code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import os import string import sys a_ = 1 << 8 a_ = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } a_ = KEYMAP['''up'''] a_ = KEYMAP['''left'''] if sys.platform == "win32": a_ = [] a_ = { B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): a_ = ord(str(i)) def _a ( ) -> Dict: """simple docstring""" if os.name == "nt": import msvcrt lowerCAmelCase__ = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCamelCase_ ) == 0: # Read the keystroke lowerCAmelCase__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(UpperCamelCase_ ) if ord(UpperCamelCase_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ = chr(KEYMAP["esc"] ) except KeyError: lowerCAmelCase__ = cha[1] else: lowerCAmelCase__ = ch.decode(UpperCamelCase_ ) else: lowerCAmelCase__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ = sys.stdin.fileno() lowerCAmelCase__ = termios.tcgetattr(UpperCamelCase_ ) try: tty.setraw(UpperCamelCase_ ) lowerCAmelCase__ = sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCamelCase_ , termios.TCSADRAIN , UpperCamelCase_ ) return ch def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = get_raw_chars() if ord(UpperCamelCase_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCamelCase_ ) == KEYMAP["esc"]: lowerCAmelCase__ = get_raw_chars() if ord(UpperCamelCase_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ = get_raw_chars() if ord(UpperCamelCase_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCamelCase_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCamelCase_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
340
from collections import defaultdict def _a ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = True for v in tree[start]: if v not in visited: ret += dfs(UpperCamelCase_ ) if ret % 2 == 0: cuts.append(UpperCamelCase_ ) return ret def _a ( ) -> Optional[Any]: """simple docstring""" dfs(1 ) if __name__ == "__main__": a_, a_ = 10, 9 a_ = defaultdict(list) a_ = {} a_ = [] a_ = 0 a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
1
from ....utils import logging a_ = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=2048 )-> int: '''simple docstring''' lowerCAmelCase__ = config.__dict__ lowerCAmelCase__ = modal_hidden_size if num_labels: lowerCAmelCase__ = num_labels
340
import requests from bsa import BeautifulSoup def _a ( UpperCamelCase_ : str = "AAPL" ) -> str: """simple docstring""" lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" ) lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
340
1
from __future__ import annotations import bisect def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int , UpperCamelCase_ : int = 0 , UpperCamelCase_ : int = -1 ) -> int: """simple docstring""" if hi < 0: lowerCAmelCase__ = len(UpperCamelCase_ ) while lo < hi: lowerCAmelCase__ = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowerCAmelCase__ = mid + 1 else: lowerCAmelCase__ = mid return lo def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int , UpperCamelCase_ : int = 0 , UpperCamelCase_ : int = -1 ) -> int: """simple docstring""" if hi < 0: lowerCAmelCase__ = len(UpperCamelCase_ ) while lo < hi: lowerCAmelCase__ = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowerCAmelCase__ = mid + 1 else: lowerCAmelCase__ = mid return lo def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int , UpperCamelCase_ : int = 0 , UpperCamelCase_ : int = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_left(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int , UpperCamelCase_ : int = 0 , UpperCamelCase_ : int = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_right(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int ) -> int | None: """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = len(UpperCamelCase_ ) - 1 while left <= right: lowerCAmelCase__ = left + (right - left) // 2 lowerCAmelCase__ = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowerCAmelCase__ = midpoint - 1 else: lowerCAmelCase__ = midpoint + 1 return None def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int ) -> int | None: """simple docstring""" lowerCAmelCase__ = bisect.bisect_left(UpperCamelCase_ , UpperCamelCase_ ) if index != len(UpperCamelCase_ ) and sorted_collection[index] == item: return index return None def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> int | None: """simple docstring""" if right < left: return None lowerCAmelCase__ = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , midpoint - 1 ) else: return binary_search_by_recursion(UpperCamelCase_ , UpperCamelCase_ , midpoint + 1 , UpperCamelCase_ ) if __name__ == "__main__": a_ = input('''Enter numbers separated by comma:\n''').strip() a_ = sorted(int(item) for item in user_input.split(''',''')) a_ = int(input('''Enter a single number to be found in the list:\n''')) a_ = binary_search(collection, target) if result is None: print(F"{target} was not found in {collection}.") else: print(F"{target} was found at position {result} in {collection}.")
340
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ = (3, 9, -11, 0, 7, 5, 1, -1) a_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowercase__ : a_ =42 a_ =42 class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): lowerCAmelCase__ = Node(__UpperCAmelCase , self.head ) def __iter__( self )-> Iterator[int]: '''simple docstring''' lowerCAmelCase__ = self.head while node: yield node.data lowerCAmelCase__ = node.next_node def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self )-> str: '''simple docstring''' return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
340
1
import argparse import os import re a_ = '''src/diffusers''' # Pattern that looks at the indentation in a line. a_ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. a_ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. a_ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. a_ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. a_ = re.compile(r'''\[([^\]]+)\]''') def _a ( UpperCamelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = _re_indent.search(UpperCamelCase_ ) return "" if search is None else search.groups()[0] def _a ( UpperCamelCase_ : str , UpperCamelCase_ : Dict="" , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Union[str, Any]=None ) -> Dict: """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(UpperCamelCase_ ): index += 1 lowerCAmelCase__ = ["\n".join(lines[:index] )] else: lowerCAmelCase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase__ = [lines[index]] index += 1 while index < len(UpperCamelCase_ ) and (end_prompt is None or not lines[index].startswith(UpperCamelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCamelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(UpperCamelCase_ ) ) if index < len(UpperCamelCase_ ) - 1: lowerCAmelCase__ = [lines[index + 1]] index += 1 else: lowerCAmelCase__ = [] else: blocks.append("\n".join(UpperCamelCase_ ) ) lowerCAmelCase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCamelCase_ ) > 0: blocks.append("\n".join(UpperCamelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCamelCase_ ): blocks.append("\n".join(lines[index:] ) ) return blocks def _a ( UpperCamelCase_ : Dict ) -> int: """simple docstring""" def _inner(UpperCamelCase_ : Tuple ): return key(UpperCamelCase_ ).lower().replace("_" , "" ) return _inner def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any]=None ) -> List[Any]: """simple docstring""" def noop(UpperCamelCase_ : Union[str, Any] ): return x if key is None: lowerCAmelCase__ = noop # Constants are all uppercase, they go first. lowerCAmelCase__ = [obj for obj in objects if key(UpperCamelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase__ = [obj for obj in objects if key(UpperCamelCase_ )[0].isupper() and not key(UpperCamelCase_ ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase__ = [obj for obj in objects if not key(UpperCamelCase_ )[0].isupper()] lowerCAmelCase__ = ignore_underscore(UpperCamelCase_ ) return sorted(UpperCamelCase_ , key=UpperCamelCase_ ) + sorted(UpperCamelCase_ , key=UpperCamelCase_ ) + sorted(UpperCamelCase_ , key=UpperCamelCase_ ) def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" def _replace(UpperCamelCase_ : List[Any] ): lowerCAmelCase__ = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase__ = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase__ = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(UpperCamelCase_ )] ) + "]" lowerCAmelCase__ = import_statement.split("\n" ) if len(UpperCamelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase__ = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase__ = [(i, _re_strip_line.search(UpperCamelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase__ = sort_objects(UpperCamelCase_ , key=lambda UpperCamelCase_ : x[1] ) lowerCAmelCase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCamelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase__ = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase__ = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase__ = keys[:-1] lowerCAmelCase__ = get_indent(lines[1] ) + ", ".join([F"\"{k}\"" for k in sort_objects(UpperCamelCase_ )] ) return "\n".join(UpperCamelCase_ ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase__ = _re_bracket_content.sub(_replace , UpperCamelCase_ ) return import_statement def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any]=True ) -> List[str]: """simple docstring""" with open(UpperCamelCase_ , "r" ) as f: lowerCAmelCase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase__ = split_code_in_indented_blocks( UpperCamelCase_ , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCamelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase__ = main_blocks[block_idx] lowerCAmelCase__ = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase__ = 0 while line_idx < len(UpperCamelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase__ = len(UpperCamelCase_ ) else: line_idx += 1 if line_idx >= len(UpperCamelCase_ ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase__ = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase__ = split_code_in_indented_blocks(UpperCamelCase_ , indent_level=UpperCamelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase__ = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase__ = [(pattern.search(UpperCamelCase_ ).groups()[0] if pattern.search(UpperCamelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase__ = [(i, key) for i, key in enumerate(UpperCamelCase_ ) if key is not None] lowerCAmelCase__ = [x[0] for x in sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase__ = 0 lowerCAmelCase__ = [] for i in range(len(UpperCamelCase_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(UpperCamelCase_ ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase__ = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCamelCase_ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(UpperCamelCase_ , "w" ) as f: f.write("\n".join(UpperCamelCase_ ) ) def _a ( UpperCamelCase_ : List[str]=True ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = [] for root, _, files in os.walk(UpperCamelCase_ ): if "__init__.py" in files: lowerCAmelCase__ = sort_imports(os.path.join(UpperCamelCase_ , "__init__.py" ) , check_only=UpperCamelCase_ ) if result: lowerCAmelCase__ = [os.path.join(UpperCamelCase_ , "__init__.py" )] if len(UpperCamelCase_ ) > 0: raise ValueError(F"Would overwrite {len(UpperCamelCase_ )} files, run `make style`." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') a_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
340
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
1
def _a ( UpperCamelCase_ : str ) -> str: """simple docstring""" return "".join(chr(ord(UpperCamelCase_ ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
340
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ = '''src/transformers''' a_ = '''docs/source/en/tasks''' def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Find the start prompt. lowerCAmelCase__ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase__ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(TRANSFORMERS_PATH) a_ = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) lowerCAmelCase__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
340
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) lowerCAmelCase__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = CLIPProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) lowerCAmelCase__ = CLIPProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) lowerCAmelCase__ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = CLIPProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = CLIPProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = CLIPProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = CLIPProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase ) lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = CLIPProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
340
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: lowerCAmelCase__ = TOKENIZER_CLASSES else: lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase__ = True if checkpoint_name is None: lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase__ = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: lowerCAmelCase__ = checkpoint lowerCAmelCase__ = dump_path else: lowerCAmelCase__ = None lowerCAmelCase__ = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) lowerCAmelCase__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(UpperCamelCase_ ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) a_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
340
1
from __future__ import annotations from random import random from typing import Generic, TypeVar a_ = TypeVar('''KT''') a_ = TypeVar('''VT''') class lowercase__ ( Generic[KT, VT] ): def __init__( self , __UpperCAmelCase = "root" , __UpperCAmelCase = None )-> int: '''simple docstring''' lowerCAmelCase__ = key lowerCAmelCase__ = value lowerCAmelCase__ = [] def __repr__( self )-> str: '''simple docstring''' return F"Node({self.key}: {self.value})" @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return len(self.forward ) class lowercase__ ( Generic[KT, VT] ): def __init__( self , __UpperCAmelCase = 0.5 , __UpperCAmelCase = 16 )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = Node[KT, VT]() lowerCAmelCase__ = 0 lowerCAmelCase__ = p lowerCAmelCase__ = max_level def __str__( self )-> str: '''simple docstring''' lowerCAmelCase__ = list(self ) if len(__UpperCAmelCase ) == 0: return F"SkipList(level={self.level})" lowerCAmelCase__ = max((len(str(__UpperCAmelCase ) ) for item in items) , default=4 ) lowerCAmelCase__ = max(__UpperCAmelCase , 4 ) + 4 lowerCAmelCase__ = self.head lowerCAmelCase__ = [] lowerCAmelCase__ = node.forward.copy() lines.append(F"[{node.key}]".ljust(__UpperCAmelCase , "-" ) + "* " * len(__UpperCAmelCase ) ) lines.append(" " * label_size + "| " * len(__UpperCAmelCase ) ) while len(node.forward ) != 0: lowerCAmelCase__ = node.forward[0] lines.append( F"[{node.key}]".ljust(__UpperCAmelCase , "-" ) + " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) ) lines.append(" " * label_size + "| " * len(__UpperCAmelCase ) ) lowerCAmelCase__ = node.forward lines.append("None".ljust(__UpperCAmelCase ) + "* " * len(__UpperCAmelCase ) ) return F"SkipList(level={self.level})\n" + "\n".join(__UpperCAmelCase ) def __iter__( self )-> Any: '''simple docstring''' lowerCAmelCase__ = self.head while len(node.forward ) != 0: yield node.forward[0].key lowerCAmelCase__ = node.forward[0] def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = 1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCAmelCase ( self , __UpperCAmelCase )-> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: '''simple docstring''' lowerCAmelCase__ = [] lowerCAmelCase__ = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: lowerCAmelCase__ = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__UpperCAmelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(__UpperCAmelCase ) if node is not None: for i, update_node in enumerate(__UpperCAmelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: lowerCAmelCase__ = node.forward[i] else: lowerCAmelCase__ = update_node.forward[:i] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Any: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(__UpperCAmelCase ) if node is not None: lowerCAmelCase__ = value else: lowerCAmelCase__ = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __UpperCAmelCase ): update_vector.append(self.head ) lowerCAmelCase__ = level lowerCAmelCase__ = Node(__UpperCAmelCase , __UpperCAmelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__UpperCAmelCase ) else: lowerCAmelCase__ = new_node def UpperCAmelCase ( self , __UpperCAmelCase )-> VT | None: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self._locate_node(__UpperCAmelCase ) if node is not None: return node.value return None def _a ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("Key1" , 3 ) skip_list.insert("Key2" , 12 ) skip_list.insert("Key3" , 41 ) skip_list.insert("Key4" , -19 ) lowerCAmelCase__ = skip_list.head lowerCAmelCase__ = {} while node.level != 0: lowerCAmelCase__ = node.forward[0] lowerCAmelCase__ = node.value assert len(UpperCamelCase_ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("Key1" , 10 ) skip_list.insert("Key1" , 12 ) skip_list.insert("Key5" , 7 ) skip_list.insert("Key7" , 10 ) skip_list.insert("Key10" , 5 ) skip_list.insert("Key7" , 7 ) skip_list.insert("Key5" , 5 ) skip_list.insert("Key10" , 10 ) lowerCAmelCase__ = skip_list.head lowerCAmelCase__ = {} while node.level != 0: lowerCAmelCase__ = node.forward[0] lowerCAmelCase__ = node.value if len(UpperCamelCase_ ) != 4: print() assert len(UpperCamelCase_ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _a ( ) -> str: """simple docstring""" lowerCAmelCase__ = SkipList() assert skip_list.find("Some key" ) is None def _a ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("Key2" , 20 ) assert skip_list.find("Key2" ) == 20 skip_list.insert("Some Key" , 10 ) skip_list.insert("Key2" , 8 ) skip_list.insert("V" , 13 ) assert skip_list.find("Y" ) is None assert skip_list.find("Key2" ) == 8 assert skip_list.find("Some Key" ) == 10 assert skip_list.find("V" ) == 13 def _a ( ) -> Any: """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.delete("Some key" ) assert len(skip_list.head.forward ) == 0 def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 14 ) skip_list.insert("Key2" , 15 ) skip_list.delete("V" ) skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("Key2" ) is None def _a ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 14 ) skip_list.insert("Key2" , 15 ) skip_list.delete("V" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) == 14 assert skip_list.find("Key1" ) == 12 assert skip_list.find("Key2" ) == 15 skip_list.delete("X" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) == 12 assert skip_list.find("Key2" ) == 15 skip_list.delete("Key1" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) == 15 skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) is None def _a ( ) -> str: """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 142 ) skip_list.insert("Key2" , 15 ) skip_list.delete("X" ) def traverse_keys(UpperCamelCase_ : Union[str, Any] ): yield node.key for forward_node in node.forward: yield from traverse_keys(UpperCamelCase_ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _a ( ) -> List[str]: """simple docstring""" def is_sorted(UpperCamelCase_ : Optional[Any] ): return all(next_item >= item for item, next_item in zip(UpperCamelCase_ , lst[1:] ) ) lowerCAmelCase__ = SkipList() for i in range(10 ): skip_list.insert(UpperCamelCase_ , UpperCamelCase_ ) assert is_sorted(list(UpperCamelCase_ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(UpperCamelCase_ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(UpperCamelCase_ ) ) def _a ( ) -> Union[str, Any]: """simple docstring""" for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _a ( ) -> str: """simple docstring""" lowerCAmelCase__ = SkipList() skip_list.insert(2 , "2" ) skip_list.insert(4 , "4" ) skip_list.insert(6 , "4" ) skip_list.insert(4 , "5" ) skip_list.insert(8 , "4" ) skip_list.insert(9 , "4" ) skip_list.delete(4 ) print(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
340
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
1
from collections.abc import Sequence def _a ( UpperCamelCase_ : Sequence[float] , UpperCamelCase_ : bool = False ) -> float: """simple docstring""" if not arr: return 0 lowerCAmelCase__ = 0 if allow_empty_subarrays else float("-inf" ) lowerCAmelCase__ = 0.0 for num in arr: lowerCAmelCase__ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowerCAmelCase__ = max(UpperCamelCase_ , UpperCamelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() a_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
340
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""xlnet""" a_ =["""mems"""] a_ ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int: '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCAmelCase__ = d_model // n_head lowerCAmelCase__ = ff_activation lowerCAmelCase__ = d_inner lowerCAmelCase__ = untie_r lowerCAmelCase__ = attn_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = dropout lowerCAmelCase__ = mem_len lowerCAmelCase__ = reuse_len lowerCAmelCase__ = bi_data lowerCAmelCase__ = clamp_len lowerCAmelCase__ = same_length lowerCAmelCase__ = summary_type lowerCAmelCase__ = summary_use_proj lowerCAmelCase__ = summary_activation lowerCAmelCase__ = summary_last_dropout lowerCAmelCase__ = start_n_top lowerCAmelCase__ = end_n_top lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs["use_cache"] lowerCAmelCase__ = use_mems_eval lowerCAmelCase__ = use_mems_train super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
340
1
import sys a_ = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _a ( UpperCamelCase_ : str ) -> int: """simple docstring""" lowerCAmelCase__ = 1 for digit in s: product *= int(UpperCamelCase_ ) return product def _a ( UpperCamelCase_ : str = N ) -> int: """simple docstring""" lowerCAmelCase__ = -sys.maxsize - 1 lowerCAmelCase__ = n[:13] lowerCAmelCase__ = 13 while cur_index < len(UpperCamelCase_ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): lowerCAmelCase__ = substr[1:] + n[cur_index] cur_index += 1 else: lowerCAmelCase__ = max(UpperCamelCase_ , str_eval(UpperCamelCase_ ) ) lowerCAmelCase__ = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"{solution() = }")
340
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple: """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = "" else: lowerCAmelCase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _a ( UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ViTMSNConfig() lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "datasets/huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase__ = 384 lowerCAmelCase__ = 1_536 lowerCAmelCase__ = 6 elif "l16" in checkpoint_url: lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase__ = 4 elif "l7" in checkpoint_url: lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ ) lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"] lowerCAmelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase_ ) lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) lowerCAmelCase__ = ViTImageProcessor( size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
340
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =BartphoTokenizer a_ =False a_ =True def UpperCAmelCase ( self )-> Dict: '''simple docstring''' super().setUp() lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"] lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"{token} {vocab_tokens[token]}\n" ) lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split() lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
340
