_ : list , UpperCamelCase_ : list[int] , UpperCamelCase_ : tuple[int, int] , UpperCamelCase_ : tuple[float, float] , UpperCamelCase_ : float = 0.0 , ) -> tuple[list, list, str]:
"""simple docstring"""
lowerCAmelCase__ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
lowerCAmelCase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
lowerCAmelCase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
lowerCAmelCase__ = int(scale_x * output_size[1] )
lowerCAmelCase__ = int(scale_y * output_size[0] )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for i, index in enumerate(UpperCamelCase_ ):
lowerCAmelCase__ = all_img_list[index]
path_list.append(UpperCamelCase_ )
lowerCAmelCase__ = all_annos[index]
lowerCAmelCase__ = cva.imread(UpperCamelCase_ )
if i == 0: # top-left
lowerCAmelCase__ = cva.resize(UpperCamelCase_ , (divid_point_x, divid_point_y) )
lowerCAmelCase__ = img
for bbox in img_annos:
lowerCAmelCase__ = bbox[1] * scale_x
lowerCAmelCase__ = bbox[2] * scale_y
lowerCAmelCase__ = bbox[3] * scale_x
lowerCAmelCase__ = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
lowerCAmelCase__ = cva.resize(UpperCamelCase_ , (output_size[1] - divid_point_x, divid_point_y) )
lowerCAmelCase__ = img
for bbox in img_annos:
lowerCAmelCase__ = scale_x + bbox[1] * (1 - scale_x)
lowerCAmelCase__ = bbox[2] * scale_y
lowerCAmelCase__ = scale_x + bbox[3] * (1 - scale_x)
lowerCAmelCase__ = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
lowerCAmelCase__ = cva.resize(UpperCamelCase_ , (divid_point_x, output_size[0] - divid_point_y) )
lowerCAmelCase__ = img
for bbox in img_annos:
lowerCAmelCase__ = bbox[1] * scale_x
lowerCAmelCase__ = scale_y + bbox[2] * (1 - scale_y)
lowerCAmelCase__ = bbox[3] * scale_x
lowerCAmelCase__ = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
lowerCAmelCase__ = cva.resize(
UpperCamelCase_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
lowerCAmelCase__ = img
for bbox in img_annos:
lowerCAmelCase__ = scale_x + bbox[1] * (1 - scale_x)
lowerCAmelCase__ = scale_y + bbox[2] * (1 - scale_y)
lowerCAmelCase__ = scale_x + bbox[3] * (1 - scale_x)
lowerCAmelCase__ = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
lowerCAmelCase__ = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def _a ( UpperCamelCase_ : int ) -> str:
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
lowerCAmelCase__ = ascii_lowercase + digits
return "".join(random.choice(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ) )
if __name__ == "__main__":
main()
print('''DONE ✅''')
| 340 |
import collections
import importlib.util
import os
import re
from pathlib import Path
a_ = '''src/transformers'''
# Matches is_xxx_available()
a_ = re.compile(r'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
a_ = re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
a_ = re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
a_ = re.compile(r'''^\s*try:''')
# Catches a line with else:
a_ = re.compile(r'''^\s*else:''')
def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
if _re_test_backend.search(UpperCamelCase_ ) is None:
return None
lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )]
backends.sort()
return "_and_".join(UpperCamelCase_ )
def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple:
"""simple docstring"""
with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase__ = f.readlines()
lowerCAmelCase__ = 0
while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(UpperCamelCase_ ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCAmelCase__ = []
while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None:
lowerCAmelCase__ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(UpperCamelCase_ ):
lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0]
lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(", " )] )
line_index += 1
continue
lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ )
if single_line_import_search is not None:
lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
line_index += 1
lowerCAmelCase__ = {"none": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("if TYPE_CHECKING" ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCAmelCase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ):
lowerCAmelCase__ = lines[line_index]
if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None:
objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] )
elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None:
lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " )
lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif _re_between_brackets.search(UpperCamelCase_ ) is not None:
lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " )
lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif _re_quote_object.search(UpperCamelCase_ ) is not None:
objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
elif line.startswith(" " * 12 + "\"" ):
objects.append(line[13:-3] )
line_index += 1
lowerCAmelCase__ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCAmelCase__ = []
while (
line_index < len(UpperCamelCase_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("else" )
):
lowerCAmelCase__ = lines[line_index]
lowerCAmelCase__ = _re_import.search(UpperCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCAmelCase__ = {"none": objects}
# Let's continue with backend-specific objects
while line_index < len(UpperCamelCase_ ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCAmelCase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ):
lowerCAmelCase__ = lines[line_index]
lowerCAmelCase__ = _re_import.search(UpperCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowerCAmelCase__ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str:
"""simple docstring"""
def find_duplicates(UpperCamelCase_ : str ):
return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCAmelCase__ = []
for key in import_dict_objects.keys():
lowerCAmelCase__ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" )
lowerCAmelCase__ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend"
errors.append(F"Differences for {name}:" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F" {a} in TYPE_HINT but not in _import_structure." )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F" {a} in _import_structure but not in TYPE_HINT." )
return errors
def _a ( ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = []
for root, _, files in os.walk(UpperCamelCase_ ):
if "__init__.py" in files:
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" )
lowerCAmelCase__ = parse_init(UpperCamelCase_ )
if objects is not None:
lowerCAmelCase__ = analyze_results(*UpperCamelCase_ )
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"
failures.append("\n".join(UpperCamelCase_ ) )
if len(UpperCamelCase_ ) > 0:
raise ValueError("\n\n".join(UpperCamelCase_ ) )
def _a ( ) -> str:
"""simple docstring"""
lowerCAmelCase__ = []
for path, directories, files in os.walk(UpperCamelCase_ ):
for folder in directories:
# Ignore private modules
if folder.startswith("_" ):
directories.remove(UpperCamelCase_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0:
continue
lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) )
lowerCAmelCase__ = short_path.replace(os.path.sep , "." )
submodules.append(UpperCamelCase_ )
for fname in files:
if fname == "__init__.py":
continue
lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) )
lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." )
if len(submodule.split("." ) ) == 1:
submodules.append(UpperCamelCase_ )
return submodules
a_ = [
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def _a ( ) -> int:
"""simple docstring"""
lowerCAmelCase__ = importlib.util.spec_from_file_location(
"transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
lowerCAmelCase__ = spec.loader.load_module()
lowerCAmelCase__ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered )
raise ValueError(
"The following submodules are not properly registered in the main init of Transformers:\n"
F"{list_of_modules}\n"
"Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 340 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""poolformer"""
def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=4.0 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[64, 128, 320, 512] , __UpperCAmelCase=[7, 3, 3, 3] , __UpperCAmelCase=[4, 2, 2, 2] , __UpperCAmelCase=[2, 1, 1, 1] , __UpperCAmelCase=4 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.02 , **__UpperCAmelCase , )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = stride
lowerCAmelCase__ = padding
lowerCAmelCase__ = pool_size
lowerCAmelCase__ = hidden_sizes
lowerCAmelCase__ = mlp_ratio
lowerCAmelCase__ = depths
lowerCAmelCase__ = patch_sizes
lowerCAmelCase__ = strides
lowerCAmelCase__ = num_encoder_blocks
lowerCAmelCase__ = drop_path_rate
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = use_layer_scale
lowerCAmelCase__ = layer_scale_init_value
lowerCAmelCase__ = initializer_range
super().__init__(**__UpperCAmelCase )
class lowercase__ ( _UpperCAmelCase ):
a_ =version.parse("""1.11""" )
@property
def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def UpperCAmelCase ( self )-> float:
'''simple docstring'''
return 2E-3
| 340 |
from __future__ import annotations
import os
from collections.abc import Mapping
a_ = tuple[int, int]
class lowercase__ :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = vertices
lowerCAmelCase__ = {
(min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items()
}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None:
'''simple docstring'''
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
lowerCAmelCase__ = weight
def UpperCAmelCase ( self )-> Graph:
'''simple docstring'''
lowerCAmelCase__ = Graph({min(self.vertices )} , {} )
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
while len(subgraph.vertices ) < len(self.vertices ):
lowerCAmelCase__ = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowerCAmelCase__ = edge
lowerCAmelCase__ = weight
subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase )
return subgraph
def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int:
"""simple docstring"""
lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = {}
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
with open(UpperCamelCase_ ) as f:
lowerCAmelCase__ = f.read().strip().split("\n" )
lowerCAmelCase__ = [line.split("," ) for line in data]
for edgea in range(1 , len(UpperCamelCase_ ) ):
for edgea in range(UpperCamelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] )
lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ )
lowerCAmelCase__ = graph.prims_algorithm()
lowerCAmelCase__ = sum(graph.edges.values() )
lowerCAmelCase__ = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"{solution() = }")
| 340 | 1 |
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
a_ = get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
a_ = 5_0003
a_ = 5_0002
@require_sentencepiece
@require_tokenizers
class lowercase__ ( _UpperCAmelCase, unittest.TestCase ):
a_ =PLBartTokenizer
a_ =None
a_ =False
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase__ = PLBartTokenizer(__UpperCAmelCase , language_codes="base" , keep_accents=__UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = PLBartTokenizer(__UpperCAmelCase , language_codes="base" , keep_accents=__UpperCAmelCase )
lowerCAmelCase__ = tokenizer.tokenize("This is a test" )
self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
lowerCAmelCase__ = tokenizer.vocab_size
lowerCAmelCase__ = [tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) for x in range(end - 4 , __UpperCAmelCase )]
self.assertListEqual(__UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] )
lowerCAmelCase__ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
lowerCAmelCase__ = tokenizer(__UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) , __UpperCAmelCase , )
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = PLBartTokenizer(__UpperCAmelCase , language_codes="multi" , keep_accents=__UpperCAmelCase )
lowerCAmelCase__ = tokenizer.tokenize("This is a test" )
self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
lowerCAmelCase__ = tokenizer.vocab_size
lowerCAmelCase__ = [tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) for x in range(end - 7 , __UpperCAmelCase )]
self.assertListEqual(
__UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] )
lowerCAmelCase__ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
lowerCAmelCase__ = tokenizer(__UpperCAmelCase ).input_ids
self.assertEqual(
tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) , __UpperCAmelCase , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowercase__ ( unittest.TestCase ):
a_ ="""uclanlp/plbart-python-en_XX"""
a_ =[
"""def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""",
"""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""",
]
a_ =[
"""Returns the maximum value of a b c.""",
"""Sums the values of a b c.""",
]
a_ =[
134,
5_452,
33_460,
33_441,
33_463,
33_465,
33_463,
33_449,
988,
20,
33_456,
19,
33_456,
771,
39,
4_258,
889,
3_318,
33_441,
33_463,
33_465,
33_463,
33_449,
2_471,
2,
PYTHON_CODE,
]
@classmethod
def UpperCAmelCase ( cls )-> Any:
'''simple docstring'''
lowerCAmelCase__ = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" )
lowerCAmelCase__ = 1
return cls
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 )
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
self.assertIn(__UpperCAmelCase , self.tokenizer.all_special_ids )
lowerCAmelCase__ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2]
lowerCAmelCase__ = self.tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , __UpperCAmelCase )
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20]
self.assertIsInstance(src_text[0] , __UpperCAmelCase )
lowerCAmelCase__ = 10
lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , __UpperCAmelCase )
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] )
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = tempfile.mkdtemp()
lowerCAmelCase__ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = PLBartTokenizer.from_pretrained(__UpperCAmelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __UpperCAmelCase )
@require_torch
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , return_tensors="pt" )
lowerCAmelCase__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , __UpperCAmelCase )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
lowerCAmelCase__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
lowerCAmelCase__ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = self.tokenizer(self.src_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=3 , return_tensors="pt" )
lowerCAmelCase__ = self.tokenizer(
text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=10 , return_tensors="pt" )
lowerCAmelCase__ = targets["input_ids"]
lowerCAmelCase__ = shift_tokens_right(__UpperCAmelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" )
self.assertEqual(
nested_simplify(__UpperCAmelCase ) , {
# A, test, EOS, en_XX
"input_ids": [[150, 242, 2, 50003]],
"attention_mask": [[1, 1, 1, 1]],
# java
"forced_bos_token_id": 50001,
} , )
| 340 |
from collections import defaultdict
from math import gcd
def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int:
"""simple docstring"""
lowerCAmelCase__ = defaultdict(UpperCamelCase_ )
lowerCAmelCase__ = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ):
if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1:
continue
lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"{solution() = }")
| 340 | 1 |
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
a_ = logging.getLogger(__name__)
def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ) -> Tuple:
"""simple docstring"""
if os.path.exists(UpperCamelCase_ ):
if os.path.exists(os.path.join(UpperCamelCase_ , "config.json" ) ) and os.path.isfile(
os.path.join(UpperCamelCase_ , "config.json" ) ):
os.remove(os.path.join(UpperCamelCase_ , "config.json" ) )
if os.path.exists(os.path.join(UpperCamelCase_ , "pytorch_model.bin" ) ) and os.path.isfile(
os.path.join(UpperCamelCase_ , "pytorch_model.bin" ) ):
os.remove(os.path.join(UpperCamelCase_ , "pytorch_model.bin" ) )
else:
os.makedirs(UpperCamelCase_ )
model.save_pretrained(UpperCamelCase_ )
def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=False ) -> Any:
"""simple docstring"""
lowerCAmelCase__ = 2
if unlogit:
lowerCAmelCase__ = torch.pow(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = p * torch.log(UpperCamelCase_ )
lowerCAmelCase__ = 0
return -plogp.sum(dim=-1 )
def _a ( UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
logger.info("lv, h >\t" + "\t".join(F"{x + 1}" for x in range(len(UpperCamelCase_ ) ) ) )
for row in range(len(UpperCamelCase_ ) ):
if tensor.dtype != torch.long:
logger.info(F"layer {row + 1}:\t" + "\t".join(F"{x:.5f}" for x in tensor[row].cpu().data ) )
else:
logger.info(F"layer {row + 1}:\t" + "\t".join(F"{x:d}" for x in tensor[row].cpu().data ) )
def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : int=True , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=False ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ = model.config.num_hidden_layers, model.config.num_attention_heads
lowerCAmelCase__ = torch.zeros(UpperCamelCase_ , UpperCamelCase_ ).to(args.device )
lowerCAmelCase__ = torch.zeros(UpperCamelCase_ , UpperCamelCase_ ).to(args.device )
if head_mask is None:
lowerCAmelCase__ = torch.ones(UpperCamelCase_ , UpperCamelCase_ ).to(args.device )
head_mask.requires_grad_(requires_grad=UpperCamelCase_ )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
lowerCAmelCase__ = None
lowerCAmelCase__ = 0.0
lowerCAmelCase__ = 0.0
for step, inputs in enumerate(tqdm(UpperCamelCase_ , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ):
lowerCAmelCase__ = tuple(t.to(args.device ) for t in inputs )
((lowerCAmelCase__) , ) = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
lowerCAmelCase__ = model(UpperCamelCase_ , labels=UpperCamelCase_ , head_mask=UpperCamelCase_ )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(UpperCamelCase_ ):
lowerCAmelCase__ = entropy(attn.detach() , UpperCamelCase_ )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(UpperCamelCase_ ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
lowerCAmelCase__ = 2
lowerCAmelCase__ = torch.pow(torch.pow(UpperCamelCase_ , UpperCamelCase_ ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0
if not args.dont_normalize_global_importance:
lowerCAmelCase__ = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info("Attention entropies" )
print_ad_tensor(UpperCamelCase_ )
if compute_importance:
logger.info("Head importance scores" )
print_ad_tensor(UpperCamelCase_ )
logger.info("Head ranked by importance scores" )
lowerCAmelCase__ = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
lowerCAmelCase__ = torch.arange(
head_importance.numel() , device=args.device )
lowerCAmelCase__ = head_ranks.view_as(UpperCamelCase_ )
print_ad_tensor(UpperCamelCase_ )
return attn_entropy, head_importance, total_loss
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] ) -> int:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = compute_heads_importance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , compute_entropy=UpperCamelCase_ )
lowerCAmelCase__ = 1 / loss # instead of downsteam score use the LM loss
logger.info("Pruning: original score: %f, threshold: %f" , UpperCamelCase_ , original_score * args.masking_threshold )
lowerCAmelCase__ = torch.ones_like(UpperCamelCase_ )
lowerCAmelCase__ = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
lowerCAmelCase__ = original_score
while current_score >= original_score * args.masking_threshold:
lowerCAmelCase__ = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
lowerCAmelCase__ = float("Inf" )
lowerCAmelCase__ = head_importance.view(-1 ).sort()[1]
if len(UpperCamelCase_ ) <= num_to_mask:
print("BREAK BY num_to_mask" )
break
# mask heads
lowerCAmelCase__ = current_heads_to_mask[:num_to_mask]
logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) )
lowerCAmelCase__ = new_head_mask.view(-1 )
lowerCAmelCase__ = 0.0
lowerCAmelCase__ = new_head_mask.view_as(UpperCamelCase_ )
lowerCAmelCase__ = new_head_mask.clone().detach()
print_ad_tensor(UpperCamelCase_ )
# Compute metric and head importance again
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = compute_heads_importance(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , compute_entropy=UpperCamelCase_ , head_mask=UpperCamelCase_ )
lowerCAmelCase__ = 1 / loss
logger.info(
"Masking: current score: %f, remaining heads %d (%.1f percents)" , UpperCamelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , )
logger.info("Final head mask" )
print_ad_tensor(UpperCamelCase_ )
np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() )
return head_mask
def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ = datetime.now()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = compute_heads_importance(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , compute_entropy=UpperCamelCase_ , compute_importance=UpperCamelCase_ , head_mask=UpperCamelCase_ )
lowerCAmelCase__ = 1 / loss
lowerCAmelCase__ = datetime.now() - before_time
lowerCAmelCase__ = sum(p.numel() for p in model.parameters() )
lowerCAmelCase__ = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(UpperCamelCase_ ) )
}
for k, v in heads_to_prune.items():
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
lowerCAmelCase__ = [
v,
]
assert sum(len(UpperCamelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(UpperCamelCase_ )
lowerCAmelCase__ = sum(p.numel() for p in model.parameters() )
lowerCAmelCase__ = datetime.now()
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = compute_heads_importance(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , compute_entropy=UpperCamelCase_ , compute_importance=UpperCamelCase_ , head_mask=UpperCamelCase_ , actually_pruned=UpperCamelCase_ , )
lowerCAmelCase__ = 1 / loss
lowerCAmelCase__ = datetime.now() - before_time
logger.info(
"Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , UpperCamelCase_ , UpperCamelCase_ , pruned_num_params / original_num_params * 100 , )
logger.info("Pruning: score with masking: %f score with pruning: %f" , UpperCamelCase_ , UpperCamelCase_ )
logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 )
save_model(UpperCamelCase_ , args.output_dir )
def _a ( ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--data_dir" , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , )
parser.add_argument(
"--model_name_or_path" , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help="Path to pretrained model or model identifier from huggingface.co/models" , )
parser.add_argument(
"--output_dir" , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help="The output directory where the model predictions and checkpoints will be written." , )
# Other parameters
parser.add_argument(
"--config_name" , default="" , type=UpperCamelCase_ , help="Pretrained config name or path if not the same as model_name_or_path" , )
parser.add_argument(
"--tokenizer_name" , default="" , type=UpperCamelCase_ , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , )
parser.add_argument(
"--cache_dir" , default=UpperCamelCase_ , type=UpperCamelCase_ , help="Where do you want to store the pre-trained models downloaded from s3" , )
parser.add_argument(
"--data_subset" , type=UpperCamelCase_ , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." )
parser.add_argument(
"--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
parser.add_argument(
"--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" )
parser.add_argument(
"--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , )
parser.add_argument(
"--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." )
parser.add_argument(
"--masking_threshold" , default=0.9 , type=UpperCamelCase_ , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , )
parser.add_argument(
"--masking_amount" , default=0.1 , type=UpperCamelCase_ , help="Amount to heads to masking at each masking step." )
parser.add_argument("--metric_name" , default="acc" , type=UpperCamelCase_ , help="Metric to use for head masking." )
parser.add_argument(
"--max_seq_length" , default=128 , type=UpperCamelCase_ , help=(
"The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, sequences shorter padded."
) , )
parser.add_argument("--batch_size" , default=1 , type=UpperCamelCase_ , help="Batch size." )
parser.add_argument("--seed" , type=UpperCamelCase_ , default=42 )
parser.add_argument("--local_rank" , type=UpperCamelCase_ , default=-1 , help="local_rank for distributed training on gpus" )
parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" )
parser.add_argument("--server_ip" , type=UpperCamelCase_ , default="" , help="Can be used for distant debugging." )
parser.add_argument("--server_port" , type=UpperCamelCase_ , default="" , help="Can be used for distant debugging." )
lowerCAmelCase__ = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCamelCase_ )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
lowerCAmelCase__ = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" )
lowerCAmelCase__ = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
lowerCAmelCase__ = torch.device("cuda" , args.local_rank )
lowerCAmelCase__ = 1
torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
lowerCAmelCase__ = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
lowerCAmelCase__ = nn.parallel.DistributedDataParallel(
UpperCamelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=UpperCamelCase_ )
elif args.n_gpu > 1:
lowerCAmelCase__ = nn.DataParallel(UpperCamelCase_ )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=UpperCamelCase_ )
torch.save(UpperCamelCase_ , os.path.join(args.output_dir , "run_args.bin" ) )
logger.info("Training/evaluation parameters %s" , UpperCamelCase_ )
# Prepare dataset
lowerCAmelCase__ = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
lowerCAmelCase__ = (torch.from_numpy(UpperCamelCase_ ),)
lowerCAmelCase__ = TensorDataset(*UpperCamelCase_ )
lowerCAmelCase__ = RandomSampler(UpperCamelCase_ )
lowerCAmelCase__ = DataLoader(UpperCamelCase_ , sampler=UpperCamelCase_ , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
lowerCAmelCase__ = mask_heads(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
prune_heads(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if __name__ == "__main__":
main()
| 340 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase__ ( _UpperCAmelCase ):
a_ =["""image_processor""", """tokenizer"""]
a_ ="""LayoutLMv2ImageProcessor"""
a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""")
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple:
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs.pop("feature_extractor" )
lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes "
"if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." )
# first, apply the image processor
lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension)
lowerCAmelCase__ = features["words"]
lowerCAmelCase__ = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , )
# add pixel values
lowerCAmelCase__ = features.pop("pixel_values" )
if return_overflowing_tokens is True:
lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] )
lowerCAmelCase__ = images
return encoded_inputs
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" )
return images_with_overflow
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , )
return self.image_processor
| 340 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""sew"""
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase=2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __UpperCAmelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> Optional[Any]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = feat_extract_norm
lowerCAmelCase__ = feat_extract_activation
lowerCAmelCase__ = list(__UpperCAmelCase )
lowerCAmelCase__ = list(__UpperCAmelCase )
lowerCAmelCase__ = list(__UpperCAmelCase )
lowerCAmelCase__ = conv_bias
lowerCAmelCase__ = num_conv_pos_embeddings
lowerCAmelCase__ = num_conv_pos_embedding_groups
lowerCAmelCase__ = len(self.conv_dim )
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = squeeze_factor
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = hidden_dropout
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = activation_dropout
lowerCAmelCase__ = feat_proj_dropout
lowerCAmelCase__ = final_dropout
lowerCAmelCase__ = layerdrop
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect."