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = {} if "candidate_labels" in kwargs: lowerCAmelCase__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCAmelCase__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = load_image(__UpperCAmelCase ) lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ = candidate_labels lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase ) lowerCAmelCase__ = [text_inputs] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = model_inputs.pop("candidate_labels" ) lowerCAmelCase__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __UpperCAmelCase ): lowerCAmelCase__ = text_inputs[0] else: # Batching case. lowerCAmelCase__ = text_inputs[0][0] lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = model_outputs.pop("candidate_labels" ) lowerCAmelCase__ = model_outputs["logits"][0] if self.framework == "pt": lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ = probs.tolist() if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [scores] elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 ) lowerCAmelCase__ = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCAmelCase__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] ) ] return result
340
1
from __future__ import annotations import math def _a ( UpperCamelCase_ : float , UpperCamelCase_ : int ) -> float: """simple docstring""" lowerCAmelCase__ = u for i in range(1 , UpperCamelCase_ ): lowerCAmelCase__ = temp * (u - i) return temp def _a ( ) -> None: """simple docstring""" lowerCAmelCase__ = int(input("enter the numbers of values: " ) ) lowerCAmelCase__ = [] for _ in range(UpperCamelCase_ ): y.append([] ) for i in range(UpperCamelCase_ ): for j in range(UpperCamelCase_ ): y[i].append(UpperCamelCase_ ) lowerCAmelCase__ = 0 print("enter the values of parameters in a list: " ) lowerCAmelCase__ = list(map(UpperCamelCase_ , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(UpperCamelCase_ ): lowerCAmelCase__ = float(input() ) lowerCAmelCase__ = int(input("enter the value to interpolate: " ) ) lowerCAmelCase__ = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCamelCase_ ): for j in range(n - i ): lowerCAmelCase__ = y[j + 1][i - 1] - y[j][i - 1] lowerCAmelCase__ = y[0][0] for i in range(1 , UpperCamelCase_ ): summ += (ucal(UpperCamelCase_ , UpperCamelCase_ ) * y[0][i]) / math.factorial(UpperCamelCase_ ) print(F"the value at {value} is {summ}" ) if __name__ == "__main__": main()
340
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =BartphoTokenizer a_ =False a_ =True def UpperCAmelCase ( self )-> Dict: '''simple docstring''' super().setUp() lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"] lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"{token} {vocab_tokens[token]}\n" ) lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split() lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
340
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path a_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) a_ = [ord(letter) for letter in string.ascii_lowercase] a_ = {ord(char) for char in VALID_CHARS} a_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : tuple[int, ...] ) -> str | None: """simple docstring""" lowerCAmelCase__ = "" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for keychar, cipherchar in zip(cycle(UpperCamelCase_ ) , UpperCamelCase_ ): lowerCAmelCase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCamelCase_ ) return decoded def _a ( UpperCamelCase_ : list[int] ) -> list[str]: """simple docstring""" lowerCAmelCase__ = [] for key in product(UpperCamelCase_ , repeat=3 ): lowerCAmelCase__ = try_key(UpperCamelCase_ , UpperCamelCase_ ) if encoded is not None: possibles.append(UpperCamelCase_ ) return possibles def _a ( UpperCamelCase_ : list[str] , UpperCamelCase_ : str ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def _a ( UpperCamelCase_ : str = "p059_cipher.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = Path(UpperCamelCase_ ).parent.joinpath(UpperCamelCase_ ).read_text(encoding="utf-8" ) lowerCAmelCase__ = [int(UpperCamelCase_ ) for number in data.strip().split("," )] lowerCAmelCase__ = filter_valid_chars(UpperCamelCase_ ) for common_word in COMMON_WORDS: lowerCAmelCase__ = filter_common_word(UpperCamelCase_ , UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: break lowerCAmelCase__ = possibles[0] return sum(ord(UpperCamelCase_ ) for char in decoded_text ) if __name__ == "__main__": print(F"{solution() = }")
340
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } a_ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } a_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""] a_ =DistilBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } a_ = { '''junnyu/roformer_chinese_small''': 1536, '''junnyu/roformer_chinese_base''': 1536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } a_ = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =RoFormerTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> Dict: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or pre_tok_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents ): lowerCAmelCase__ = getattr(__UpperCAmelCase , pre_tok_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = pre_tok_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def __getstate__( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = BertPreTokenizer() return state def __setstate__( self , __UpperCAmelCase )-> Dict: '''simple docstring''' lowerCAmelCase__ = d lowerCAmelCase__ = self.__dict__["_tokenizer"].get_vocab() lowerCAmelCase__ = PreTokenizer.custom(JiebaPreTokenizer(__UpperCAmelCase ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> int: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , **__UpperCAmelCase , )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = BertPreTokenizer() return super().save_pretrained(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase )
340
a_ = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
340
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 16 a_ = 32 def _a ( UpperCamelCase_ : Accelerator , UpperCamelCase_ : int = 16 ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(UpperCamelCase_ : str ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(UpperCamelCase_ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( UpperCamelCase_ , padding="longest" , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) lowerCAmelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ = mocked_dataloaders # noqa: F811 def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str: """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , UpperCamelCase_ ) == "1": lowerCAmelCase__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: lowerCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config["lr"] lowerCAmelCase__ = int(config["num_epochs"] ) lowerCAmelCase__ = int(config["seed"] ) lowerCAmelCase__ = int(config["batch_size"] ) set_seed(UpperCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = get_dataloaders(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=UpperCamelCase_ ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCAmelCase__ = os.path.split(UpperCamelCase_ )[-1].split("." )[0] accelerator.init_trackers(UpperCamelCase_ , UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCAmelCase__ = 0 for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , UpperCamelCase_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(UpperCamelCase_ ), "epoch": epoch, } , step=UpperCamelCase_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _a ( ) -> Tuple: """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=UpperCamelCase_ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
340
import collections import importlib.util import os import re from pathlib import Path a_ = '''src/transformers''' # Matches is_xxx_available() a_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", a_ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], a_ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: a_ = re.compile(r'''^\s*try:''') # Catches a line with else: a_ = re.compile(r'''^\s*else:''') def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" if _re_test_backend.search(UpperCamelCase_ ) is None: return None lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )] backends.sort() return "_and_".join(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = 0 while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase__ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase_ ): lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0] lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ ) if single_line_import_search is not None: lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase__ = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_between_brackets.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_quote_object.search(UpperCamelCase_ ) is not None: objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase__ = [] while ( line_index < len(UpperCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" def find_duplicates(UpperCamelCase_ : str ): return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase__ = [] for key in import_dict_objects.keys(): lowerCAmelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowerCAmelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = [] for root, _, files in os.walk(UpperCamelCase_ ): if "__init__.py" in files: lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" ) lowerCAmelCase__ = parse_init(UpperCamelCase_ ) if objects is not None: lowerCAmelCase__ = analyze_results(*UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > 0: raise ValueError("\n\n".join(UpperCamelCase_ ) ) def _a ( ) -> str: """simple docstring""" lowerCAmelCase__ = [] for path, directories, files in os.walk(UpperCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(UpperCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(os.path.sep , "." ) submodules.append(UpperCamelCase_ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(UpperCamelCase_ ) return submodules a_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _a ( ) -> int: """simple docstring""" lowerCAmelCase__ = importlib.util.spec_from_file_location( "transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
340
1
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = {} if "candidate_labels" in kwargs: lowerCAmelCase__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCAmelCase__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = load_image(__UpperCAmelCase ) lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ = candidate_labels lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase ) lowerCAmelCase__ = [text_inputs] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = model_inputs.pop("candidate_labels" ) lowerCAmelCase__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __UpperCAmelCase ): lowerCAmelCase__ = text_inputs[0] else: # Batching case. lowerCAmelCase__ = text_inputs[0][0] lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = model_outputs.pop("candidate_labels" ) lowerCAmelCase__ = model_outputs["logits"][0] if self.framework == "pt": lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ = probs.tolist() if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [scores] elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 ) lowerCAmelCase__ = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCAmelCase__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] ) ] return result
340
from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = vertices lowerCAmelCase__ = { (min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase__ = weight def UpperCAmelCase ( self )-> Graph: '''simple docstring''' lowerCAmelCase__ = Graph({min(self.vertices )} , {} ) lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase__ = edge lowerCAmelCase__ = weight subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase ) return subgraph def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = {} lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 with open(UpperCamelCase_ ) as f: lowerCAmelCase__ = f.read().strip().split("\n" ) lowerCAmelCase__ = [line.split("," ) for line in data] for edgea in range(1 , len(UpperCamelCase_ ) ): for edgea in range(UpperCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ ) lowerCAmelCase__ = graph.prims_algorithm() lowerCAmelCase__ = sum(graph.edges.values() ) lowerCAmelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
340
1
def _a ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> str: """simple docstring""" lowerCAmelCase__ = len(UpperCamelCase_ ) lowerCAmelCase__ = len(UpperCamelCase_ ) lowerCAmelCase__ = ( first_str_length if first_str_length > second_str_length else second_str_length ) lowerCAmelCase__ = [] for char_count in range(UpperCamelCase_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(UpperCamelCase_ ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
340
from collections import defaultdict from math import gcd def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) lowerCAmelCase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ): if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1: continue lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
340
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" lowerCAmelCase__ = UniSpeechSatForSequenceClassification.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) lowerCAmelCase__ = downstream_dict["projector.weight"] lowerCAmelCase__ = downstream_dict["projector.bias"] lowerCAmelCase__ = downstream_dict["model.post_net.linear.weight"] lowerCAmelCase__ = downstream_dict["model.post_net.linear.bias"] return model def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = UniSpeechSatForAudioFrameClassification.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) lowerCAmelCase__ = downstream_dict["model.linear.weight"] lowerCAmelCase__ = downstream_dict["model.linear.bias"] return model def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[str] ) -> Any: """simple docstring""" lowerCAmelCase__ = UniSpeechSatForXVector.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) lowerCAmelCase__ = downstream_dict["connector.weight"] lowerCAmelCase__ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowerCAmelCase__ = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] lowerCAmelCase__ = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] lowerCAmelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] lowerCAmelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] lowerCAmelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] lowerCAmelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] lowerCAmelCase__ = downstream_dict["objective.W"] return model @torch.no_grad() def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" ) lowerCAmelCase__ = checkpoint["Downstream"] lowerCAmelCase__ = UniSpeechSatConfig.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained( UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , do_normalize=UpperCamelCase_ ) lowerCAmelCase__ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): lowerCAmelCase__ = convert_classification(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) elif arch.endswith("ForAudioFrameClassification" ): lowerCAmelCase__ = convert_diarization(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) elif arch.endswith("ForXVector" ): lowerCAmelCase__ = convert_xvector(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: lowerCAmelCase__ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(UpperCamelCase_ ) hf_model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') a_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
340
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """tokenizer"""] a_ ="""LayoutLMv2ImageProcessor""" a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase__ = features["words"] lowerCAmelCase__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) # add pixel values lowerCAmelCase__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) lowerCAmelCase__ = images return encoded_inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" ) return images_with_overflow def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict: '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self )-> str: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
340
1
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ ( _UpperCAmelCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="None" , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , )-> int: '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = relative_attention lowerCAmelCase__ = position_biased_input lowerCAmelCase__ = pos_att_type lowerCAmelCase__ = scope def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self )-> str: '''simple docstring''' return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = DebertaVaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] lowerCAmelCase__ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] lowerCAmelCase__ = model(__UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = DebertaVaForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = DebertaVaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = DebertaVaForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = DebertaVaForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = DebertaVaForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowercase__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase ): a_ =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a_ =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a_ =True a_ =False a_ =False a_ =False a_ =False def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = DebertaVaModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self )-> int: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCAmelCase ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = DebertaVaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' pass @slow def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = DebertaVaModel.from_pretrained("microsoft/deberta-v2-xlarge" ) lowerCAmelCase__ = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) lowerCAmelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] # compare the actual values for a slice. lowerCAmelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 ) , F"{output[:, 1:4, 1:4]}" )
340
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) lowerCAmelCase__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = processor(text=__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = [["cat", "nasa badge"], ["person"]] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = max([len(__UpperCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = inputs["input_ids"] lowerCAmelCase__ = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase ) lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
340
1
from datetime import datetime import matplotlib.pyplot as plt import torch def _a ( UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for param in module.parameters(): lowerCAmelCase__ = False def _a ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase__ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def _a ( UpperCamelCase_ : Any ) -> Tuple: """simple docstring""" lowerCAmelCase__ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = datetime.now() lowerCAmelCase__ = current_time.strftime("%H:%M:%S" ) return timestamp
340
from __future__ import annotations from cmath import sqrt def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowerCAmelCase__ = b * b - 4 * a * c lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a) lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
340
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer a_ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast a_ = TaTokenizerFast a_ = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys a_ = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
340
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(UpperCamelCase_ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" ) lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" ) lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = number_of_qubits for i in range(UpperCamelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCamelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ ) # simulate with 10000 shots lowerCAmelCase__ = Aer.get_backend("qasm_simulator" ) lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 ) return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
340
1
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowercase__ ( _UpperCAmelCase ): a_ ="""char""" a_ ="""bpe""" a_ ="""wp""" a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """char_tokenizer"""] a_ ="""ViTImageProcessor""" a_ ="""MgpstrTokenizer""" def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) lowerCAmelCase__ = tokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" ) lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]: '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase__ = encodings["input_ids"] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences lowerCAmelCase__ = char_preds.size(0 ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i in range(__UpperCAmelCase ): lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCAmelCase__ = {} lowerCAmelCase__ = final_strs lowerCAmelCase__ = final_scores lowerCAmelCase__ = char_strs lowerCAmelCase__ = bpe_strs lowerCAmelCase__ = wp_strs return out def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' if format == DecodeType.CHARACTER: lowerCAmelCase__ = self.char_decode lowerCAmelCase__ = 1 lowerCAmelCase__ = "[s]" elif format == DecodeType.BPE: lowerCAmelCase__ = self.bpe_decode lowerCAmelCase__ = 2 lowerCAmelCase__ = "#" elif format == DecodeType.WORDPIECE: lowerCAmelCase__ = self.wp_decode lowerCAmelCase__ = 102 lowerCAmelCase__ = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) lowerCAmelCase__ , lowerCAmelCase__ = [], [] lowerCAmelCase__ = pred_logits.size(0 ) lowerCAmelCase__ = pred_logits.size(1 ) lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase ) lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:] lowerCAmelCase__ = decoder(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 ) lowerCAmelCase__ = preds_max_prob[:, 1:] for index in range(__UpperCAmelCase ): lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase ) lowerCAmelCase__ = preds_str[index][:pred_eos] lowerCAmelCase__ = preds_index[index].cpu().tolist() lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1 lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1] lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__UpperCAmelCase ) conf_scores.append(__UpperCAmelCase ) return dec_strs, conf_scores def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return self.bpe_tokenizer.batch_decode(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs
340
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowercase__ ( _UpperCAmelCase ): a_ ="""time_series_transformer""" a_ ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "student_t" , __UpperCAmelCase = "nll" , __UpperCAmelCase = 1 , __UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7] , __UpperCAmelCase = "mean" , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 32 , __UpperCAmelCase = 32 , __UpperCAmelCase = 2 , __UpperCAmelCase = 2 , __UpperCAmelCase = 2 , __UpperCAmelCase = 2 , __UpperCAmelCase = True , __UpperCAmelCase = "gelu" , __UpperCAmelCase = 64 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 100 , __UpperCAmelCase = 0.02 , __UpperCAmelCase=True , **__UpperCAmelCase , )-> Tuple: '''simple docstring''' lowerCAmelCase__ = prediction_length lowerCAmelCase__ = context_length or prediction_length lowerCAmelCase__ = distribution_output lowerCAmelCase__ = loss lowerCAmelCase__ = input_size lowerCAmelCase__ = num_time_features lowerCAmelCase__ = lags_sequence lowerCAmelCase__ = scaling lowerCAmelCase__ = num_dynamic_real_features lowerCAmelCase__ = num_static_real_features lowerCAmelCase__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase__ = cardinality else: lowerCAmelCase__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__UpperCAmelCase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase__ = embedding_dimension else: lowerCAmelCase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase__ = num_parallel_samples # Transformer architecture configuration lowerCAmelCase__ = input_size * len(__UpperCAmelCase ) + self._number_of_features lowerCAmelCase__ = d_model lowerCAmelCase__ = encoder_attention_heads lowerCAmelCase__ = decoder_attention_heads lowerCAmelCase__ = encoder_ffn_dim lowerCAmelCase__ = decoder_ffn_dim lowerCAmelCase__ = encoder_layers lowerCAmelCase__ = decoder_layers lowerCAmelCase__ = dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = encoder_layerdrop lowerCAmelCase__ = decoder_layerdrop lowerCAmelCase__ = activation_function lowerCAmelCase__ = init_std lowerCAmelCase__ = use_cache super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
340
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
1
import math def _a ( UpperCamelCase_ : int ) -> bool: """simple docstring""" return math.sqrt(UpperCamelCase_ ) * math.sqrt(UpperCamelCase_ ) == num def _a ( UpperCamelCase_ : int ) -> bool: """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = n while left <= right: lowerCAmelCase__ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase__ = mid - 1 else: lowerCAmelCase__ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
340
from collections import defaultdict def _a ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = True for v in tree[start]: if v not in visited: ret += dfs(UpperCamelCase_ ) if ret % 2 == 0: cuts.append(UpperCamelCase_ ) return ret def _a ( ) -> Optional[Any]: """simple docstring""" dfs(1 ) if __name__ == "__main__": a_, a_ = 10, 9 a_ = defaultdict(list) a_ = {} a_ = [] a_ = 0 a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } a_ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } a_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""] a_ =DistilBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
import requests from bsa import BeautifulSoup def _a ( UpperCamelCase_ : str = "AAPL" ) -> str: """simple docstring""" lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" ) lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
340
1
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowercase__ ( _UpperCAmelCase ): a_ ="""EncodecFeatureExtractor""" a_ =("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> int: '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = self.feature_extractor lowerCAmelCase__ = False def UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True )-> int: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=__UpperCAmelCase , language=__UpperCAmelCase , no_timestamps=__UpperCAmelCase ) def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase )-> str: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = kwargs.pop("audio" , __UpperCAmelCase ) lowerCAmelCase__ = kwargs.pop("sampling_rate" , __UpperCAmelCase ) lowerCAmelCase__ = kwargs.pop("text" , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: lowerCAmelCase__ = args[0] lowerCAmelCase__ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase ) if audio is not None: lowerCAmelCase__ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: lowerCAmelCase__ = audio_inputs["input_values"] if "padding_mask" in audio_inputs: lowerCAmelCase__ = audio_inputs["padding_mask"] return inputs def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = kwargs.pop("audio" , __UpperCAmelCase ) lowerCAmelCase__ = kwargs.pop("padding_mask" , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: lowerCAmelCase__ = args[0] lowerCAmelCase__ = args[1:] if audio_values is not None: return self._decode_audio(__UpperCAmelCase , padding_mask=__UpperCAmelCase ) else: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[np.ndarray]: '''simple docstring''' lowerCAmelCase__ = to_numpy(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = audio_values.shape if padding_mask is None: return list(__UpperCAmelCase ) lowerCAmelCase__ = to_numpy(__UpperCAmelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) lowerCAmelCase__ = seq_len - padding_mask.shape[-1] lowerCAmelCase__ = 1 - self.feature_extractor.padding_value lowerCAmelCase__ = np.pad(__UpperCAmelCase , ((0, 0), (0, difference)) , "constant" , constant_values=__UpperCAmelCase ) lowerCAmelCase__ = audio_values.tolist() for i in range(__UpperCAmelCase ): lowerCAmelCase__ = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] lowerCAmelCase__ = sliced_audio.reshape(__UpperCAmelCase , -1 ) return audio_values
340
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ = (3, 9, -11, 0, 7, 5, 1, -1) a_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowercase__ : a_ =42 a_ =42 class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): lowerCAmelCase__ = Node(__UpperCAmelCase , self.head ) def __iter__( self )-> Iterator[int]: '''simple docstring''' lowerCAmelCase__ = self.head while node: yield node.data lowerCAmelCase__ = node.next_node def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self )-> str: '''simple docstring''' return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
340
1
from random import shuffle import tensorflow as tf from numpy import array def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] ) -> str: """simple docstring""" lowerCAmelCase__ = int(UpperCamelCase_ ) assert noofclusters < len(UpperCamelCase_ ) # Find out the dimensionality lowerCAmelCase__ = len(vectors[0] ) # Will help select random centroids from among the available vectors lowerCAmelCase__ = list(range(len(UpperCamelCase_ ) ) ) shuffle(UpperCamelCase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowerCAmelCase__ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowerCAmelCase__ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowerCAmelCase__ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(UpperCamelCase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowerCAmelCase__ = tf.placeholder("float64" , [dim] ) lowerCAmelCase__ = [] for centroid in centroids: cent_assigns.append(tf.assign(UpperCamelCase_ , UpperCamelCase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowerCAmelCase__ = [tf.Variable(0 ) for i in range(len(UpperCamelCase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowerCAmelCase__ = tf.placeholder("int32" ) lowerCAmelCase__ = [] for assignment in assignments: cluster_assigns.append(tf.assign(UpperCamelCase_ , UpperCamelCase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowerCAmelCase__ = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowerCAmelCase__ = tf.reduce_mean(UpperCamelCase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowerCAmelCase__ = tf.placeholder("float" , [dim] ) lowerCAmelCase__ = tf.placeholder("float" , [dim] ) lowerCAmelCase__ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(UpperCamelCase_ , UpperCamelCase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowerCAmelCase__ = tf.placeholder("float" , [noofclusters] ) lowerCAmelCase__ = tf.argmin(UpperCamelCase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowerCAmelCase__ = tf.initialize_all_variables() # Initialize all variables sess.run(UpperCamelCase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowerCAmelCase__ = 100 for _ in range(UpperCamelCase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(UpperCamelCase_ ) ): lowerCAmelCase__ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowerCAmelCase__ = [ sess.run(UpperCamelCase_ , feed_dict={va: vect, va: sess.run(UpperCamelCase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowerCAmelCase__ = sess.run( UpperCamelCase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(UpperCamelCase_ ): # Collect all the vectors assigned to this cluster lowerCAmelCase__ = [ vectors[i] for i in range(len(UpperCamelCase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowerCAmelCase__ = sess.run( UpperCamelCase_ , feed_dict={mean_input: array(UpperCamelCase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowerCAmelCase__ = sess.run(UpperCamelCase_ ) lowerCAmelCase__ = sess.run(UpperCamelCase_ ) return centroids, assignments
340
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
1
import collections import importlib.util import os import re from pathlib import Path a_ = '''src/transformers''' # Matches is_xxx_available() a_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", a_ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], a_ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: a_ = re.compile(r'''^\s*try:''') # Catches a line with else: a_ = re.compile(r'''^\s*else:''') def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" if _re_test_backend.search(UpperCamelCase_ ) is None: return None lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )] backends.sort() return "_and_".join(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = 0 while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase__ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase_ ): lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0] lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ ) if single_line_import_search is not None: lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase__ = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_between_brackets.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_quote_object.search(UpperCamelCase_ ) is not None: objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase__ = [] while ( line_index < len(UpperCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" def find_duplicates(UpperCamelCase_ : str ): return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase__ = [] for key in import_dict_objects.keys(): lowerCAmelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowerCAmelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = [] for root, _, files in os.walk(UpperCamelCase_ ): if "__init__.py" in files: lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" ) lowerCAmelCase__ = parse_init(UpperCamelCase_ ) if objects is not None: lowerCAmelCase__ = analyze_results(*UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > 0: raise ValueError("\n\n".join(UpperCamelCase_ ) ) def _a ( ) -> str: """simple docstring""" lowerCAmelCase__ = [] for path, directories, files in os.walk(UpperCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(UpperCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(os.path.sep , "." ) submodules.append(UpperCamelCase_ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(UpperCamelCase_ ) return submodules a_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _a ( ) -> int: """simple docstring""" lowerCAmelCase__ = importlib.util.spec_from_file_location( "transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
340
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ = '''src/transformers''' a_ = '''docs/source/en/tasks''' def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Find the start prompt. lowerCAmelCase__ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase__ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(TRANSFORMERS_PATH) a_ = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) lowerCAmelCase__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
340
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor a_ = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase )-> None: '''simple docstring''' warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
340
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: lowerCAmelCase__ = TOKENIZER_CLASSES else: lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase__ = True if checkpoint_name is None: lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase__ = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: lowerCAmelCase__ = checkpoint lowerCAmelCase__ = dump_path else: lowerCAmelCase__ = None lowerCAmelCase__ = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) lowerCAmelCase__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(UpperCamelCase_ ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) a_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
340
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
1
import logging from transformers.configuration_utils import PretrainedConfig a_ = logging.getLogger(__name__) class lowercase__ ( _UpperCAmelCase ): a_ ="""masked_bert""" def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0 , __UpperCAmelCase="topK" , __UpperCAmelCase="constant" , __UpperCAmelCase=0.0 , **__UpperCAmelCase , )-> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = pruning_method lowerCAmelCase__ = mask_init lowerCAmelCase__ = mask_scale
340
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""xlnet""" a_ =["""mems"""] a_ ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int: '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCAmelCase__ = d_model // n_head lowerCAmelCase__ = ff_activation lowerCAmelCase__ = d_inner lowerCAmelCase__ = untie_r lowerCAmelCase__ = attn_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = dropout lowerCAmelCase__ = mem_len lowerCAmelCase__ = reuse_len lowerCAmelCase__ = bi_data lowerCAmelCase__ = clamp_len lowerCAmelCase__ = same_length lowerCAmelCase__ = summary_type lowerCAmelCase__ = summary_use_proj lowerCAmelCase__ = summary_activation lowerCAmelCase__ = summary_last_dropout lowerCAmelCase__ = start_n_top lowerCAmelCase__ = end_n_top lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs["use_cache"] lowerCAmelCase__ = use_mems_eval lowerCAmelCase__ = use_mems_train super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
340
1
def _a ( UpperCamelCase_ : int ) -> str: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" lowerCAmelCase__ = False if num < 0: lowerCAmelCase__ = True lowerCAmelCase__ = -num lowerCAmelCase__ = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(UpperCamelCase_ ) for e in binary ) return "0b" + "".join(str(UpperCamelCase_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
340
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple: """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = "" else: lowerCAmelCase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _a ( UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ViTMSNConfig() lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "datasets/huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase__ = 384 lowerCAmelCase__ = 1_536 lowerCAmelCase__ = 6 elif "l16" in checkpoint_url: lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase__ = 4 elif "l7" in checkpoint_url: lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ ) lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"] lowerCAmelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase_ ) lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) lowerCAmelCase__ = ViTImageProcessor( size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
340
1
import numpy as np import datasets a_ = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' a_ = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' a_ = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCAmelCase ( self )-> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = np.array(__UpperCAmelCase ) lowerCAmelCase__ = np.array(__UpperCAmelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction lowerCAmelCase__ = X - np.mean(__UpperCAmelCase ) lowerCAmelCase__ = np.cov(reference_distribution.T ) try: lowerCAmelCase__ = np.linalg.inv(__UpperCAmelCase ) except np.linalg.LinAlgError: lowerCAmelCase__ = np.linalg.pinv(__UpperCAmelCase ) lowerCAmelCase__ = np.dot(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = np.dot(__UpperCAmelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
340
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = {} if "candidate_labels" in kwargs: lowerCAmelCase__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCAmelCase__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = load_image(__UpperCAmelCase ) lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ = candidate_labels lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase ) lowerCAmelCase__ = [text_inputs] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = model_inputs.pop("candidate_labels" ) lowerCAmelCase__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __UpperCAmelCase ): lowerCAmelCase__ = text_inputs[0] else: # Batching case. lowerCAmelCase__ = text_inputs[0][0] lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = model_outputs.pop("candidate_labels" ) lowerCAmelCase__ = model_outputs["logits"][0] if self.framework == "pt": lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ = probs.tolist() if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [scores] elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 ) lowerCAmelCase__ = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCAmelCase__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] ) ] return result
340
1
from __future__ import annotations def _a ( UpperCamelCase_ : int ) -> bool: """simple docstring""" lowerCAmelCase__ = str(UpperCamelCase_ ) return len(UpperCamelCase_ ) == 9 and set(UpperCamelCase_ ) == set("123456789" ) def _a ( ) -> int | None: """simple docstring""" for base_num in range(9_999 , 4_999 , -1 ): lowerCAmelCase__ = 100_002 * base_num if is_9_pandigital(UpperCamelCase_ ): return candidate for base_num in range(333 , 99 , -1 ): lowerCAmelCase__ = 1_002_003 * base_num if is_9_pandigital(UpperCamelCase_ ): return candidate return None if __name__ == "__main__": print(F"{solution() = }")
340
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =BartphoTokenizer a_ =False a_ =True def UpperCAmelCase ( self )-> Dict: '''simple docstring''' super().setUp() lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"] lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"{token} {vocab_tokens[token]}\n" ) lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split() lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
340
1
from sklearn.metrics import matthews_corrcoef import datasets a_ = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a_ = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCAmelCase ( self )-> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None )-> Union[str, Any]: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__UpperCAmelCase , __UpperCAmelCase , sample_weight=__UpperCAmelCase ) ), }
340
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } a_ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } a_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""] a_ =DistilBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt'''} a_ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } a_ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } a_ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_INIT_CONFIGURATION a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =ConvBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> Dict: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
a_ = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
340
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters a_ = (720, 1280) # Height, Width a_ = (0.4, 0.6) # if height or width lower than this scale, drop it. a_ = 1 / 100 a_ = '''''' a_ = '''''' a_ = '''''' a_ = 250 def _a ( ) -> None: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = get_dataset(UpperCamelCase_ , UpperCamelCase_ ) for index in range(UpperCamelCase_ ): lowerCAmelCase__ = random.sample(range(len(UpperCamelCase_ ) ) , 4 ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = update_image_and_anno( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , filter_scale=UpperCamelCase_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCAmelCase__ = random_chars(32 ) lowerCAmelCase__ = path.split(os.sep )[-1].rsplit("." , 1 )[0] lowerCAmelCase__ = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(F"{file_root}.jpg" , UpperCamelCase_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) lowerCAmelCase__ = [] for anno in new_annos: lowerCAmelCase__ = anno[3] - anno[1] lowerCAmelCase__ = anno[4] - anno[2] lowerCAmelCase__ = anno[1] + width / 2 lowerCAmelCase__ = anno[2] + height / 2 lowerCAmelCase__ = F"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(UpperCamelCase_ ) with open(F"{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def _a ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> tuple[list, list]: """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = [] for label_file in glob.glob(os.path.join(UpperCamelCase_ , "*.txt" ) ): lowerCAmelCase__ = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(UpperCamelCase_ ) as in_file: lowerCAmelCase__ = in_file.readlines() lowerCAmelCase__ = os.path.join(UpperCamelCase_ , F"{label_name}.jpg" ) lowerCAmelCase__ = [] for obj_list in obj_lists: lowerCAmelCase__ = obj_list.rstrip("\n" ).split(" " ) lowerCAmelCase__ = float(obj[1] ) - float(obj[3] ) / 2 lowerCAmelCase__ = float(obj[2] ) - float(obj[4] ) / 2 lowerCAmelCase__ = float(obj[1] ) + float(obj[3] ) / 2 lowerCAmelCase__ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(UpperCamelCase_ ) labels.append(UpperCamelCase_ ) return img_paths, labels def _a ( UpperCamelCase_ : list , UpperCamelCase_ : list , UpperCamelCase_ : list[int] , UpperCamelCase_ : tuple[int, int] , UpperCamelCase_ : tuple[float, float] , UpperCamelCase_ : float = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" lowerCAmelCase__ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowerCAmelCase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase__ = int(scale_x * output_size[1] ) lowerCAmelCase__ = int(scale_y * output_size[0] ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i, index in enumerate(UpperCamelCase_ ): lowerCAmelCase__ = all_img_list[index] path_list.append(UpperCamelCase_ ) lowerCAmelCase__ = all_annos[index] lowerCAmelCase__ = cva.imread(UpperCamelCase_ ) if i == 0: # top-left lowerCAmelCase__ = cva.resize(UpperCamelCase_ , (divid_point_x, divid_point_y) ) lowerCAmelCase__ = img for bbox in img_annos: lowerCAmelCase__ = bbox[1] * scale_x lowerCAmelCase__ = bbox[2] * scale_y lowerCAmelCase__ = bbox[3] * scale_x lowerCAmelCase__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowerCAmelCase__ = cva.resize(UpperCamelCase_ , (output_size[1] - divid_point_x, divid_point_y) ) lowerCAmelCase__ = img for bbox in img_annos: lowerCAmelCase__ = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase__ = bbox[2] * scale_y lowerCAmelCase__ = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowerCAmelCase__ = cva.resize(UpperCamelCase_ , (divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase__ = img for bbox in img_annos: lowerCAmelCase__ = bbox[1] * scale_x lowerCAmelCase__ = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase__ = bbox[3] * scale_x lowerCAmelCase__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowerCAmelCase__ = cva.resize( UpperCamelCase_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase__ = img for bbox in img_annos: lowerCAmelCase__ = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase__ = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase__ = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowerCAmelCase__ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _a ( UpperCamelCase_ : int ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" lowerCAmelCase__ = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
340