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"
F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCAmelCase__ = apply_spec_augment
lowerCAmelCase__ = mask_time_prob
lowerCAmelCase__ = mask_time_length
lowerCAmelCase__ = mask_time_min_masks
lowerCAmelCase__ = mask_feature_prob
lowerCAmelCase__ = mask_feature_length
lowerCAmelCase__ = mask_feature_min_masks
# ctc loss
lowerCAmelCase__ = ctc_loss_reduction
lowerCAmelCase__ = ctc_zero_infinity
# sequence classification
lowerCAmelCase__ = use_weighted_layer_sum
lowerCAmelCase__ = classifier_proj_size
@property
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 340 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__UpperCAmelCase ) )
lowerCAmelCase__ = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = self.get_rust_tokenizer()
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase )
self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" )
lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = processor(text=__UpperCAmelCase , return_tensors="np" )
lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = ["cat", "nasa badge"]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = [["cat", "nasa badge"], ["person"]]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
lowerCAmelCase__ = len(__UpperCAmelCase )
lowerCAmelCase__ = max([len(__UpperCAmelCase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = ["cat", "nasa badge"]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
lowerCAmelCase__ = inputs["input_ids"]
lowerCAmelCase__ = [
[49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase )
lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
| 340 | 1 |
a_ = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ = [False] * len(UpperCamelCase_ )
lowerCAmelCase__ = [s]
lowerCAmelCase__ = True
while queue:
lowerCAmelCase__ = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(UpperCamelCase_ )
lowerCAmelCase__ = True
lowerCAmelCase__ = u
return visited[t]
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Any:
"""simple docstring"""
lowerCAmelCase__ = [-1] * (len(UpperCamelCase_ ))
lowerCAmelCase__ = 0
lowerCAmelCase__ = []
lowerCAmelCase__ = [i[:] for i in graph] # Record original cut, copy.
while bfs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
lowerCAmelCase__ = float("Inf" )
lowerCAmelCase__ = sink
while s != source:
# Find the minimum value in select path
lowerCAmelCase__ = min(UpperCamelCase_ , graph[parent[s]][s] )
lowerCAmelCase__ = parent[s]
max_flow += path_flow
lowerCAmelCase__ = sink
while v != source:
lowerCAmelCase__ = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
lowerCAmelCase__ = parent[v]
for i in range(len(UpperCamelCase_ ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5))
| 340 |
from __future__ import annotations
from cmath import sqrt
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]:
"""simple docstring"""
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
lowerCAmelCase__ = b * b - 4 * a * c
lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a)
lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def _a ( ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main()
| 340 | 1 |
from __future__ import annotations
def _a ( UpperCamelCase_ : int | float | str , UpperCamelCase_ : int | float | str ) -> list[str]:
"""simple docstring"""
if nth_term == "":
return [""]
lowerCAmelCase__ = int(UpperCamelCase_ )
lowerCAmelCase__ = int(UpperCamelCase_ )
lowerCAmelCase__ = []
for temp in range(int(UpperCamelCase_ ) ):
series.append(F"1 / {pow(temp + 1 , int(UpperCamelCase_ ) )}" if series else "1" )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ = int(input('''Enter the last number (nth term) of the P-Series'''))
a_ = int(input('''Enter the power for P-Series'''))
print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''')
print(p_series(nth_term, power))
| 340 |
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts:
"""simple docstring"""
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise TypeError("number of qubits must be a integer." )
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0." )
if math.floor(UpperCamelCase_ ) != number_of_qubits:
raise ValueError("number of qubits must be exact integer." )
if number_of_qubits > 10:
raise ValueError("number of qubits too large to simulate(>10)." )
lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" )
lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" )
lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = number_of_qubits
for i in range(UpperCamelCase_ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(UpperCamelCase_ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ )
# simulate with 10000 shots
lowerCAmelCase__ = Aer.get_backend("qasm_simulator" )
lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 )
return job.result().get_counts(UpperCamelCase_ )
if __name__ == "__main__":
print(
F"Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"
)
| 340 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''naver-clova-ix/donut-base''': '''https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json''',
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""donut-swin"""
a_ ={
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=96 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[3, 6, 12, 24] , __UpperCAmelCase=7 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , **__UpperCAmelCase , )-> int:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
lowerCAmelCase__ = image_size
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = embed_dim
lowerCAmelCase__ = depths
lowerCAmelCase__ = len(__UpperCAmelCase )
lowerCAmelCase__ = num_heads
lowerCAmelCase__ = window_size
lowerCAmelCase__ = mlp_ratio
lowerCAmelCase__ = qkv_bias
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = drop_path_rate
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = use_absolute_embeddings
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase__ = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) )
| 340 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowercase__ ( _UpperCAmelCase ):
a_ ="""char"""
a_ ="""bpe"""
a_ ="""wp"""
a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowercase__ ( _UpperCAmelCase ):
a_ =["""image_processor""", """char_tokenizer"""]
a_ ="""ViTImageProcessor"""
a_ ="""MgpstrTokenizer"""
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs.pop("feature_extractor" )
lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
lowerCAmelCase__ = tokenizer
lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" )
lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]:
'''simple docstring'''
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None:
lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
lowerCAmelCase__ = encodings["input_ids"]
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences
lowerCAmelCase__ = char_preds.size(0 )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for i in range(__UpperCAmelCase ):
lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]]
lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]]
lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
lowerCAmelCase__ = {}
lowerCAmelCase__ = final_strs
lowerCAmelCase__ = final_scores
lowerCAmelCase__ = char_strs
lowerCAmelCase__ = bpe_strs
lowerCAmelCase__ = wp_strs
return out
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
if format == DecodeType.CHARACTER:
lowerCAmelCase__ = self.char_decode
lowerCAmelCase__ = 1
lowerCAmelCase__ = "[s]"
elif format == DecodeType.BPE:
lowerCAmelCase__ = self.bpe_decode
lowerCAmelCase__ = 2
lowerCAmelCase__ = "#"
elif format == DecodeType.WORDPIECE:
lowerCAmelCase__ = self.wp_decode
lowerCAmelCase__ = 102
lowerCAmelCase__ = "[SEP]"
else:
raise ValueError(F"Format {format} is not supported." )
lowerCAmelCase__ , lowerCAmelCase__ = [], []
lowerCAmelCase__ = pred_logits.size(0 )
lowerCAmelCase__ = pred_logits.size(1 )
lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase )
lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:]
lowerCAmelCase__ = decoder(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 )
lowerCAmelCase__ = preds_max_prob[:, 1:]
for index in range(__UpperCAmelCase ):
lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase )
lowerCAmelCase__ = preds_str[index][:pred_eos]
lowerCAmelCase__ = preds_index[index].cpu().tolist()
lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1
lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1]
lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__UpperCAmelCase )
conf_scores.append(__UpperCAmelCase )
return dec_strs, conf_scores
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
| 340 | 1 |
def _a ( UpperCamelCase_ : int = 1_000 ) -> int:
"""simple docstring"""
lowerCAmelCase__ = 3
lowerCAmelCase__ = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(F"{solution() = }")
| 340 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ = {
'''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''],
'''tokenization_convbert''': ['''ConvBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['''ConvBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConvBertForMaskedLM''',
'''ConvBertForMultipleChoice''',
'''ConvBertForQuestionAnswering''',
'''ConvBertForSequenceClassification''',
'''ConvBertForTokenClassification''',
'''ConvBertLayer''',
'''ConvBertModel''',
'''ConvBertPreTrainedModel''',
'''load_tf_weights_in_convbert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFConvBertForMaskedLM''',
'''TFConvBertForMultipleChoice''',
'''TFConvBertForQuestionAnswering''',
'''TFConvBertForSequenceClassification''',
'''TFConvBertForTokenClassification''',
'''TFConvBertLayer''',
'''TFConvBertModel''',
'''TFConvBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 340 | 1 |
from __future__ import annotations
from collections.abc import Iterator
class lowercase__ :
def __init__( self , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = value
lowerCAmelCase__ = None
lowerCAmelCase__ = None
class lowercase__ :
def __init__( self , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = tree
def UpperCAmelCase ( self , __UpperCAmelCase )-> int:
'''simple docstring'''
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__( self )-> Iterator[int]:
'''simple docstring'''
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 340 |
from collections import defaultdict
def _a ( UpperCamelCase_ : int ) -> int:
"""simple docstring"""
lowerCAmelCase__ = 1
lowerCAmelCase__ = True
for v in tree[start]:
if v not in visited:
ret += dfs(UpperCamelCase_ )
if ret % 2 == 0:
cuts.append(UpperCamelCase_ )
return ret
def _a ( ) -> Optional[Any]:
"""simple docstring"""
dfs(1 )
if __name__ == "__main__":
a_, a_ = 10, 9
a_ = defaultdict(list)
a_ = {}
a_ = []
a_ = 0
a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1)
| 340 | 1 |
from __future__ import annotations
a_ = 8.9_8_8E9 # units = N * m^s * C^-2
def _a ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ) -> dict[str, float]:
"""simple docstring"""
lowerCAmelCase__ = abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if distance < 0:
raise ValueError("Distance cannot be negative" )
if force == 0:
lowerCAmelCase__ = COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
lowerCAmelCase__ = abs(UpperCamelCase_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
lowerCAmelCase__ = abs(UpperCamelCase_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
lowerCAmelCase__ = (COULOMBS_CONSTANT * charge_product / abs(UpperCamelCase_ )) ** 0.5
return {"distance": distance}
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 340 |
import requests
from bsa import BeautifulSoup
def _a ( UpperCamelCase_ : str = "AAPL" ) -> str:
"""simple docstring"""
lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"
lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" )
lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)"
return soup.find("div" , class_=class_ ).find("span" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
| 340 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''',
'''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''',
'''xlm-roberta-large-finetuned-conll02-dutch''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll02-spanish''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-english''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-german''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json'''
),
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""xlm-roberta"""
def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> Dict:
'''simple docstring'''
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = type_vocab_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = position_embedding_type
lowerCAmelCase__ = use_cache
lowerCAmelCase__ = classifier_dropout
class lowercase__ ( _UpperCAmelCase ):
@property
def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
lowerCAmelCase__ = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCAmelCase__ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 340 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
a_ = (3, 9, -11, 0, 7, 5, 1, -1)
a_ = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class lowercase__ :
a_ =42
a_ =42
class lowercase__ :
def __init__( self , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = None
for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ):
lowerCAmelCase__ = Node(__UpperCAmelCase , self.head )
def __iter__( self )-> Iterator[int]:
'''simple docstring'''
lowerCAmelCase__ = self.head
while node:
yield node.data
lowerCAmelCase__ = node.next_node
def __len__( self )-> int:
'''simple docstring'''
return sum(1 for _ in self )
def __str__( self )-> str:
'''simple docstring'''
return " -> ".join([str(__UpperCAmelCase ) for node in self] )
def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList:
"""simple docstring"""
return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 340 | 1 |
from __future__ import annotations
def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : list[int] , UpperCamelCase_ : list[int] , UpperCamelCase_ : list[list[str]] , UpperCamelCase_ : int , ) -> None:
"""simple docstring"""
lowerCAmelCase__ = len(UpperCamelCase_ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(UpperCamelCase_ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , UpperCamelCase_ , UpperCamelCase_ , )
def _a ( UpperCamelCase_ : int ) -> None:
"""simple docstring"""
lowerCAmelCase__ = []
depth_first_search([] , [] , [] , UpperCamelCase_ , UpperCamelCase_ )
# Print all the boards
for board in boards:
for column in board:
print(UpperCamelCase_ )
print("" )
print(len(UpperCamelCase_ ) , "solutions were found." )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 340 |
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
a_ = {
'''n_samples''': 64,
'''horizon''': 32,
'''num_inference_steps''': 20,
'''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network
'''scale_grad_by_std''': True,
'''scale''': 0.1,
'''eta''': 0.0,
'''t_grad_cutoff''': 2,
'''device''': '''cpu''',
}
if __name__ == "__main__":
a_ = '''hopper-medium-v2'''
a_ = gym.make(env_name)
a_ = ValueGuidedRLPipeline.from_pretrained(
'''bglick13/hopper-medium-v2-value-function-hor32''',
env=env,
)
env.seed(0)
a_ = env.reset()
a_ = 0
a_ = 0
a_ = 1000
a_ = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
a_ = pipeline(obs, planning_horizon=32)
# execute action in environment
a_, a_, a_, a_ = env.step(denorm_actions)
a_ = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"
F" {total_score}"
)
# save observations for rendering
rollout.append(next_observation.copy())
a_ = next_observation
except KeyboardInterrupt:
pass
print(F"Total reward: {total_reward}")
| 340 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"]
# fmt: on
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
lowerCAmelCase__ = {
"do_resize": True,
"size": {"height": 18, "width": 18},
"do_normalize": True,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5],
}
lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Tuple:
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> int:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 )
lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" )
lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = tokenizer(__UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with self.assertRaises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase )
lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 340 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
a_ = '''src/transformers'''
a_ = '''docs/source/en/tasks'''
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple:
"""simple docstring"""
with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase__ = f.readlines()
# Find the start prompt.
lowerCAmelCase__ = 0
while not lines[start_index].startswith(UpperCamelCase_ ):
start_index += 1
start_index += 1
lowerCAmelCase__ = start_index
while not lines[end_index].startswith(UpperCamelCase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
a_ = direct_transformers_import(TRANSFORMERS_PATH)
a_ = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
a_ = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide]
lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() )
lowerCAmelCase__ = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n"
def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file(
filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , )
lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ )
if current_list != new_list:
if overwrite:
with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"
" to fix this." )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
a_ = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 340 | 1 |
import argparse
import copy
def _a ( UpperCamelCase_ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ = {}
with open(UpperCamelCase_ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
lowerCAmelCase__ = []
_list.append([line.split()[1], line.split()[2]] )
lowerCAmelCase__ = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
lowerCAmelCase__ = []
_list.append([line.split()[0], line.split()[2]] )
lowerCAmelCase__ = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple ) -> str:
"""simple docstring"""
with open(UpperCamelCase_ ) as f:
lowerCAmelCase__ = f.read(1 )
lowerCAmelCase__ = start_node
lowerCAmelCase__ = []
lowerCAmelCase__ = start_node
lowerCAmelCase__ = 0
while visiting not in first_solution:
lowerCAmelCase__ = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(UpperCamelCase_ ) and k[0] not in first_solution:
lowerCAmelCase__ = k[1]
lowerCAmelCase__ = k[0]
first_solution.append(UpperCamelCase_ )
lowerCAmelCase__ = distance_of_first_solution + int(UpperCamelCase_ )
lowerCAmelCase__ = best_node
first_solution.append(UpperCamelCase_ )
lowerCAmelCase__ = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
lowerCAmelCase__ = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ = []
for n in solution[1:-1]:
lowerCAmelCase__ = solution.index(UpperCamelCase_ )
for kn in solution[1:-1]:
lowerCAmelCase__ = solution.index(UpperCamelCase_ )
if n == kn:
continue
lowerCAmelCase__ = copy.deepcopy(UpperCamelCase_ )
lowerCAmelCase__ = kn
lowerCAmelCase__ = n
lowerCAmelCase__ = 0
for k in _tmp[:-1]:
lowerCAmelCase__ = _tmp[_tmp.index(UpperCamelCase_ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
lowerCAmelCase__ = distance + int(i[1] )
_tmp.append(UpperCamelCase_ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
lowerCAmelCase__ = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda UpperCamelCase_ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple ) -> int:
"""simple docstring"""
lowerCAmelCase__ = 1
lowerCAmelCase__ = first_solution
lowerCAmelCase__ = []
lowerCAmelCase__ = distance_of_first_solution
lowerCAmelCase__ = solution
while count <= iters:
lowerCAmelCase__ = find_neighborhood(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = 0
lowerCAmelCase__ = neighborhood[index_of_best_solution]
lowerCAmelCase__ = len(UpperCamelCase_ ) - 1
lowerCAmelCase__ = False
while not found:
lowerCAmelCase__ = 0
while i < len(UpperCamelCase_ ):
if best_solution[i] != solution[i]:
lowerCAmelCase__ = best_solution[i]
lowerCAmelCase__ = solution[i]
break
lowerCAmelCase__ = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
lowerCAmelCase__ = True
lowerCAmelCase__ = best_solution[:-1]
lowerCAmelCase__ = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
lowerCAmelCase__ = cost
lowerCAmelCase__ = solution
else:
lowerCAmelCase__ = index_of_best_solution + 1
lowerCAmelCase__ = neighborhood[index_of_best_solution]
if len(UpperCamelCase_ ) >= size:
tabu_list.pop(0 )
lowerCAmelCase__ = count + 1
return best_solution_ever, best_cost
def _a ( UpperCamelCase_ : str=None ) -> int:
"""simple docstring"""
lowerCAmelCase__ = generate_neighbours(args.File )
lowerCAmelCase__ , lowerCAmelCase__ = generate_first_solution(
args.File , UpperCamelCase_ )
lowerCAmelCase__ , lowerCAmelCase__ = tabu_search(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , args.Iterations , args.Size , )
print(F"Best solution: {best_sol}, with total distance: {best_cost}." )
if __name__ == "__main__":
a_ = argparse.ArgumentParser(description='''Tabu Search''')
parser.add_argument(
'''-f''',
'''--File''',
type=str,
help='''Path to the file containing the data''',
required=True,
)
parser.add_argument(
'''-i''',
'''--Iterations''',
type=int,
help='''How many iterations the algorithm should perform''',
required=True,
)
parser.add_argument(
'''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 340 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
a_ = logging.get_logger(__name__)
a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS}
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]:
"""simple docstring"""
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." )
if tokenizer_name is None:
lowerCAmelCase__ = TOKENIZER_CLASSES
else:
lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )}
logger.info(F"Loading tokenizer classes: {tokenizer_names}" )
for tokenizer_name in tokenizer_names:
lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name]
lowerCAmelCase__ = True
if checkpoint_name is None:
lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() )
else:
lowerCAmelCase__ = [checkpoint_name]
logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" )
for checkpoint in checkpoint_names:
logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" )
# Load tokenizer
lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ )
# Save fast tokenizer
logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" )
# For organization names we create sub-directories
if "/" in checkpoint:
lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
elif add_prefix:
lowerCAmelCase__ = checkpoint
lowerCAmelCase__ = dump_path
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = dump_path
logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0]
if next_char == "/":
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = None
logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" )
lowerCAmelCase__ = tokenizer.save_pretrained(
UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ )
logger.info(F"=> File names {file_names}" )
for file_name in file_names:
if not file_name.endswith("tokenizer.json" ):
os.remove(UpperCamelCase_ )
logger.info(F"=> removing {file_name}" )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.'''
)
parser.add_argument(
'''--tokenizer_name''',
default=None,
type=str,
help=(
F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will "
'''download and convert all the checkpoints from AWS.'''
),
)
parser.add_argument(
'''--checkpoint_name''',
default=None,
type=str,
help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''',
)
parser.add_argument(
'''--force_download''',
action='''store_true''',
help='''Re-download checkpoints.''',
)
a_ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 340 | 1 |
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''',
'''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''',
'''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''',
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""owlvit_text_model"""
def __init__( self , __UpperCAmelCase=49408 , __UpperCAmelCase=512 , __UpperCAmelCase=2048 , __UpperCAmelCase=12 , __UpperCAmelCase=8 , __UpperCAmelCase=16 , __UpperCAmelCase="quick_gelu" , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1.0 , __UpperCAmelCase=0 , __UpperCAmelCase=49406 , __UpperCAmelCase=49407 , **__UpperCAmelCase , )-> Optional[Any]:
'''simple docstring'''
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = initializer_factor
@classmethod
def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
lowerCAmelCase__ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase )
class lowercase__ ( _UpperCAmelCase ):
a_ ="""owlvit_vision_model"""
def __init__( self , __UpperCAmelCase=768 , __UpperCAmelCase=3072 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3 , __UpperCAmelCase=768 , __UpperCAmelCase=32 , __UpperCAmelCase="quick_gelu" , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1.0 , **__UpperCAmelCase , )-> List[str]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = image_size
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = initializer_factor
@classmethod
def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
lowerCAmelCase__ = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase )
class lowercase__ ( _UpperCAmelCase ):
a_ ="""owlvit"""
a_ =True
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=512 , __UpperCAmelCase=2.6_592 , __UpperCAmelCase=True , **__UpperCAmelCase , )-> List[str]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
if text_config is None:
lowerCAmelCase__ = {}
logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." )
if vision_config is None:
lowerCAmelCase__ = {}
logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." )
lowerCAmelCase__ = OwlViTTextConfig(**__UpperCAmelCase )
lowerCAmelCase__ = OwlViTVisionConfig(**__UpperCAmelCase )
lowerCAmelCase__ = projection_dim
lowerCAmelCase__ = logit_scale_init_value
lowerCAmelCase__ = return_dict
lowerCAmelCase__ = 1.0
@classmethod
def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase )
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase )
@classmethod
def UpperCAmelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = {}
lowerCAmelCase__ = text_config
lowerCAmelCase__ = vision_config
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = copy.deepcopy(self.__dict__ )
lowerCAmelCase__ = self.text_config.to_dict()
lowerCAmelCase__ = self.vision_config.to_dict()
lowerCAmelCase__ = self.__class__.model_type
return output
class lowercase__ ( _UpperCAmelCase ):
@property
def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
] )
@property
def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
] )
@property
def UpperCAmelCase ( self )-> float:
'''simple docstring'''
return 1E-4
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = None , )-> Mapping[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = super().generate_dummy_inputs(
processor.tokenizer , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , framework=__UpperCAmelCase )
lowerCAmelCase__ = super().generate_dummy_inputs(
processor.image_processor , batch_size=__UpperCAmelCase , framework=__UpperCAmelCase )
return {**text_input_dict, **image_input_dict}
@property
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
return 14
| 340 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ )
lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ )
lowerCAmelCase__ = tok.pad_token_id
def get_lens(UpperCamelCase_ : str ):
lowerCAmelCase__ = tqdm(
DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
lowerCAmelCase__ = []
for batch in dl:
lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist()
lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ):
max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) )
else:
max_lens.extend(UpperCamelCase_ )
return max_lens
lowerCAmelCase__ = get_lens(UpperCamelCase_ )
lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ )
lowerCAmelCase__ = get_lens(UpperCamelCase_ )
pickle_save(UpperCamelCase_ , train_ds.len_file )
pickle_save(UpperCamelCase_ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 340 | 1 |
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
a_ = logging.get_logger(__name__)
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , __UpperCAmelCase )-> List[Any]:
'''simple docstring'''
super().__init__()
lowerCAmelCase__ = nn.ModuleList(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = True , )-> Union[ControlNetOutput, Tuple]:
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(__UpperCAmelCase , __UpperCAmelCase , self.nets ) ):
lowerCAmelCase__ , lowerCAmelCase__ = controlnet(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , )
# merge samples
if i == 0:
lowerCAmelCase__ , lowerCAmelCase__ = down_samples, mid_sample
else:
lowerCAmelCase__ = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(__UpperCAmelCase , __UpperCAmelCase )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , )-> Any:
'''simple docstring'''
lowerCAmelCase__ = 0
lowerCAmelCase__ = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
__UpperCAmelCase , is_main_process=__UpperCAmelCase , save_function=__UpperCAmelCase , safe_serialization=__UpperCAmelCase , variant=__UpperCAmelCase , )
idx += 1
lowerCAmelCase__ = model_path_to_save + F"_{idx}"
@classmethod
def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = 0
lowerCAmelCase__ = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
lowerCAmelCase__ = pretrained_model_path
while os.path.isdir(__UpperCAmelCase ):
lowerCAmelCase__ = ControlNetModel.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase )
controlnets.append(__UpperCAmelCase )
idx += 1
lowerCAmelCase__ = pretrained_model_path + F"_{idx}"
logger.info(F"{len(__UpperCAmelCase )} controlnets loaded from {pretrained_model_path}." )
if len(__UpperCAmelCase ) == 0:
raise ValueError(
F"No ControlNets found under {os.path.dirname(__UpperCAmelCase )}. Expected at least {pretrained_model_path + '_0'}." )
return cls(__UpperCAmelCase )
| 340 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""xlnet"""
a_ =["""mems"""]
a_ ={
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int:
'''simple docstring'''
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = n_layer
lowerCAmelCase__ = n_head
if d_model % n_head != 0:
raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" )
lowerCAmelCase__ = d_model // n_head
lowerCAmelCase__ = ff_activation
lowerCAmelCase__ = d_inner
lowerCAmelCase__ = untie_r
lowerCAmelCase__ = attn_type
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = dropout
lowerCAmelCase__ = mem_len
lowerCAmelCase__ = reuse_len
lowerCAmelCase__ = bi_data
lowerCAmelCase__ = clamp_len
lowerCAmelCase__ = same_length
lowerCAmelCase__ = summary_type
lowerCAmelCase__ = summary_use_proj
lowerCAmelCase__ = summary_activation
lowerCAmelCase__ = summary_last_dropout
lowerCAmelCase__ = start_n_top
lowerCAmelCase__ = end_n_top
lowerCAmelCase__ = bos_token_id
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs["use_cache"]
lowerCAmelCase__ = use_mems_eval
lowerCAmelCase__ = use_mems_train
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." )
return -1
@max_position_embeddings.setter
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError(
F"The model {self.model_type} is one of the few models that has no sequence length limit." )
| 340 | 1 |
from arguments import InitializationArguments
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
# Configuration
a_ = HfArgumentParser(InitializationArguments)
a_ = parser.parse_args()
# Load codeparrot tokenizer trained for Python code tokenization
a_ = AutoTokenizer.from_pretrained(args.tokenizer_name)
# Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks
a_ = {
'''vocab_size''': len(tokenizer),
'''scale_attn_by_inverse_layer_idx''': True,
'''reorder_and_upcast_attn''': True,
}
# Load model config (GPT-2 large in this case)
a_ = AutoConfig.from_pretrained(args.config_name, **config_kwargs)
# Initialize new model with config
a_ = AutoModelForCausalLM.from_config(config)
# Save model to the hub
model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
| 340 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("module.cls_token", "vit.embeddings.cls_token"),
("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("module.pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("module.norm.weight", "layernorm.weight"),
("module.norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase__ = ""
else:
lowerCAmelCase__ = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" )
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase__ = in_proj_bias[: config.hidden_size]
lowerCAmelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase__ = in_proj_bias[-config.hidden_size :]
def _a ( UpperCamelCase_ : Dict ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = [
"module.fc.fc1.weight",
"module.fc.fc1.bias",
"module.fc.bn1.weight",
"module.fc.bn1.bias",
"module.fc.bn1.running_mean",
"module.fc.bn1.running_var",
"module.fc.bn1.num_batches_tracked",
"module.fc.fc2.weight",
"module.fc.fc2.bias",
"module.fc.bn2.weight",
"module.fc.bn2.bias",
"module.fc.bn2.running_mean",
"module.fc.bn2.running_var",
"module.fc.bn2.num_batches_tracked",
"module.fc.fc3.weight",
"module.fc.fc3.bias",
]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = dct.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ViTMSNConfig()
lowerCAmelCase__ = 1_000
lowerCAmelCase__ = "datasets/huggingface/label-files"
lowerCAmelCase__ = "imagenet-1k-id2label.json"
lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) )
lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
lowerCAmelCase__ = idalabel
lowerCAmelCase__ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowerCAmelCase__ = 384
lowerCAmelCase__ = 1_536
lowerCAmelCase__ = 6
elif "l16" in checkpoint_url:
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
elif "b4" in checkpoint_url:
lowerCAmelCase__ = 4
elif "l7" in checkpoint_url:
lowerCAmelCase__ = 7
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ )
lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"]
lowerCAmelCase__ = ViTImageProcessor(size=config.image_size )
remove_projection_head(UpperCamelCase_ )
lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ )
for src, dest in rename_keys:
rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
lowerCAmelCase__ = ViTImageProcessor(
size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ )
lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" )
# forward pass
torch.manual_seed(2 )
lowerCAmelCase__ = model(**UpperCamelCase_ )
lowerCAmelCase__ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 )
print(F"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(UpperCamelCase_ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
a_ = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 340 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a_ = {
'''configuration_blip_2''': [
'''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Blip2Config''',
'''Blip2QFormerConfig''',
'''Blip2VisionConfig''',
],
'''processing_blip_2''': ['''Blip2Processor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Blip2Model''',
'''Blip2QFormerModel''',
'''Blip2PreTrainedModel''',
'''Blip2ForConditionalGeneration''',
'''Blip2VisionModel''',
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 340 |
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
a_ = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase )
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
requires_backends(self , "vision" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int:
'''simple docstring'''
return super().__call__(__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = {}
if "candidate_labels" in kwargs:
lowerCAmelCase__ = kwargs["candidate_labels"]
if "hypothesis_template" in kwargs:
lowerCAmelCase__ = kwargs["hypothesis_template"]
return preprocess_params, {}, {}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = load_image(__UpperCAmelCase )
lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework )
lowerCAmelCase__ = candidate_labels
lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels]
lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase )
lowerCAmelCase__ = [text_inputs]
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> int:
'''simple docstring'''
lowerCAmelCase__ = model_inputs.pop("candidate_labels" )
lowerCAmelCase__ = model_inputs.pop("text_inputs" )
if isinstance(text_inputs[0] , __UpperCAmelCase ):
lowerCAmelCase__ = text_inputs[0]
else:
# Batching case.
lowerCAmelCase__ = text_inputs[0][0]
lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase )
lowerCAmelCase__ = {
"candidate_labels": candidate_labels,
"logits": outputs.logits_per_image,
}
return model_outputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = model_outputs.pop("candidate_labels" )
lowerCAmelCase__ = model_outputs["logits"][0]
if self.framework == "pt":
lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 )
lowerCAmelCase__ = probs.tolist()
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = [scores]
elif self.framework == "tf":
lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 )
lowerCAmelCase__ = probs.numpy().tolist()
else:
raise ValueError(F"Unsupported framework: {self.framework}" )
lowerCAmelCase__ = [
{"score": score, "label": candidate_label}
for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] )
]
return result
| 340 | 1 |
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def _a ( UpperCamelCase_ : int ) -> str:
"""simple docstring"""
def wrapper(*UpperCamelCase_ : Dict , **UpperCamelCase_ : Optional[Any] ):
lowerCAmelCase__ = timeit.default_timer()
lowerCAmelCase__ = func(*UpperCamelCase_ , **UpperCamelCase_ )
lowerCAmelCase__ = timeit.default_timer() - starttime
return delta
lowerCAmelCase__ = func.__name__
return wrapper
def _a ( UpperCamelCase_ : dict , UpperCamelCase_ : int=100 , UpperCamelCase_ : Optional[int]=None ) -> str:
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ = seq_shapes or {}
for i in range(UpperCamelCase_ ):
lowerCAmelCase__ = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(UpperCamelCase_ , _ArrayXD ):
lowerCAmelCase__ = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(UpperCamelCase_ , datasets.Value ):
if v.dtype == "string":
lowerCAmelCase__ = "The small grey turtle was surprisingly fast when challenged."