import collections import importlib.util import os import re from pathlib import Path a_ = '''src/transformers''' # Matches is_xxx_available() a_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", a_ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], a_ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: a_ = re.compile(r'''^\s*try:''') # Catches a line with else: a_ = re.compile(r'''^\s*else:''') def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" if _re_test_backend.search(UpperCamelCase_ ) is None: return None lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )] backends.sort() return "_and_".join(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = 0 while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase__ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase_ ): lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0] lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ ) if single_line_import_search is not None: lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase__ = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_between_brackets.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_quote_object.search(UpperCamelCase_ ) is not None: objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase__ = [] while ( line_index < len(UpperCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" def find_duplicates(UpperCamelCase_ : str ): return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase__ = [] for key in import_dict_objects.keys(): lowerCAmelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowerCAmelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = [] for root, _, files in os.walk(UpperCamelCase_ ): if "__init__.py" in files: lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" ) lowerCAmelCase__ = parse_init(UpperCamelCase_ ) if objects is not None: lowerCAmelCase__ = analyze_results(*UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > 0: raise ValueError("\n\n".join(UpperCamelCase_ ) ) def _a ( ) -> str: """simple docstring""" lowerCAmelCase__ = [] for path, directories, files in os.walk(UpperCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(UpperCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(os.path.sep , "." ) submodules.append(UpperCamelCase_ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(UpperCamelCase_ ) return submodules a_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _a ( ) -> int: """simple docstring""" lowerCAmelCase__ = importlib.util.spec_from_file_location( "transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
340
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class lowercase__ ( _UpperCAmelCase ): a_ ="""poolformer""" def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=4.0 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[64, 128, 320, 512] , __UpperCAmelCase=[7, 3, 3, 3] , __UpperCAmelCase=[4, 2, 2, 2] , __UpperCAmelCase=[2, 1, 1, 1] , __UpperCAmelCase=4 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.02 , **__UpperCAmelCase , )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = num_channels lowerCAmelCase__ = patch_size lowerCAmelCase__ = stride lowerCAmelCase__ = padding lowerCAmelCase__ = pool_size lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = mlp_ratio lowerCAmelCase__ = depths lowerCAmelCase__ = patch_sizes lowerCAmelCase__ = strides lowerCAmelCase__ = num_encoder_blocks lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = hidden_act lowerCAmelCase__ = use_layer_scale lowerCAmelCase__ = layer_scale_init_value lowerCAmelCase__ = initializer_range super().__init__(**__UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): a_ =version.parse("""1.11""" ) @property def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase ( self )-> float: '''simple docstring''' return 2E-3
340
from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = vertices lowerCAmelCase__ = { (min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase__ = weight def UpperCAmelCase ( self )-> Graph: '''simple docstring''' lowerCAmelCase__ = Graph({min(self.vertices )} , {} ) lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase__ = edge lowerCAmelCase__ = weight subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase ) return subgraph def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = {} lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 with open(UpperCamelCase_ ) as f: lowerCAmelCase__ = f.read().strip().split("\n" ) lowerCAmelCase__ = [line.split("," ) for line in data] for edgea in range(1 , len(UpperCamelCase_ ) ): for edgea in range(UpperCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ ) lowerCAmelCase__ = graph.prims_algorithm() lowerCAmelCase__ = sum(graph.edges.values() ) lowerCAmelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
340
1
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right a_ = 5_0003 a_ = 5_0002 @require_sentencepiece @require_tokenizers class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =PLBartTokenizer a_ =None a_ =False def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = PLBartTokenizer(__UpperCAmelCase , language_codes="base" , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = PLBartTokenizer(__UpperCAmelCase , language_codes="base" , keep_accents=__UpperCAmelCase ) lowerCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowerCAmelCase__ = tokenizer.vocab_size lowerCAmelCase__ = [tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) for x in range(end - 4 , __UpperCAmelCase )] self.assertListEqual(__UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) lowerCAmelCase__ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowerCAmelCase__ = tokenizer(__UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) , __UpperCAmelCase , ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = PLBartTokenizer(__UpperCAmelCase , language_codes="multi" , keep_accents=__UpperCAmelCase ) lowerCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowerCAmelCase__ = tokenizer.vocab_size lowerCAmelCase__ = [tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) for x in range(end - 7 , __UpperCAmelCase )] self.assertListEqual( __UpperCAmelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) lowerCAmelCase__ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowerCAmelCase__ = tokenizer(__UpperCAmelCase ).input_ids self.assertEqual( tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) , __UpperCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): a_ ="""uclanlp/plbart-python-en_XX""" a_ =[ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] a_ =[ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] a_ =[ 134, 5_452, 33_460, 33_441, 33_463, 33_465, 33_463, 33_449, 988, 20, 33_456, 19, 33_456, 771, 39, 4_258, 889, 3_318, 33_441, 33_463, 33_465, 33_463, 33_449, 2_471, 2, PYTHON_CODE, ] @classmethod def UpperCAmelCase ( cls )-> Any: '''simple docstring''' lowerCAmelCase__ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) lowerCAmelCase__ = 1 return cls def UpperCAmelCase ( self )-> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 50003 ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' self.assertIn(__UpperCAmelCase , self.tokenizer.all_special_ids ) lowerCAmelCase__ = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] lowerCAmelCase__ = self.tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , __UpperCAmelCase ) lowerCAmelCase__ = 10 lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __UpperCAmelCase ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [50004, 50001] ) def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = PLBartTokenizer.from_pretrained(__UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __UpperCAmelCase ) @require_torch def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , return_tensors="pt" ) lowerCAmelCase__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __UpperCAmelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowerCAmelCase__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) lowerCAmelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = self.tokenizer(self.src_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=3 , return_tensors="pt" ) lowerCAmelCase__ = self.tokenizer( text_target=self.tgt_text , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=10 , return_tensors="pt" ) lowerCAmelCase__ = targets["input_ids"] lowerCAmelCase__ = shift_tokens_right(__UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[150, 242, 2, 50003]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 50001, } , )
340
from collections import defaultdict from math import gcd def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) lowerCAmelCase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ): if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1: continue lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
340
1
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a_ = logging.getLogger(__name__) def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ) -> Tuple: """simple docstring""" if os.path.exists(UpperCamelCase_ ): if os.path.exists(os.path.join(UpperCamelCase_ , "config.json" ) ) and os.path.isfile( os.path.join(UpperCamelCase_ , "config.json" ) ): os.remove(os.path.join(UpperCamelCase_ , "config.json" ) ) if os.path.exists(os.path.join(UpperCamelCase_ , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(UpperCamelCase_ , "pytorch_model.bin" ) ): os.remove(os.path.join(UpperCamelCase_ , "pytorch_model.bin" ) ) else: os.makedirs(UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=False ) -> Any: """simple docstring""" lowerCAmelCase__ = 2 if unlogit: lowerCAmelCase__ = torch.pow(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = p * torch.log(UpperCamelCase_ ) lowerCAmelCase__ = 0 return -plogp.sum(dim=-1 ) def _a ( UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" logger.info("lv, h >\t" + "\t".join(F"{x + 1}" for x in range(len(UpperCamelCase_ ) ) ) ) for row in range(len(UpperCamelCase_ ) ): if tensor.dtype != torch.long: logger.info(F"layer {row + 1}:\t" + "\t".join(F"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(F"layer {row + 1}:\t" + "\t".join(F"{x:d}" for x in tensor[row].cpu().data ) ) def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : int=True , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=False ) -> Dict: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = model.config.num_hidden_layers, model.config.num_attention_heads lowerCAmelCase__ = torch.zeros(UpperCamelCase_ , UpperCamelCase_ ).to(args.device ) lowerCAmelCase__ = torch.zeros(UpperCamelCase_ , UpperCamelCase_ ).to(args.device ) if head_mask is None: lowerCAmelCase__ = torch.ones(UpperCamelCase_ , UpperCamelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=UpperCamelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCAmelCase__ = None lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 0.0 for step, inputs in enumerate(tqdm(UpperCamelCase_ , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): lowerCAmelCase__ = tuple(t.to(args.device ) for t in inputs ) ((lowerCAmelCase__) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCAmelCase__ = model(UpperCamelCase_ , labels=UpperCamelCase_ , head_mask=UpperCamelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(UpperCamelCase_ ): lowerCAmelCase__ = entropy(attn.detach() , UpperCamelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(UpperCamelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCAmelCase__ = 2 lowerCAmelCase__ = torch.pow(torch.pow(UpperCamelCase_ , UpperCamelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: lowerCAmelCase__ = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(UpperCamelCase_ ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(UpperCamelCase_ ) logger.info("Head ranked by importance scores" ) lowerCAmelCase__ = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowerCAmelCase__ = torch.arange( head_importance.numel() , device=args.device ) lowerCAmelCase__ = head_ranks.view_as(UpperCamelCase_ ) print_ad_tensor(UpperCamelCase_ ) return attn_entropy, head_importance, total_loss def _a ( UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] ) -> int: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = compute_heads_importance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , compute_entropy=UpperCamelCase_ ) lowerCAmelCase__ = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , UpperCamelCase_ , original_score * args.masking_threshold ) lowerCAmelCase__ = torch.ones_like(UpperCamelCase_ ) lowerCAmelCase__ = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowerCAmelCase__ = original_score while current_score >= original_score * args.masking_threshold: lowerCAmelCase__ = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCAmelCase__ = float("Inf" ) lowerCAmelCase__ = head_importance.view(-1 ).sort()[1] if len(UpperCamelCase_ ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads lowerCAmelCase__ = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) lowerCAmelCase__ = new_head_mask.view(-1 ) lowerCAmelCase__ = 0.0 lowerCAmelCase__ = new_head_mask.view_as(UpperCamelCase_ ) lowerCAmelCase__ = new_head_mask.clone().detach() print_ad_tensor(UpperCamelCase_ ) # Compute metric and head importance again lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = compute_heads_importance( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , compute_entropy=UpperCamelCase_ , head_mask=UpperCamelCase_ ) lowerCAmelCase__ = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , UpperCamelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(UpperCamelCase_ ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> List[str]: """simple docstring""" lowerCAmelCase__ = datetime.now() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = compute_heads_importance( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , compute_entropy=UpperCamelCase_ , compute_importance=UpperCamelCase_ , head_mask=UpperCamelCase_ ) lowerCAmelCase__ = 1 / loss lowerCAmelCase__ = datetime.now() - before_time lowerCAmelCase__ = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(UpperCamelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = [ v, ] assert sum(len(UpperCamelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(UpperCamelCase_ ) lowerCAmelCase__ = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ = datetime.now() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = compute_heads_importance( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , compute_entropy=UpperCamelCase_ , compute_importance=UpperCamelCase_ , head_mask=UpperCamelCase_ , actually_pruned=UpperCamelCase_ , ) lowerCAmelCase__ = 1 / loss lowerCAmelCase__ = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , UpperCamelCase_ , UpperCamelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , UpperCamelCase_ , UpperCamelCase_ ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(UpperCamelCase_ , args.output_dir ) def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=UpperCamelCase_ , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=UpperCamelCase_ , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=UpperCamelCase_ , type=UpperCamelCase_ , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=UpperCamelCase_ , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=UpperCamelCase_ , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=UpperCamelCase_ , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=UpperCamelCase_ , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=UpperCamelCase_ , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=UpperCamelCase_ , help="Batch size." ) parser.add_argument("--seed" , type=UpperCamelCase_ , default=42 ) parser.add_argument("--local_rank" , type=UpperCamelCase_ , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=UpperCamelCase_ , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=UpperCamelCase_ , default="" , help="Can be used for distant debugging." ) lowerCAmelCase__ = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCamelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCAmelCase__ = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) lowerCAmelCase__ = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCAmelCase__ = torch.device("cuda" , args.local_rank ) lowerCAmelCase__ = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowerCAmelCase__ = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCAmelCase__ = nn.parallel.DistributedDataParallel( UpperCamelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=UpperCamelCase_ ) elif args.n_gpu > 1: lowerCAmelCase__ = nn.DataParallel(UpperCamelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=UpperCamelCase_ ) torch.save(UpperCamelCase_ , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Prepare dataset lowerCAmelCase__ = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowerCAmelCase__ = (torch.from_numpy(UpperCamelCase_ ),) lowerCAmelCase__ = TensorDataset(*UpperCamelCase_ ) lowerCAmelCase__ = RandomSampler(UpperCamelCase_ ) lowerCAmelCase__ = DataLoader(UpperCamelCase_ , sampler=UpperCamelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCAmelCase__ = mask_heads(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) prune_heads(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
340
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """tokenizer"""] a_ ="""LayoutLMv2ImageProcessor""" a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase__ = features["words"] lowerCAmelCase__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) # add pixel values lowerCAmelCase__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) lowerCAmelCase__ = images return encoded_inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" ) return images_with_overflow def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict: '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self )-> str: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
340
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''', # See all SEW models at https://huggingface.co/models?filter=sew } class lowercase__ ( _UpperCAmelCase ): a_ ="""sew""" def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase=2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __UpperCAmelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> Optional[Any]: '''simple docstring''' super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = feat_extract_norm lowerCAmelCase__ = feat_extract_activation lowerCAmelCase__ = list(__UpperCAmelCase ) lowerCAmelCase__ = list(__UpperCAmelCase ) lowerCAmelCase__ = list(__UpperCAmelCase ) lowerCAmelCase__ = conv_bias lowerCAmelCase__ = num_conv_pos_embeddings lowerCAmelCase__ = num_conv_pos_embedding_groups lowerCAmelCase__ = len(self.conv_dim ) lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = squeeze_factor lowerCAmelCase__ = hidden_act lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = feat_proj_dropout lowerCAmelCase__ = final_dropout lowerCAmelCase__ = layerdrop lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = initializer_range lowerCAmelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ = apply_spec_augment lowerCAmelCase__ = mask_time_prob lowerCAmelCase__ = mask_time_length lowerCAmelCase__ = mask_time_min_masks lowerCAmelCase__ = mask_feature_prob lowerCAmelCase__ = mask_feature_length lowerCAmelCase__ = mask_feature_min_masks # ctc loss lowerCAmelCase__ = ctc_loss_reduction lowerCAmelCase__ = ctc_zero_infinity # sequence classification lowerCAmelCase__ = use_weighted_layer_sum lowerCAmelCase__ = classifier_proj_size @property def UpperCAmelCase ( self )-> str: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
340
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) lowerCAmelCase__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = processor(text=__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = [["cat", "nasa badge"], ["person"]] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = max([len(__UpperCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = inputs["input_ids"] lowerCAmelCase__ = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase ) lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
340
1
a_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = [False] * len(UpperCamelCase_ ) lowerCAmelCase__ = [s] lowerCAmelCase__ = True while queue: lowerCAmelCase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCamelCase_ ) lowerCAmelCase__ = True lowerCAmelCase__ = u return visited[t] def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" lowerCAmelCase__ = [-1] * (len(UpperCamelCase_ )) lowerCAmelCase__ = 0 lowerCAmelCase__ = [] lowerCAmelCase__ = [i[:] for i in graph] # Record original cut, copy. while bfs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = float("Inf" ) lowerCAmelCase__ = sink while s != source: # Find the minimum value in select path lowerCAmelCase__ = min(UpperCamelCase_ , graph[parent[s]][s] ) lowerCAmelCase__ = parent[s] max_flow += path_flow lowerCAmelCase__ = sink while v != source: lowerCAmelCase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCAmelCase__ = parent[v] for i in range(len(UpperCamelCase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
340
from __future__ import annotations from cmath import sqrt def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowerCAmelCase__ = b * b - 4 * a * c lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a) lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
340
1
from __future__ import annotations def _a ( UpperCamelCase_ : int | float | str , UpperCamelCase_ : int | float | str ) -> list[str]: """simple docstring""" if nth_term == "": return [""] lowerCAmelCase__ = int(UpperCamelCase_ ) lowerCAmelCase__ = int(UpperCamelCase_ ) lowerCAmelCase__ = [] for temp in range(int(UpperCamelCase_ ) ): series.append(F"1 / {pow(temp + 1 , int(UpperCamelCase_ ) )}" if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() a_ = int(input('''Enter the last number (nth term) of the P-Series''')) a_ = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
340
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(UpperCamelCase_ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" ) lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" ) lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = number_of_qubits for i in range(UpperCamelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCamelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ ) # simulate with 10000 shots lowerCAmelCase__ = Aer.get_backend("qasm_simulator" ) lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 ) return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
340
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''naver-clova-ix/donut-base''': '''https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json''', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowercase__ ( _UpperCAmelCase ): a_ ="""donut-swin""" a_ ={ """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=96 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[3, 6, 12, 24] , __UpperCAmelCase=7 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , **__UpperCAmelCase , )-> int: '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embed_dim lowerCAmelCase__ = depths lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = num_heads lowerCAmelCase__ = window_size lowerCAmelCase__ = mlp_ratio lowerCAmelCase__ = qkv_bias lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = hidden_act lowerCAmelCase__ = use_absolute_embeddings lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase__ = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) )
340
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowercase__ ( _UpperCAmelCase ): a_ ="""char""" a_ ="""bpe""" a_ ="""wp""" a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """char_tokenizer"""] a_ ="""ViTImageProcessor""" a_ ="""MgpstrTokenizer""" def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) lowerCAmelCase__ = tokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" ) lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]: '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase__ = encodings["input_ids"] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences lowerCAmelCase__ = char_preds.size(0 ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i in range(__UpperCAmelCase ): lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCAmelCase__ = {} lowerCAmelCase__ = final_strs lowerCAmelCase__ = final_scores lowerCAmelCase__ = char_strs lowerCAmelCase__ = bpe_strs lowerCAmelCase__ = wp_strs return out def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' if format == DecodeType.CHARACTER: lowerCAmelCase__ = self.char_decode lowerCAmelCase__ = 1 lowerCAmelCase__ = "[s]" elif format == DecodeType.BPE: lowerCAmelCase__ = self.bpe_decode lowerCAmelCase__ = 2 lowerCAmelCase__ = "#" elif format == DecodeType.WORDPIECE: lowerCAmelCase__ = self.wp_decode lowerCAmelCase__ = 102 lowerCAmelCase__ = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) lowerCAmelCase__ , lowerCAmelCase__ = [], [] lowerCAmelCase__ = pred_logits.size(0 ) lowerCAmelCase__ = pred_logits.size(1 ) lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase ) lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:] lowerCAmelCase__ = decoder(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 ) lowerCAmelCase__ = preds_max_prob[:, 1:] for index in range(__UpperCAmelCase ): lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase ) lowerCAmelCase__ = preds_str[index][:pred_eos] lowerCAmelCase__ = preds_index[index].cpu().tolist() lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1 lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1] lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__UpperCAmelCase ) conf_scores.append(__UpperCAmelCase ) return dec_strs, conf_scores def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return self.bpe_tokenizer.batch_decode(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs
340
1
def _a ( UpperCamelCase_ : int = 1_000 ) -> int: """simple docstring""" lowerCAmelCase__ = 3 lowerCAmelCase__ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"{solution() = }")
340
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
1
from __future__ import annotations from collections.abc import Iterator class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = value lowerCAmelCase__ = None lowerCAmelCase__ = None class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = tree def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self )-> Iterator[int]: '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
340
from collections import defaultdict def _a ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = True for v in tree[start]: if v not in visited: ret += dfs(UpperCamelCase_ ) if ret % 2 == 0: cuts.append(UpperCamelCase_ ) return ret def _a ( ) -> Optional[Any]: """simple docstring""" dfs(1 ) if __name__ == "__main__": a_, a_ = 10, 9 a_ = defaultdict(list) a_ = {} a_ = [] a_ = 0 a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
1
from __future__ import annotations a_ = 8.9_8_8E9 # units = N * m^s * C^-2 def _a ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ) -> dict[str, float]: """simple docstring""" lowerCAmelCase__ = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if distance < 0: raise ValueError("Distance cannot be negative" ) if force == 0: lowerCAmelCase__ = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowerCAmelCase__ = abs(UpperCamelCase_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowerCAmelCase__ = abs(UpperCamelCase_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowerCAmelCase__ = (COULOMBS_CONSTANT * charge_product / abs(UpperCamelCase_ )) ** 0.5 return {"distance": distance} raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
340
import requests from bsa import BeautifulSoup def _a ( UpperCamelCase_ : str = "AAPL" ) -> str: """simple docstring""" lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" ) lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
340
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class lowercase__ ( _UpperCAmelCase ): a_ ="""xlm-roberta""" def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> Dict: '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = position_embedding_type lowerCAmelCase__ = use_cache lowerCAmelCase__ = classifier_dropout class lowercase__ ( _UpperCAmelCase ): @property def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ = (3, 9, -11, 0, 7, 5, 1, -1) a_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowercase__ : a_ =42 a_ =42 class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): lowerCAmelCase__ = Node(__UpperCAmelCase , self.head ) def __iter__( self )-> Iterator[int]: '''simple docstring''' lowerCAmelCase__ = self.head while node: yield node.data lowerCAmelCase__ = node.next_node def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self )-> str: '''simple docstring''' return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
340
1
from __future__ import annotations def _a ( UpperCamelCase_ : list[int] , UpperCamelCase_ : list[int] , UpperCamelCase_ : list[int] , UpperCamelCase_ : list[list[str]] , UpperCamelCase_ : int , ) -> None: """simple docstring""" lowerCAmelCase__ = len(UpperCamelCase_ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(UpperCamelCase_ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , UpperCamelCase_ , UpperCamelCase_ , ) def _a ( UpperCamelCase_ : int ) -> None: """simple docstring""" lowerCAmelCase__ = [] depth_first_search([] , [] , [] , UpperCamelCase_ , UpperCamelCase_ ) # Print all the boards for board in boards: for column in board: print(UpperCamelCase_ ) print("" ) print(len(UpperCamelCase_ ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
340
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase__ = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Tuple: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> int: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase ) lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
340
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ = '''src/transformers''' a_ = '''docs/source/en/tasks''' def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Find the start prompt. lowerCAmelCase__ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase__ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(TRANSFORMERS_PATH) a_ = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) lowerCAmelCase__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
340
1
import argparse import copy def _a ( UpperCamelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = {} with open(UpperCamelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowerCAmelCase__ = [] _list.append([line.split()[1], line.split()[2]] ) lowerCAmelCase__ = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowerCAmelCase__ = [] _list.append([line.split()[0], line.split()[2]] ) lowerCAmelCase__ = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple ) -> str: """simple docstring""" with open(UpperCamelCase_ ) as f: lowerCAmelCase__ = f.read(1 ) lowerCAmelCase__ = start_node lowerCAmelCase__ = [] lowerCAmelCase__ = start_node lowerCAmelCase__ = 0 while visiting not in first_solution: lowerCAmelCase__ = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(UpperCamelCase_ ) and k[0] not in first_solution: lowerCAmelCase__ = k[1] lowerCAmelCase__ = k[0] first_solution.append(UpperCamelCase_ ) lowerCAmelCase__ = distance_of_first_solution + int(UpperCamelCase_ ) lowerCAmelCase__ = best_node first_solution.append(UpperCamelCase_ ) lowerCAmelCase__ = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowerCAmelCase__ = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = [] for n in solution[1:-1]: lowerCAmelCase__ = solution.index(UpperCamelCase_ ) for kn in solution[1:-1]: lowerCAmelCase__ = solution.index(UpperCamelCase_ ) if n == kn: continue lowerCAmelCase__ = copy.deepcopy(UpperCamelCase_ ) lowerCAmelCase__ = kn lowerCAmelCase__ = n lowerCAmelCase__ = 0 for k in _tmp[:-1]: lowerCAmelCase__ = _tmp[_tmp.index(UpperCamelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowerCAmelCase__ = distance + int(i[1] ) _tmp.append(UpperCamelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowerCAmelCase__ = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda UpperCamelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple ) -> int: """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = first_solution lowerCAmelCase__ = [] lowerCAmelCase__ = distance_of_first_solution lowerCAmelCase__ = solution while count <= iters: lowerCAmelCase__ = find_neighborhood(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = 0 lowerCAmelCase__ = neighborhood[index_of_best_solution] lowerCAmelCase__ = len(UpperCamelCase_ ) - 1 lowerCAmelCase__ = False while not found: lowerCAmelCase__ = 0 while i < len(UpperCamelCase_ ): if best_solution[i] != solution[i]: lowerCAmelCase__ = best_solution[i] lowerCAmelCase__ = solution[i] break lowerCAmelCase__ = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowerCAmelCase__ = True lowerCAmelCase__ = best_solution[:-1] lowerCAmelCase__ = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowerCAmelCase__ = cost lowerCAmelCase__ = solution else: lowerCAmelCase__ = index_of_best_solution + 1 lowerCAmelCase__ = neighborhood[index_of_best_solution] if len(UpperCamelCase_ ) >= size: tabu_list.pop(0 ) lowerCAmelCase__ = count + 1 return best_solution_ever, best_cost def _a ( UpperCamelCase_ : str=None ) -> int: """simple docstring""" lowerCAmelCase__ = generate_neighbours(args.File ) lowerCAmelCase__ , lowerCAmelCase__ = generate_first_solution( args.File , UpperCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = tabu_search( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
340
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: lowerCAmelCase__ = TOKENIZER_CLASSES else: lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase__ = True if checkpoint_name is None: lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase__ = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: lowerCAmelCase__ = checkpoint lowerCAmelCase__ = dump_path else: lowerCAmelCase__ = None lowerCAmelCase__ = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) lowerCAmelCase__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(UpperCamelCase_ ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) a_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
340
1
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""owlvit_text_model""" def __init__( self , __UpperCAmelCase=49408 , __UpperCAmelCase=512 , __UpperCAmelCase=2048 , __UpperCAmelCase=12 , __UpperCAmelCase=8 , __UpperCAmelCase=16 , __UpperCAmelCase="quick_gelu" , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1.0 , __UpperCAmelCase=0 , __UpperCAmelCase=49406 , __UpperCAmelCase=49407 , **__UpperCAmelCase , )-> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = hidden_act lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = initializer_range lowerCAmelCase__ = initializer_factor @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": lowerCAmelCase__ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): a_ ="""owlvit_vision_model""" def __init__( self , __UpperCAmelCase=768 , __UpperCAmelCase=3072 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3 , __UpperCAmelCase=768 , __UpperCAmelCase=32 , __UpperCAmelCase="quick_gelu" , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1.0 , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = initializer_range lowerCAmelCase__ = initializer_factor @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": lowerCAmelCase__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): a_ ="""owlvit""" a_ =True def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=512 , __UpperCAmelCase=2.6_592 , __UpperCAmelCase=True , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) if text_config is None: lowerCAmelCase__ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: lowerCAmelCase__ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) lowerCAmelCase__ = OwlViTTextConfig(**__UpperCAmelCase ) lowerCAmelCase__ = OwlViTVisionConfig(**__UpperCAmelCase ) lowerCAmelCase__ = projection_dim lowerCAmelCase__ = logit_scale_init_value lowerCAmelCase__ = return_dict lowerCAmelCase__ = 1.0 @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = {} lowerCAmelCase__ = text_config lowerCAmelCase__ = vision_config return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ = self.text_config.to_dict() lowerCAmelCase__ = self.vision_config.to_dict() lowerCAmelCase__ = self.__class__.model_type return output class lowercase__ ( _UpperCAmelCase ): @property def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def UpperCAmelCase ( self )-> float: '''simple docstring''' return 1E-4 def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = None , )-> Mapping[str, Any]: '''simple docstring''' lowerCAmelCase__ = super().generate_dummy_inputs( processor.tokenizer , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , framework=__UpperCAmelCase ) lowerCAmelCase__ = super().generate_dummy_inputs( processor.image_processor , batch_size=__UpperCAmelCase , framework=__UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return 14
340
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging a_ = logging.get_logger(__name__) class lowercase__ ( _UpperCAmelCase ): def __init__( self , __UpperCAmelCase )-> List[Any]: '''simple docstring''' super().__init__() lowerCAmelCase__ = nn.ModuleList(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = True , )-> Union[ControlNetOutput, Tuple]: '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__UpperCAmelCase , __UpperCAmelCase , self.nets ) ): lowerCAmelCase__ , lowerCAmelCase__ = controlnet( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) # merge samples if i == 0: lowerCAmelCase__ , lowerCAmelCase__ = down_samples, mid_sample else: lowerCAmelCase__ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__UpperCAmelCase , __UpperCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , )-> Any: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = save_directory for controlnet in self.nets: controlnet.save_pretrained( __UpperCAmelCase , is_main_process=__UpperCAmelCase , save_function=__UpperCAmelCase , safe_serialization=__UpperCAmelCase , variant=__UpperCAmelCase , ) idx += 1 lowerCAmelCase__ = model_path_to_save + F"_{idx}" @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowerCAmelCase__ = pretrained_model_path while os.path.isdir(__UpperCAmelCase ): lowerCAmelCase__ = ControlNetModel.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) controlnets.append(__UpperCAmelCase ) idx += 1 lowerCAmelCase__ = pretrained_model_path + F"_{idx}" logger.info(F"{len(__UpperCAmelCase )} controlnets loaded from {pretrained_model_path}." ) if len(__UpperCAmelCase ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(__UpperCAmelCase )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(__UpperCAmelCase )
340
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""xlnet""" a_ =["""mems"""] a_ ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int: '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCAmelCase__ = d_model // n_head lowerCAmelCase__ = ff_activation lowerCAmelCase__ = d_inner lowerCAmelCase__ = untie_r lowerCAmelCase__ = attn_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = dropout lowerCAmelCase__ = mem_len lowerCAmelCase__ = reuse_len lowerCAmelCase__ = bi_data lowerCAmelCase__ = clamp_len lowerCAmelCase__ = same_length lowerCAmelCase__ = summary_type lowerCAmelCase__ = summary_use_proj lowerCAmelCase__ = summary_activation lowerCAmelCase__ = summary_last_dropout lowerCAmelCase__ = start_n_top lowerCAmelCase__ = end_n_top lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs["use_cache"] lowerCAmelCase__ = use_mems_eval lowerCAmelCase__ = use_mems_train super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
340
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration a_ = HfArgumentParser(InitializationArguments) a_ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization a_ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks a_ = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) a_ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config a_ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
340
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple: """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = "" else: lowerCAmelCase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _a ( UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ViTMSNConfig() lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "datasets/huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase__ = 384 lowerCAmelCase__ = 1_536 lowerCAmelCase__ = 6 elif "l16" in checkpoint_url: lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase__ = 4 elif "l7" in checkpoint_url: lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ ) lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"] lowerCAmelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase_ ) lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) lowerCAmelCase__ = ViTImageProcessor( size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
340
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = {} if "candidate_labels" in kwargs: lowerCAmelCase__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCAmelCase__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = load_image(__UpperCAmelCase ) lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ = candidate_labels lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase ) lowerCAmelCase__ = [text_inputs] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = model_inputs.pop("candidate_labels" ) lowerCAmelCase__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __UpperCAmelCase ): lowerCAmelCase__ = text_inputs[0] else: # Batching case. lowerCAmelCase__ = text_inputs[0][0] lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = model_outputs.pop("candidate_labels" ) lowerCAmelCase__ = model_outputs["logits"][0] if self.framework == "pt": lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ = probs.tolist() if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [scores] elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 ) lowerCAmelCase__ = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCAmelCase__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] ) ] return result
340
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _a ( UpperCamelCase_ : int ) -> str: """simple docstring""" def wrapper(*UpperCamelCase_ : Dict , **UpperCamelCase_ : Optional[Any] ): lowerCAmelCase__ = timeit.default_timer() lowerCAmelCase__ = func(*UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase__ = timeit.default_timer() - starttime return delta lowerCAmelCase__ = func.__name__ return wrapper def _a ( UpperCamelCase_ : dict , UpperCamelCase_ : int=100 , UpperCamelCase_ : Optional[int]=None ) -> str: """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = seq_shapes or {} for i in range(UpperCamelCase_ ): lowerCAmelCase__ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCamelCase_ , _ArrayXD ): lowerCAmelCase__ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCamelCase_ , datasets.Value ): if v.dtype == "string": lowerCAmelCase__ = "The small grey turtle was surprisingly fast when challenged." else: lowerCAmelCase__ = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCamelCase_ , datasets.Sequence ): while isinstance(UpperCamelCase_ , datasets.Sequence ): lowerCAmelCase__ = v.feature lowerCAmelCase__ = seq_shapes[k] lowerCAmelCase__ = np.random.rand(*UpperCamelCase_ ).astype(v.dtype ) lowerCAmelCase__ = data dummy_data.append((i, example) ) return dummy_data def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str=100 , UpperCamelCase_ : Dict=None ) -> int: """simple docstring""" lowerCAmelCase__ = generate_examples(UpperCamelCase_ , num_examples=UpperCamelCase_ , seq_shapes=UpperCamelCase_ ) with ArrowWriter(features=UpperCamelCase_ , path=UpperCamelCase_ ) as writer: for key, record in dummy_data: lowerCAmelCase__ = features.encode_example(UpperCamelCase_ ) writer.write(UpperCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCAmelCase__ = datasets.Dataset.from_file(filename=UpperCamelCase_ , info=datasets.DatasetInfo(features=UpperCamelCase_ ) ) return dataset
340
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =BartphoTokenizer a_ =False a_ =True def UpperCAmelCase ( self )-> Dict: '''simple docstring''' super().setUp() lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"] lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"{token} {vocab_tokens[token]}\n" ) lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split() lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
340
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a_ = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' a_ = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' a_ = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCAmelCase ( self )-> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = 4 , )-> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__UpperCAmelCase , hypotheses=__UpperCAmelCase , min_len=__UpperCAmelCase , max_len=__UpperCAmelCase ) }
340
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } a_ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } a_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""] a_ =DistilBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
1
def _a ( UpperCamelCase_ : int = 100 ) -> int: """simple docstring""" lowerCAmelCase__ = n * (n + 1) * (2 * n + 1) / 6 lowerCAmelCase__ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"{solution() = }")
340
a_ = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
340
1
from statistics import mean import numpy as np def _a ( UpperCamelCase_ : list , UpperCamelCase_ : list , UpperCamelCase_ : list , UpperCamelCase_ : int ) -> list: """simple docstring""" lowerCAmelCase__ = 0 # Number of processes finished lowerCAmelCase__ = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowerCAmelCase__ = [0] * no_of_process # List to include calculation results lowerCAmelCase__ = [0] * no_of_process # Sort by arrival time. lowerCAmelCase__ = [burst_time[i] for i in np.argsort(UpperCamelCase_ )] lowerCAmelCase__ = [process_name[i] for i in np.argsort(UpperCamelCase_ )] arrival_time.sort() while no_of_process > finished_process_count: lowerCAmelCase__ = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowerCAmelCase__ = arrival_time[i] lowerCAmelCase__ = 0 # Index showing the location of the process being performed lowerCAmelCase__ = 0 # Saves the current response ratio. lowerCAmelCase__ = 0 for i in range(0 , UpperCamelCase_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowerCAmelCase__ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowerCAmelCase__ = temp lowerCAmelCase__ = i # Calculate the turn around time lowerCAmelCase__ = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowerCAmelCase__ = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def _a ( UpperCamelCase_ : list , UpperCamelCase_ : list , UpperCamelCase_ : list , UpperCamelCase_ : int ) -> list: """simple docstring""" lowerCAmelCase__ = [0] * no_of_process for i in range(0 , UpperCamelCase_ ): lowerCAmelCase__ = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": a_ = 5 a_ = ['''A''', '''B''', '''C''', '''D''', '''E'''] a_ = [1, 2, 3, 4, 5] a_ = [1, 2, 3, 4, 5] a_ = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) a_ = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F"{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t" F"{turn_around_time[i]}\t\t\t{waiting_time[i]}" ) print(F"average waiting time : {mean(waiting_time):.5f}") print(F"average turn around time : {mean(turn_around_time):.5f}")
340