else:
lowerCAmelCase__ = np.random.randint(10 , size=1 ).astype(v.dtype ).item()
elif isinstance(UpperCamelCase_ , datasets.Sequence ):
while isinstance(UpperCamelCase_ , datasets.Sequence ):
lowerCAmelCase__ = v.feature
lowerCAmelCase__ = seq_shapes[k]
lowerCAmelCase__ = np.random.rand(*UpperCamelCase_ ).astype(v.dtype )
lowerCAmelCase__ = data
dummy_data.append((i, example) )
return dummy_data
def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str=100 , UpperCamelCase_ : Dict=None ) -> int:
"""simple docstring"""
lowerCAmelCase__ = generate_examples(UpperCamelCase_ , num_examples=UpperCamelCase_ , seq_shapes=UpperCamelCase_ )
with ArrowWriter(features=UpperCamelCase_ , path=UpperCamelCase_ ) as writer:
for key, record in dummy_data:
lowerCAmelCase__ = features.encode_example(UpperCamelCase_ )
writer.write(UpperCamelCase_ )
lowerCAmelCase__ , lowerCAmelCase__ = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." )
lowerCAmelCase__ = datasets.Dataset.from_file(filename=UpperCamelCase_ , info=datasets.DatasetInfo(features=UpperCamelCase_ ) )
return dataset
| 340 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''')
class lowercase__ ( _UpperCAmelCase, unittest.TestCase ):
a_ =BartphoTokenizer
a_ =False
a_ =True
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
super().setUp()
lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"]
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] )
with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp:
for token in vocab_tokens:
fp.write(F"{token} {vocab_tokens[token]}\n" )
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "This is a<unk><unk> test"
return input_text, output_text
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split()
lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = tokens + [tokenizer.unk_token]
lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
| 340 | 1 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
a_ = '''\
@misc{wu2016googles,
title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},
author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey
and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin
Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto
Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and
Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes
and Jeffrey Dean},
year={2016},
eprint={1609.08144},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
'''
a_ = '''\
The BLEU score has some undesirable properties when used for single
sentences, as it was designed to be a corpus measure. We therefore
use a slightly different score for our RL experiments which we call
the \'GLEU score\'. For the GLEU score, we record all sub-sequences of
1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then
compute a recall, which is the ratio of the number of matching n-grams
to the number of total n-grams in the target (ground truth) sequence,
and a precision, which is the ratio of the number of matching n-grams
to the number of total n-grams in the generated output sequence. Then
GLEU score is simply the minimum of recall and precision. This GLEU
score\'s range is always between 0 (no matches) and 1 (all match) and
it is symmetrical when switching output and target. According to
our experiments, GLEU score correlates quite well with the BLEU
metric on a corpus level but does not have its drawbacks for our per
sentence reward objective.
'''
a_ = '''\
Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.
Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching
tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.
Args:
predictions (list of str): list of translations to score.
Each translation should be tokenized into a list of tokens.
references (list of list of str): list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.
max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.
Returns:
\'google_bleu\': google_bleu score
Examples:
Example 1:
>>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',
... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',
... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']
>>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',
... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',
... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']
>>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',
... \'interested\', \'in\', \'world\', \'history\']
>>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',
... \'because\', \'he\', \'read\', \'the\', \'book\']
>>> list_of_references = [[ref1a], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric("google_bleu")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results["google_bleu"], 2))
0.44
Example 2:
>>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',
... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',
... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']
>>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',
... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',
... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']
>>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',
... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',
... \'heed\', \'the\', \'cat\', \'commands\']
>>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',
... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',
... \'of\', \'the\', \'cat\']
>>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',
... \'interested\', \'in\', \'world\', \'history\']
>>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',
... \'because\', \'he\', \'read\', \'the\', \'book\']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric("google_bleu")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results["google_bleu"], 2))
0.61
Example 3:
>>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',
... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',
... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']
>>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',
... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',
... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']
>>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',
... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',
... \'heed\', \'the\', \'cat\', \'commands\']
>>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',
... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',
... \'of\', \'the\', \'cat\']
>>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',
... \'interested\', \'in\', \'world\', \'history\']
>>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',
... \'because\', \'he\', \'read\', \'the\', \'book\']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric("google_bleu")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)
>>> print(round(results["google_bleu"], 2))
0.53
Example 4:
>>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',
... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',
... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']
>>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',
... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',
... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']
>>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',
... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',
... \'heed\', \'the\', \'cat\', \'commands\']
>>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',
... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',
... \'of\', \'the\', \'cat\']
>>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',
... \'interested\', \'in\', \'world\', \'history\']
>>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',
... \'because\', \'he\', \'read\', \'the\', \'book\']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric("google_bleu")
>>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)
>>> print(round(results["google_bleu"], 2))
0.4
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class lowercase__ ( datasets.Metric ):
def UpperCAmelCase ( self )-> MetricInfo:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = 4 , )-> Dict[str, float]:
'''simple docstring'''
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=__UpperCAmelCase , hypotheses=__UpperCAmelCase , min_len=__UpperCAmelCase , max_len=__UpperCAmelCase )
}
| 340 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
a_ = logging.get_logger(__name__)
a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a_ = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
a_ = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
a_ = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class lowercase__ ( _UpperCAmelCase ):
a_ =VOCAB_FILES_NAMES
a_ =PRETRAINED_VOCAB_FILES_MAP
a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ =PRETRAINED_INIT_CONFIGURATION
a_ =["""input_ids""", """attention_mask"""]
a_ =DistilBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) )
lowerCAmelCase__ = do_lower_case
lowerCAmelCase__ = strip_accents
lowerCAmelCase__ = tokenize_chinese_chars
lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase )
lowerCAmelCase__ = do_lower_case
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]:
'''simple docstring'''
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]:
'''simple docstring'''
lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 340 | 1 |
def _a ( UpperCamelCase_ : int = 100 ) -> int:
"""simple docstring"""
lowerCAmelCase__ = n * (n + 1) * (2 * n + 1) / 6
lowerCAmelCase__ = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(F"{solution() = }")
| 340 |
a_ = '''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 340 | 1 |
from statistics import mean
import numpy as np
def _a ( UpperCamelCase_ : list , UpperCamelCase_ : list , UpperCamelCase_ : list , UpperCamelCase_ : int ) -> list:
"""simple docstring"""
lowerCAmelCase__ = 0
# Number of processes finished
lowerCAmelCase__ = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
lowerCAmelCase__ = [0] * no_of_process
# List to include calculation results
lowerCAmelCase__ = [0] * no_of_process
# Sort by arrival time.
lowerCAmelCase__ = [burst_time[i] for i in np.argsort(UpperCamelCase_ )]
lowerCAmelCase__ = [process_name[i] for i in np.argsort(UpperCamelCase_ )]
arrival_time.sort()
while no_of_process > finished_process_count:
lowerCAmelCase__ = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
lowerCAmelCase__ = arrival_time[i]
lowerCAmelCase__ = 0
# Index showing the location of the process being performed
lowerCAmelCase__ = 0
# Saves the current response ratio.
lowerCAmelCase__ = 0
for i in range(0 , UpperCamelCase_ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
lowerCAmelCase__ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
lowerCAmelCase__ = temp
lowerCAmelCase__ = i
# Calculate the turn around time
lowerCAmelCase__ = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
lowerCAmelCase__ = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def _a ( UpperCamelCase_ : list , UpperCamelCase_ : list , UpperCamelCase_ : list , UpperCamelCase_ : int ) -> list:
"""simple docstring"""
lowerCAmelCase__ = [0] * no_of_process
for i in range(0 , UpperCamelCase_ ):
lowerCAmelCase__ = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
a_ = 5
a_ = ['''A''', '''B''', '''C''', '''D''', '''E''']
a_ = [1, 2, 3, 4, 5]
a_ = [1, 2, 3, 4, 5]
a_ = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
a_ = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''')
for i in range(0, no_of_process):
print(
F"{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t"
F"{turn_around_time[i]}\t\t\t{waiting_time[i]}"
)
print(F"average waiting time : {mean(waiting_time):.5f}")
print(F"average turn around time : {mean(turn_around_time):.5f}")
| 340 |
import collections
import importlib.util
import os
import re
from pathlib import Path
a_ = '''src/transformers'''
# Matches is_xxx_available()
a_ = re.compile(r'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
a_ = re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
a_ = re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
a_ = re.compile(r'''^\s*try:''')
# Catches a line with else:
a_ = re.compile(r'''^\s*else:''')
def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
if _re_test_backend.search(UpperCamelCase_ ) is None:
return None
lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )]
backends.sort()
return "_and_".join(UpperCamelCase_ )
def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple:
"""simple docstring"""
with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase__ = f.readlines()
lowerCAmelCase__ = 0
while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(UpperCamelCase_ ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCAmelCase__ = []
while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None:
lowerCAmelCase__ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(UpperCamelCase_ ):
lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0]
lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(", " )] )
line_index += 1
continue
lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ )
if single_line_import_search is not None:
lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
line_index += 1
lowerCAmelCase__ = {"none": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("if TYPE_CHECKING" ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCAmelCase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ):
lowerCAmelCase__ = lines[line_index]
if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None:
objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] )
elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None:
lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " )
lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif _re_between_brackets.search(UpperCamelCase_ ) is not None:
lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " )
lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif _re_quote_object.search(UpperCamelCase_ ) is not None:
objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
elif line.startswith(" " * 12 + "\"" ):
objects.append(line[13:-3] )
line_index += 1
lowerCAmelCase__ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCAmelCase__ = []
while (
line_index < len(UpperCamelCase_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("else" )
):
lowerCAmelCase__ = lines[line_index]
lowerCAmelCase__ = _re_import.search(UpperCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCAmelCase__ = {"none": objects}
# Let's continue with backend-specific objects
while line_index < len(UpperCamelCase_ ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCAmelCase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ):
lowerCAmelCase__ = lines[line_index]
lowerCAmelCase__ = _re_import.search(UpperCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowerCAmelCase__ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str:
"""simple docstring"""
def find_duplicates(UpperCamelCase_ : str ):
return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCAmelCase__ = []
for key in import_dict_objects.keys():
lowerCAmelCase__ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" )
lowerCAmelCase__ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend"
errors.append(F"Differences for {name}:" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F" {a} in TYPE_HINT but not in _import_structure." )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F" {a} in _import_structure but not in TYPE_HINT." )
return errors
def _a ( ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = []
for root, _, files in os.walk(UpperCamelCase_ ):
if "__init__.py" in files:
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" )
lowerCAmelCase__ = parse_init(UpperCamelCase_ )
if objects is not None:
lowerCAmelCase__ = analyze_results(*UpperCamelCase_ )
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"
failures.append("\n".join(UpperCamelCase_ ) )
if len(UpperCamelCase_ ) > 0:
raise ValueError("\n\n".join(UpperCamelCase_ ) )
def _a ( ) -> str:
"""simple docstring"""
lowerCAmelCase__ = []
for path, directories, files in os.walk(UpperCamelCase_ ):
for folder in directories:
# Ignore private modules
if folder.startswith("_" ):
directories.remove(UpperCamelCase_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0:
continue
lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) )
lowerCAmelCase__ = short_path.replace(os.path.sep , "." )
submodules.append(UpperCamelCase_ )
for fname in files:
if fname == "__init__.py":
continue
lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) )
lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." )
if len(submodule.split("." ) ) == 1:
submodules.append(UpperCamelCase_ )
return submodules
a_ = [
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def _a ( ) -> int:
"""simple docstring"""
lowerCAmelCase__ = importlib.util.spec_from_file_location(
"transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
lowerCAmelCase__ = spec.loader.load_module()
lowerCAmelCase__ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered )
raise ValueError(
"The following submodules are not properly registered in the main init of Transformers:\n"
F"{list_of_modules}\n"
"Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 340 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a_ = {
'''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['''VisionEncoderDecoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['''TFVisionEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['''FlaxVisionEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 340 |
from __future__ import annotations
import os
from collections.abc import Mapping
a_ = tuple[int, int]
class lowercase__ :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = vertices
lowerCAmelCase__ = {
(min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items()
}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None:
'''simple docstring'''
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
lowerCAmelCase__ = weight
def UpperCAmelCase ( self )-> Graph:
'''simple docstring'''
lowerCAmelCase__ = Graph({min(self.vertices )} , {} )
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
while len(subgraph.vertices ) < len(self.vertices ):
lowerCAmelCase__ = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowerCAmelCase__ = edge
lowerCAmelCase__ = weight
subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase )
return subgraph
def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int:
"""simple docstring"""
lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = {}
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
with open(UpperCamelCase_ ) as f:
lowerCAmelCase__ = f.read().strip().split("\n" )
lowerCAmelCase__ = [line.split("," ) for line in data]
for edgea in range(1 , len(UpperCamelCase_ ) ):
for edgea in range(UpperCamelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] )
lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ )
lowerCAmelCase__ = graph.prims_algorithm()
lowerCAmelCase__ = sum(graph.edges.values() )
lowerCAmelCase__ = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"{solution() = }")
| 340 | 1 |
from __future__ import annotations
import os
from collections.abc import Mapping
a_ = tuple[int, int]
class lowercase__ :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = vertices
lowerCAmelCase__ = {
(min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items()
}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None:
'''simple docstring'''
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
lowerCAmelCase__ = weight
def UpperCAmelCase ( self )-> Graph:
'''simple docstring'''
lowerCAmelCase__ = Graph({min(self.vertices )} , {} )
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
while len(subgraph.vertices ) < len(self.vertices ):
lowerCAmelCase__ = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowerCAmelCase__ = edge
lowerCAmelCase__ = weight
subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase )
return subgraph
def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int:
"""simple docstring"""
lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = {}
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
with open(UpperCamelCase_ ) as f:
lowerCAmelCase__ = f.read().strip().split("\n" )
lowerCAmelCase__ = [line.split("," ) for line in data]
for edgea in range(1 , len(UpperCamelCase_ ) ):
for edgea in range(UpperCamelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] )
lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ )
lowerCAmelCase__ = graph.prims_algorithm()
lowerCAmelCase__ = sum(graph.edges.values() )
lowerCAmelCase__ = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"{solution() = }")
| 340 |
from collections import defaultdict
from math import gcd
def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int:
"""simple docstring"""
lowerCAmelCase__ = defaultdict(UpperCamelCase_ )
lowerCAmelCase__ = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ):
if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1:
continue
lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"{solution() = }")
| 340 | 1 |
import colorsys
from PIL import Image # type: ignore
def _a ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : int ) -> float:
"""simple docstring"""
lowerCAmelCase__ = x
lowerCAmelCase__ = y
for step in range(UpperCamelCase_ ): # noqa: B007
lowerCAmelCase__ = a * a - b * b + x
lowerCAmelCase__ = 2 * a * b + y
lowerCAmelCase__ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def _a ( UpperCamelCase_ : float ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def _a ( UpperCamelCase_ : float ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCamelCase_ , 1 , 1 ) )
def _a ( UpperCamelCase_ : int = 800 , UpperCamelCase_ : int = 600 , UpperCamelCase_ : float = -0.6 , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 3.2 , UpperCamelCase_ : int = 50 , UpperCamelCase_ : bool = True , ) -> Image.Image:
"""simple docstring"""
lowerCAmelCase__ = Image.new("RGB" , (image_width, image_height) )
lowerCAmelCase__ = img.load()
# loop through the image-coordinates
for image_x in range(UpperCamelCase_ ):
for image_y in range(UpperCamelCase_ ):
# determine the figure-coordinates based on the image-coordinates
lowerCAmelCase__ = figure_width / image_width * image_height
lowerCAmelCase__ = figure_center_x + (image_x / image_width - 0.5) * figure_width
lowerCAmelCase__ = figure_center_y + (image_y / image_height - 0.5) * figure_height
lowerCAmelCase__ = get_distance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
lowerCAmelCase__ = get_color_coded_rgb(UpperCamelCase_ )
else:
lowerCAmelCase__ = get_black_and_white_rgb(UpperCamelCase_ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
a_ = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 340 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase__ ( _UpperCAmelCase ):
a_ =["""image_processor""", """tokenizer"""]
a_ ="""LayoutLMv2ImageProcessor"""
a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""")
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple:
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs.pop("feature_extractor" )
lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes "
"if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." )
# first, apply the image processor
lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension)
lowerCAmelCase__ = features["words"]
lowerCAmelCase__ = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , )
# add pixel values
lowerCAmelCase__ = features.pop("pixel_values" )
if return_overflowing_tokens is True:
lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] )
lowerCAmelCase__ = images
return encoded_inputs
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" )
return images_with_overflow
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , )
return self.image_processor
| 340 | 1 |
import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
a_ = '''Usage of script: script_name <size_of_canvas:int>'''
a_ = [0] * 100 + [1] * 10
random.shuffle(choice)
def _a ( UpperCamelCase_ : int ) -> list[list[bool]]:
"""simple docstring"""
lowerCAmelCase__ = [[False for i in range(UpperCamelCase_ )] for j in range(UpperCamelCase_ )]
return canvas
def _a ( UpperCamelCase_ : list[list[bool]] ) -> None:
"""simple docstring"""
for i, row in enumerate(UpperCamelCase_ ):
for j, _ in enumerate(UpperCamelCase_ ):
lowerCAmelCase__ = bool(random.getrandbits(1 ) )
def _a ( UpperCamelCase_ : list[list[bool]] ) -> list[list[bool]]:
"""simple docstring"""
lowerCAmelCase__ = np.array(UpperCamelCase_ )
lowerCAmelCase__ = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(UpperCamelCase_ ):
for c, pt in enumerate(UpperCamelCase_ ):
lowerCAmelCase__ = __judge_point(
UpperCamelCase_ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
lowerCAmelCase__ = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
lowerCAmelCase__ = current_canvas.tolist()
return return_canvas
def _a ( UpperCamelCase_ : bool , UpperCamelCase_ : list[list[bool]] ) -> bool:
"""simple docstring"""
lowerCAmelCase__ = 0
lowerCAmelCase__ = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
lowerCAmelCase__ = pt
if pt:
if alive < 2:
lowerCAmelCase__ = False
elif alive == 2 or alive == 3:
lowerCAmelCase__ = True
elif alive > 3:
lowerCAmelCase__ = False
else:
if alive == 3:
lowerCAmelCase__ = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
a_ = int(sys.argv[1])
# main working structure of this module.
a_ = create_canvas(canvas_size)
seed(c)
a_, a_ = plt.subplots()
fig.show()
a_ = ListedColormap(['''w''', '''k'''])
try:
while True:
a_ = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 340 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__UpperCAmelCase ) )
lowerCAmelCase__ = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = self.get_rust_tokenizer()
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase )
self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" )
lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = processor(text=__UpperCAmelCase , return_tensors="np" )
lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = ["cat", "nasa badge"]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = [["cat", "nasa badge"], ["person"]]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
lowerCAmelCase__ = len(__UpperCAmelCase )
lowerCAmelCase__ = max([len(__UpperCAmelCase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = ["cat", "nasa badge"]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
lowerCAmelCase__ = inputs["input_ids"]
lowerCAmelCase__ = [
[49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase )
lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
| 340 | 1 |
from .imports import is_rich_available
if is_rich_available():
from rich.traceback import install
install(show_locals=False)
else:
raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
| 340 |
from __future__ import annotations
from cmath import sqrt
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]:
"""simple docstring"""
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
lowerCAmelCase__ = b * b - 4 * a * c
lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a)
lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def _a ( ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main()
| 340 | 1 |
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
a_ = '''.'''
if __name__ == "__main__":
a_ = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''')
a_ = []
a_ = []
with open(doctest_file_path) as fp:
for line in fp:
a_ = line.strip()
a_ = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
a_ = '''\n'''.join(non_existent_paths)
raise ValueError(F"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}")
if all_paths != sorted(all_paths):
raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
| 340 |
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts:
"""simple docstring"""
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise TypeError("number of qubits must be a integer." )
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0." )
if math.floor(UpperCamelCase_ ) != number_of_qubits:
raise ValueError("number of qubits must be exact integer." )
if number_of_qubits > 10:
raise ValueError("number of qubits too large to simulate(>10)." )
lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" )
lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" )
lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = number_of_qubits
for i in range(UpperCamelCase_ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(UpperCamelCase_ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ )
# simulate with 10000 shots
lowerCAmelCase__ = Aer.get_backend("qasm_simulator" )
lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 )
return job.result().get_counts(UpperCamelCase_ )
if __name__ == "__main__":
print(
F"Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"
)
| 340 | 1 |
def _a ( UpperCamelCase_ : Tuple ) -> Union[str, Any]:
"""simple docstring"""
if not head:
return True
# split the list to two parts
lowerCAmelCase__ , lowerCAmelCase__ = head.next, head
while fast and fast.next:
lowerCAmelCase__ = fast.next.next
lowerCAmelCase__ = slow.next
lowerCAmelCase__ = slow.next
lowerCAmelCase__ = None # Don't forget here! But forget still works!