import collections import importlib.util import os import re from pathlib import Path a_ = '''src/transformers''' # Matches is_xxx_available() a_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", a_ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], a_ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: a_ = re.compile(r'''^\s*try:''') # Catches a line with else: a_ = re.compile(r'''^\s*else:''') def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" if _re_test_backend.search(UpperCamelCase_ ) is None: return None lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )] backends.sort() return "_and_".join(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = 0 while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase__ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase_ ): lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0] lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ ) if single_line_import_search is not None: lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase__ = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_between_brackets.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_quote_object.search(UpperCamelCase_ ) is not None: objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase__ = [] while ( line_index < len(UpperCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" def find_duplicates(UpperCamelCase_ : str ): return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase__ = [] for key in import_dict_objects.keys(): lowerCAmelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowerCAmelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = [] for root, _, files in os.walk(UpperCamelCase_ ): if "__init__.py" in files: lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" ) lowerCAmelCase__ = parse_init(UpperCamelCase_ ) if objects is not None: lowerCAmelCase__ = analyze_results(*UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > 0: raise ValueError("\n\n".join(UpperCamelCase_ ) ) def _a ( ) -> str: """simple docstring""" lowerCAmelCase__ = [] for path, directories, files in os.walk(UpperCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(UpperCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(os.path.sep , "." ) submodules.append(UpperCamelCase_ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(UpperCamelCase_ ) return submodules a_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _a ( ) -> int: """simple docstring""" lowerCAmelCase__ = importlib.util.spec_from_file_location( "transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
340
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = vertices lowerCAmelCase__ = { (min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase__ = weight def UpperCAmelCase ( self )-> Graph: '''simple docstring''' lowerCAmelCase__ = Graph({min(self.vertices )} , {} ) lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase__ = edge lowerCAmelCase__ = weight subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase ) return subgraph def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = {} lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 with open(UpperCamelCase_ ) as f: lowerCAmelCase__ = f.read().strip().split("\n" ) lowerCAmelCase__ = [line.split("," ) for line in data] for edgea in range(1 , len(UpperCamelCase_ ) ): for edgea in range(UpperCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ ) lowerCAmelCase__ = graph.prims_algorithm() lowerCAmelCase__ = sum(graph.edges.values() ) lowerCAmelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
340
1
from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = vertices lowerCAmelCase__ = { (min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase__ = weight def UpperCAmelCase ( self )-> Graph: '''simple docstring''' lowerCAmelCase__ = Graph({min(self.vertices )} , {} ) lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase__ = edge lowerCAmelCase__ = weight subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase ) return subgraph def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = {} lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 with open(UpperCamelCase_ ) as f: lowerCAmelCase__ = f.read().strip().split("\n" ) lowerCAmelCase__ = [line.split("," ) for line in data] for edgea in range(1 , len(UpperCamelCase_ ) ): for edgea in range(UpperCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ ) lowerCAmelCase__ = graph.prims_algorithm() lowerCAmelCase__ = sum(graph.edges.values() ) lowerCAmelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
340
from collections import defaultdict from math import gcd def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) lowerCAmelCase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ): if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1: continue lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
340
1
import colorsys from PIL import Image # type: ignore def _a ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : int ) -> float: """simple docstring""" lowerCAmelCase__ = x lowerCAmelCase__ = y for step in range(UpperCamelCase_ ): # noqa: B007 lowerCAmelCase__ = a * a - b * b + x lowerCAmelCase__ = 2 * a * b + y lowerCAmelCase__ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _a ( UpperCamelCase_ : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _a ( UpperCamelCase_ : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCamelCase_ , 1 , 1 ) ) def _a ( UpperCamelCase_ : int = 800 , UpperCamelCase_ : int = 600 , UpperCamelCase_ : float = -0.6 , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 3.2 , UpperCamelCase_ : int = 50 , UpperCamelCase_ : bool = True , ) -> Image.Image: """simple docstring""" lowerCAmelCase__ = Image.new("RGB" , (image_width, image_height) ) lowerCAmelCase__ = img.load() # loop through the image-coordinates for image_x in range(UpperCamelCase_ ): for image_y in range(UpperCamelCase_ ): # determine the figure-coordinates based on the image-coordinates lowerCAmelCase__ = figure_width / image_width * image_height lowerCAmelCase__ = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCAmelCase__ = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCAmelCase__ = get_distance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCAmelCase__ = get_color_coded_rgb(UpperCamelCase_ ) else: lowerCAmelCase__ = get_black_and_white_rgb(UpperCamelCase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure a_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
340
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """tokenizer"""] a_ ="""LayoutLMv2ImageProcessor""" a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase__ = features["words"] lowerCAmelCase__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) # add pixel values lowerCAmelCase__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) lowerCAmelCase__ = images return encoded_inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" ) return images_with_overflow def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict: '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self )-> str: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
340
1
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap a_ = '''Usage of script: script_name <size_of_canvas:int>''' a_ = [0] * 100 + [1] * 10 random.shuffle(choice) def _a ( UpperCamelCase_ : int ) -> list[list[bool]]: """simple docstring""" lowerCAmelCase__ = [[False for i in range(UpperCamelCase_ )] for j in range(UpperCamelCase_ )] return canvas def _a ( UpperCamelCase_ : list[list[bool]] ) -> None: """simple docstring""" for i, row in enumerate(UpperCamelCase_ ): for j, _ in enumerate(UpperCamelCase_ ): lowerCAmelCase__ = bool(random.getrandbits(1 ) ) def _a ( UpperCamelCase_ : list[list[bool]] ) -> list[list[bool]]: """simple docstring""" lowerCAmelCase__ = np.array(UpperCamelCase_ ) lowerCAmelCase__ = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(UpperCamelCase_ ): for c, pt in enumerate(UpperCamelCase_ ): lowerCAmelCase__ = __judge_point( UpperCamelCase_ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) lowerCAmelCase__ = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. lowerCAmelCase__ = current_canvas.tolist() return return_canvas def _a ( UpperCamelCase_ : bool , UpperCamelCase_ : list[list[bool]] ) -> bool: """simple docstring""" lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. lowerCAmelCase__ = pt if pt: if alive < 2: lowerCAmelCase__ = False elif alive == 2 or alive == 3: lowerCAmelCase__ = True elif alive > 3: lowerCAmelCase__ = False else: if alive == 3: lowerCAmelCase__ = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) a_ = int(sys.argv[1]) # main working structure of this module. a_ = create_canvas(canvas_size) seed(c) a_, a_ = plt.subplots() fig.show() a_ = ListedColormap(['''w''', '''k''']) try: while True: a_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
340
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) lowerCAmelCase__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = processor(text=__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = [["cat", "nasa badge"], ["person"]] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = max([len(__UpperCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = inputs["input_ids"] lowerCAmelCase__ = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase ) lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
340
1
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
340
from __future__ import annotations from cmath import sqrt def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowerCAmelCase__ = b * b - 4 * a * c lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a) lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
340
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py a_ = '''.''' if __name__ == "__main__": a_ = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') a_ = [] a_ = [] with open(doctest_file_path) as fp: for line in fp: a_ = line.strip() a_ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: a_ = '''\n'''.join(non_existent_paths) raise ValueError(F"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
340
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(UpperCamelCase_ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" ) lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" ) lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = number_of_qubits for i in range(UpperCamelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCamelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ ) # simulate with 10000 shots lowerCAmelCase__ = Aer.get_backend("qasm_simulator" ) lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 ) return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
340
1
def _a ( UpperCamelCase_ : Tuple ) -> Union[str, Any]: """simple docstring""" if not head: return True # split the list to two parts lowerCAmelCase__ , lowerCAmelCase__ = head.next, head while fast and fast.next: lowerCAmelCase__ = fast.next.next lowerCAmelCase__ = slow.next lowerCAmelCase__ = slow.next lowerCAmelCase__ = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase__ = None while second: lowerCAmelCase__ = second.next lowerCAmelCase__ = node lowerCAmelCase__ = second lowerCAmelCase__ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase__ = node.next lowerCAmelCase__ = head.next return True def _a ( UpperCamelCase_ : Any ) -> int: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase__ = lowerCAmelCase__ = lowerCAmelCase__ = head while fast and fast.next: lowerCAmelCase__ , lowerCAmelCase__ = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase__ = [slow.val] while slow.next: lowerCAmelCase__ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase__ = cur.next return True def _a ( UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" if not head or not head.next: return True lowerCAmelCase__ = {} lowerCAmelCase__ = 0 while head: if head.val in d: d[head.val].append(UpperCamelCase_ ) else: lowerCAmelCase__ = [pos] lowerCAmelCase__ = head.next pos += 1 lowerCAmelCase__ = pos - 1 lowerCAmelCase__ = 0 for v in d.values(): if len(UpperCamelCase_ ) % 2 != 0: middle += 1 else: lowerCAmelCase__ = 0 for i in range(0 , len(UpperCamelCase_ ) ): if v[i] + v[len(UpperCamelCase_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
340
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowercase__ ( _UpperCAmelCase ): a_ ="""char""" a_ ="""bpe""" a_ ="""wp""" a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """char_tokenizer"""] a_ ="""ViTImageProcessor""" a_ ="""MgpstrTokenizer""" def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) lowerCAmelCase__ = tokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" ) lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]: '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase__ = encodings["input_ids"] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences lowerCAmelCase__ = char_preds.size(0 ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i in range(__UpperCAmelCase ): lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCAmelCase__ = {} lowerCAmelCase__ = final_strs lowerCAmelCase__ = final_scores lowerCAmelCase__ = char_strs lowerCAmelCase__ = bpe_strs lowerCAmelCase__ = wp_strs return out def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' if format == DecodeType.CHARACTER: lowerCAmelCase__ = self.char_decode lowerCAmelCase__ = 1 lowerCAmelCase__ = "[s]" elif format == DecodeType.BPE: lowerCAmelCase__ = self.bpe_decode lowerCAmelCase__ = 2 lowerCAmelCase__ = "#" elif format == DecodeType.WORDPIECE: lowerCAmelCase__ = self.wp_decode lowerCAmelCase__ = 102 lowerCAmelCase__ = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) lowerCAmelCase__ , lowerCAmelCase__ = [], [] lowerCAmelCase__ = pred_logits.size(0 ) lowerCAmelCase__ = pred_logits.size(1 ) lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase ) lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:] lowerCAmelCase__ = decoder(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 ) lowerCAmelCase__ = preds_max_prob[:, 1:] for index in range(__UpperCAmelCase ): lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase ) lowerCAmelCase__ = preds_str[index][:pred_eos] lowerCAmelCase__ = preds_index[index].cpu().tolist() lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1 lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1] lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__UpperCAmelCase ) conf_scores.append(__UpperCAmelCase ) return dec_strs, conf_scores def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return self.bpe_tokenizer.batch_decode(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs
340
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowercase__ : a_ =LEDConfig a_ ={} a_ ="""gelu""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=20 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=4 , )-> str: '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after lowerCAmelCase__ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests lowerCAmelCase__ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) lowerCAmelCase__ = prepare_led_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = tf.concat( [tf.zeros_like(__UpperCAmelCase )[:, :-1], tf.ones_like(__UpperCAmelCase )[:, -1:]] , axis=-1 , ) lowerCAmelCase__ = global_attention_mask return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = TFLEDModel(config=__UpperCAmelCase ).get_decoder() lowerCAmelCase__ = inputs_dict["input_ids"] lowerCAmelCase__ = input_ids[:1, :] lowerCAmelCase__ = inputs_dict["attention_mask"][:1, :] lowerCAmelCase__ = 1 # first forward pass lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase__ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 ) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Tuple=None , ) -> Dict: """simple docstring""" if attention_mask is None: lowerCAmelCase__ = tf.cast(tf.math.not_equal(UpperCamelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowercase__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase ): a_ =(TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () a_ =(TFLEDForConditionalGeneration,) if is_tf_available() else () a_ =( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) a_ =True a_ =False a_ =False a_ =False def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = TFLEDModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = tf.zeros_like(inputs_dict["attention_mask"] ) lowerCAmelCase__ = 2 lowerCAmelCase__ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) lowerCAmelCase__ = True lowerCAmelCase__ = self.model_tester.seq_length lowerCAmelCase__ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__UpperCAmelCase ): lowerCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__UpperCAmelCase ): lowerCAmelCase__ = [t.numpy() for t in outputs.encoder_attentions] lowerCAmelCase__ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = model_class(__UpperCAmelCase ) lowerCAmelCase__ = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) lowerCAmelCase__ = len(__UpperCAmelCase ) self.assertEqual(config.output_hidden_states , __UpperCAmelCase ) check_encoder_attentions_output(__UpperCAmelCase ) if self.is_encoder_decoder: lowerCAmelCase__ = model_class(__UpperCAmelCase ) lowerCAmelCase__ = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCAmelCase ) check_decoder_attentions_output(__UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCAmelCase__ = True lowerCAmelCase__ = model_class(__UpperCAmelCase ) lowerCAmelCase__ = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCAmelCase ) check_encoder_attentions_output(__UpperCAmelCase ) # Check attention is always last and order is fine lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = model_class(__UpperCAmelCase ) lowerCAmelCase__ = model(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , __UpperCAmelCase ) check_encoder_attentions_output(__UpperCAmelCase ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' pass def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' pass def _a ( UpperCamelCase_ : List[Any] ) -> Optional[Any]: """simple docstring""" return tf.constant(UpperCamelCase_ , dtype=tf.intaa ) a_ = 1E-4 @slow @require_tf class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here lowerCAmelCase__ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCAmelCase__ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCAmelCase__ = prepare_led_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = model(**__UpperCAmelCase )[0] lowerCAmelCase__ = (1, 1024, 768) self.assertEqual(output.shape , __UpperCAmelCase ) # change to expected output here lowerCAmelCase__ = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-3 ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here lowerCAmelCase__ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCAmelCase__ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCAmelCase__ = prepare_led_inputs_dict(model.config , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = model(**__UpperCAmelCase )[0] lowerCAmelCase__ = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __UpperCAmelCase ) # change to expected output here lowerCAmelCase__ = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-3 , rtol=1E-3 )
340
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
1
def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) lowerCAmelCase__ = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCamelCase_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
340
from collections import defaultdict def _a ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = True for v in tree[start]: if v not in visited: ret += dfs(UpperCamelCase_ ) if ret % 2 == 0: cuts.append(UpperCamelCase_ ) return ret def _a ( ) -> Optional[Any]: """simple docstring""" dfs(1 ) if __name__ == "__main__": a_, a_ = 10, 9 a_ = defaultdict(list) a_ = {} a_ = [] a_ = 0 a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
1
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake a_ = numpy.array([0, 0]) a_ = numpy.array([0.5, 0.8660254]) a_ = numpy.array([1, 0]) a_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def _a ( UpperCamelCase_ : list[numpy.ndarray] , UpperCamelCase_ : int ) -> list[numpy.ndarray]: """simple docstring""" lowerCAmelCase__ = initial_vectors for _ in range(UpperCamelCase_ ): lowerCAmelCase__ = iteration_step(UpperCamelCase_ ) return vectors def _a ( UpperCamelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" lowerCAmelCase__ = [] for i, start_vector in enumerate(vectors[:-1] ): lowerCAmelCase__ = vectors[i + 1] new_vectors.append(UpperCamelCase_ ) lowerCAmelCase__ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def _a ( UpperCamelCase_ : numpy.ndarray , UpperCamelCase_ : float ) -> numpy.ndarray: """simple docstring""" lowerCAmelCase__ = numpy.radians(UpperCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = numpy.cos(UpperCamelCase_ ), numpy.sin(UpperCamelCase_ ) lowerCAmelCase__ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : list[numpy.ndarray] ) -> None: """simple docstring""" lowerCAmelCase__ = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowerCAmelCase__ , lowerCAmelCase__ = zip(*UpperCamelCase_ ) plt.plot(UpperCamelCase_ , UpperCamelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() a_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
340
import requests from bsa import BeautifulSoup def _a ( UpperCamelCase_ : str = "AAPL" ) -> str: """simple docstring""" lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" ) lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
340
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase__ ( _UpperCAmelCase ): a_ ="""mobilenet_v1""" def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=224 , __UpperCAmelCase=1.0 , __UpperCAmelCase=8 , __UpperCAmelCase="relu6" , __UpperCAmelCase=True , __UpperCAmelCase=0.999 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.001 , **__UpperCAmelCase , )-> int: '''simple docstring''' super().__init__(**__UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase__ = num_channels lowerCAmelCase__ = image_size lowerCAmelCase__ = depth_multiplier lowerCAmelCase__ = min_depth lowerCAmelCase__ = hidden_act lowerCAmelCase__ = tf_padding lowerCAmelCase__ = classifier_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps class lowercase__ ( _UpperCAmelCase ): a_ =version.parse("""1.11""" ) @property def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def UpperCAmelCase ( self )-> float: '''simple docstring''' return 1E-4
340
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ = (3, 9, -11, 0, 7, 5, 1, -1) a_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowercase__ : a_ =42 a_ =42 class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): lowerCAmelCase__ = Node(__UpperCAmelCase , self.head ) def __iter__( self )-> Iterator[int]: '''simple docstring''' lowerCAmelCase__ = self.head while node: yield node.data lowerCAmelCase__ = node.next_node def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self )-> str: '''simple docstring''' return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
340
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''Salesforce/blip-vqa-base''': '''https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json''', '''Salesforce/blip-vqa-capfit-large''': ( '''https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-base''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-large''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json''' ), '''Salesforce/blip-itm-base-coco''': '''https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json''', '''Salesforce/blip-itm-large-coco''': '''https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json''', '''Salesforce/blip-itm-base-flikr''': '''https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json''', '''Salesforce/blip-itm-large-flikr''': ( '''https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json''' ), } class lowercase__ ( _UpperCAmelCase ): a_ ="""blip_text_model""" def __init__( self , __UpperCAmelCase=30524 , __UpperCAmelCase=768 , __UpperCAmelCase=768 , __UpperCAmelCase=3072 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=8 , __UpperCAmelCase=512 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=30522 , __UpperCAmelCase=2 , __UpperCAmelCase=0 , __UpperCAmelCase=102 , __UpperCAmelCase=True , __UpperCAmelCase=True , **__UpperCAmelCase , )-> Tuple: '''simple docstring''' super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , sep_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = encoder_hidden_size lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = projection_dim lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = hidden_act lowerCAmelCase__ = initializer_range lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = is_decoder lowerCAmelCase__ = use_cache @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": lowerCAmelCase__ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): a_ ="""blip_vision_model""" def __init__( self , __UpperCAmelCase=768 , __UpperCAmelCase=3072 , __UpperCAmelCase=512 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=384 , __UpperCAmelCase=16 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1E-1_0 , **__UpperCAmelCase , )-> Tuple: '''simple docstring''' super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = projection_dim lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = patch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = hidden_act @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": lowerCAmelCase__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): a_ ="""blip""" a_ =True def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=512 , __UpperCAmelCase=2.6_592 , __UpperCAmelCase=256 , **__UpperCAmelCase , )-> Union[str, Any]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) if text_config is None: lowerCAmelCase__ = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: lowerCAmelCase__ = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) lowerCAmelCase__ = BlipTextConfig(**__UpperCAmelCase ) lowerCAmelCase__ = BlipVisionConfig(**__UpperCAmelCase ) lowerCAmelCase__ = self.vision_config.hidden_size lowerCAmelCase__ = projection_dim lowerCAmelCase__ = logit_scale_init_value lowerCAmelCase__ = 1.0 lowerCAmelCase__ = 0.02 lowerCAmelCase__ = image_text_hidden_size @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase )-> List[str]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ = self.text_config.to_dict() lowerCAmelCase__ = self.vision_config.to_dict() lowerCAmelCase__ = self.__class__.model_type return output
340
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
340
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ = '''src/transformers''' a_ = '''docs/source/en/tasks''' def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Find the start prompt. lowerCAmelCase__ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase__ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(TRANSFORMERS_PATH) a_ = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) lowerCAmelCase__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
340
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) a_ = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = None lowerCAmelCase__ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) lowerCAmelCase__ = os.path.abspath("examples" ) for item in os.listdir(__UpperCAmelCase ): if item not in EXCLUDE_EXAMPLES: lowerCAmelCase__ = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if os.path.isfile(__UpperCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=__UpperCAmelCase , feature_script=__UpperCAmelCase , tested_section="main()" if parser_only else "training_function()" , ): lowerCAmelCase__ = compare_against_test( os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = "\n".join(__UpperCAmelCase ) if special_strings is not None: for string in special_strings: lowerCAmelCase__ = diff.replace(__UpperCAmelCase , "" ) self.assertEqual(__UpperCAmelCase , "" ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' self.one_complete_example("complete_nlp_example.py" , __UpperCAmelCase ) self.one_complete_example("complete_nlp_example.py" , __UpperCAmelCase ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) lowerCAmelCase__ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.one_complete_example("complete_cv_example.py" , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @mock.patch.dict(os.environ, {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class lowercase__ ( _UpperCAmelCase ): a_ =False @classmethod def UpperCAmelCase ( cls )-> List[str]: '''simple docstring''' super().setUpClass() lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase__ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def UpperCAmelCase ( cls )-> List[str]: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() lowerCAmelCase__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase ) self.assertNotIn("epoch 0:" , __UpperCAmelCase ) self.assertIn("epoch 1:" , __UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase ) if torch.cuda.is_available(): lowerCAmelCase__ = torch.cuda.device_count() else: lowerCAmelCase__ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , __UpperCAmelCase ) self.assertIn("epoch 1:" , __UpperCAmelCase ) else: self.assertIn("epoch 0:" , __UpperCAmelCase ) self.assertIn("epoch 1:" , __UpperCAmelCase ) @slow def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): lowerCAmelCase__ = run_command(self._launch_args + testargs , return_stdout=__UpperCAmelCase ) lowerCAmelCase__ = re.findall("({.+})" , __UpperCAmelCase ) lowerCAmelCase__ = [r for r in results if "accuracy" in r][-1] lowerCAmelCase__ = ast.literal_eval(__UpperCAmelCase ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: lowerCAmelCase__ = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__UpperCAmelCase , "tracking" ) ) ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
340
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: lowerCAmelCase__ = TOKENIZER_CLASSES else: lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase__ = True if checkpoint_name is None: lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase__ = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: lowerCAmelCase__ = checkpoint lowerCAmelCase__ = dump_path else: lowerCAmelCase__ = None lowerCAmelCase__ = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) lowerCAmelCase__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(UpperCamelCase_ ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) a_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
340
1
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def _a ( UpperCamelCase_ : str ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) lowerCAmelCase__ = MaskFormerConfig(backbone_config=UpperCamelCase_ ) lowerCAmelCase__ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok lowerCAmelCase__ = 847 lowerCAmelCase__ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok lowerCAmelCase__ = 150 lowerCAmelCase__ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok lowerCAmelCase__ = 171 lowerCAmelCase__ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO lowerCAmelCase__ = 133 lowerCAmelCase__ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok lowerCAmelCase__ = 19 lowerCAmelCase__ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok lowerCAmelCase__ = 65 lowerCAmelCase__ = "mapillary-vistas-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} return config def _a ( UpperCamelCase_ : List[Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.layers.{i}.downsample.reduction.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"sem_seg_head.adapter_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") ) # cross-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") ) # MLP 1 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", F"model.transformer_module.decoder.layers.{idx}.fc1.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", F"model.transformer_module.decoder.layers.{idx}.fc1.bias") ) # MLP 2 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", F"model.transformer_module.decoder.layers.{idx}.fc2.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", F"model.transformer_module.decoder.layers.{idx}.fc2.bias") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") ) # layernorm 3 (final layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.weight", F"mask_embedder.{i}.0.weight") ) rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.bias", F"mask_embedder.{i}.0.bias") ) # fmt: on return rename_keys def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[str]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCAmelCase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:dim, :] lowerCAmelCase__ = in_proj_bias[: dim] lowerCAmelCase__ = in_proj_weight[ dim : dim * 2, : ] lowerCAmelCase__ = in_proj_bias[ dim : dim * 2 ] lowerCAmelCase__ = in_proj_weight[ -dim :, : ] lowerCAmelCase__ = in_proj_bias[-dim :] # fmt: on def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ) -> int: """simple docstring""" lowerCAmelCase__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" ) lowerCAmelCase__ = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[: hidden_size, :] lowerCAmelCase__ = in_proj_bias[:config.hidden_size] lowerCAmelCase__ = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCAmelCase__ = in_proj_bias[hidden_size : hidden_size * 2] lowerCAmelCase__ = in_proj_weight[-hidden_size :, :] lowerCAmelCase__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" ) lowerCAmelCase__ = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[: hidden_size, :] lowerCAmelCase__ = in_proj_bias[:config.hidden_size] lowerCAmelCase__ = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCAmelCase__ = in_proj_bias[hidden_size : hidden_size * 2] lowerCAmelCase__ = in_proj_weight[-hidden_size :, :] lowerCAmelCase__ = in_proj_bias[-hidden_size :] # fmt: on def _a ( ) -> torch.Tensor: """simple docstring""" lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def _a ( UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : bool = False ) -> int: """simple docstring""" lowerCAmelCase__ = get_maskformer_config(UpperCamelCase_ ) # load original state_dict with open(UpperCamelCase_ , "rb" ) as f: lowerCAmelCase__ = pickle.load(UpperCamelCase_ ) lowerCAmelCase__ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_swin_q_k_v(UpperCamelCase_ , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase_ , UpperCamelCase_ ) # update to torch tensors for key, value in state_dict.items(): lowerCAmelCase__ = torch.from_numpy(UpperCamelCase_ ) # load 🤗 model lowerCAmelCase__ = MaskFormerForInstanceSegmentation(UpperCamelCase_ ) model.eval() for name, param in model.named_parameters(): print(UpperCamelCase_ , param.shape ) lowerCAmelCase__ , lowerCAmelCase__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCamelCase_ ) == 0, F"Unexpected keys: {unexpected_keys}" # verify results lowerCAmelCase__ = prepare_img() if "vistas" in model_name: lowerCAmelCase__ = 65 elif "cityscapes" in model_name: lowerCAmelCase__ = 65_535 else: lowerCAmelCase__ = 255 lowerCAmelCase__ = True if "ade" in model_name else False lowerCAmelCase__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase_ , reduce_labels=UpperCamelCase_ ) lowerCAmelCase__ = image_processor(UpperCamelCase_ , return_tensors="pt" ) lowerCAmelCase__ = model(**UpperCamelCase_ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": lowerCAmelCase__ = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase_ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F"nielsr/{model_name}" ) image_processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a_ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
340
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(UpperCamelCase_ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" ) lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" ) lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = number_of_qubits for i in range(UpperCamelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCamelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ ) # simulate with 10000 shots lowerCAmelCase__ = Aer.get_backend("qasm_simulator" ) lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 ) return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
340
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""xlnet""" a_ =["""mems"""] a_ ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int: '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCAmelCase__ = d_model // n_head lowerCAmelCase__ = ff_activation lowerCAmelCase__ = d_inner lowerCAmelCase__ = untie_r lowerCAmelCase__ = attn_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = dropout lowerCAmelCase__ = mem_len lowerCAmelCase__ = reuse_len lowerCAmelCase__ = bi_data lowerCAmelCase__ = clamp_len lowerCAmelCase__ = same_length lowerCAmelCase__ = summary_type lowerCAmelCase__ = summary_use_proj lowerCAmelCase__ = summary_activation lowerCAmelCase__ = summary_last_dropout lowerCAmelCase__ = start_n_top lowerCAmelCase__ = end_n_top lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs["use_cache"] lowerCAmelCase__ = use_mems_eval lowerCAmelCase__ = use_mems_train super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
340
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =KandinskyInpaintPipeline a_ =["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] a_ =[ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] a_ =[ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a_ =False @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return 32 @property def UpperCAmelCase ( self )-> str: '''simple docstring''' return 32 @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase ( self )-> Any: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase ( self )-> Any: '''simple docstring''' return 100 @property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowerCAmelCase__ = MultilingualCLIP(__UpperCAmelCase ) lowerCAmelCase__ = text_encoder.eval() return text_encoder @property def UpperCAmelCase ( self )-> Any: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase__ = UNetaDConditionModel(**__UpperCAmelCase ) return model @property def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = self.dummy_tokenizer lowerCAmelCase__ = self.dummy_unet lowerCAmelCase__ = self.dummy_movq lowerCAmelCase__ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=__UpperCAmelCase , ) lowerCAmelCase__ = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__UpperCAmelCase ) # create init_image lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("RGB" ).resize((256, 256) ) # create mask lowerCAmelCase__ = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase__ = 0 if str(__UpperCAmelCase ).startswith("mps" ): lowerCAmelCase__ = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = "cpu" lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**__UpperCAmelCase ) lowerCAmelCase__ = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) lowerCAmelCase__ = output.images lowerCAmelCase__ = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def UpperCAmelCase ( self )-> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) lowerCAmelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase__ = np.ones((768, 768) , dtype=np.floataa ) lowerCAmelCase__ = 0 lowerCAmelCase__ = "a hat" lowerCAmelCase__ = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) lowerCAmelCase__ = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ = pipe_prior( __UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase__ = pipeline( __UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) lowerCAmelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
340
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple: """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = "" else: lowerCAmelCase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _a ( UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ViTMSNConfig() lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "datasets/huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase__ = 384 lowerCAmelCase__ = 1_536 lowerCAmelCase__ = 6 elif "l16" in checkpoint_url: lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase__ = 4 elif "l7" in checkpoint_url: lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ ) lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"] lowerCAmelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase_ ) lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) lowerCAmelCase__ = ViTImageProcessor( size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
340
1
import os import sys import unittest a_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path a_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = find_backend(" if not is_torch_available():" ) self.assertEqual(__UpperCAmelCase , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") lowerCAmelCase__ = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(__UpperCAmelCase , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") lowerCAmelCase__ = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(__UpperCAmelCase , "torch_and_transformers_and_onnx" ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , __UpperCAmelCase ) self.assertIn("torch_and_transformers" , __UpperCAmelCase ) self.assertIn("flax_and_transformers" , __UpperCAmelCase ) self.assertIn("torch_and_transformers_and_onnx" , __UpperCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(__UpperCAmelCase , "\nCONSTANT = None\n" ) lowerCAmelCase__ = create_dummy_object("function" , "'torch'" ) self.assertEqual( __UpperCAmelCase , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) lowerCAmelCase__ = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" lowerCAmelCase__ = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" lowerCAmelCase__ = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , __UpperCAmelCase )
340
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = {} if "candidate_labels" in kwargs: lowerCAmelCase__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCAmelCase__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = load_image(__UpperCAmelCase ) lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ = candidate_labels lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase ) lowerCAmelCase__ = [text_inputs] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = model_inputs.pop("candidate_labels" ) lowerCAmelCase__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __UpperCAmelCase ): lowerCAmelCase__ = text_inputs[0] else: # Batching case. lowerCAmelCase__ = text_inputs[0][0] lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = model_outputs.pop("candidate_labels" ) lowerCAmelCase__ = model_outputs["logits"][0] if self.framework == "pt": lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ = probs.tolist() if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [scores] elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 ) lowerCAmelCase__ = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCAmelCase__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] ) ] return result
340
1
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) a_ = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class lowercase__ ( _UpperCAmelCase ): a_ ="""detr""" a_ =["""past_key_values"""] a_ ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=3 , __UpperCAmelCase=100 , __UpperCAmelCase=6 , __UpperCAmelCase=2048 , __UpperCAmelCase=8 , __UpperCAmelCase=6 , __UpperCAmelCase=2048 , __UpperCAmelCase=8 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1.0 , __UpperCAmelCase=False , __UpperCAmelCase="sine" , __UpperCAmelCase="resnet50" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , **__UpperCAmelCase , )-> Tuple: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowerCAmelCase__ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = backbone_config.get("model_type" ) lowerCAmelCase__ = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase__ = config_class.from_dict(__UpperCAmelCase ) # set timm attributes to None lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None, None, None lowerCAmelCase__ = use_timm_backbone lowerCAmelCase__ = backbone_config lowerCAmelCase__ = num_channels lowerCAmelCase__ = num_queries lowerCAmelCase__ = d_model lowerCAmelCase__ = encoder_ffn_dim lowerCAmelCase__ = encoder_layers lowerCAmelCase__ = encoder_attention_heads lowerCAmelCase__ = decoder_ffn_dim lowerCAmelCase__ = decoder_layers lowerCAmelCase__ = decoder_attention_heads lowerCAmelCase__ = dropout lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = activation_dropout lowerCAmelCase__ = activation_function lowerCAmelCase__ = init_std lowerCAmelCase__ = init_xavier_std lowerCAmelCase__ = encoder_layerdrop lowerCAmelCase__ = decoder_layerdrop lowerCAmelCase__ = encoder_layers lowerCAmelCase__ = auxiliary_loss lowerCAmelCase__ = position_embedding_type lowerCAmelCase__ = backbone lowerCAmelCase__ = use_pretrained_backbone lowerCAmelCase__ = dilation # Hungarian matcher lowerCAmelCase__ = class_cost lowerCAmelCase__ = bbox_cost lowerCAmelCase__ = giou_cost # Loss coefficients lowerCAmelCase__ = mask_loss_coefficient lowerCAmelCase__ = dice_loss_coefficient lowerCAmelCase__ = bbox_loss_coefficient lowerCAmelCase__ = giou_loss_coefficient lowerCAmelCase__ = eos_coefficient super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> Any: '''simple docstring''' return cls(backbone_config=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> Dict[str, any]: '''simple docstring''' lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase__ = self.backbone_config.to_dict() lowerCAmelCase__ = self.__class__.model_type return output class lowercase__ ( _UpperCAmelCase ): a_ =version.parse("""1.11""" ) @property def UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCAmelCase ( self )-> float: '''simple docstring''' return 1E-5 @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return 12
340
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =BartphoTokenizer a_ =False a_ =True def UpperCAmelCase ( self )-> Dict: '''simple docstring''' super().setUp() lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"] lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"{token} {vocab_tokens[token]}\n" ) lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split() lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
340
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _a ( UpperCamelCase_ : bytes , UpperCamelCase_ : int ) -> np.array: """simple docstring""" lowerCAmelCase__ = F"{sampling_rate}" lowerCAmelCase__ = "1" lowerCAmelCase__ = "f32le" lowerCAmelCase__ = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(UpperCamelCase_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowerCAmelCase__ = ffmpeg_process.communicate(UpperCamelCase_ ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error lowerCAmelCase__ = output_stream[0] lowerCAmelCase__ = np.frombuffer(UpperCamelCase_ , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def _a ( UpperCamelCase_ : int , UpperCamelCase_ : float , UpperCamelCase_ : str = "f32le" , ) -> Any: """simple docstring""" lowerCAmelCase__ = F"{sampling_rate}" lowerCAmelCase__ = "1" if format_for_conversion == "s16le": lowerCAmelCase__ = 2 elif format_for_conversion == "f32le": lowerCAmelCase__ = 4 else: raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) lowerCAmelCase__ = platform.system() if system == "Linux": lowerCAmelCase__ = "alsa" lowerCAmelCase__ = "default" elif system == "Darwin": lowerCAmelCase__ = "avfoundation" lowerCAmelCase__ = ":0" elif system == "Windows": lowerCAmelCase__ = "dshow" lowerCAmelCase__ = "default" lowerCAmelCase__ = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] lowerCAmelCase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCAmelCase__ = _ffmpeg_stream(UpperCamelCase_ , UpperCamelCase_ ) for item in iterator: yield item def _a ( UpperCamelCase_ : int , UpperCamelCase_ : float , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[Tuple[float, float], float]] = None , UpperCamelCase_ : str = "f32le" , ) -> str: """simple docstring""" if stream_chunk_s is not None: lowerCAmelCase__ = stream_chunk_s else: lowerCAmelCase__ = chunk_length_s lowerCAmelCase__ = ffmpeg_microphone(UpperCamelCase_ , UpperCamelCase_ , format_for_conversion=UpperCamelCase_ ) if format_for_conversion == "s16le": lowerCAmelCase__ = np.intaa lowerCAmelCase__ = 2 elif format_for_conversion == "f32le": lowerCAmelCase__ = np.floataa lowerCAmelCase__ = 4 else: raise ValueError(F"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: lowerCAmelCase__ = chunk_length_s / 6 lowerCAmelCase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(UpperCamelCase_ , (int, float) ): lowerCAmelCase__ = [stride_length_s, stride_length_s] lowerCAmelCase__ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCAmelCase__ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCAmelCase__ = datetime.datetime.now() lowerCAmelCase__ = datetime.timedelta(seconds=UpperCamelCase_ ) for item in chunk_bytes_iter(UpperCamelCase_ , UpperCamelCase_ , stride=(stride_left, stride_right) , stream=UpperCamelCase_ ): # Put everything back in numpy scale lowerCAmelCase__ = np.frombuffer(item["raw"] , dtype=UpperCamelCase_ ) lowerCAmelCase__ = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) lowerCAmelCase__ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple[int, int] , UpperCamelCase_ : bool = False ) -> List[str]: """simple docstring""" lowerCAmelCase__ = b"" lowerCAmelCase__ , lowerCAmelCase__ = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) lowerCAmelCase__ = 0 for raw in iterator: acc += raw if stream and len(UpperCamelCase_ ) < chunk_len: lowerCAmelCase__ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(UpperCamelCase_ ) >= chunk_len: # We are flushing the accumulator lowerCAmelCase__ = (_stride_left, stride_right) lowerCAmelCase__ = {"raw": acc[:chunk_len], "stride": stride} if stream: lowerCAmelCase__ = False yield item lowerCAmelCase__ = stride_left lowerCAmelCase__ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(UpperCamelCase_ ) > stride_left: lowerCAmelCase__ = {"raw": acc, "stride": (_stride_left, 0)} if stream: lowerCAmelCase__ = False yield item def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = 2**24 # 16Mo try: with subprocess.Popen(UpperCamelCase_ , stdout=subprocess.PIPE , bufsize=UpperCamelCase_ ) as ffmpeg_process: while True: lowerCAmelCase__ = ffmpeg_process.stdout.read(UpperCamelCase_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