# reverse the second part
lowerCAmelCase__ = None
while second:
lowerCAmelCase__ = second.next
lowerCAmelCase__ = node
lowerCAmelCase__ = second
lowerCAmelCase__ = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
lowerCAmelCase__ = node.next
lowerCAmelCase__ = head.next
return True
def _a ( UpperCamelCase_ : Any ) -> int:
"""simple docstring"""
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
lowerCAmelCase__ = lowerCAmelCase__ = lowerCAmelCase__ = head
while fast and fast.next:
lowerCAmelCase__ , lowerCAmelCase__ = fast.next.next, slow.next
# 2. Push the second half into the stack
lowerCAmelCase__ = [slow.val]
while slow.next:
lowerCAmelCase__ = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
lowerCAmelCase__ = cur.next
return True
def _a ( UpperCamelCase_ : Optional[Any] ) -> str:
"""simple docstring"""
if not head or not head.next:
return True
lowerCAmelCase__ = {}
lowerCAmelCase__ = 0
while head:
if head.val in d:
d[head.val].append(UpperCamelCase_ )
else:
lowerCAmelCase__ = [pos]
lowerCAmelCase__ = head.next
pos += 1
lowerCAmelCase__ = pos - 1
lowerCAmelCase__ = 0
for v in d.values():
if len(UpperCamelCase_ ) % 2 != 0:
middle += 1
else:
lowerCAmelCase__ = 0
for i in range(0 , len(UpperCamelCase_ ) ):
if v[i] + v[len(UpperCamelCase_ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 340 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowercase__ ( _UpperCAmelCase ):
a_ ="""char"""
a_ ="""bpe"""
a_ ="""wp"""
a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowercase__ ( _UpperCAmelCase ):
a_ =["""image_processor""", """char_tokenizer"""]
a_ ="""ViTImageProcessor"""
a_ ="""MgpstrTokenizer"""
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs.pop("feature_extractor" )
lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
lowerCAmelCase__ = tokenizer
lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" )
lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]:
'''simple docstring'''
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None:
lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
lowerCAmelCase__ = encodings["input_ids"]
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences
lowerCAmelCase__ = char_preds.size(0 )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for i in range(__UpperCAmelCase ):
lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]]
lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]]
lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
lowerCAmelCase__ = {}
lowerCAmelCase__ = final_strs
lowerCAmelCase__ = final_scores
lowerCAmelCase__ = char_strs
lowerCAmelCase__ = bpe_strs
lowerCAmelCase__ = wp_strs
return out
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
if format == DecodeType.CHARACTER:
lowerCAmelCase__ = self.char_decode
lowerCAmelCase__ = 1
lowerCAmelCase__ = "[s]"
elif format == DecodeType.BPE:
lowerCAmelCase__ = self.bpe_decode
lowerCAmelCase__ = 2
lowerCAmelCase__ = "#"
elif format == DecodeType.WORDPIECE:
lowerCAmelCase__ = self.wp_decode
lowerCAmelCase__ = 102
lowerCAmelCase__ = "[SEP]"
else:
raise ValueError(F"Format {format} is not supported." )
lowerCAmelCase__ , lowerCAmelCase__ = [], []
lowerCAmelCase__ = pred_logits.size(0 )
lowerCAmelCase__ = pred_logits.size(1 )
lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase )
lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:]
lowerCAmelCase__ = decoder(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 )
lowerCAmelCase__ = preds_max_prob[:, 1:]
for index in range(__UpperCAmelCase ):
lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase )
lowerCAmelCase__ = preds_str[index][:pred_eos]
lowerCAmelCase__ = preds_index[index].cpu().tolist()
lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1
lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1]
lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__UpperCAmelCase )
conf_scores.append(__UpperCAmelCase )
return dec_strs, conf_scores
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
| 340 | 1 |
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowercase__ :
a_ =LEDConfig
a_ ={}
a_ ="""gelu"""
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=20 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=4 , )-> str:
'''simple docstring'''
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = seq_length
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = eos_token_id
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = bos_token_id
lowerCAmelCase__ = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
lowerCAmelCase__ = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
lowerCAmelCase__ = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCAmelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase__ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
lowerCAmelCase__ = prepare_led_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = tf.concat(
[tf.zeros_like(__UpperCAmelCase )[:, :-1], tf.ones_like(__UpperCAmelCase )[:, -1:]] , axis=-1 , )
lowerCAmelCase__ = global_attention_mask
return config, inputs_dict
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> int:
'''simple docstring'''
lowerCAmelCase__ = TFLEDModel(config=__UpperCAmelCase ).get_decoder()
lowerCAmelCase__ = inputs_dict["input_ids"]
lowerCAmelCase__ = input_ids[:1, :]
lowerCAmelCase__ = inputs_dict["attention_mask"][:1, :]
lowerCAmelCase__ = 1
# first forward pass
lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCAmelCase__ = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCAmelCase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0]
lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCAmelCase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx]
lowerCAmelCase__ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 )
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Tuple=None , ) -> Dict:
"""simple docstring"""
if attention_mask is None:
lowerCAmelCase__ = tf.cast(tf.math.not_equal(UpperCamelCase_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
lowerCAmelCase__ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
lowerCAmelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowercase__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase ):
a_ =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
a_ =(TFLEDForConditionalGeneration,) if is_tf_available() else ()
a_ =(
{
"""conversational""": TFLEDForConditionalGeneration,
"""feature-extraction""": TFLEDModel,
"""summarization""": TFLEDForConditionalGeneration,
"""text2text-generation""": TFLEDForConditionalGeneration,
"""translation""": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
a_ =True
a_ =False
a_ =False
a_ =False
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = TFLEDModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase )
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase )
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase__ = tf.zeros_like(inputs_dict["attention_mask"] )
lowerCAmelCase__ = 2
lowerCAmelCase__ = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , )
lowerCAmelCase__ = True
lowerCAmelCase__ = self.model_tester.seq_length
lowerCAmelCase__ = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(__UpperCAmelCase ):
lowerCAmelCase__ = outputs.decoder_attentions
self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(__UpperCAmelCase ):
lowerCAmelCase__ = [t.numpy() for t in outputs.encoder_attentions]
lowerCAmelCase__ = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
lowerCAmelCase__ = True
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = model_class(__UpperCAmelCase )
lowerCAmelCase__ = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
lowerCAmelCase__ = len(__UpperCAmelCase )
self.assertEqual(config.output_hidden_states , __UpperCAmelCase )
check_encoder_attentions_output(__UpperCAmelCase )
if self.is_encoder_decoder:
lowerCAmelCase__ = model_class(__UpperCAmelCase )
lowerCAmelCase__ = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , __UpperCAmelCase )
check_decoder_attentions_output(__UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
lowerCAmelCase__ = True
lowerCAmelCase__ = model_class(__UpperCAmelCase )
lowerCAmelCase__ = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , __UpperCAmelCase )
check_encoder_attentions_output(__UpperCAmelCase )
# Check attention is always last and order is fine
lowerCAmelCase__ = True
lowerCAmelCase__ = True
lowerCAmelCase__ = model_class(__UpperCAmelCase )
lowerCAmelCase__ = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , __UpperCAmelCase )
check_encoder_attentions_output(__UpperCAmelCase )
@unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
pass
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
pass
def _a ( UpperCamelCase_ : List[Any] ) -> Optional[Any]:
"""simple docstring"""
return tf.constant(UpperCamelCase_ , dtype=tf.intaa )
a_ = 1E-4
@slow
@require_tf
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led
# change to intended input here
lowerCAmelCase__ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
lowerCAmelCase__ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
lowerCAmelCase__ = prepare_led_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = model(**__UpperCAmelCase )[0]
lowerCAmelCase__ = (1, 1024, 768)
self.assertEqual(output.shape , __UpperCAmelCase )
# change to expected output here
lowerCAmelCase__ = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-3 )
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" )
# change to intended input here
lowerCAmelCase__ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
lowerCAmelCase__ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] )
lowerCAmelCase__ = prepare_led_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = model(**__UpperCAmelCase )[0]
lowerCAmelCase__ = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , __UpperCAmelCase )
# change to expected output here
lowerCAmelCase__ = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-3 , rtol=1E-3 )
| 340 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ = {
'''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''],
'''tokenization_convbert''': ['''ConvBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['''ConvBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConvBertForMaskedLM''',
'''ConvBertForMultipleChoice''',
'''ConvBertForQuestionAnswering''',
'''ConvBertForSequenceClassification''',
'''ConvBertForTokenClassification''',
'''ConvBertLayer''',
'''ConvBertModel''',
'''ConvBertPreTrainedModel''',
'''load_tf_weights_in_convbert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFConvBertForMaskedLM''',
'''TFConvBertForMultipleChoice''',
'''TFConvBertForQuestionAnswering''',
'''TFConvBertForSequenceClassification''',
'''TFConvBertForTokenClassification''',
'''TFConvBertLayer''',
'''TFConvBertModel''',
'''TFConvBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 340 | 1 |
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str:
"""simple docstring"""
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise ValueError("iterations must be defined as integers" )
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or not number >= 1:
raise ValueError(
"starting number must be\n and integer and be more than 0" )
if not iterations >= 1:
raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" )
lowerCAmelCase__ = ""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(UpperCamelCase_ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 340 |
from collections import defaultdict
def _a ( UpperCamelCase_ : int ) -> int:
"""simple docstring"""
lowerCAmelCase__ = 1
lowerCAmelCase__ = True
for v in tree[start]:
if v not in visited:
ret += dfs(UpperCamelCase_ )
if ret % 2 == 0:
cuts.append(UpperCamelCase_ )
return ret
def _a ( ) -> Optional[Any]:
"""simple docstring"""
dfs(1 )
if __name__ == "__main__":
a_, a_ = 10, 9
a_ = defaultdict(list)
a_ = {}
a_ = []
a_ = 0
a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1)
| 340 | 1 |
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
a_ = numpy.array([0, 0])
a_ = numpy.array([0.5, 0.8660254])
a_ = numpy.array([1, 0])
a_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def _a ( UpperCamelCase_ : list[numpy.ndarray] , UpperCamelCase_ : int ) -> list[numpy.ndarray]:
"""simple docstring"""
lowerCAmelCase__ = initial_vectors
for _ in range(UpperCamelCase_ ):
lowerCAmelCase__ = iteration_step(UpperCamelCase_ )
return vectors
def _a ( UpperCamelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]:
"""simple docstring"""
lowerCAmelCase__ = []
for i, start_vector in enumerate(vectors[:-1] ):
lowerCAmelCase__ = vectors[i + 1]
new_vectors.append(UpperCamelCase_ )
lowerCAmelCase__ = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def _a ( UpperCamelCase_ : numpy.ndarray , UpperCamelCase_ : float ) -> numpy.ndarray:
"""simple docstring"""
lowerCAmelCase__ = numpy.radians(UpperCamelCase_ )
lowerCAmelCase__ , lowerCAmelCase__ = numpy.cos(UpperCamelCase_ ), numpy.sin(UpperCamelCase_ )
lowerCAmelCase__ = numpy.array(((c, -s), (s, c)) )
return numpy.dot(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : list[numpy.ndarray] ) -> None:
"""simple docstring"""
lowerCAmelCase__ = plt.gca()
axes.set_aspect("equal" )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
lowerCAmelCase__ , lowerCAmelCase__ = zip(*UpperCamelCase_ )
plt.plot(UpperCamelCase_ , UpperCamelCase_ )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 340 |
import requests
from bsa import BeautifulSoup
def _a ( UpperCamelCase_ : str = "AAPL" ) -> str:
"""simple docstring"""
lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"
lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" )
lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)"
return soup.find("div" , class_=class_ ).find("span" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
| 340 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''',
'''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""mobilenet_v1"""
def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=224 , __UpperCAmelCase=1.0 , __UpperCAmelCase=8 , __UpperCAmelCase="relu6" , __UpperCAmelCase=True , __UpperCAmelCase=0.999 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.001 , **__UpperCAmelCase , )-> int:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
if depth_multiplier <= 0:
raise ValueError("depth_multiplier must be greater than zero." )
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = image_size
lowerCAmelCase__ = depth_multiplier
lowerCAmelCase__ = min_depth
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = tf_padding
lowerCAmelCase__ = classifier_dropout_prob
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
class lowercase__ ( _UpperCAmelCase ):
a_ =version.parse("""1.11""" )
@property
def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict([("pixel_values", {0: "batch"})] )
@property
def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})] )
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] )
@property
def UpperCAmelCase ( self )-> float:
'''simple docstring'''
return 1E-4
| 340 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
a_ = (3, 9, -11, 0, 7, 5, 1, -1)
a_ = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class lowercase__ :
a_ =42
a_ =42
class lowercase__ :
def __init__( self , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = None
for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ):
lowerCAmelCase__ = Node(__UpperCAmelCase , self.head )
def __iter__( self )-> Iterator[int]:
'''simple docstring'''
lowerCAmelCase__ = self.head
while node:
yield node.data
lowerCAmelCase__ = node.next_node
def __len__( self )-> int:
'''simple docstring'''
return sum(1 for _ in self )
def __str__( self )-> str:
'''simple docstring'''
return " -> ".join([str(__UpperCAmelCase ) for node in self] )
def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList:
"""simple docstring"""
return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 340 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''Salesforce/blip-vqa-base''': '''https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json''',
'''Salesforce/blip-vqa-capfit-large''': (
'''https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json'''
),
'''Salesforce/blip-image-captioning-base''': (
'''https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json'''
),
'''Salesforce/blip-image-captioning-large''': (
'''https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json'''
),
'''Salesforce/blip-itm-base-coco''': '''https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json''',
'''Salesforce/blip-itm-large-coco''': '''https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json''',
'''Salesforce/blip-itm-base-flikr''': '''https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json''',
'''Salesforce/blip-itm-large-flikr''': (
'''https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json'''
),
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""blip_text_model"""
def __init__( self , __UpperCAmelCase=30524 , __UpperCAmelCase=768 , __UpperCAmelCase=768 , __UpperCAmelCase=3072 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=8 , __UpperCAmelCase=512 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=30522 , __UpperCAmelCase=2 , __UpperCAmelCase=0 , __UpperCAmelCase=102 , __UpperCAmelCase=True , __UpperCAmelCase=True , **__UpperCAmelCase , )-> Tuple:
'''simple docstring'''
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , sep_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = encoder_hidden_size
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = projection_dim
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = is_decoder
lowerCAmelCase__ = use_cache
@classmethod
def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase )
# get the text config dict if we are loading from BlipConfig
if config_dict.get("model_type" ) == "blip":
lowerCAmelCase__ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase )
class lowercase__ ( _UpperCAmelCase ):
a_ ="""blip_vision_model"""
def __init__( self , __UpperCAmelCase=768 , __UpperCAmelCase=3072 , __UpperCAmelCase=512 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=384 , __UpperCAmelCase=16 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1E-1_0 , **__UpperCAmelCase , )-> Tuple:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = projection_dim
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = image_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = hidden_act
@classmethod
def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase )
# get the vision config dict if we are loading from BlipConfig
if config_dict.get("model_type" ) == "blip":
lowerCAmelCase__ = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase )
class lowercase__ ( _UpperCAmelCase ):
a_ ="""blip"""
a_ =True
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=512 , __UpperCAmelCase=2.6_592 , __UpperCAmelCase=256 , **__UpperCAmelCase , )-> Union[str, Any]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
if text_config is None:
lowerCAmelCase__ = {}
logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." )
if vision_config is None:
lowerCAmelCase__ = {}
logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." )
lowerCAmelCase__ = BlipTextConfig(**__UpperCAmelCase )
lowerCAmelCase__ = BlipVisionConfig(**__UpperCAmelCase )
lowerCAmelCase__ = self.vision_config.hidden_size
lowerCAmelCase__ = projection_dim
lowerCAmelCase__ = logit_scale_init_value
lowerCAmelCase__ = 1.0
lowerCAmelCase__ = 0.02
lowerCAmelCase__ = image_text_hidden_size
@classmethod
def UpperCAmelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCAmelCase )
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = copy.deepcopy(self.__dict__ )
lowerCAmelCase__ = self.text_config.to_dict()
lowerCAmelCase__ = self.vision_config.to_dict()
lowerCAmelCase__ = self.__class__.model_type
return output
| 340 |
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
a_ = {
'''n_samples''': 64,
'''horizon''': 32,
'''num_inference_steps''': 20,
'''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network
'''scale_grad_by_std''': True,
'''scale''': 0.1,
'''eta''': 0.0,
'''t_grad_cutoff''': 2,
'''device''': '''cpu''',
}
if __name__ == "__main__":
a_ = '''hopper-medium-v2'''
a_ = gym.make(env_name)
a_ = ValueGuidedRLPipeline.from_pretrained(
'''bglick13/hopper-medium-v2-value-function-hor32''',
env=env,
)
env.seed(0)
a_ = env.reset()
a_ = 0
a_ = 0
a_ = 1000
a_ = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
a_ = pipeline(obs, planning_horizon=32)
# execute action in environment
a_, a_, a_, a_ = env.step(denorm_actions)
a_ = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"
F" {total_score}"
)
# save observations for rendering
rollout.append(next_observation.copy())
a_ = next_observation
except KeyboardInterrupt:
pass
print(F"Total reward: {total_reward}")
| 340 | 1 |
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401
deprecate(
'''stable diffusion controlnet''',
'''0.22.0''',
'''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''',
standard_warn=False,
stacklevel=3,
)
| 340 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
a_ = '''src/transformers'''
a_ = '''docs/source/en/tasks'''
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple:
"""simple docstring"""
with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase__ = f.readlines()
# Find the start prompt.
lowerCAmelCase__ = 0
while not lines[start_index].startswith(UpperCamelCase_ ):
start_index += 1
start_index += 1
lowerCAmelCase__ = start_index
while not lines[end_index].startswith(UpperCamelCase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
a_ = direct_transformers_import(TRANSFORMERS_PATH)
a_ = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
a_ = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide]
lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() )
lowerCAmelCase__ = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n"
def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file(
filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , )
lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ )
if current_list != new_list:
if overwrite:
with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"
" to fix this." )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
a_ = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 340 | 1 |
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
a_ = [
'''cross_validation.py''',
'''gradient_accumulation.py''',
'''local_sgd.py''',
'''multi_process_metrics.py''',
'''memory.py''',
'''automatic_gradient_accumulation.py''',
'''fsdp_with_peak_mem_tracking.py''',
'''deepspeed_with_config_support.py''',
'''megatron_lm_gpt_pretraining.py''',
]
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = None
lowerCAmelCase__ = os.path.abspath(os.path.join("examples" , "by_feature" ) )
lowerCAmelCase__ = os.path.abspath("examples" )
for item in os.listdir(__UpperCAmelCase ):
if item not in EXCLUDE_EXAMPLES:
lowerCAmelCase__ = os.path.join(__UpperCAmelCase , __UpperCAmelCase )
if os.path.isfile(__UpperCAmelCase ) and ".py" in item_path:
with self.subTest(
tested_script=__UpperCAmelCase , feature_script=__UpperCAmelCase , tested_section="main()" if parser_only else "training_function()" , ):
lowerCAmelCase__ = compare_against_test(
os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = "\n".join(__UpperCAmelCase )
if special_strings is not None:
for string in special_strings:
lowerCAmelCase__ = diff.replace(__UpperCAmelCase , "" )
self.assertEqual(__UpperCAmelCase , "" )
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
self.one_complete_example("complete_nlp_example.py" , __UpperCAmelCase )
self.one_complete_example("complete_nlp_example.py" , __UpperCAmelCase )
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) )
lowerCAmelCase__ = [
" " * 16 + "{\n\n",
" " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n",
" " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n",
" " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n",
" " * 20 + "\"epoch\": epoch,\n\n",
" " * 16 + "},\n\n",
" " * 16 + "step=epoch,\n",
" " * 12,
" " * 8 + "for step, batch in enumerate(active_dataloader):\n",
]
self.one_complete_example("complete_cv_example.py" , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
self.one_complete_example("complete_cv_example.py" , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
@mock.patch.dict(os.environ, {"""TESTING_MOCKED_DATALOADERS""": """1"""} )
class lowercase__ ( _UpperCAmelCase ):
a_ =False
@classmethod
def UpperCAmelCase ( cls )-> List[str]:
'''simple docstring'''
super().setUpClass()
lowerCAmelCase__ = tempfile.mkdtemp()
lowerCAmelCase__ = os.path.join(cls._tmpdir , "default_config.yml" )
write_basic_config(save_location=cls.configPath )
lowerCAmelCase__ = ["accelerate", "launch", "--config_file", cls.configPath]
@classmethod
def UpperCAmelCase ( cls )-> List[str]:
'''simple docstring'''
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) )
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split()
lowerCAmelCase__ = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) )
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split()
lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase )
self.assertNotIn("epoch 0:" , __UpperCAmelCase )
self.assertIn("epoch 1:" , __UpperCAmelCase )
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split()
lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase )
if torch.cuda.is_available():
lowerCAmelCase__ = torch.cuda.device_count()
else:
lowerCAmelCase__ = 1
if num_processes > 1:
self.assertNotIn("epoch 0:" , __UpperCAmelCase )
self.assertIn("epoch 1:" , __UpperCAmelCase )
else:
self.assertIn("epoch 0:" , __UpperCAmelCase )
self.assertIn("epoch 1:" , __UpperCAmelCase )
@slow
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split()
with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ):
lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase )
lowerCAmelCase__ = re.findall("({.+})" , __UpperCAmelCase )
lowerCAmelCase__ = [r for r in results if "accuracy" in r][-1]
lowerCAmelCase__ = ast.literal_eval(__UpperCAmelCase )
self.assertGreaterEqual(results["accuracy"] , 0.75 )
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = ["examples/by_feature/multi_process_metrics.py"]
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} )
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
lowerCAmelCase__ = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , "tracking" ) ) )
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = ["examples/by_feature/gradient_accumulation.py"]
run_command(self._launch_args + testargs )
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = ["examples/by_feature/local_sgd.py"]
run_command(self._launch_args + testargs )
| 340 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
a_ = logging.get_logger(__name__)
a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS}
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]:
"""simple docstring"""
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." )
if tokenizer_name is None:
lowerCAmelCase__ = TOKENIZER_CLASSES
else:
lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )}
logger.info(F"Loading tokenizer classes: {tokenizer_names}" )
for tokenizer_name in tokenizer_names:
lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name]
lowerCAmelCase__ = True
if checkpoint_name is None:
lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() )
else:
lowerCAmelCase__ = [checkpoint_name]
logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" )
for checkpoint in checkpoint_names:
logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" )
# Load tokenizer
lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ )
# Save fast tokenizer
logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" )
# For organization names we create sub-directories
if "/" in checkpoint:
lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
elif add_prefix:
lowerCAmelCase__ = checkpoint
lowerCAmelCase__ = dump_path
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = dump_path
logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0]
if next_char == "/":
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = None
logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" )
lowerCAmelCase__ = tokenizer.save_pretrained(
UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ )
logger.info(F"=> File names {file_names}" )
for file_name in file_names:
if not file_name.endswith("tokenizer.json" ):
os.remove(UpperCamelCase_ )
logger.info(F"=> removing {file_name}" )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.'''
)
parser.add_argument(
'''--tokenizer_name''',
default=None,
type=str,
help=(
F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will "
'''download and convert all the checkpoints from AWS.'''
),
)
parser.add_argument(
'''--checkpoint_name''',
default=None,
type=str,
help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''',
)
parser.add_argument(
'''--force_download''',
action='''store_true''',
help='''Re-download checkpoints.''',
)
a_ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 340 | 1 |
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
a_ = logging.get_logger(__name__)
def _a ( UpperCamelCase_ : str ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] )
lowerCAmelCase__ = MaskFormerConfig(backbone_config=UpperCamelCase_ )
lowerCAmelCase__ = "huggingface/label-files"
if "ade20k-full" in model_name:
# this should be ok
lowerCAmelCase__ = 847
lowerCAmelCase__ = "maskformer-ade20k-full-id2label.json"
elif "ade" in model_name:
# this should be ok
lowerCAmelCase__ = 150
lowerCAmelCase__ = "ade20k-id2label.json"
elif "coco-stuff" in model_name:
# this should be ok
lowerCAmelCase__ = 171
lowerCAmelCase__ = "maskformer-coco-stuff-id2label.json"
elif "coco" in model_name:
# TODO
lowerCAmelCase__ = 133
lowerCAmelCase__ = "coco-panoptic-id2label.json"
elif "cityscapes" in model_name:
# this should be ok
lowerCAmelCase__ = 19
lowerCAmelCase__ = "cityscapes-id2label.json"
elif "vistas" in model_name:
# this should be ok
lowerCAmelCase__ = 65
lowerCAmelCase__ = "mapillary-vistas-id2label.json"
lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) , "r" ) )
lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
return config
def _a ( UpperCamelCase_ : List[Any] ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ = []
# stem
# fmt: off
rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") )
rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") )
if i < 3:
rename_keys.append((F"backbone.layers.{i}.downsample.reduction.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") )
rename_keys.append((F"backbone.layers.{i}.downsample.norm.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") )
rename_keys.append((F"backbone.layers.{i}.downsample.norm.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") )
rename_keys.append((F"backbone.norm{i}.weight", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") )
rename_keys.append((F"backbone.norm{i}.bias", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") )
# FPN
rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") )
rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((F"sem_seg_head.adapter_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") )
rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") )
rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") )
rename_keys.append((F"sem_seg_head.layer_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") )
rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") )
rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") )
rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") )
rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") )
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") )
# cross-attention out projection
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") )
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") )
# MLP 1
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", F"model.transformer_module.decoder.layers.{idx}.fc1.weight") )
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", F"model.transformer_module.decoder.layers.{idx}.fc1.bias") )
# MLP 2
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", F"model.transformer_module.decoder.layers.{idx}.fc2.weight") )
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", F"model.transformer_module.decoder.layers.{idx}.fc2.bias") )
# layernorm 1 (self-attention layernorm)
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") )
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") )
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") )
# layernorm 3 (final layernorm)
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") )
rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") )
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") )
# heads on top
rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") )
rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") )
rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") )
rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") )
for i in range(3 ):
rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.weight", F"mask_embedder.{i}.0.weight") )
rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.bias", F"mask_embedder.{i}.0.bias") )
# fmt: on
return rename_keys
def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ = dct.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : int ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
lowerCAmelCase__ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" )
lowerCAmelCase__ = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[:dim, :]
lowerCAmelCase__ = in_proj_bias[: dim]
lowerCAmelCase__ = in_proj_weight[
dim : dim * 2, :
]
lowerCAmelCase__ = in_proj_bias[
dim : dim * 2
]
lowerCAmelCase__ = in_proj_weight[
-dim :, :
]
lowerCAmelCase__ = in_proj_bias[-dim :]
# fmt: on
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ) -> int:
"""simple docstring"""
lowerCAmelCase__ = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" )
lowerCAmelCase__ = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[: hidden_size, :]
lowerCAmelCase__ = in_proj_bias[:config.hidden_size]
lowerCAmelCase__ = in_proj_weight[hidden_size : hidden_size * 2, :]
lowerCAmelCase__ = in_proj_bias[hidden_size : hidden_size * 2]
lowerCAmelCase__ = in_proj_weight[-hidden_size :, :]
lowerCAmelCase__ = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" )
lowerCAmelCase__ = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[: hidden_size, :]
lowerCAmelCase__ = in_proj_bias[:config.hidden_size]
lowerCAmelCase__ = in_proj_weight[hidden_size : hidden_size * 2, :]
lowerCAmelCase__ = in_proj_bias[hidden_size : hidden_size * 2]
lowerCAmelCase__ = in_proj_weight[-hidden_size :, :]
lowerCAmelCase__ = in_proj_bias[-hidden_size :]
# fmt: on
def _a ( ) -> torch.Tensor:
"""simple docstring"""
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
return im
@torch.no_grad()
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : bool = False ) -> int:
"""simple docstring"""
lowerCAmelCase__ = get_maskformer_config(UpperCamelCase_ )
# load original state_dict
with open(UpperCamelCase_ , "rb" ) as f:
lowerCAmelCase__ = pickle.load(UpperCamelCase_ )
lowerCAmelCase__ = data["model"]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ )
for src, dest in rename_keys:
rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
read_in_swin_q_k_v(UpperCamelCase_ , config.backbone_config )
read_in_decoder_q_k_v(UpperCamelCase_ , UpperCamelCase_ )
# update to torch tensors
for key, value in state_dict.items():
lowerCAmelCase__ = torch.from_numpy(UpperCamelCase_ )
# load 🤗 model
lowerCAmelCase__ = MaskFormerForInstanceSegmentation(UpperCamelCase_ )
model.eval()
for name, param in model.named_parameters():
print(UpperCamelCase_ , param.shape )
lowerCAmelCase__ , lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(UpperCamelCase_ ) == 0, F"Unexpected keys: {unexpected_keys}"
# verify results
lowerCAmelCase__ = prepare_img()
if "vistas" in model_name:
lowerCAmelCase__ = 65
elif "cityscapes" in model_name:
lowerCAmelCase__ = 65_535
else:
lowerCAmelCase__ = 255
lowerCAmelCase__ = True if "ade" in model_name else False
lowerCAmelCase__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase_ , reduce_labels=UpperCamelCase_ )
lowerCAmelCase__ = image_processor(UpperCamelCase_ , return_tensors="pt" )
lowerCAmelCase__ = model(**UpperCamelCase_ )
print("Logits:" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
lowerCAmelCase__ = torch.tensor(
[[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase_ , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(F"Saving model and image processor to {pytorch_dump_folder_path}" )
Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ )
model.save_pretrained(UpperCamelCase_ )
image_processor.save_pretrained(UpperCamelCase_ )
if push_to_hub:
print("Pushing model and image processor to the hub..." )
model.push_to_hub(F"nielsr/{model_name}" )
image_processor.push_to_hub(F"nielsr/{model_name}" )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''maskformer-swin-tiny-ade''',
type=str,
help=('''Name of the MaskFormer model you\'d like to convert''',),
)
parser.add_argument(
'''--checkpoint_path''',
default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''',
type=str,
help='''Path to the original state dict (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
a_ = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 340 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ )
lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ )
lowerCAmelCase__ = tok.pad_token_id
def get_lens(UpperCamelCase_ : str ):
lowerCAmelCase__ = tqdm(
DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
lowerCAmelCase__ = []
for batch in dl:
lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist()
lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ):
max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) )
else:
max_lens.extend(UpperCamelCase_ )
return max_lens
lowerCAmelCase__ = get_lens(UpperCamelCase_ )
lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ )
lowerCAmelCase__ = get_lens(UpperCamelCase_ )
pickle_save(UpperCamelCase_ , train_ds.len_file )
pickle_save(UpperCamelCase_ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 340 | 1 |
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts:
"""simple docstring"""
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise TypeError("number of qubits must be a integer." )
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0." )
if math.floor(UpperCamelCase_ ) != number_of_qubits:
raise ValueError("number of qubits must be exact integer." )
if number_of_qubits > 10:
raise ValueError("number of qubits too large to simulate(>10)." )
lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" )
lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" )
lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = number_of_qubits
for i in range(UpperCamelCase_ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(UpperCamelCase_ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ )
# simulate with 10000 shots
lowerCAmelCase__ = Aer.get_backend("qasm_simulator" )
lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 )
return job.result().get_counts(UpperCamelCase_ )
if __name__ == "__main__":
print(
F"Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"
)
| 340 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""xlnet"""
a_ =["""mems"""]
a_ ={
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int:
'''simple docstring'''
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = n_layer
lowerCAmelCase__ = n_head
if d_model % n_head != 0:
raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" )
lowerCAmelCase__ = d_model // n_head
lowerCAmelCase__ = ff_activation
lowerCAmelCase__ = d_inner
lowerCAmelCase__ = untie_r
lowerCAmelCase__ = attn_type
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = dropout
lowerCAmelCase__ = mem_len
lowerCAmelCase__ = reuse_len
lowerCAmelCase__ = bi_data
lowerCAmelCase__ = clamp_len
lowerCAmelCase__ = same_length
lowerCAmelCase__ = summary_type
lowerCAmelCase__ = summary_use_proj
lowerCAmelCase__ = summary_activation
lowerCAmelCase__ = summary_last_dropout
lowerCAmelCase__ = start_n_top
lowerCAmelCase__ = end_n_top
lowerCAmelCase__ = bos_token_id
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs["use_cache"]
lowerCAmelCase__ = use_mems_eval
lowerCAmelCase__ = use_mems_train
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." )
return -1
@max_position_embeddings.setter
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError(
F"The model {self.model_type} is one of the few models that has no sequence length limit." )
| 340 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowercase__ ( _UpperCAmelCase, unittest.TestCase ):
a_ =KandinskyInpaintPipeline
a_ =["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""]
a_ =[
"""prompt""",
"""negative_prompt""",
"""image_embeds""",
"""negative_image_embeds""",
"""image""",
"""mask_image""",
]
a_ =[
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""negative_prompt""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
a_ =False
@property
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
return 32
@property
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
return 32
@property
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
return self.time_input_dim
@property
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
return 100
@property
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" )
return tokenizer
@property
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase__ = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , )
lowerCAmelCase__ = MultilingualCLIP(__UpperCAmelCase )
lowerCAmelCase__ = text_encoder.eval()
return text_encoder
@property
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase__ = {
"in_channels": 9,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCAmelCase__ = UNetaDConditionModel(**__UpperCAmelCase )
return model
@property
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase__ = VQModel(**self.dummy_movq_kwargs )
return model
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = self.dummy_text_encoder
lowerCAmelCase__ = self.dummy_tokenizer
lowerCAmelCase__ = self.dummy_unet
lowerCAmelCase__ = self.dummy_movq
lowerCAmelCase__ = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=__UpperCAmelCase , )
lowerCAmelCase__ = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
lowerCAmelCase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__UpperCAmelCase )
# create init_image
lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase__ = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("RGB" ).resize((256, 256) )
# create mask
lowerCAmelCase__ = np.ones((64, 64) , dtype=np.floataa )
lowerCAmelCase__ = 0
if str(__UpperCAmelCase ).startswith("mps" ):
lowerCAmelCase__ = torch.manual_seed(__UpperCAmelCase )
else:
lowerCAmelCase__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
lowerCAmelCase__ = {
"prompt": "horse",
"image": init_image,
"mask_image": mask,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"output_type": "np",
}
return inputs
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = "cpu"
lowerCAmelCase__ = self.get_dummy_components()
lowerCAmelCase__ = self.pipeline_class(**__UpperCAmelCase )
lowerCAmelCase__ = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
lowerCAmelCase__ = output.images
lowerCAmelCase__ = pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
lowerCAmelCase__ = image[0, -3:, -3:, -1]
lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1]
print(F"image.shape {image.shape}" )
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase__ = np.array(
[0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" )
lowerCAmelCase__ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCAmelCase__ = np.ones((768, 768) , dtype=np.floataa )
lowerCAmelCase__ = 0
lowerCAmelCase__ = "a hat"
lowerCAmelCase__ = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__UpperCAmelCase )
lowerCAmelCase__ = KandinskyInpaintPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa )
lowerCAmelCase__ = pipeline.to(__UpperCAmelCase )
pipeline.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCAmelCase__ , lowerCAmelCase__ = pipe_prior(
__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
lowerCAmelCase__ = pipeline(
__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="np" , )
lowerCAmelCase__ = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 340 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("module.cls_token", "vit.embeddings.cls_token"),
("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("module.pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("module.norm.weight", "layernorm.weight"),
("module.norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase__ = ""
else:
lowerCAmelCase__ = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" )
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase__ = in_proj_bias[: config.hidden_size]
lowerCAmelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase__ = in_proj_bias[-config.hidden_size :]
def _a ( UpperCamelCase_ : Dict ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = [
"module.fc.fc1.weight",
"module.fc.fc1.bias",
"module.fc.bn1.weight",
"module.fc.bn1.bias",
"module.fc.bn1.running_mean",
"module.fc.bn1.running_var",
"module.fc.bn1.num_batches_tracked",
"module.fc.fc2.weight",
"module.fc.fc2.bias",
"module.fc.bn2.weight",
"module.fc.bn2.bias",
"module.fc.bn2.running_mean",
"module.fc.bn2.running_var",
"module.fc.bn2.num_batches_tracked",
"module.fc.fc3.weight",
"module.fc.fc3.bias",
]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = dct.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ViTMSNConfig()
lowerCAmelCase__ = 1_000
lowerCAmelCase__ = "datasets/huggingface/label-files"
lowerCAmelCase__ = "imagenet-1k-id2label.json"
lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) )
lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
lowerCAmelCase__ = idalabel
lowerCAmelCase__ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowerCAmelCase__ = 384
lowerCAmelCase__ = 1_536
lowerCAmelCase__ = 6
elif "l16" in checkpoint_url:
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
elif "b4" in checkpoint_url:
lowerCAmelCase__ = 4
elif "l7" in checkpoint_url:
lowerCAmelCase__ = 7
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ )
lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"]
lowerCAmelCase__ = ViTImageProcessor(size=config.image_size )
remove_projection_head(UpperCamelCase_ )
lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ )
for src, dest in rename_keys:
rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
lowerCAmelCase__ = ViTImageProcessor(
size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ )
lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" )
# forward pass
torch.manual_seed(2 )
lowerCAmelCase__ = model(**UpperCamelCase_ )
lowerCAmelCase__ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 )
print(F"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(UpperCamelCase_ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
a_ = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 340 | 1 |
import os
import sys
import unittest
a_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
a_ = os.path.join(git_repo_path, '''src''', '''diffusers''')
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = find_backend(" if not is_torch_available():" )
self.assertEqual(__UpperCAmelCase , "torch" )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
lowerCAmelCase__ = find_backend(" if not (is_torch_available() and is_transformers_available()):" )
self.assertEqual(__UpperCAmelCase , "torch_and_transformers" )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
lowerCAmelCase__ = find_backend(
" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" )
self.assertEqual(__UpperCAmelCase , "torch_and_transformers_and_onnx" )
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("torch" , __UpperCAmelCase )
self.assertIn("torch_and_transformers" , __UpperCAmelCase )
self.assertIn("flax_and_transformers" , __UpperCAmelCase )
self.assertIn("torch_and_transformers_and_onnx" , __UpperCAmelCase )
# Likewise, we can't assert on the exact content of a key
self.assertIn("UNet2DModel" , objects["torch"] )
self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] )
self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] )
self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] )
self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] )
self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = create_dummy_object("CONSTANT" , "'torch'" )
self.assertEqual(__UpperCAmelCase , "\nCONSTANT = None\n" )
lowerCAmelCase__ = create_dummy_object("function" , "'torch'" )
self.assertEqual(
__UpperCAmelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" )
lowerCAmelCase__ = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n"
lowerCAmelCase__ = create_dummy_object("FakeClass" , "'torch'" )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n"
lowerCAmelCase__ = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} )
self.assertEqual(dummy_files["torch"] , __UpperCAmelCase )
| 340 |
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
a_ = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase )
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
requires_backends(self , "vision" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int:
'''simple docstring'''
return super().__call__(__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = {}
if "candidate_labels" in kwargs:
lowerCAmelCase__ = kwargs["candidate_labels"]
if "hypothesis_template" in kwargs:
lowerCAmelCase__ = kwargs["hypothesis_template"]
return preprocess_params, {}, {}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = load_image(__UpperCAmelCase )
lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework )
lowerCAmelCase__ = candidate_labels
lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels]
lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase )
lowerCAmelCase__ = [text_inputs]
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> int:
'''simple docstring'''
lowerCAmelCase__ = model_inputs.pop("candidate_labels" )
lowerCAmelCase__ = model_inputs.pop("text_inputs" )
if isinstance(text_inputs[0] , __UpperCAmelCase ):
lowerCAmelCase__ = text_inputs[0]
else:
# Batching case.
lowerCAmelCase__ = text_inputs[0][0]
lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase )
lowerCAmelCase__ = {
"candidate_labels": candidate_labels,
"logits": outputs.logits_per_image,
}
return model_outputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = model_outputs.pop("candidate_labels" )
lowerCAmelCase__ = model_outputs["logits"][0]
if self.framework == "pt":
lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 )
lowerCAmelCase__ = probs.tolist()
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = [scores]
elif self.framework == "tf":
lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 )
lowerCAmelCase__ = probs.numpy().tolist()
else:
raise ValueError(F"Unsupported framework: {self.framework}" )
lowerCAmelCase__ = [
{"score": score, "label": candidate_label}
for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] )
]
return result
| 340 | 1 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a_ = logging.get_logger(__name__)
a_ = {
'''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""detr"""
a_ =["""past_key_values"""]
a_ ={
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=3 , __UpperCAmelCase=100 , __UpperCAmelCase=6 , __UpperCAmelCase=2048 , __UpperCAmelCase=8 , __UpperCAmelCase=6 , __UpperCAmelCase=2048 , __UpperCAmelCase=8 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1.0 , __UpperCAmelCase=False , __UpperCAmelCase="sine" , __UpperCAmelCase="resnet50" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , **__UpperCAmelCase , )-> Tuple:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
lowerCAmelCase__ = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = backbone_config.get("model_type" )
lowerCAmelCase__ = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase__ = config_class.from_dict(__UpperCAmelCase )
# set timm attributes to None
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None, None, None
lowerCAmelCase__ = use_timm_backbone
lowerCAmelCase__ = backbone_config
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = num_queries
lowerCAmelCase__ = d_model
lowerCAmelCase__ = encoder_ffn_dim
lowerCAmelCase__ = encoder_layers
lowerCAmelCase__ = encoder_attention_heads
lowerCAmelCase__ = decoder_ffn_dim
lowerCAmelCase__ = decoder_layers
lowerCAmelCase__ = decoder_attention_heads
lowerCAmelCase__ = dropout
lowerCAmelCase__ = attention_dropout
lowerCAmelCase__ = activation_dropout
lowerCAmelCase__ = activation_function
lowerCAmelCase__ = init_std
lowerCAmelCase__ = init_xavier_std
lowerCAmelCase__ = encoder_layerdrop
lowerCAmelCase__ = decoder_layerdrop
lowerCAmelCase__ = encoder_layers
lowerCAmelCase__ = auxiliary_loss
lowerCAmelCase__ = position_embedding_type
lowerCAmelCase__ = backbone
lowerCAmelCase__ = use_pretrained_backbone
lowerCAmelCase__ = dilation
# Hungarian matcher
lowerCAmelCase__ = class_cost
lowerCAmelCase__ = bbox_cost
lowerCAmelCase__ = giou_cost
# Loss coefficients
lowerCAmelCase__ = mask_loss_coefficient
lowerCAmelCase__ = dice_loss_coefficient
lowerCAmelCase__ = bbox_loss_coefficient
lowerCAmelCase__ = giou_loss_coefficient
lowerCAmelCase__ = eos_coefficient
super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
return self.d_model
@classmethod
def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> Any:
'''simple docstring'''
return cls(backbone_config=__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self )-> Dict[str, any]:
'''simple docstring'''
lowerCAmelCase__ = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
lowerCAmelCase__ = self.backbone_config.to_dict()
lowerCAmelCase__ = self.__class__.model_type
return output
class lowercase__ ( _UpperCAmelCase ):
a_ =version.parse("""1.11""" )
@property
def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def UpperCAmelCase ( self )-> float:
'''simple docstring'''
return 1E-5
@property
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
return 12
| 340 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''')
class lowercase__ ( _UpperCAmelCase, unittest.TestCase ):
a_ =BartphoTokenizer
a_ =False
a_ =True
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
super().setUp()
lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"]
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] )
with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp:
for token in vocab_tokens:
fp.write(F"{token} {vocab_tokens[token]}\n" )
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "This is a<unk><unk> test"
return input_text, output_text
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split()
lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = tokens + [tokenizer.unk_token]
lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
| 340 | 1 |
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union
import numpy as np
def _a ( UpperCamelCase_ : bytes , UpperCamelCase_ : int ) -> np.array:
"""simple docstring"""
lowerCAmelCase__ = F"{sampling_rate}"
lowerCAmelCase__ = "1"
lowerCAmelCase__ = "f32le"
lowerCAmelCase__ = [
"ffmpeg",
"-i",
"pipe:0",
"-ac",
ac,
"-ar",
ar,
"-f",
format_for_conversion,
"-hide_banner",
"-loglevel",
"quiet",
"pipe:1",
]
try:
with subprocess.Popen(UpperCamelCase_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process:
lowerCAmelCase__ = ffmpeg_process.communicate(UpperCamelCase_ )
except FileNotFoundError as error:
raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error
lowerCAmelCase__ = output_stream[0]
lowerCAmelCase__ = np.frombuffer(UpperCamelCase_ , np.floataa )
if audio.shape[0] == 0:
raise ValueError("Malformed soundfile" )
return audio
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : float , UpperCamelCase_ : str = "f32le" , ) -> Any:
"""simple docstring"""
lowerCAmelCase__ = F"{sampling_rate}"
lowerCAmelCase__ = "1"
if format_for_conversion == "s16le":
lowerCAmelCase__ = 2
elif format_for_conversion == "f32le":
lowerCAmelCase__ = 4
else:
raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" )
lowerCAmelCase__ = platform.system()
if system == "Linux":
lowerCAmelCase__ = "alsa"
lowerCAmelCase__ = "default"
elif system == "Darwin":
lowerCAmelCase__ = "avfoundation"
lowerCAmelCase__ = ":0"
elif system == "Windows":
lowerCAmelCase__ = "dshow"
lowerCAmelCase__ = "default"
lowerCAmelCase__ = [
"ffmpeg",
"-f",
format_,
"-i",
input_,
"-ac",
ac,
"-ar",
ar,
"-f",
format_for_conversion,
"-fflags",
"nobuffer",
"-hide_banner",
"-loglevel",
"quiet",
"pipe:1",
]
lowerCAmelCase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
lowerCAmelCase__ = _ffmpeg_stream(UpperCamelCase_ , UpperCamelCase_ )
for item in iterator:
yield item
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : float , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[Tuple[float, float], float]] = None , UpperCamelCase_ : str = "f32le" , ) -> str:
"""simple docstring"""
if stream_chunk_s is not None:
lowerCAmelCase__ = stream_chunk_s
else:
lowerCAmelCase__ = chunk_length_s
lowerCAmelCase__ = ffmpeg_microphone(UpperCamelCase_ , UpperCamelCase_ , format_for_conversion=UpperCamelCase_ )
if format_for_conversion == "s16le":
lowerCAmelCase__ = np.intaa
lowerCAmelCase__ = 2
elif format_for_conversion == "f32le":
lowerCAmelCase__ = np.floataa
lowerCAmelCase__ = 4
else:
raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" )
if stride_length_s is None:
lowerCAmelCase__ = chunk_length_s / 6
lowerCAmelCase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
if isinstance(UpperCamelCase_ , (int, float) ):
lowerCAmelCase__ = [stride_length_s, stride_length_s]
lowerCAmelCase__ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample
lowerCAmelCase__ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample
lowerCAmelCase__ = datetime.datetime.now()
lowerCAmelCase__ = datetime.timedelta(seconds=UpperCamelCase_ )
for item in chunk_bytes_iter(UpperCamelCase_ , UpperCamelCase_ , stride=(stride_left, stride_right) , stream=UpperCamelCase_ ):
# Put everything back in numpy scale
lowerCAmelCase__ = np.frombuffer(item["raw"] , dtype=UpperCamelCase_ )
lowerCAmelCase__ = (
item["stride"][0] // size_of_sample,
item["stride"][1] // size_of_sample,
)
lowerCAmelCase__ = sampling_rate
audio_time += delta
if datetime.datetime.now() > audio_time + 10 * delta:
# We're late !! SKIP
continue
yield item
def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple[int, int] , UpperCamelCase_ : bool = False ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ = b""
lowerCAmelCase__ , lowerCAmelCase__ = stride
if stride_left + stride_right >= chunk_len:
raise ValueError(
F"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" )
lowerCAmelCase__ = 0
for raw in iterator:
acc += raw
if stream and len(UpperCamelCase_ ) < chunk_len:
lowerCAmelCase__ = (_stride_left, 0)
yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
else:
while len(UpperCamelCase_ ) >= chunk_len:
# We are flushing the accumulator
lowerCAmelCase__ = (_stride_left, stride_right)
lowerCAmelCase__ = {"raw": acc[:chunk_len], "stride": stride}
if stream:
lowerCAmelCase__ = False
yield item
lowerCAmelCase__ = stride_left
lowerCAmelCase__ = acc[chunk_len - stride_left - stride_right :]
# Last chunk
if len(UpperCamelCase_ ) > stride_left:
lowerCAmelCase__ = {"raw": acc, "stride": (_stride_left, 0)}
if stream:
lowerCAmelCase__ = False
yield item
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ = 2**24 # 16Mo
try:
with subprocess.Popen(UpperCamelCase_ , stdout=subprocess.PIPE , bufsize=UpperCamelCase_ ) as ffmpeg_process:
while True:
lowerCAmelCase__ = ffmpeg_process.stdout.read(UpperCamelCase_ )
if raw == b"":
break
yield raw
except FileNotFoundError as error:
raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
| 340 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
a_ = logging.get_logger(__name__)
a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a_ = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
a_ = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
a_ = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class lowercase__ ( _UpperCAmelCase ):
a_ =VOCAB_FILES_NAMES
a_ =PRETRAINED_VOCAB_FILES_MAP
a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ =PRETRAINED_INIT_CONFIGURATION
a_ =["""input_ids""", """attention_mask"""]
a_ =DistilBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) )
lowerCAmelCase__ = do_lower_case
lowerCAmelCase__ = strip_accents
lowerCAmelCase__ = tokenize_chinese_chars
lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase )
lowerCAmelCase__ = do_lower_case
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]:
'''simple docstring'''
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]:
'''simple docstring'''
lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 340 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ = {
'''configuration_mobilebert''': [
'''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''MobileBertConfig''',
'''MobileBertOnnxConfig''',
],
'''tokenization_mobilebert''': ['''MobileBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['''MobileBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MobileBertForMaskedLM''',
'''MobileBertForMultipleChoice''',
'''MobileBertForNextSentencePrediction''',
'''MobileBertForPreTraining''',
'''MobileBertForQuestionAnswering''',
'''MobileBertForSequenceClassification''',
'''MobileBertForTokenClassification''',
'''MobileBertLayer''',
'''MobileBertModel''',
'''MobileBertPreTrainedModel''',
'''load_tf_weights_in_mobilebert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFMobileBertForMaskedLM''',
'''TFMobileBertForMultipleChoice''',
'''TFMobileBertForNextSentencePrediction''',
'''TFMobileBertForPreTraining''',
'''TFMobileBertForQuestionAnswering''',
'''TFMobileBertForSequenceClassification''',
'''TFMobileBertForTokenClassification''',
'''TFMobileBertMainLayer''',
'''TFMobileBertModel''',
'''TFMobileBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mobilebert import (
MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileBertConfig,
MobileBertOnnxConfig,
)
from .tokenization_mobilebert import MobileBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mobilebert_fast import MobileBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilebert import (
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertLayer,
MobileBertModel,
MobileBertPreTrainedModel,
load_tf_weights_in_mobilebert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilebert import (
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertMainLayer,
TFMobileBertModel,
TFMobileBertPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 340 |
a_ = '''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 340 | 1 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
a_ = logging.get_logger(__name__)
# TODO: upload to AWS
a_ = {
'''yjernite/retribert-base-uncased''': (
'''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json'''
),
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""retribert"""
def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=768 , __UpperCAmelCase=8 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=True , __UpperCAmelCase=128 , __UpperCAmelCase=0 , **__UpperCAmelCase , )-> Tuple:
'''simple docstring'''
super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = type_vocab_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = share_encoders
lowerCAmelCase__ = projection_dim
| 340 |
import collections
import importlib.util
import os
import re
from pathlib import Path
a_ = '''src/transformers'''
# Matches is_xxx_available()
a_ = re.compile(r'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
a_ = re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
a_ = re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
a_ = re.compile(r'''^\s*try:''')
# Catches a line with else:
a_ = re.compile(r'''^\s*else:''')
def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
if _re_test_backend.search(UpperCamelCase_ ) is None:
return None
lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )]
backends.sort()
return "_and_".join(UpperCamelCase_ )
def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple:
"""simple docstring"""
with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase__ = f.readlines()
lowerCAmelCase__ = 0
while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(UpperCamelCase_ ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCAmelCase__ = []
while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None:
lowerCAmelCase__ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(UpperCamelCase_ ):
lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0]
lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(", " )] )
line_index += 1
continue
lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ )
if single_line_import_search is not None:
lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
line_index += 1
lowerCAmelCase__ = {"none": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("if TYPE_CHECKING" ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCAmelCase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ):
lowerCAmelCase__ = lines[line_index]
if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None:
objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] )
elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None:
lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " )
lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif _re_between_brackets.search(UpperCamelCase_ ) is not None:
lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " )
lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0]
objects.extend(UpperCamelCase_ )
elif _re_quote_object.search(UpperCamelCase_ ) is not None:
objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
elif line.startswith(" " * 12 + "\"" ):
objects.append(line[13:-3] )
line_index += 1
lowerCAmelCase__ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCAmelCase__ = []
while (
line_index < len(UpperCamelCase_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("else" )
):
lowerCAmelCase__ = lines[line_index]
lowerCAmelCase__ = _re_import.search(UpperCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCAmelCase__ = {"none": objects}
# Let's continue with backend-specific objects
while line_index < len(UpperCamelCase_ ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCAmelCase__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ):
lowerCAmelCase__ = lines[line_index]
lowerCAmelCase__ = _re_import.search(UpperCamelCase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowerCAmelCase__ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str:
"""simple docstring"""
def find_duplicates(UpperCamelCase_ : str ):
return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCAmelCase__ = []
for key in import_dict_objects.keys():
lowerCAmelCase__ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" )
lowerCAmelCase__ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend"
errors.append(F"Differences for {name}:" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F" {a} in TYPE_HINT but not in _import_structure." )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F" {a} in _import_structure but not in TYPE_HINT." )
return errors
def _a ( ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = []
for root, _, files in os.walk(UpperCamelCase_ ):
if "__init__.py" in files:
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" )
lowerCAmelCase__ = parse_init(UpperCamelCase_ )
if objects is not None:
lowerCAmelCase__ = analyze_results(*UpperCamelCase_ )
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"
failures.append("\n".join(UpperCamelCase_ ) )
if len(UpperCamelCase_ ) > 0:
raise ValueError("\n\n".join(UpperCamelCase_ ) )
def _a ( ) -> str:
"""simple docstring"""
lowerCAmelCase__ = []
for path, directories, files in os.walk(UpperCamelCase_ ):
for folder in directories:
# Ignore private modules
if folder.startswith("_" ):
directories.remove(UpperCamelCase_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0:
continue
lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) )
lowerCAmelCase__ = short_path.replace(os.path.sep , "." )
submodules.append(UpperCamelCase_ )
for fname in files:
if fname == "__init__.py":
continue
lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) )
lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." )
if len(submodule.split("." ) ) == 1:
submodules.append(UpperCamelCase_ )
return submodules
a_ = [
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def _a ( ) -> int:
"""simple docstring"""
lowerCAmelCase__ = importlib.util.spec_from_file_location(
"transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
lowerCAmelCase__ = spec.loader.load_module()
lowerCAmelCase__ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(UpperCamelCase_ ) > 0:
lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered )
raise ValueError(
"The following submodules are not properly registered in the main init of Transformers:\n"
F"{list_of_modules}\n"
"Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 340 | 1 |
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ) -> str:
"""simple docstring"""
return params[F"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :]
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : Dict="attention" ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ = lowerCAmelCase__ = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] )
lowerCAmelCase__ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] )
lowerCAmelCase__ = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] )
lowerCAmelCase__ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] )
lowerCAmelCase__ = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] )
lowerCAmelCase__ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] )
lowerCAmelCase__ = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] )
lowerCAmelCase__ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] )
return k, o, q, v
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any]=False ) -> Dict:
"""simple docstring"""
if split_mlp_wi:
lowerCAmelCase__ = params[F"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :]
lowerCAmelCase__ = params[F"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :]
lowerCAmelCase__ = (wi_a, wi_a)
else:
lowerCAmelCase__ = params[F"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :]
lowerCAmelCase__ = params[F"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :]
return wi, wo
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] ) -> int:
"""simple docstring"""
return params[F"{prefix}/{prefix}/{layer_name}/scale"][:, i]
def _a ( UpperCamelCase_ : dict , *, UpperCamelCase_ : int , UpperCamelCase_ : bool , UpperCamelCase_ : bool = False ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = traverse_util.flatten_dict(variables["target"] )
lowerCAmelCase__ = {"/".join(UpperCamelCase_ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowerCAmelCase__ = "encoder/encoder/mlp/wi_0/kernel" in old
print("Split MLP:" , UpperCamelCase_ )
lowerCAmelCase__ = collections.OrderedDict()
# Shared embeddings.
lowerCAmelCase__ = old["token_embedder/embedding"]
# Encoder.
for i in range(UpperCamelCase_ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase__ = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , "encoder" , "pre_attention_layer_norm" )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = tax_attention_lookup(UpperCamelCase_ , UpperCamelCase_ , "encoder" , "attention" )
lowerCAmelCase__ = layer_norm
lowerCAmelCase__ = k.T
lowerCAmelCase__ = o.T
lowerCAmelCase__ = q.T
lowerCAmelCase__ = v.T
# Block i, layer 1 (MLP).
lowerCAmelCase__ = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , "encoder" , "pre_mlp_layer_norm" )
lowerCAmelCase__ , lowerCAmelCase__ = tax_mlp_lookup(UpperCamelCase_ , UpperCamelCase_ , "encoder" , UpperCamelCase_ )
lowerCAmelCase__ = layer_norm
if split_mlp_wi:
lowerCAmelCase__ = wi[0].T
lowerCAmelCase__ = wi[1].T
else:
lowerCAmelCase__ = wi.T
lowerCAmelCase__ = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
lowerCAmelCase__ = tax_relpos_bias_lookup(
UpperCamelCase_ , UpperCamelCase_ , "encoder" ).T
lowerCAmelCase__ = old["encoder/encoder_norm/scale"]
if not scalable_attention:
lowerCAmelCase__ = tax_relpos_bias_lookup(
UpperCamelCase_ , 0 , "encoder" ).T
lowerCAmelCase__ = tax_relpos_bias_lookup(
UpperCamelCase_ , 0 , "decoder" ).T
if not is_encoder_only:
# Decoder.
for i in range(UpperCamelCase_ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase__ = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , "decoder" , "pre_self_attention_layer_norm" )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = tax_attention_lookup(UpperCamelCase_ , UpperCamelCase_ , "decoder" , "self_attention" )
lowerCAmelCase__ = layer_norm
lowerCAmelCase__ = k.T
lowerCAmelCase__ = o.T
lowerCAmelCase__ = q.T
lowerCAmelCase__ = v.T
# Block i, layer 1 (Cross Attention).
lowerCAmelCase__ = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , "decoder" , "pre_cross_attention_layer_norm" )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = tax_attention_lookup(UpperCamelCase_ , UpperCamelCase_ , "decoder" , "encoder_decoder_attention" )
lowerCAmelCase__ = layer_norm
lowerCAmelCase__ = k.T
lowerCAmelCase__ = o.T
lowerCAmelCase__ = q.T
lowerCAmelCase__ = v.T
# Block i, layer 2 (MLP).
lowerCAmelCase__ = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , "decoder" , "pre_mlp_layer_norm" )
lowerCAmelCase__ , lowerCAmelCase__ = tax_mlp_lookup(UpperCamelCase_ , UpperCamelCase_ , "decoder" , UpperCamelCase_ )
lowerCAmelCase__ = layer_norm
if split_mlp_wi:
lowerCAmelCase__ = wi[0].T
lowerCAmelCase__ = wi[1].T
else:
lowerCAmelCase__ = wi.T
lowerCAmelCase__ = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
lowerCAmelCase__ = tax_relpos_bias_lookup(UpperCamelCase_ , UpperCamelCase_ , "decoder" ).T
lowerCAmelCase__ = old["decoder/decoder_norm/scale"]
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowerCAmelCase__ = old["decoder/logits_dense/kernel"].T
return new
def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : bool ) -> str:
"""simple docstring"""
lowerCAmelCase__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase__ = state_dict["shared.weight"]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase__ = state_dict["shared.weight"]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("Using shared word embeddings as lm_head." )
lowerCAmelCase__ = state_dict["shared.weight"]
return state_dict
def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ = checkpoints.load_tax_checkpoint(UpperCamelCase_ )
lowerCAmelCase__ = convert_tax_to_pytorch(
UpperCamelCase_ , num_layers=config.num_layers , is_encoder_only=UpperCamelCase_ , scalable_attention=UpperCamelCase_ )
lowerCAmelCase__ = make_state_dict(UpperCamelCase_ , UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ )
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = MTaConfig.from_json_file(UpperCamelCase_ )
print(F"Building PyTorch model from configuration: {config}" )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowerCAmelCase__ = UMTaEncoderModel(UpperCamelCase_ )
else:
lowerCAmelCase__ = UMTaForConditionalGeneration(UpperCamelCase_ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# Save pytorch-model
print(F"Save PyTorch model to {pytorch_dump_path}" )
model.save_pretrained(UpperCamelCase_ )
# Verify that we can load the checkpoint.
model.from_pretrained(UpperCamelCase_ )
print("Done" )
if __name__ == "__main__":
a_ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''')
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False
)
parser.add_argument(
'''--scalable_attention''',
action='''store_true''',
help='''Whether the model uses scaled attention (umt5 model)''',
default=False,
)
a_ = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 340 |
from __future__ import annotations
import os
from collections.abc import Mapping
a_ = tuple[int, int]
class lowercase__ :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = vertices
lowerCAmelCase__ = {
(min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items()
}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None:
'''simple docstring'''
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
lowerCAmelCase__ = weight
def UpperCAmelCase ( self )-> Graph:
'''simple docstring'''
lowerCAmelCase__ = Graph({min(self.vertices )} , {} )
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
while len(subgraph.vertices ) < len(self.vertices ):
lowerCAmelCase__ = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowerCAmelCase__ = edge
lowerCAmelCase__ = weight
subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase )
return subgraph
def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int:
"""simple docstring"""
lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = {}
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
with open(UpperCamelCase_ ) as f:
lowerCAmelCase__ = f.read().strip().split("\n" )
lowerCAmelCase__ = [line.split("," ) for line in data]
for edgea in range(1 , len(UpperCamelCase_ ) ):
for edgea in range(UpperCamelCase_ ):
if adjaceny_matrix[edgea][edgea] != "-":
lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] )
lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ )
lowerCAmelCase__ = graph.prims_algorithm()
lowerCAmelCase__ = sum(graph.edges.values() )
lowerCAmelCase__ = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"{solution() = }")
| 340 | 1 |
from __future__ import annotations
from cmath import sqrt
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]:
"""simple docstring"""
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
lowerCAmelCase__ = b * b - 4 * a * c
lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a)
lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def _a ( ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main()
| 340 |
from collections import defaultdict
from math import gcd
def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int:
"""simple docstring"""
lowerCAmelCase__ = defaultdict(UpperCamelCase_ )
lowerCAmelCase__ = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ):
if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1:
continue
lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"{solution() = }")
| 340 | 1 |
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
a_ = {
'''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''',
'''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''',
'''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''',
'''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''',
'''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''',
'''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''',
'''mask_downscaling.0''': '''mask_embed.conv1''',
'''mask_downscaling.1''': '''mask_embed.layer_norm1''',
'''mask_downscaling.3''': '''mask_embed.conv2''',
'''mask_downscaling.4''': '''mask_embed.layer_norm2''',
'''mask_downscaling.6''': '''mask_embed.conv3''',
'''point_embeddings''': '''point_embed''',
'''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''',
'''image_encoder''': '''vision_encoder''',
'''neck.0''': '''neck.conv1''',
'''neck.1''': '''neck.layer_norm1''',
'''neck.2''': '''neck.conv2''',
'''neck.3''': '''neck.layer_norm2''',
'''patch_embed.proj''': '''patch_embed.projection''',
'''.norm''': '''.layer_norm''',
'''blocks''': '''layers''',
}
def _a ( UpperCamelCase_ : List[Any] ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ = {}
state_dict.pop("pixel_mean" , UpperCamelCase_ )
state_dict.pop("pixel_std" , UpperCamelCase_ )
lowerCAmelCase__ = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*"
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
lowerCAmelCase__ = key.replace(UpperCamelCase_ , UpperCamelCase_ )
if re.match(UpperCamelCase_ , UpperCamelCase_ ):
lowerCAmelCase__ = int(re.match(UpperCamelCase_ , UpperCamelCase_ ).group(2 ) )
if layer_nb == 0:
lowerCAmelCase__ = key.replace("layers.0" , "proj_in" )
elif layer_nb == 1:
lowerCAmelCase__ = key.replace("layers.1" , "layers.0" )
elif layer_nb == 2:
lowerCAmelCase__ = key.replace("layers.2" , "proj_out" )
lowerCAmelCase__ = value
lowerCAmelCase__ = model_state_dict[
"prompt_encoder.shared_embedding.positional_embedding"
]
return model_state_dict
def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any]="ybelkada/segment-anything" ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ = hf_hub_download(UpperCamelCase_ , F"checkpoints/{model_name}.pth" )
if "sam_vit_b" in model_name:
lowerCAmelCase__ = SamConfig()
elif "sam_vit_l" in model_name:
lowerCAmelCase__ = SamVisionConfig(
hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , )
lowerCAmelCase__ = SamConfig(
vision_config=UpperCamelCase_ , )
elif "sam_vit_h" in model_name:
lowerCAmelCase__ = SamVisionConfig(
hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , )
lowerCAmelCase__ = SamConfig(
vision_config=UpperCamelCase_ , )
lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" )
lowerCAmelCase__ = replace_keys(UpperCamelCase_ )
lowerCAmelCase__ = SamImageProcessor()
lowerCAmelCase__ = SamProcessor(image_processor=UpperCamelCase_ )
lowerCAmelCase__ = SamModel(UpperCamelCase_ )
hf_model.load_state_dict(UpperCamelCase_ )
lowerCAmelCase__ = hf_model.to("cuda" )
lowerCAmelCase__ = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert("RGB" )
lowerCAmelCase__ = [[[400, 650]]]
lowerCAmelCase__ = [[1]]
lowerCAmelCase__ = processor(images=np.array(UpperCamelCase_ ) , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
lowerCAmelCase__ = hf_model(**UpperCamelCase_ )
lowerCAmelCase__ = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.579_890_251_159_668
lowerCAmelCase__ = processor(
images=np.array(UpperCamelCase_ ) , input_points=UpperCamelCase_ , input_labels=UpperCamelCase_ , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
lowerCAmelCase__ = hf_model(**UpperCamelCase_ )
lowerCAmelCase__ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9_712_603_092_193_604
lowerCAmelCase__ = ((75, 275, 1_725, 850),)
lowerCAmelCase__ = processor(images=np.array(UpperCamelCase_ ) , input_boxes=UpperCamelCase_ , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
lowerCAmelCase__ = hf_model(**UpperCamelCase_ )
lowerCAmelCase__ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.8_686_015_605_926_514
# Test with 2 points and 1 image.
lowerCAmelCase__ = [[[400, 650], [800, 650]]]
lowerCAmelCase__ = [[1, 1]]
lowerCAmelCase__ = processor(
images=np.array(UpperCamelCase_ ) , input_points=UpperCamelCase_ , input_labels=UpperCamelCase_ , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
lowerCAmelCase__ = hf_model(**UpperCamelCase_ )
lowerCAmelCase__ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9_936_047_792_434_692
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
a_ = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195''']
parser.add_argument(
'''--model_name''',
default='''sam_vit_h_4b8939''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
parser.add_argument(
'''--model_hub_id''',
default='''ybelkada/segment-anything''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
a_ = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 340 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase__ ( _UpperCAmelCase ):
a_ =["""image_processor""", """tokenizer"""]
a_ ="""LayoutLMv2ImageProcessor"""
a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""")
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple:
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs.pop("feature_extractor" )
lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes "
"if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." )
# first, apply the image processor
lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension)
lowerCAmelCase__ = features["words"]
lowerCAmelCase__ = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , )
# add pixel values
lowerCAmelCase__ = features.pop("pixel_values" )
if return_overflowing_tokens is True:
lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] )
lowerCAmelCase__ = images
return encoded_inputs
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" )
return images_with_overflow
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , )
return self.image_processor
| 340 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase__ ( _UpperCAmelCase, unittest.TestCase ):
a_ =LDMTextToImagePipeline
a_ =TEXT_TO_IMAGE_PARAMS - {
"""negative_prompt""",
"""negative_prompt_embeds""",
"""cross_attention_kwargs""",
"""prompt_embeds""",
}
a_ =PipelineTesterMixin.required_optional_params - {
"""num_images_per_prompt""",
"""callback""",
"""callback_steps""",
}
a_ =TEXT_TO_IMAGE_BATCH_PARAMS
a_ =False
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
torch.manual_seed(0 )
lowerCAmelCase__ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
lowerCAmelCase__ = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
lowerCAmelCase__ = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , )
torch.manual_seed(0 )
lowerCAmelCase__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
lowerCAmelCase__ = CLIPTextModel(__UpperCAmelCase )
lowerCAmelCase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
lowerCAmelCase__ = {
"unet": unet,
"scheduler": scheduler,
"vqvae": vae,
"bert": text_encoder,
"tokenizer": tokenizer,
}
return components
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 )-> Dict:
'''simple docstring'''
if str(__UpperCAmelCase ).startswith("mps" ):
lowerCAmelCase__ = torch.manual_seed(__UpperCAmelCase )
else:
lowerCAmelCase__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
lowerCAmelCase__ = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase__ = self.get_dummy_components()
lowerCAmelCase__ = LDMTextToImagePipeline(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ = self.get_dummy_inputs(__UpperCAmelCase )
lowerCAmelCase__ = pipe(**__UpperCAmelCase ).images
lowerCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
lowerCAmelCase__ = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = torch.manual_seed(__UpperCAmelCase )
lowerCAmelCase__ = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
lowerCAmelCase__ = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
lowerCAmelCase__ = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ = self.get_inputs(__UpperCAmelCase )
lowerCAmelCase__ = pipe(**__UpperCAmelCase ).images
lowerCAmelCase__ = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
lowerCAmelCase__ = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878] )
lowerCAmelCase__ = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = torch.manual_seed(__UpperCAmelCase )
lowerCAmelCase__ = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) )
lowerCAmelCase__ = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
lowerCAmelCase__ = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 50,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ = self.get_inputs(__UpperCAmelCase )
lowerCAmelCase__ = pipe(**__UpperCAmelCase ).images[0]
lowerCAmelCase__ = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" )
lowerCAmelCase__ = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 340 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = tempfile.mkdtemp()
# fmt: off
lowerCAmelCase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__UpperCAmelCase ) )
lowerCAmelCase__ = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any:
'''simple docstring'''
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = self.get_rust_tokenizer()
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase )
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase )
self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase )
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" )
lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = processor(text=__UpperCAmelCase , return_tensors="np" )
lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = "lower newer"
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = ["cat", "nasa badge"]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = [["cat", "nasa badge"], ["person"]]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
lowerCAmelCase__ = len(__UpperCAmelCase )
lowerCAmelCase__ = max([len(__UpperCAmelCase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = "google/owlvit-base-patch32"
lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase )
lowerCAmelCase__ = ["cat", "nasa badge"]
lowerCAmelCase__ = processor(text=__UpperCAmelCase )
lowerCAmelCase__ = 16
lowerCAmelCase__ = inputs["input_ids"]
lowerCAmelCase__ = [
[49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] )
self.assertEqual(inputs["input_ids"].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = self.prepare_image_inputs()
lowerCAmelCase__ = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = self.get_image_processor()
lowerCAmelCase__ = self.get_tokenizer()
lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase )
lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase )
lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
| 340 | 1 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowercase__ ( _UpperCAmelCase ):
a_ =(DPMSolverSinglestepScheduler,)
a_ =(("""num_inference_steps""", 25),)
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = {
"num_train_timesteps": 1000,
"beta_start": 0.0_001,
"beta_end": 0.02,
"beta_schedule": "linear",
"solver_order": 2,
"prediction_type": "epsilon",
"thresholding": False,
"sample_max_value": 1.0,
"algorithm_type": "dpmsolver++",
"solver_type": "midpoint",
"lambda_min_clipped": -float("inf" ),
"variance_type": None,
}
config.update(**__UpperCAmelCase )
return config
def UpperCAmelCase ( self , __UpperCAmelCase=0 , **__UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = dict(self.forward_default_kwargs )
lowerCAmelCase__ = kwargs.pop("num_inference_steps" , __UpperCAmelCase )
lowerCAmelCase__ = self.dummy_sample
lowerCAmelCase__ = 0.1 * sample
lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase__ = self.get_scheduler_config(**__UpperCAmelCase )
lowerCAmelCase__ = scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals
lowerCAmelCase__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__UpperCAmelCase )
lowerCAmelCase__ = scheduler_class.from_pretrained(__UpperCAmelCase )
new_scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals
lowerCAmelCase__ = dummy_past_residuals[: new_scheduler.config.solver_order]
lowerCAmelCase__ , lowerCAmelCase__ = sample, sample
for t in range(__UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ):
lowerCAmelCase__ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
lowerCAmelCase__ = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
pass
def UpperCAmelCase ( self , __UpperCAmelCase=0 , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = dict(self.forward_default_kwargs )
lowerCAmelCase__ = kwargs.pop("num_inference_steps" , __UpperCAmelCase )
lowerCAmelCase__ = self.dummy_sample
lowerCAmelCase__ = 0.1 * sample
lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase__ = self.get_scheduler_config()
lowerCAmelCase__ = scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
lowerCAmelCase__ = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__UpperCAmelCase )
lowerCAmelCase__ = scheduler_class.from_pretrained(__UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
lowerCAmelCase__ = dummy_past_residuals[: new_scheduler.config.solver_order]
lowerCAmelCase__ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
lowerCAmelCase__ = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCAmelCase ( self , __UpperCAmelCase=None , **__UpperCAmelCase )-> Any:
'''simple docstring'''
if scheduler is None:
lowerCAmelCase__ = self.scheduler_classes[0]
lowerCAmelCase__ = self.get_scheduler_config(**__UpperCAmelCase )
lowerCAmelCase__ = scheduler_class(**__UpperCAmelCase )
lowerCAmelCase__ = self.scheduler_classes[0]
lowerCAmelCase__ = self.get_scheduler_config(**__UpperCAmelCase )
lowerCAmelCase__ = scheduler_class(**__UpperCAmelCase )
lowerCAmelCase__ = 10
lowerCAmelCase__ = self.dummy_model()
lowerCAmelCase__ = self.dummy_sample_deter
scheduler.set_timesteps(__UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase__ = model(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
return sample
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
lowerCAmelCase__ = 50
lowerCAmelCase__ = self.dummy_model()
lowerCAmelCase__ = self.dummy_sample_deter
scheduler.set_timesteps(__UpperCAmelCase )
# make sure that the first t is uneven
for i, t in enumerate(scheduler.timesteps[3:] ):
lowerCAmelCase__ = model(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
lowerCAmelCase__ = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2_574 ) < 1E-3
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=__UpperCAmelCase )
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() )
lowerCAmelCase__ = self.full_loop(scheduler=__UpperCAmelCase )
lowerCAmelCase__ = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
lowerCAmelCase__ = DEISMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase__ = DPMSolverMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase__ = UniPCMultistepScheduler.from_config(scheduler.config )
lowerCAmelCase__ = DPMSolverSinglestepScheduler.from_config(scheduler.config )
lowerCAmelCase__ = self.full_loop(scheduler=__UpperCAmelCase )
lowerCAmelCase__ = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
self.check_over_configs(thresholding=__UpperCAmelCase )
for order in [1, 2, 3]:
for solver_type in ["midpoint", "heun"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=__UpperCAmelCase , prediction_type=__UpperCAmelCase , sample_max_value=__UpperCAmelCase , algorithm_type="dpmsolver++" , solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__UpperCAmelCase )
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
for algorithm_type in ["dpmsolver", "dpmsolver++"]:
for solver_type in ["midpoint", "heun"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , algorithm_type=__UpperCAmelCase , )
lowerCAmelCase__ = self.full_loop(
solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , algorithm_type=__UpperCAmelCase , )
assert not torch.isnan(__UpperCAmelCase ).any(), "Samples have nan numbers"
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
self.check_over_configs(lower_order_final=__UpperCAmelCase )
self.check_over_configs(lower_order_final=__UpperCAmelCase )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
self.check_over_configs(lambda_min_clipped=-float("inf" ) )
self.check_over_configs(lambda_min_clipped=-5.1 )
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
self.check_over_configs(variance_type=__UpperCAmelCase )
self.check_over_configs(variance_type="learned_range" )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=__UpperCAmelCase , time_step=0 )
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = self.full_loop()
lowerCAmelCase__ = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2_791 ) < 1E-3
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = self.full_loop(use_karras_sigmas=__UpperCAmelCase )
lowerCAmelCase__ = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2_248 ) < 1E-3
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = self.full_loop(prediction_type="v_prediction" )
lowerCAmelCase__ = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.1_453 ) < 1E-3
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=__UpperCAmelCase )
lowerCAmelCase__ = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.0_649 ) < 1E-3
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = self.scheduler_classes[0]
lowerCAmelCase__ = self.get_scheduler_config(thresholding=__UpperCAmelCase , dynamic_thresholding_ratio=0 )
lowerCAmelCase__ = scheduler_class(**__UpperCAmelCase )
lowerCAmelCase__ = 10
lowerCAmelCase__ = self.dummy_model()
lowerCAmelCase__ = self.dummy_sample_deter.half()
scheduler.set_timesteps(__UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase__ = model(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
assert sample.dtype == torch.floataa
| 340 |
from __future__ import annotations
from cmath import sqrt
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]:
"""simple docstring"""
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
lowerCAmelCase__ = b * b - 4 * a * c
lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a)
lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def _a ( ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main()
| 340 | 1 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase__ ( _UpperCAmelCase ):
a_ =["""image_processor""", """tokenizer"""]
a_ ="""LayoutLMv2ImageProcessor"""
a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""")
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple:
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs.pop("feature_extractor" )
lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes "
"if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." )
# first, apply the image processor
lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension)
lowerCAmelCase__ = features["words"]
lowerCAmelCase__ = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , )
# add pixel values
lowerCAmelCase__ = features.pop("pixel_values" )
if return_overflowing_tokens is True:
lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] )
lowerCAmelCase__ = images
return encoded_inputs
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(__UpperCAmelCase ) != len(__UpperCAmelCase ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" )
return images_with_overflow
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , )
return self.image_processor
| 340 |
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts:
"""simple docstring"""
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
raise TypeError("number of qubits must be a integer." )
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0." )
if math.floor(UpperCamelCase_ ) != number_of_qubits:
raise ValueError("number of qubits must be exact integer." )
if number_of_qubits > 10:
raise ValueError("number of qubits too large to simulate(>10)." )
lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" )
lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" )
lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = number_of_qubits
for i in range(UpperCamelCase_ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(UpperCamelCase_ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ )
# simulate with 10000 shots
lowerCAmelCase__ = Aer.get_backend("qasm_simulator" )
lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 )
return job.result().get_counts(UpperCamelCase_ )
if __name__ == "__main__":
print(
F"Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"
)
| 340 | 1 |
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
a_ = '''.'''
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
a_ = [
'''Assert''',
'''AssignVariableOp''',
'''EmptyTensorList''',
'''MergeV2Checkpoints''',
'''ReadVariableOp''',
'''ResourceGather''',
'''RestoreV2''',
'''SaveV2''',
'''ShardedFilename''',
'''StatefulPartitionedCall''',
'''StaticRegexFullMatch''',
'''VarHandleOp''',
]
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : List[str] ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ = SavedModel()
lowerCAmelCase__ = []
with open(os.path.join(UpperCamelCase_ , "utils" , "tf_ops" , "onnx.json" ) ) as f:
lowerCAmelCase__ = json.load(UpperCamelCase_ )["opsets"]
for i in range(1 , opset + 1 ):
onnx_ops.extend(onnx_opsets[str(UpperCamelCase_ )] )
with open(UpperCamelCase_ , "rb" ) as f:
saved_model.ParseFromString(f.read() )
lowerCAmelCase__ = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
lowerCAmelCase__ = sorted(UpperCamelCase_ )
lowerCAmelCase__ = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(UpperCamelCase_ )
if strict and len(UpperCamelCase_ ) > 0:
raise Exception(F"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops )
elif len(UpperCamelCase_ ) > 0:
print(F"Found the following incompatible ops for the opset {opset}:" )
print(*UpperCamelCase_ , sep="\n" )
else:
print(F"The saved model {saved_model_path} can properly be converted with ONNX." )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''')
parser.add_argument(
'''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.'''
)
parser.add_argument(
'''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.'''
)
parser.add_argument(
'''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)'''
)
a_ = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 340 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowercase__ ( _UpperCAmelCase ):
a_ ="""char"""
a_ ="""bpe"""
a_ ="""wp"""
a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowercase__ ( _UpperCAmelCase ):
a_ =["""image_processor""", """char_tokenizer"""]
a_ ="""ViTImageProcessor"""
a_ ="""MgpstrTokenizer"""
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs.pop("feature_extractor" )
lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
lowerCAmelCase__ = tokenizer
lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" )
lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]:
'''simple docstring'''
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None:
lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
lowerCAmelCase__ = encodings["input_ids"]
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences
lowerCAmelCase__ = char_preds.size(0 )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" )
lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" )
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for i in range(__UpperCAmelCase ):
lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]]
lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]]
lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
lowerCAmelCase__ = {}
lowerCAmelCase__ = final_strs
lowerCAmelCase__ = final_scores
lowerCAmelCase__ = char_strs
lowerCAmelCase__ = bpe_strs
lowerCAmelCase__ = wp_strs
return out
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
if format == DecodeType.CHARACTER:
lowerCAmelCase__ = self.char_decode
lowerCAmelCase__ = 1
lowerCAmelCase__ = "[s]"
elif format == DecodeType.BPE:
lowerCAmelCase__ = self.bpe_decode
lowerCAmelCase__ = 2
lowerCAmelCase__ = "#"
elif format == DecodeType.WORDPIECE:
lowerCAmelCase__ = self.wp_decode
lowerCAmelCase__ = 102
lowerCAmelCase__ = "[SEP]"
else:
raise ValueError(F"Format {format} is not supported." )
lowerCAmelCase__ , lowerCAmelCase__ = [], []
lowerCAmelCase__ = pred_logits.size(0 )
lowerCAmelCase__ = pred_logits.size(1 )
lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase )
lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:]
lowerCAmelCase__ = decoder(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 )
lowerCAmelCase__ = preds_max_prob[:, 1:]
for index in range(__UpperCAmelCase ):
lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase )
lowerCAmelCase__ = preds_str[index][:pred_eos]
lowerCAmelCase__ = preds_index[index].cpu().tolist()
lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1
lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1]
lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__UpperCAmelCase )
conf_scores.append(__UpperCAmelCase )
return dec_strs, conf_scores
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]:
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
| 340 | 1 |
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
a_ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif''']
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=1 )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = tokenizer
lowerCAmelCase__ = dataset
lowerCAmelCase__ = len(__UpperCAmelCase ) if n_tasks is None else n_tasks
lowerCAmelCase__ = n_copies
def __iter__( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() )
lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="pt" )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> str:
'''simple docstring'''
lowerCAmelCase__ = start_length
lowerCAmelCase__ = eof_strings
lowerCAmelCase__ = tokenizer
def __call__( self , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
lowerCAmelCase__ = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(__UpperCAmelCase )
def _a ( UpperCamelCase_ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ = re.split("(%s)" % "|".join(UpperCamelCase_ ) , UpperCamelCase_ )
# last string should be ""
return "".join(string_list[:-2] )
def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any]=20 , **UpperCamelCase_ : Dict ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(UpperCamelCase_ ) ):
with torch.no_grad():
lowerCAmelCase__ = batch["ids"].shape[-1]
lowerCAmelCase__ = accelerator.unwrap_model(UpperCamelCase_ ).generate(
input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=UpperCamelCase_ , **UpperCamelCase_ )
# each task is generated batch_size times
lowerCAmelCase__ = batch["task_id"].repeat(UpperCamelCase_ )
lowerCAmelCase__ = accelerator.pad_across_processes(
UpperCamelCase_ , dim=1 , pad_index=tokenizer.pad_token_id )
lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((generated_tokens, generated_tasks) )
lowerCAmelCase__ = generated_tokens.cpu().numpy()
lowerCAmelCase__ = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(UpperCamelCase_ , UpperCamelCase_ ):
gen_token_dict[task].append(UpperCamelCase_ )
lowerCAmelCase__ = [[] for _ in range(UpperCamelCase_ )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
lowerCAmelCase__ = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
code_gens[task].append(remove_last_block(UpperCamelCase_ ) )
return code_gens
def _a ( ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ = HfArgumentParser(UpperCamelCase_ )
lowerCAmelCase__ = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
lowerCAmelCase__ = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
lowerCAmelCase__ = "false"
if args.num_workers is None:
lowerCAmelCase__ = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
lowerCAmelCase__ = Accelerator()
set_seed(args.seed , device_specific=UpperCamelCase_ )
# Load model and tokenizer
lowerCAmelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt )
lowerCAmelCase__ = tokenizer.eos_token
lowerCAmelCase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
lowerCAmelCase__ = {
"do_sample": args.do_sample,
"temperature": args.temperature,
"max_new_tokens": args.max_new_tokens,
"top_p": args.top_p,
"top_k": args.top_k,
"stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , UpperCamelCase_ , UpperCamelCase_ )] ),
}
# Load evaluation dataset and metric
lowerCAmelCase__ = load_dataset("openai_humaneval" )
lowerCAmelCase__ = load_metric("code_eval" )
lowerCAmelCase__ = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] )
lowerCAmelCase__ = args.n_samples // args.batch_size
lowerCAmelCase__ = TokenizedDataset(UpperCamelCase_ , human_eval["test"] , n_copies=UpperCamelCase_ , n_tasks=UpperCamelCase_ )
# do not confuse args.batch_size, which is actually the num_return_sequences
lowerCAmelCase__ = DataLoader(UpperCamelCase_ , batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
lowerCAmelCase__ = code_eval_metric.compute(references=[""] , predictions=[[""]] )
except ValueError as exception:
print(
"Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`"
" flag to enable code evaluation." )
raise exception
lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = complete_code(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , n_tasks=UpperCamelCase_ , batch_size=args.batch_size , **UpperCamelCase_ , )
if accelerator.is_main_process:
lowerCAmelCase__ = []
for task in tqdm(range(UpperCamelCase_ ) ):
lowerCAmelCase__ = human_eval["test"][task]["test"]
lowerCAmelCase__ = F"check({human_eval['test'][task]['entry_point']})"
references.append("\n" + test_func + "\n" + entry_point )
# Evaluate completions with "code_eval" metric
lowerCAmelCase__ , lowerCAmelCase__ = code_eval_metric.compute(
references=UpperCamelCase_ , predictions=UpperCamelCase_ , num_workers=args.num_workers )
print(F"Results: {pass_at_k}" )
# Save results to json file
with open(args.output_file , "w" ) as fp:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 340 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ = {
'''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''],
'''tokenization_convbert''': ['''ConvBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = ['''ConvBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConvBertForMaskedLM''',
'''ConvBertForMultipleChoice''',
'''ConvBertForQuestionAnswering''',
'''ConvBertForSequenceClassification''',
'''ConvBertForTokenClassification''',
'''ConvBertLayer''',
'''ConvBertModel''',
'''ConvBertPreTrainedModel''',
'''load_tf_weights_in_convbert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFConvBertForMaskedLM''',
'''TFConvBertForMultipleChoice''',
'''TFConvBertForQuestionAnswering''',
'''TFConvBertForSequenceClassification''',
'''TFConvBertForTokenClassification''',
'''TFConvBertLayer''',
'''TFConvBertModel''',
'''TFConvBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 340 | 1 |
def _a ( UpperCamelCase_ : str ) -> list:
"""simple docstring"""
if n_term == "":
return []
lowerCAmelCase__ = []
for temp in range(int(UpperCamelCase_ ) ):
series.append(F"1/{temp + 1}" if series else "1" )
return series
if __name__ == "__main__":
a_ = input('''Enter the last number (nth term) of the Harmonic Series''')
print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''')
print(harmonic_series(nth_term))
| 340 |
from collections import defaultdict
def _a ( UpperCamelCase_ : int ) -> int:
"""simple docstring"""
lowerCAmelCase__ = 1
lowerCAmelCase__ = True
for v in tree[start]:
if v not in visited:
ret += dfs(UpperCamelCase_ )
if ret % 2 == 0:
cuts.append(UpperCamelCase_ )
return ret
def _a ( ) -> Optional[Any]:
"""simple docstring"""
dfs(1 )
if __name__ == "__main__":
a_, a_ = 10, 9
a_ = defaultdict(list)
a_ = {}
a_ = []
a_ = 0
a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)]
for u, v in edges:
tree[u].append(v)
tree[v].append(u)
even_tree()
print(len(cuts) - 1)
| 340 | 1 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""", """False""" ) ) is not True, reason="""Skipping test because should only be run when releasing minor transformers version""", )
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue_model_parallelism.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
] )
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
if self.framework == "pytorch":
subprocess.run(
F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__UpperCAmelCase , )
assert hasattr(self , "env" )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = {
"enabled": True,
"processes_per_host": 8,
}
lowerCAmelCase__ = {
"enabled": True,
"parameters": {
"microbatches": 4,
"placement_strategy": "spread",
"pipeline": "interleaved",
"optimize": "speed",
"partitions": 4,
"ddp": True,
},
}
lowerCAmelCase__ = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}
lowerCAmelCase__ = "trainer" if self.script == "run_glue.py" else "smtrainer"
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" , instance_count=__UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCAmelCase , hyperparameters={
**self.env.hyperparameters,
"model_name_or_path": self.model_name_or_path,
"max_steps": 500,
} , metric_definitions=self.env.metric_definitions , distribution=__UpperCAmelCase , py_version="py36" , )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple:
'''simple docstring'''
TrainingJobAnalytics(__UpperCAmelCase ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" )
@parameterized.expand([(1,)] )
def UpperCAmelCase ( self , __UpperCAmelCase )-> int:
'''simple docstring'''
lowerCAmelCase__ = self.create_estimator(__UpperCAmelCase )
# run training
estimator.fit()
# result dataframe
lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowerCAmelCase__ = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"{estimator.latest_training_job.name}.json" , "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __UpperCAmelCase )
| 340 |
import requests
from bsa import BeautifulSoup
def _a ( UpperCamelCase_ : str = "AAPL" ) -> str:
"""simple docstring"""
lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"
lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" )
lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)"
return soup.find("div" , class_=class_ ).find("span" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
| 340 | 1 |
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ = [False] * len(UpperCamelCase_ )
lowerCAmelCase__ = []
queue.append(UpperCamelCase_ )
lowerCAmelCase__ = True
while queue:
lowerCAmelCase__ = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(UpperCamelCase_ )
lowerCAmelCase__ = True
lowerCAmelCase__ = u
return visited[t]
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ = [-1] * (len(UpperCamelCase_ ))
lowerCAmelCase__ = 0
while bfs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
lowerCAmelCase__ = float("Inf" )
lowerCAmelCase__ = sink
while s != source:
# Find the minimum value in select path
lowerCAmelCase__ = min(UpperCamelCase_ , graph[parent[s]][s] )
lowerCAmelCase__ = parent[s]
max_flow += path_flow
lowerCAmelCase__ = sink
while v != source:
lowerCAmelCase__ = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
lowerCAmelCase__ = parent[v]
return max_flow
a_ = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
a_, a_ = 0, 5
print(ford_fulkerson(graph, source, sink))
| 340 |
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
a_ = (3, 9, -11, 0, 7, 5, 1, -1)
a_ = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class lowercase__ :
a_ =42
a_ =42
class lowercase__ :
def __init__( self , __UpperCAmelCase )-> None:
'''simple docstring'''
lowerCAmelCase__ = None
for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ):
lowerCAmelCase__ = Node(__UpperCAmelCase , self.head )
def __iter__( self )-> Iterator[int]:
'''simple docstring'''
lowerCAmelCase__ = self.head
while node:
yield node.data
lowerCAmelCase__ = node.next_node
def __len__( self )-> int:
'''simple docstring'''
return sum(1 for _ in self )
def __str__( self )-> str:
'''simple docstring'''
return " -> ".join([str(__UpperCAmelCase ) for node in self] )
def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList:
"""simple docstring"""
return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 340 | 1 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
a_ = logging.get_logger(__name__)
def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]=False ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("head" ):
lowerCAmelCase__ = "segformer.encoder." + key
if key.startswith("backbone" ):
lowerCAmelCase__ = key.replace("backbone" , "segformer.encoder" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
lowerCAmelCase__ = key[key.find("patch_embed" ) + len("patch_embed" )]
lowerCAmelCase__ = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(UpperCamelCase_ )-1}" )
if "norm" in key:
lowerCAmelCase__ = key.replace("norm" , "layer_norm" )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
lowerCAmelCase__ = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )]
lowerCAmelCase__ = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(UpperCamelCase_ )-1}" )
if "layer_norm1" in key:
lowerCAmelCase__ = key.replace("layer_norm1" , "layer_norm_1" )
if "layer_norm2" in key:
lowerCAmelCase__ = key.replace("layer_norm2" , "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
lowerCAmelCase__ = key[key.find("block" ) + len("block" )]
lowerCAmelCase__ = key.replace(F"block{idx}" , F"block.{int(UpperCamelCase_ )-1}" )
if "attn.q" in key:
lowerCAmelCase__ = key.replace("attn.q" , "attention.self.query" )
if "attn.proj" in key:
lowerCAmelCase__ = key.replace("attn.proj" , "attention.output.dense" )
if "attn" in key:
lowerCAmelCase__ = key.replace("attn" , "attention.self" )
if "fc1" in key:
lowerCAmelCase__ = key.replace("fc1" , "dense1" )
if "fc2" in key:
lowerCAmelCase__ = key.replace("fc2" , "dense2" )
if "linear_pred" in key:
lowerCAmelCase__ = key.replace("linear_pred" , "classifier" )
if "linear_fuse" in key:
lowerCAmelCase__ = key.replace("linear_fuse.conv" , "linear_fuse" )
lowerCAmelCase__ = key.replace("linear_fuse.bn" , "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
lowerCAmelCase__ = key[key.find("linear_c" ) + len("linear_c" )]
lowerCAmelCase__ = key.replace(F"linear_c{idx}" , F"linear_c.{int(UpperCamelCase_ )-1}" )
if key.startswith("head" ):
lowerCAmelCase__ = key.replace("head" , "classifier" )
lowerCAmelCase__ = value
return new_state_dict
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] ) -> Optional[int]:
"""simple docstring"""
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
lowerCAmelCase__ = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" )
lowerCAmelCase__ = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" )
# next, add keys and values (in that order) to the state dict
lowerCAmelCase__ = kv_weight[
: config.hidden_sizes[i], :
]
lowerCAmelCase__ = kv_bias[: config.hidden_sizes[i]]
lowerCAmelCase__ = kv_weight[
config.hidden_sizes[i] :, :
]
lowerCAmelCase__ = kv_bias[
config.hidden_sizes[i] :
]
def _a ( ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
return image
@torch.no_grad()
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ = SegformerConfig()
lowerCAmelCase__ = False
# set attributes based on model_name
lowerCAmelCase__ = "huggingface/label-files"
if "segformer" in model_name:
lowerCAmelCase__ = model_name[len("segformer." ) : len("segformer." ) + 2]
if "ade" in model_name:
lowerCAmelCase__ = 150
lowerCAmelCase__ = "ade20k-id2label.json"
lowerCAmelCase__ = (1, 150, 128, 128)
elif "city" in model_name:
lowerCAmelCase__ = 19
lowerCAmelCase__ = "cityscapes-id2label.json"
lowerCAmelCase__ = (1, 19, 128, 128)
else:
raise ValueError(F"Model {model_name} not supported" )
elif "mit" in model_name:
lowerCAmelCase__ = True
lowerCAmelCase__ = model_name[4:6]
lowerCAmelCase__ = 1_000
lowerCAmelCase__ = "imagenet-1k-id2label.json"
lowerCAmelCase__ = (1, 1_000)
else:
raise ValueError(F"Model {model_name} not supported" )
# set config attributes
lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) , "r" ) )
lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
lowerCAmelCase__ = idalabel
lowerCAmelCase__ = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
lowerCAmelCase__ = [64, 128, 320, 512]
lowerCAmelCase__ = 256
elif size == "b2":
lowerCAmelCase__ = [64, 128, 320, 512]
lowerCAmelCase__ = 768
lowerCAmelCase__ = [3, 4, 6, 3]
elif size == "b3":
lowerCAmelCase__ = [64, 128, 320, 512]
lowerCAmelCase__ = 768
lowerCAmelCase__ = [3, 4, 18, 3]
elif size == "b4":
lowerCAmelCase__ = [64, 128, 320, 512]
lowerCAmelCase__ = 768
lowerCAmelCase__ = [3, 8, 27, 3]
elif size == "b5":
lowerCAmelCase__ = [64, 128, 320, 512]
lowerCAmelCase__ = 768
lowerCAmelCase__ = [3, 6, 40, 3]
else:
raise ValueError(F"Size {size} not supported" )
# load image processor (only resize + normalize)
lowerCAmelCase__ = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_ )
# prepare image
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ).pixel_values
logger.info(F"Converting model {model_name}..." )
# load original state dict
if encoder_only:
lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location=torch.device("cpu" ) )
else:
lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location=torch.device("cpu" ) )["state_dict"]
# rename keys
lowerCAmelCase__ = rename_keys(UpperCamelCase_ , encoder_only=UpperCamelCase_ )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(UpperCamelCase_ , UpperCamelCase_ )
# create HuggingFace model and load state dict
if encoder_only:
lowerCAmelCase__ = False
lowerCAmelCase__ = SegformerForImageClassification(UpperCamelCase_ )
else:
lowerCAmelCase__ = SegformerForSemanticSegmentation(UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
# forward pass
lowerCAmelCase__ = model(UpperCamelCase_ )
lowerCAmelCase__ = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
lowerCAmelCase__ = torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
lowerCAmelCase__ = torch.tensor(
[
[[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]],
[[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]],
[[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
lowerCAmelCase__ = torch.tensor(
[
[[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]],
[[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]],
[[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
lowerCAmelCase__ = torch.tensor(
[
[[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]],
[[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]],
[[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
lowerCAmelCase__ = torch.tensor(
[
[[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]],
[[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]],
[[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
lowerCAmelCase__ = torch.tensor(
[
[[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]],
[[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]],
[[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
lowerCAmelCase__ = torch.tensor(
[
[[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]],
[[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]],
[[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
lowerCAmelCase__ = torch.tensor(
[
[[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]],
[[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]],
[[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
lowerCAmelCase__ = torch.tensor(
[
[
[-1.1_3_7_2e0_1, -1.2_7_8_7e0_1, -1.3_4_7_7e0_1],
[-1.2_5_3_6e0_1, -1.4_1_9_4e0_1, -1.4_4_0_9e0_1],
[-1.3_2_1_7e0_1, -1.4_8_8_8e0_1, -1.5_3_2_7e0_1],
],
[
[-1.4_7_9_1e0_1, -1.7_1_2_2e0_1, -1.8_2_7_7e0_1],
[-1.7_1_6_3e0_1, -1.9_1_9_2e0_1, -1.9_5_3_3e0_1],
[-1.7_8_9_7e0_1, -1.9_9_9_1e0_1, -2.0_3_1_5e0_1],
],
[
[7.6_7_2_3e-0_1, 4.1_9_2_1e-0_1, -7.7_8_7_8e-0_2],
[4.7_7_7_2e-0_1, 9.5_5_5_7e-0_3, -2.8_0_8_2e-0_1],
[3.6_0_3_2e-0_1, -2.4_8_2_6e-0_1, -5.1_1_6_8e-0_1],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
lowerCAmelCase__ = torch.tensor(
[
[[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]],
[[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]],
[[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
lowerCAmelCase__ = torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
lowerCAmelCase__ = torch.tensor(
[
[[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]],
[[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]],
[[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
lowerCAmelCase__ = torch.tensor(
[
[[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]],
[[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]],
[[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
lowerCAmelCase__ = torch.tensor(
[
[[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]],
[[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]],
[[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
lowerCAmelCase__ = torch.tensor(
[
[[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]],
[[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]],
[[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]],
] )
else:
lowerCAmelCase__ = logits.argmax(-1 ).item()
print("Predicted class:" , model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-2 )
# finally, save model and image processor
logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." )
Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ )
model.save_pretrained(UpperCamelCase_ )
image_processor.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''segformer.b0.512x512.ade.160k''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
a_ = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 340 |
import darl # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline
a_ = {
'''n_samples''': 64,
'''horizon''': 32,
'''num_inference_steps''': 20,
'''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network
'''scale_grad_by_std''': True,
'''scale''': 0.1,
'''eta''': 0.0,
'''t_grad_cutoff''': 2,
'''device''': '''cpu''',
}
if __name__ == "__main__":
a_ = '''hopper-medium-v2'''
a_ = gym.make(env_name)
a_ = ValueGuidedRLPipeline.from_pretrained(
'''bglick13/hopper-medium-v2-value-function-hor32''',
env=env,
)
env.seed(0)
a_ = env.reset()
a_ = 0
a_ = 0
a_ = 1000
a_ = [obs.copy()]
try:
for t in tqdm.tqdm(range(T)):
# call the policy
a_ = pipeline(obs, planning_horizon=32)
# execute action in environment
a_, a_, a_, a_ = env.step(denorm_actions)
a_ = env.get_normalized_score(total_reward)
# update return
total_reward += reward
total_score += score
print(
F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"
F" {total_score}"
)
# save observations for rendering
rollout.append(next_observation.copy())
a_ = next_observation
except KeyboardInterrupt:
pass
print(F"Total reward: {total_reward}")
| 340 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
a_ = logging.get_logger(__name__)
a_ = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''',
'''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''',
'''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''',
'''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''',
'''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''',
'''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''',
'''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''',
'''self_attn.rotary_emb''': '''encoder.embed_positions''',
'''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''',
'''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''',
'''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''',
'''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''',
'''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''',
'''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''',
'''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''',
'''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''',
'''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''',
'''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''',
'''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''',
'''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
a_ = [
'''lm_head''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
for attribute in key.split("." ):
lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ )
if weight_type is not None:
lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape
else:
lowerCAmelCase__ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
F" {value.shape} for {full_name}" )
if weight_type == "weight":
lowerCAmelCase__ = value
elif weight_type == "weight_g":
lowerCAmelCase__ = value
elif weight_type == "weight_v":
lowerCAmelCase__ = value
elif weight_type == "bias":
lowerCAmelCase__ = value
elif weight_type == "running_mean":
lowerCAmelCase__ = value
elif weight_type == "running_var":
lowerCAmelCase__ = value
elif weight_type == "num_batches_tracked":
lowerCAmelCase__ = value
elif weight_type == "inv_freq":
lowerCAmelCase__ = value
else:
lowerCAmelCase__ = value
logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ = fairseq_model.state_dict()
lowerCAmelCase__ = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
lowerCAmelCase__ = False
if "conv_layers" in name:
load_conv_layer(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == "group" , )
lowerCAmelCase__ = True
else:
for key, mapped_key in MAPPING.items():
lowerCAmelCase__ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
lowerCAmelCase__ = True
if "*" in mapped_key:
lowerCAmelCase__ = name.split(UpperCamelCase_ )[0].split("." )[-2]
lowerCAmelCase__ = mapped_key.replace("*" , UpperCamelCase_ )
if "pos_bias_u" in name:
lowerCAmelCase__ = None
elif "pos_bias_v" in name:
lowerCAmelCase__ = None
elif "weight_g" in name:
lowerCAmelCase__ = "weight_g"
elif "weight_v" in name:
lowerCAmelCase__ = "weight_v"
elif "bias" in name:
lowerCAmelCase__ = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCAmelCase__ = "weight"
elif "running_mean" in name:
lowerCAmelCase__ = "running_mean"
elif "inv_freq" in name:
lowerCAmelCase__ = "inv_freq"
elif "running_var" in name:
lowerCAmelCase__ = "running_var"
elif "num_batches_tracked" in name:
lowerCAmelCase__ = "num_batches_tracked"
else:
lowerCAmelCase__ = None
set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
continue
if not is_used:
unused_weights.append(UpperCamelCase_ )
logger.warning(F"Unused weights: {unused_weights}" )
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ = full_name.split("conv_layers." )[-1]
lowerCAmelCase__ = name.split("." )
lowerCAmelCase__ = int(items[0] )
lowerCAmelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
lowerCAmelCase__ = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
lowerCAmelCase__ = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
lowerCAmelCase__ = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
lowerCAmelCase__ = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(UpperCamelCase_ )
@torch.no_grad()
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Any=True ) -> Any:
"""simple docstring"""
if config_path is not None:
lowerCAmelCase__ = WavaVecaConformerConfig.from_pretrained(UpperCamelCase_ , hidden_act="swish" )
else:
lowerCAmelCase__ = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
lowerCAmelCase__ = "rotary"
if is_finetuned:
if dict_path:
lowerCAmelCase__ = Dictionary.load(UpperCamelCase_ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCAmelCase__ = target_dict.pad_index
lowerCAmelCase__ = target_dict.bos_index
lowerCAmelCase__ = target_dict.eos_index
lowerCAmelCase__ = len(target_dict.symbols )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "vocab.json" )
if not os.path.isdir(UpperCamelCase_ ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCamelCase_ ) )
return
os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ )
lowerCAmelCase__ = target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCAmelCase__ = 0
lowerCAmelCase__ = 1
with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = WavaVecaCTCTokenizer(
UpperCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCamelCase_ , )
lowerCAmelCase__ = True if config.feat_extract_norm == "layer" else False
lowerCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , )
lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=UpperCamelCase_ , tokenizer=UpperCamelCase_ )
processor.save_pretrained(UpperCamelCase_ )
lowerCAmelCase__ = WavaVecaConformerForCTC(UpperCamelCase_ )
else:
lowerCAmelCase__ = WavaVecaConformerForPreTraining(UpperCamelCase_ )
if is_finetuned:
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
lowerCAmelCase__ = argparse.Namespace(task="audio_pretraining" )
lowerCAmelCase__ = fairseq.tasks.setup_task(UpperCamelCase_ )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCamelCase_ )
lowerCAmelCase__ = model[0].eval()
recursively_load_weights(UpperCamelCase_ , UpperCamelCase_ , not is_finetuned )
hf_wavavec.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
a_ = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 340 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
a_ = '''src/transformers'''
a_ = '''docs/source/en/tasks'''
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple:
"""simple docstring"""
with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f:
lowerCAmelCase__ = f.readlines()
# Find the start prompt.
lowerCAmelCase__ = 0
while not lines[start_index].startswith(UpperCamelCase_ ):
start_index += 1
start_index += 1
lowerCAmelCase__ = start_index
while not lines[end_index].startswith(UpperCamelCase_ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
a_ = direct_transformers_import(TRANSFORMERS_PATH)
a_ = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
a_ = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide]
lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() )
lowerCAmelCase__ = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n"
def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file(
filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , )
lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ )
if current_list != new_list:
if overwrite:
with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`"
" to fix this." )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
a_ = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 340 | 1 |
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
a_ = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'''text-classification''',
'''language-modeling''',
'''summarization''',
'''token-classification''',
'''question-answering''',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
a_ = logging.getLogger()
def _a ( ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ = argparse.ArgumentParser()
parser.add_argument("-f" )
lowerCAmelCase__ = parser.parse_args()
return args.f
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int="eval" ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , F"{split}_results.json" )
if os.path.exists(UpperCamelCase_ ):
with open(UpperCamelCase_ , "r" ) as f:
return json.load(UpperCamelCase_ )
raise ValueError(F"can't find {path}" )
a_ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowercase__ ( _UpperCAmelCase ):
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split()
with patch.object(__UpperCAmelCase , "argv" , __UpperCAmelCase ):
run_flax_glue.main()
lowerCAmelCase__ = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result["eval_accuracy"] , 0.75 )
@slow
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(__UpperCAmelCase , "argv" , __UpperCAmelCase ):
run_clm_flax.main()
lowerCAmelCase__ = get_results(__UpperCAmelCase )
self.assertLess(result["eval_perplexity"] , 100 )
@slow
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split()
with patch.object(__UpperCAmelCase , "argv" , __UpperCAmelCase ):
run_summarization_flax.main()
lowerCAmelCase__ = get_results(__UpperCAmelCase , split="test" )
self.assertGreaterEqual(result["test_rouge1"] , 10 )
self.assertGreaterEqual(result["test_rouge2"] , 2 )
self.assertGreaterEqual(result["test_rougeL"] , 7 )
self.assertGreaterEqual(result["test_rougeLsum"] , 7 )
@slow
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split()
with patch.object(__UpperCAmelCase , "argv" , __UpperCAmelCase ):
run_mlm_flax.main()
lowerCAmelCase__ = get_results(__UpperCAmelCase )
self.assertLess(result["eval_perplexity"] , 42 )
@slow
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(__UpperCAmelCase , "argv" , __UpperCAmelCase ):
run_ta_mlm_flax.main()
lowerCAmelCase__ = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result["eval_accuracy"] , 0.42 )
@slow
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = 7 if get_gpu_count() > 1 else 2
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split()
with patch.object(__UpperCAmelCase , "argv" , __UpperCAmelCase ):
run_flax_ner.main()
lowerCAmelCase__ = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result["eval_accuracy"] , 0.75 )
self.assertGreaterEqual(result["eval_f1"] , 0.3 )
@slow
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = self.get_auto_remove_tmp_dir()
lowerCAmelCase__ = F"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split()
with patch.object(__UpperCAmelCase , "argv" , __UpperCAmelCase ):
run_qa.main()
lowerCAmelCase__ = get_results(__UpperCAmelCase )
self.assertGreaterEqual(result["eval_f1"] , 30 )
self.assertGreaterEqual(result["eval_exact"] , 30 )
| 340 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
a_ = logging.get_logger(__name__)
a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS}
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]:
"""simple docstring"""
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." )
if tokenizer_name is None:
lowerCAmelCase__ = TOKENIZER_CLASSES
else:
lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )}
logger.info(F"Loading tokenizer classes: {tokenizer_names}" )
for tokenizer_name in tokenizer_names:
lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name]
lowerCAmelCase__ = True
if checkpoint_name is None:
lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() )
else:
lowerCAmelCase__ = [checkpoint_name]
logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" )
for checkpoint in checkpoint_names:
logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" )
# Load tokenizer
lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ )
# Save fast tokenizer
logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" )
# For organization names we create sub-directories
if "/" in checkpoint:
lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" )
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
elif add_prefix:
lowerCAmelCase__ = checkpoint
lowerCAmelCase__ = dump_path
else:
lowerCAmelCase__ = None
lowerCAmelCase__ = dump_path
logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0]
if next_char == "/":
lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = None
logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" )
lowerCAmelCase__ = tokenizer.save_pretrained(
UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ )
logger.info(F"=> File names {file_names}" )
for file_name in file_names:
if not file_name.endswith("tokenizer.json" ):
os.remove(UpperCamelCase_ )
logger.info(F"=> removing {file_name}" )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.'''
)
parser.add_argument(
'''--tokenizer_name''',
default=None,
type=str,
help=(
F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will "
'''download and convert all the checkpoints from AWS.'''
),
)
parser.add_argument(
'''--checkpoint_name''',
default=None,
type=str,
help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''',
)
parser.add_argument(
'''--force_download''',
action='''store_true''',
help='''Re-download checkpoints.''',
)
a_ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 340 | 1 |
from graphs.minimum_spanning_tree_kruskal import kruskal
def _a ( ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ = 9
lowerCAmelCase__ = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
lowerCAmelCase__ = kruskal(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(UpperCamelCase_ ) == sorted(UpperCamelCase_ )
| 340 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ )
lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ )
lowerCAmelCase__ = tok.pad_token_id
def get_lens(UpperCamelCase_ : str ):
lowerCAmelCase__ = tqdm(
DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
lowerCAmelCase__ = []
for batch in dl:
lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist()
lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ):
max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) )
else:
max_lens.extend(UpperCamelCase_ )
return max_lens
lowerCAmelCase__ = get_lens(UpperCamelCase_ )
lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ )
lowerCAmelCase__ = get_lens(UpperCamelCase_ )
pickle_save(UpperCamelCase_ , train_ds.len_file )
pickle_save(UpperCamelCase_ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 340 | 1 |
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase__ :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase=None , __UpperCAmelCase=2 , )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = parent
lowerCAmelCase__ = batch_size
lowerCAmelCase__ = image_size
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = is_training
lowerCAmelCase__ = use_labels
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = type_sequence_label_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = scope
lowerCAmelCase__ = encoder_stride
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
lowerCAmelCase__ = (image_size // patch_size) ** 2
lowerCAmelCase__ = num_patches + 1
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase__ = None
if self.use_labels:
lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = ViTModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCAmelCase__ = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = ViTForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCAmelCase__ = model(__UpperCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowerCAmelCase__ = 1
lowerCAmelCase__ = ViTForMaskedImageModeling(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase__ = model(__UpperCAmelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = self.type_sequence_label_size
lowerCAmelCase__ = ViTForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCAmelCase__ = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCAmelCase__ = 1
lowerCAmelCase__ = ViTForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase__ = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = self.prepare_config_and_inputs()
(
(
lowerCAmelCase__
) , (
lowerCAmelCase__
) , (
lowerCAmelCase__
) ,
) = config_and_inputs
lowerCAmelCase__ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class lowercase__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase ):
a_ =(
(
ViTModel,
ViTForImageClassification,
ViTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
a_ =(
{"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification}
if is_torch_available()
else {}
)
a_ =True
a_ =False
a_ =False
a_ =False
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = ViTModelTester(self )
lowerCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 )
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
pass
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ = model_class(__UpperCAmelCase )
lowerCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase__ = [*signature.parameters.keys()]
lowerCAmelCase__ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase__ = ViTModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def _a ( ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class lowercase__ ( unittest.TestCase ):
@cached_property
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None
@slow
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__UpperCAmelCase )
lowerCAmelCase__ = self.default_image_processor
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase__ = model(**__UpperCAmelCase )
# verify the logits
lowerCAmelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
lowerCAmelCase__ = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__UpperCAmelCase )
lowerCAmelCase__ = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 )
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" )
lowerCAmelCase__ = inputs.pixel_values.to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase__ = model(__UpperCAmelCase , interpolate_pos_encoding=__UpperCAmelCase )
# verify the logits
lowerCAmelCase__ = torch.Size((1, 3601, 384) )
self.assertEqual(outputs.last_hidden_state.shape , __UpperCAmelCase )
lowerCAmelCase__ = torch.tensor(
[[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def UpperCAmelCase ( self )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" )
lowerCAmelCase__ = self.default_image_processor
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" )
lowerCAmelCase__ = inputs.pixel_values.to(__UpperCAmelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
lowerCAmelCase__ = model(__UpperCAmelCase )
| 340 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase__ ( _UpperCAmelCase ):
a_ ="""xlnet"""
a_ =["""mems"""]
a_ ={
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int:
'''simple docstring'''
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = d_model
lowerCAmelCase__ = n_layer
lowerCAmelCase__ = n_head
if d_model % n_head != 0:
raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" )
lowerCAmelCase__ = d_model // n_head
lowerCAmelCase__ = ff_activation
lowerCAmelCase__ = d_inner
lowerCAmelCase__ = untie_r
lowerCAmelCase__ = attn_type
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = dropout
lowerCAmelCase__ = mem_len
lowerCAmelCase__ = reuse_len
lowerCAmelCase__ = bi_data
lowerCAmelCase__ = clamp_len
lowerCAmelCase__ = same_length
lowerCAmelCase__ = summary_type
lowerCAmelCase__ = summary_use_proj
lowerCAmelCase__ = summary_activation
lowerCAmelCase__ = summary_last_dropout
lowerCAmelCase__ = start_n_top
lowerCAmelCase__ = end_n_top
lowerCAmelCase__ = bos_token_id
lowerCAmelCase__ = pad_token_id
lowerCAmelCase__ = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"
" instead." , __UpperCAmelCase , )
lowerCAmelCase__ = kwargs["use_cache"]
lowerCAmelCase__ = use_mems_eval
lowerCAmelCase__ = use_mems_train
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." )
return -1
@max_position_embeddings.setter
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError(
F"The model {self.model_type} is one of the few models that has no sequence length limit." )
| 340 | 1 |
from __future__ import annotations
def _a ( UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> list:
"""simple docstring"""
lowerCAmelCase__ = []
lowerCAmelCase__ , lowerCAmelCase__ = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
lowerCAmelCase__ = result + left + right
return input_list
def _a ( UpperCamelCase_ : list ) -> list:
"""simple docstring"""
if len(UpperCamelCase_ ) <= 1:
return input_list
lowerCAmelCase__ = list(UpperCamelCase_ )
# iteration for two-way merging
lowerCAmelCase__ = 2
while p <= len(UpperCamelCase_ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ):
lowerCAmelCase__ = i
lowerCAmelCase__ = i + p - 1
lowerCAmelCase__ = (low + high + 1) // 2
lowerCAmelCase__ = merge(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# final merge of last two parts
if p * 2 >= len(UpperCamelCase_ ):
lowerCAmelCase__ = i
lowerCAmelCase__ = merge(UpperCamelCase_ , 0 , UpperCamelCase_ , len(UpperCamelCase_ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
a_ = input('''Enter numbers separated by a comma:\n''').strip()
if user_input == "":
a_ = []
else:
a_ = [int(item.strip()) for item in user_input.split(''',''')]
print(iter_merge_sort(unsorted))
| 340 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("module.cls_token", "vit.embeddings.cls_token"),
("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("module.pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("module.norm.weight", "layernorm.weight"),
("module.norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase__ = ""
else:
lowerCAmelCase__ = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" )
lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase__ = in_proj_bias[: config.hidden_size]
lowerCAmelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase__ = in_proj_bias[-config.hidden_size :]
def _a ( UpperCamelCase_ : Dict ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ = [
"module.fc.fc1.weight",
"module.fc.fc1.bias",
"module.fc.bn1.weight",
"module.fc.bn1.bias",
"module.fc.bn1.running_mean",
"module.fc.bn1.running_var",
"module.fc.bn1.num_batches_tracked",
"module.fc.fc2.weight",
"module.fc.fc2.bias",
"module.fc.bn2.weight",
"module.fc.bn2.bias",
"module.fc.bn2.running_mean",
"module.fc.bn2.running_var",
"module.fc.bn2.num_batches_tracked",
"module.fc.fc3.weight",
"module.fc.fc3.bias",
]
for k in ignore_keys:
state_dict.pop(UpperCamelCase_ , UpperCamelCase_ )
def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ = dct.pop(UpperCamelCase_ )
lowerCAmelCase__ = val
def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ = ViTMSNConfig()
lowerCAmelCase__ = 1_000
lowerCAmelCase__ = "datasets/huggingface/label-files"
lowerCAmelCase__ = "imagenet-1k-id2label.json"
lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) )
lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()}
lowerCAmelCase__ = idalabel
lowerCAmelCase__ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
lowerCAmelCase__ = 384
lowerCAmelCase__ = 1_536
lowerCAmelCase__ = 6
elif "l16" in checkpoint_url:
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
elif "b4" in checkpoint_url:
lowerCAmelCase__ = 4
elif "l7" in checkpoint_url:
lowerCAmelCase__ = 7
lowerCAmelCase__ = 1_024
lowerCAmelCase__ = 4_096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = 0.1
lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ )
lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"]
lowerCAmelCase__ = ViTImageProcessor(size=config.image_size )
remove_projection_head(UpperCamelCase_ )
lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ )
for src, dest in rename_keys:
rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ )
model.load_state_dict(UpperCamelCase_ )
model.eval()
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw )
lowerCAmelCase__ = ViTImageProcessor(
size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ )
lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" )
# forward pass
torch.manual_seed(2 )
lowerCAmelCase__ = model(**UpperCamelCase_ )
lowerCAmelCase__ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 )
print(F"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(UpperCamelCase_ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(UpperCamelCase_ )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
a_ = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 340 | 1 |
def _a ( UpperCamelCase_ : int ) -> int:
"""simple docstring"""
lowerCAmelCase__ = abs(UpperCamelCase_ )
lowerCAmelCase__ = 0
while n > 0:
res += n % 10
n //= 10
return res
def _a ( UpperCamelCase_ : int ) -> int:
"""simple docstring"""
lowerCAmelCase__ = abs(UpperCamelCase_ )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def _a ( UpperCamelCase_ : int ) -> int:
"""simple docstring"""
return sum(int(UpperCamelCase_ ) for c in str(abs(UpperCamelCase_ ) ) )
def _a ( ) -> None:
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(UpperCamelCase_ : Callable , UpperCamelCase_ : int ) -> None:
lowerCAmelCase__ = F"{func.__name__}({value})"
lowerCAmelCase__ = timeit(F"__main__.{call}" , setup="import __main__" )
print(F"{call:56} = {func(UpperCamelCase_ )} -- {timing:.4f} seconds" )
for value in (262_144, 1_125_899_906_842_624, 1_267_650_600_228_229_401_496_703_205_376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(UpperCamelCase_ , UpperCamelCase_ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 340 |
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
a_ = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase )
class lowercase__ ( _UpperCAmelCase ):
def __init__( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
requires_backends(self , "vision" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int:
'''simple docstring'''
return super().__call__(__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = {}
if "candidate_labels" in kwargs:
lowerCAmelCase__ = kwargs["candidate_labels"]
if "hypothesis_template" in kwargs:
lowerCAmelCase__ = kwargs["hypothesis_template"]
return preprocess_params, {}, {}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = load_image(__UpperCAmelCase )
lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework )
lowerCAmelCase__ = candidate_labels
lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels]
lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase )
lowerCAmelCase__ = [text_inputs]
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> int:
'''simple docstring'''
lowerCAmelCase__ = model_inputs.pop("candidate_labels" )
lowerCAmelCase__ = model_inputs.pop("text_inputs" )
if isinstance(text_inputs[0] , __UpperCAmelCase ):
lowerCAmelCase__ = text_inputs[0]
else:
# Batching case.
lowerCAmelCase__ = text_inputs[0][0]
lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase )
lowerCAmelCase__ = {
"candidate_labels": candidate_labels,
"logits": outputs.logits_per_image,
}
return model_outputs
def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple:
'''simple docstring'''
lowerCAmelCase__ = model_outputs.pop("candidate_labels" )
lowerCAmelCase__ = model_outputs["logits"][0]
if self.framework == "pt":
lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 )
lowerCAmelCase__ = probs.tolist()
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ = [scores]
elif self.framework == "tf":
lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 )
lowerCAmelCase__ = probs.numpy().tolist()
else:
raise ValueError(F"Unsupported framework: {self.framework}" )
lowerCAmelCase__ = [
{"score": score, "label": candidate_label}
for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] )
]
return result
| 340 | 1 |
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
a_ = '''bert-base-cased'''
a_ = '''fp16'''
a_ = '''bf16'''
a_ = [FPaa, BFaa]
@require_fsdp
@require_cuda
class lowercase__ ( _UpperCAmelCase ):
def UpperCAmelCase ( self )-> Optional[int]:
'''simple docstring'''
super().setUp()
lowerCAmelCase__ = dict(
ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , )
def UpperCAmelCase ( self )-> List[str]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(__UpperCAmelCase ):
lowerCAmelCase__ = self.dist_env.copy()
lowerCAmelCase__ = F"{i + 1}"
lowerCAmelCase__ = strategy
with mockenv_context(**__UpperCAmelCase ):
lowerCAmelCase__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(__UpperCAmelCase ):
lowerCAmelCase__ = self.dist_env.copy()
lowerCAmelCase__ = prefetch_policy
with mockenv_context(**__UpperCAmelCase ):
lowerCAmelCase__ = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) )
def UpperCAmelCase ( self )-> List[Any]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(__UpperCAmelCase ):
lowerCAmelCase__ = self.dist_env.copy()
lowerCAmelCase__ = state_dict_type
with mockenv_context(**__UpperCAmelCase ):
lowerCAmelCase__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = AutoModel.from_pretrained(__UpperCAmelCase )
for policy in FSDP_AUTO_WRAP_POLICY:
lowerCAmelCase__ = self.dist_env.copy()
lowerCAmelCase__ = policy
if policy == "TRANSFORMER_BASED_WRAP":
lowerCAmelCase__ = "BertLayer"
elif policy == "SIZE_BASED_WRAP":
lowerCAmelCase__ = "2000"
with mockenv_context(**__UpperCAmelCase ):
lowerCAmelCase__ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__UpperCAmelCase )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
lowerCAmelCase__ = self.dist_env.copy()
lowerCAmelCase__ = "TRANSFORMER_BASED_WRAP"
lowerCAmelCase__ = "T5Layer"
with mockenv_context(**__UpperCAmelCase ):
lowerCAmelCase__ = FullyShardedDataParallelPlugin()
with self.assertRaises(__UpperCAmelCase ) as cm:
fsdp_plugin.set_auto_wrap_policy(__UpperCAmelCase )
self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) )
lowerCAmelCase__ = self.dist_env.copy()
lowerCAmelCase__ = "SIZE_BASED_WRAP"
lowerCAmelCase__ = "0"
with mockenv_context(**__UpperCAmelCase ):
lowerCAmelCase__ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__UpperCAmelCase )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def UpperCAmelCase ( self )-> Any:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
lowerCAmelCase__ = self.dist_env.copy()
lowerCAmelCase__ = mp_dtype
with mockenv_context(**__UpperCAmelCase ):
lowerCAmelCase__ = Accelerator()
if mp_dtype == "fp16":
lowerCAmelCase__ = torch.floataa
elif mp_dtype == "bf16":
lowerCAmelCase__ = torch.bfloataa
lowerCAmelCase__ = MixedPrecision(param_dtype=__UpperCAmelCase , reduce_dtype=__UpperCAmelCase , buffer_dtype=__UpperCAmelCase )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __UpperCAmelCase )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler , __UpperCAmelCase ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(__UpperCAmelCase )
def UpperCAmelCase ( self )-> Union[str, Any]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
lowerCAmelCase__ = self.dist_env.copy()
lowerCAmelCase__ = str(__UpperCAmelCase ).lower()
with mockenv_context(**__UpperCAmelCase ):
lowerCAmelCase__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__UpperCAmelCase ) )
@require_fsdp
@require_multi_gpu
@slow
class lowercase__ ( _UpperCAmelCase ):
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
super().setUp()
lowerCAmelCase__ = 0.82
lowerCAmelCase__ = [
"fsdp_shard_grad_op_transformer_based_wrap",
"fsdp_full_shard_transformer_based_wrap",
]
lowerCAmelCase__ = {
"multi_gpu_fp16": 3200,
"fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000,
"fsdp_full_shard_transformer_based_wrap_fp16": 1900,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
lowerCAmelCase__ = 160
lowerCAmelCase__ = 160
lowerCAmelCase__ = inspect.getfile(accelerate.test_utils )
lowerCAmelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] )
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = os.path.join(self.test_scripts_folder , "test_performance.py" )
lowerCAmelCase__ = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"]
for config in self.performance_configs:
lowerCAmelCase__ = cmd.copy()
for i, strategy in enumerate(__UpperCAmelCase ):
if strategy.lower() in config:
cmd_config.append(F"--fsdp_sharding_strategy={i+1}" )
break
if "fp32" in config:
cmd_config.append("--mixed_precision=no" )
else:
cmd_config.append("--mixed_precision=fp16" )
if "cpu_offload" in config:
cmd_config.append("--fsdp_offload_params=True" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(F"--fsdp_auto_wrap_policy={policy}" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("--fsdp_min_num_params=2000" )
cmd_config.extend(
[
self.test_file_path,
F"--output_dir={self.tmpdir}",
F"--performance_lower_bound={self.performance_lower_bound}",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() )
def UpperCAmelCase ( self )-> int:
'''simple docstring'''
lowerCAmelCase__ = os.path.join(self.test_scripts_folder , "test_checkpointing.py" )
lowerCAmelCase__ = [
"accelerate",
"launch",
"--num_processes=2",
"--num_machines=1",
"--machine_rank=0",
"--use_fsdp",
"--mixed_precision=fp16",
"--fsdp_transformer_layer_cls_to_wrap=BertLayer",
]
for i, strategy in enumerate(__UpperCAmelCase ):
lowerCAmelCase__ = cmd.copy()
cmd_config.append(F"--fsdp_sharding_strategy={i+1}" )
if strategy != "FULL_SHARD":
continue
lowerCAmelCase__ = len(__UpperCAmelCase )
for state_dict_type in FSDP_STATE_DICT_TYPE:
lowerCAmelCase__ = cmd_config[:state_dict_config_index]
cmd_config.append(F"--fsdp_state_dict_type={state_dict_type}" )
cmd_config.extend(
[
self.test_file_path,
F"--output_dir={self.tmpdir}",
"--partial_train_epoch=1",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() )
lowerCAmelCase__ = cmd_config[:-1]
lowerCAmelCase__ = os.path.join(self.tmpdir , "epoch_0" )
cmd_config.extend(
[
F"--resume_from_checkpoint={resume_from_checkpoint}",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() )
def UpperCAmelCase ( self )-> str:
'''simple docstring'''
lowerCAmelCase__ = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" )
lowerCAmelCase__ = [
"accelerate",
"launch",
"--num_processes=2",
"--num_machines=1",
"--machine_rank=0",
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
lowerCAmelCase__ = cmd.copy()
if "fp16" in spec:
cmd_config.extend(["--mixed_precision=fp16"] )
else:
cmd_config.extend(["--mixed_precision=no"] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(["--use_fsdp"] )
for i, strategy in enumerate(__UpperCAmelCase ):
if strategy.lower() in spec:
cmd_config.append(F"--fsdp_sharding_strategy={i+1}" )
break
if "cpu_offload" in spec:
cmd_config.append("--fsdp_offload_params=True" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(F"--fsdp_auto_wrap_policy={policy}" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("--fsdp_min_num_params=2000" )
cmd_config.extend(
[
self.test_file_path,
F"--output_dir={self.tmpdir}",
F"--peak_memory_upper_bound={peak_mem_upper_bound}",
F"--n_train={self.n_train}",
F"--n_val={self.n_val}",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() )
| 340 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''')
class lowercase__ ( _UpperCAmelCase, unittest.TestCase ):
a_ =BartphoTokenizer
a_ =False
a_ =True
def UpperCAmelCase ( self )-> Dict:
'''simple docstring'''
super().setUp()
lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"]
lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
lowerCAmelCase__ = {"unk_token": "<unk>"}
lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] )
with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp:
for token in vocab_tokens:
fp.write(F"{token} {vocab_tokens[token]}\n" )
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "This is a<unk><unk> test"
return input_text, output_text
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map )
lowerCAmelCase__ = "This is a là test"
lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split()
lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ = tokens + [tokenizer.unk_token]
lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
| 340 | 1 |
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def _a ( UpperCamelCase_ : Namespace ) -> Optional[int]:
"""simple docstring"""
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
a_ = '''
transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires
TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.
'''
class lowercase__ ( _UpperCAmelCase ):
@staticmethod
def UpperCAmelCase ( __UpperCAmelCase )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = parser.add_parser(
"convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , )
train_parser.add_argument("--model_type" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="Model's type." )
train_parser.add_argument(
"--tf_checkpoint" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="TensorFlow checkpoint path or folder." )
train_parser.add_argument(
"--pytorch_dump_output" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="Path to the PyTorch saved model output." )
train_parser.add_argument("--config" , type=__UpperCAmelCase , default="" , help="Configuration file path or folder." )
train_parser.add_argument(
"--finetuning_task_name" , type=__UpperCAmelCase , default=__UpperCAmelCase , help="Optional fine-tuning task name if the TF model was a finetuned model." , )
train_parser.set_defaults(func=__UpperCAmelCase )
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , )-> Optional[int]:
'''simple docstring'''
lowerCAmelCase__ = logging.get_logger("transformers-cli/converting" )
self._logger.info(F"Loading model {model_type}" )
lowerCAmelCase__ = model_type
lowerCAmelCase__ = tf_checkpoint
lowerCAmelCase__ = pytorch_dump_output
lowerCAmelCase__ = config
lowerCAmelCase__ = finetuning_task_name
def UpperCAmelCase ( self )-> Optional[Any]:
'''simple docstring'''
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(__UpperCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(__UpperCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(__UpperCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(__UpperCAmelCase )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(__UpperCAmelCase )
if "ckpt" in self._tf_checkpoint.lower():
lowerCAmelCase__ = self._tf_checkpoint
lowerCAmelCase__ = ""
else:
lowerCAmelCase__ = self._tf_checkpoint
lowerCAmelCase__ = ""
convert_transfo_xl_checkpoint_to_pytorch(
__UpperCAmelCase , self._config , self._pytorch_dump_output , __UpperCAmelCase )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(__UpperCAmelCase )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(__UpperCAmelCase )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
else:
raise ValueError(
"--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
| 340 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
a_ = logging.get_logger(__name__)
a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a_ = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
a_ = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
a_ = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class lowercase__ ( _UpperCAmelCase ):
a_ =VOCAB_FILES_NAMES
a_ =PRETRAINED_VOCAB_FILES_MAP
a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ =PRETRAINED_INIT_CONFIGURATION
a_ =["""input_ids""", """attention_mask"""]
a_ =DistilBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) )
lowerCAmelCase__ = do_lower_case
lowerCAmelCase__ = strip_accents
lowerCAmelCase__ = tokenize_chinese_chars
lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase )
lowerCAmelCase__ = do_lower_case
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]:
'''simple docstring'''
lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]:
'''simple docstring'''
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]:
'''simple docstring'''
lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 340 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.