340
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } a_ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } a_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""] a_ =DistilBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
a_ = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
340
1
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ = logging.get_logger(__name__) # TODO: upload to AWS a_ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class lowercase__ ( _UpperCAmelCase ): a_ ="""retribert""" def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=768 , __UpperCAmelCase=8 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=True , __UpperCAmelCase=128 , __UpperCAmelCase=0 , **__UpperCAmelCase , )-> Tuple: '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = share_encoders lowerCAmelCase__ = projection_dim
340
import collections import importlib.util import os import re from pathlib import Path a_ = '''src/transformers''' # Matches is_xxx_available() a_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} a_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available a_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") a_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", a_ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], a_ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo a_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: a_ = re.compile(r'''^\s*try:''') # Catches a line with else: a_ = re.compile(r'''^\s*else:''') def _a ( UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" if _re_test_backend.search(UpperCamelCase_ ) is None: return None lowerCAmelCase__ = [b[0] for b in _re_backend.findall(UpperCamelCase_ )] backends.sort() return "_and_".join(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = 0 while line_index < len(UpperCamelCase_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCamelCase_ ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase__ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCamelCase_ ): lowerCAmelCase__ = _re_one_line_import_struct.search(UpperCamelCase_ ).groups()[0] lowerCAmelCase__ = re.findall("\[([^\]]+)\]" , UpperCamelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase__ = _re_import_struct_key_value.search(UpperCamelCase_ ) if single_line_import_search is not None: lowerCAmelCase__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase__ = lines[line_index] if _re_import_struct_add_one.search(UpperCamelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCamelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_import_struct_add_many.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_between_brackets.search(UpperCamelCase_ ) is not None: lowerCAmelCase__ = _re_between_brackets.search(UpperCamelCase_ ).groups()[0].split(", " ) lowerCAmelCase__ = [obj[1:-1] for obj in imports if len(UpperCamelCase_ ) > 0] objects.extend(UpperCamelCase_ ) elif _re_quote_object.search(UpperCamelCase_ ) is not None: objects.append(_re_quote_object.search(UpperCamelCase_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase__ = [] while ( line_index < len(UpperCamelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase__ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(UpperCamelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase__ = lines[line_index] lowerCAmelCase__ = _re_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> str: """simple docstring""" def find_duplicates(UpperCamelCase_ : str ): return [k for k, v in collections.Counter(UpperCamelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase__ = [] for key in import_dict_objects.keys(): lowerCAmelCase__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowerCAmelCase__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase__ = "base imports" if key == "none" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = [] for root, _, files in os.walk(UpperCamelCase_ ): if "__init__.py" in files: lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "__init__.py" ) lowerCAmelCase__ = parse_init(UpperCamelCase_ ) if objects is not None: lowerCAmelCase__ = analyze_results(*UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(UpperCamelCase_ ) ) if len(UpperCamelCase_ ) > 0: raise ValueError("\n\n".join(UpperCamelCase_ ) ) def _a ( ) -> str: """simple docstring""" lowerCAmelCase__ = [] for path, directories, files in os.walk(UpperCamelCase_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(UpperCamelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCamelCase_ ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / folder).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(os.path.sep , "." ) submodules.append(UpperCamelCase_ ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase__ = str((Path(UpperCamelCase_ ) / fname).relative_to(UpperCamelCase_ ) ) lowerCAmelCase__ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(UpperCamelCase_ ) return submodules a_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _a ( ) -> int: """simple docstring""" lowerCAmelCase__ = importlib.util.spec_from_file_location( "transformers" , os.path.join(UpperCamelCase_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCamelCase_ ) > 0: lowerCAmelCase__ = "\n".join(F"- {module}" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
340
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ) -> str: """simple docstring""" return params[F"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : Dict="attention" ) -> Dict: """simple docstring""" lowerCAmelCase__ = lowerCAmelCase__ = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) lowerCAmelCase__ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowerCAmelCase__ = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) lowerCAmelCase__ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowerCAmelCase__ = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) lowerCAmelCase__ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowerCAmelCase__ = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) lowerCAmelCase__ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any]=False ) -> Dict: """simple docstring""" if split_mlp_wi: lowerCAmelCase__ = params[F"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] lowerCAmelCase__ = params[F"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] lowerCAmelCase__ = (wi_a, wi_a) else: lowerCAmelCase__ = params[F"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] lowerCAmelCase__ = params[F"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] ) -> int: """simple docstring""" return params[F"{prefix}/{prefix}/{layer_name}/scale"][:, i] def _a ( UpperCamelCase_ : dict , *, UpperCamelCase_ : int , UpperCamelCase_ : bool , UpperCamelCase_ : bool = False ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = traverse_util.flatten_dict(variables["target"] ) lowerCAmelCase__ = {"/".join(UpperCamelCase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase__ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , UpperCamelCase_ ) lowerCAmelCase__ = collections.OrderedDict() # Shared embeddings. lowerCAmelCase__ = old["token_embedder/embedding"] # Encoder. for i in range(UpperCamelCase_ ): # Block i, layer 0 (Self Attention). lowerCAmelCase__ = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , "encoder" , "pre_attention_layer_norm" ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = tax_attention_lookup(UpperCamelCase_ , UpperCamelCase_ , "encoder" , "attention" ) lowerCAmelCase__ = layer_norm lowerCAmelCase__ = k.T lowerCAmelCase__ = o.T lowerCAmelCase__ = q.T lowerCAmelCase__ = v.T # Block i, layer 1 (MLP). lowerCAmelCase__ = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , "encoder" , "pre_mlp_layer_norm" ) lowerCAmelCase__ , lowerCAmelCase__ = tax_mlp_lookup(UpperCamelCase_ , UpperCamelCase_ , "encoder" , UpperCamelCase_ ) lowerCAmelCase__ = layer_norm if split_mlp_wi: lowerCAmelCase__ = wi[0].T lowerCAmelCase__ = wi[1].T else: lowerCAmelCase__ = wi.T lowerCAmelCase__ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCAmelCase__ = tax_relpos_bias_lookup( UpperCamelCase_ , UpperCamelCase_ , "encoder" ).T lowerCAmelCase__ = old["encoder/encoder_norm/scale"] if not scalable_attention: lowerCAmelCase__ = tax_relpos_bias_lookup( UpperCamelCase_ , 0 , "encoder" ).T lowerCAmelCase__ = tax_relpos_bias_lookup( UpperCamelCase_ , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(UpperCamelCase_ ): # Block i, layer 0 (Self Attention). lowerCAmelCase__ = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , "decoder" , "pre_self_attention_layer_norm" ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = tax_attention_lookup(UpperCamelCase_ , UpperCamelCase_ , "decoder" , "self_attention" ) lowerCAmelCase__ = layer_norm lowerCAmelCase__ = k.T lowerCAmelCase__ = o.T lowerCAmelCase__ = q.T lowerCAmelCase__ = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase__ = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , "decoder" , "pre_cross_attention_layer_norm" ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = tax_attention_lookup(UpperCamelCase_ , UpperCamelCase_ , "decoder" , "encoder_decoder_attention" ) lowerCAmelCase__ = layer_norm lowerCAmelCase__ = k.T lowerCAmelCase__ = o.T lowerCAmelCase__ = q.T lowerCAmelCase__ = v.T # Block i, layer 2 (MLP). lowerCAmelCase__ = tax_layer_norm_lookup(UpperCamelCase_ , UpperCamelCase_ , "decoder" , "pre_mlp_layer_norm" ) lowerCAmelCase__ , lowerCAmelCase__ = tax_mlp_lookup(UpperCamelCase_ , UpperCamelCase_ , "decoder" , UpperCamelCase_ ) lowerCAmelCase__ = layer_norm if split_mlp_wi: lowerCAmelCase__ = wi[0].T lowerCAmelCase__ = wi[1].T else: lowerCAmelCase__ = wi.T lowerCAmelCase__ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCAmelCase__ = tax_relpos_bias_lookup(UpperCamelCase_ , UpperCamelCase_ , "decoder" ).T lowerCAmelCase__ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase__ = old["decoder/logits_dense/kernel"].T return new def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : bool ) -> str: """simple docstring""" lowerCAmelCase__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase__ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase__ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowerCAmelCase__ = state_dict["shared.weight"] return state_dict def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = checkpoints.load_tax_checkpoint(UpperCamelCase_ ) lowerCAmelCase__ = convert_tax_to_pytorch( UpperCamelCase_ , num_layers=config.num_layers , is_encoder_only=UpperCamelCase_ , scalable_attention=UpperCamelCase_ ) lowerCAmelCase__ = make_state_dict(UpperCamelCase_ , UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , ) -> Tuple: """simple docstring""" lowerCAmelCase__ = MTaConfig.from_json_file(UpperCamelCase_ ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase__ = UMTaEncoderModel(UpperCamelCase_ ) else: lowerCAmelCase__ = UMTaForConditionalGeneration(UpperCamelCase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(UpperCamelCase_ ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCamelCase_ ) print("Done" ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
340
from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = vertices lowerCAmelCase__ = { (min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase__ = weight def UpperCAmelCase ( self )-> Graph: '''simple docstring''' lowerCAmelCase__ = Graph({min(self.vertices )} , {} ) lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase__ = edge lowerCAmelCase__ = weight subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase ) return subgraph def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = {} lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 with open(UpperCamelCase_ ) as f: lowerCAmelCase__ = f.read().strip().split("\n" ) lowerCAmelCase__ = [line.split("," ) for line in data] for edgea in range(1 , len(UpperCamelCase_ ) ): for edgea in range(UpperCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ ) lowerCAmelCase__ = graph.prims_algorithm() lowerCAmelCase__ = sum(graph.edges.values() ) lowerCAmelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
340
1
from __future__ import annotations from cmath import sqrt def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowerCAmelCase__ = b * b - 4 * a * c lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a) lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
340
from collections import defaultdict from math import gcd def _a ( UpperCamelCase_ : int = 1_500_000 ) -> int: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) lowerCAmelCase__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCamelCase_ , 2 ): if gcd(UpperCamelCase_ , UpperCamelCase_ ) > 1: continue lowerCAmelCase__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
340
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) a_ = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def _a ( UpperCamelCase_ : List[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase__ = {} state_dict.pop("pixel_mean" , UpperCamelCase_ ) state_dict.pop("pixel_std" , UpperCamelCase_ ) lowerCAmelCase__ = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCAmelCase__ = key.replace(UpperCamelCase_ , UpperCamelCase_ ) if re.match(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = int(re.match(UpperCamelCase_ , UpperCamelCase_ ).group(2 ) ) if layer_nb == 0: lowerCAmelCase__ = key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: lowerCAmelCase__ = key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: lowerCAmelCase__ = key.replace("layers.2" , "proj_out" ) lowerCAmelCase__ = value lowerCAmelCase__ = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any]="ybelkada/segment-anything" ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = hf_hub_download(UpperCamelCase_ , F"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: lowerCAmelCase__ = SamConfig() elif "sam_vit_l" in model_name: lowerCAmelCase__ = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowerCAmelCase__ = SamConfig( vision_config=UpperCamelCase_ , ) elif "sam_vit_h" in model_name: lowerCAmelCase__ = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowerCAmelCase__ = SamConfig( vision_config=UpperCamelCase_ , ) lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location="cpu" ) lowerCAmelCase__ = replace_keys(UpperCamelCase_ ) lowerCAmelCase__ = SamImageProcessor() lowerCAmelCase__ = SamProcessor(image_processor=UpperCamelCase_ ) lowerCAmelCase__ = SamModel(UpperCamelCase_ ) hf_model.load_state_dict(UpperCamelCase_ ) lowerCAmelCase__ = hf_model.to("cuda" ) lowerCAmelCase__ = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert("RGB" ) lowerCAmelCase__ = [[[400, 650]]] lowerCAmelCase__ = [[1]] lowerCAmelCase__ = processor(images=np.array(UpperCamelCase_ ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): lowerCAmelCase__ = hf_model(**UpperCamelCase_ ) lowerCAmelCase__ = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 lowerCAmelCase__ = processor( images=np.array(UpperCamelCase_ ) , input_points=UpperCamelCase_ , input_labels=UpperCamelCase_ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): lowerCAmelCase__ = hf_model(**UpperCamelCase_ ) lowerCAmelCase__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 lowerCAmelCase__ = ((75, 275, 1_725, 850),) lowerCAmelCase__ = processor(images=np.array(UpperCamelCase_ ) , input_boxes=UpperCamelCase_ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): lowerCAmelCase__ = hf_model(**UpperCamelCase_ ) lowerCAmelCase__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. lowerCAmelCase__ = [[[400, 650], [800, 650]]] lowerCAmelCase__ = [[1, 1]] lowerCAmelCase__ = processor( images=np.array(UpperCamelCase_ ) , input_points=UpperCamelCase_ , input_labels=UpperCamelCase_ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): lowerCAmelCase__ = hf_model(**UpperCamelCase_ ) lowerCAmelCase__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": a_ = argparse.ArgumentParser() a_ = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) a_ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
340
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """tokenizer"""] a_ ="""LayoutLMv2ImageProcessor""" a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase__ = features["words"] lowerCAmelCase__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) # add pixel values lowerCAmelCase__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) lowerCAmelCase__ = images return encoded_inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" ) return images_with_overflow def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict: '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self )-> str: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
340
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =LDMTextToImagePipeline a_ =TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } a_ =PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } a_ =TEXT_TO_IMAGE_BATCH_PARAMS a_ =False def UpperCAmelCase ( self )-> int: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCAmelCase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase__ = CLIPTextModel(__UpperCAmelCase ) lowerCAmelCase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase__ = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 )-> Dict: '''simple docstring''' if str(__UpperCAmelCase ).startswith("mps" ): lowerCAmelCase__ = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = LDMTextToImagePipeline(**__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) lowerCAmelCase__ = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 )-> Dict: '''simple docstring''' lowerCAmelCase__ = torch.manual_seed(__UpperCAmelCase ) lowerCAmelCase__ = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase__ = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) lowerCAmelCase__ = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ = self.get_inputs(__UpperCAmelCase ) lowerCAmelCase__ = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) lowerCAmelCase__ = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878] ) lowerCAmelCase__ = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = torch.manual_seed(__UpperCAmelCase ) lowerCAmelCase__ = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 32, 32) ) lowerCAmelCase__ = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) lowerCAmelCase__ = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ = self.get_inputs(__UpperCAmelCase ) lowerCAmelCase__ = pipe(**__UpperCAmelCase ).images[0] lowerCAmelCase__ = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" ) lowerCAmelCase__ = np.abs(expected_image - image ).max() assert max_diff < 1E-3
340
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) lowerCAmelCase__ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase__ = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Any: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=__UpperCAmelCase ) lowerCAmelCase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = processor(images=__UpperCAmelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = processor(text=__UpperCAmelCase , return_tensors="np" ) lowerCAmelCase__ = tokenizer(__UpperCAmelCase , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = [["cat", "nasa badge"], ["person"]] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = len(__UpperCAmelCase ) lowerCAmelCase__ = max([len(__UpperCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = "google/owlvit-base-patch32" lowerCAmelCase__ = OwlViTProcessor.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ = ["cat", "nasa badge"] lowerCAmelCase__ = processor(text=__UpperCAmelCase ) lowerCAmelCase__ = 16 lowerCAmelCase__ = inputs["input_ids"] lowerCAmelCase__ = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(images=__UpperCAmelCase , query_images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = OwlViTProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(__UpperCAmelCase ) lowerCAmelCase__ = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
340
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase__ ( _UpperCAmelCase ): a_ =(DPMSolverSinglestepScheduler,) a_ =(("""num_inference_steps""", 25),) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**__UpperCAmelCase ) return config def UpperCAmelCase ( self , __UpperCAmelCase=0 , **__UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = dict(self.forward_default_kwargs ) lowerCAmelCase__ = kwargs.pop("num_inference_steps" , __UpperCAmelCase ) lowerCAmelCase__ = self.dummy_sample lowerCAmelCase__ = 0.1 * sample lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ = self.get_scheduler_config(**__UpperCAmelCase ) lowerCAmelCase__ = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residuals lowerCAmelCase__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase ) lowerCAmelCase__ = scheduler_class.from_pretrained(__UpperCAmelCase ) new_scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residuals lowerCAmelCase__ = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase__ , lowerCAmelCase__ = sample, sample for t in range(__UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase__ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample lowerCAmelCase__ = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' pass def UpperCAmelCase ( self , __UpperCAmelCase=0 , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = dict(self.forward_default_kwargs ) lowerCAmelCase__ = kwargs.pop("num_inference_steps" , __UpperCAmelCase ) lowerCAmelCase__ = self.dummy_sample lowerCAmelCase__ = 0.1 * sample lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCAmelCase ) lowerCAmelCase__ = scheduler_class.from_pretrained(__UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase__ = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase__ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample lowerCAmelCase__ = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self , __UpperCAmelCase=None , **__UpperCAmelCase )-> Any: '''simple docstring''' if scheduler is None: lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config(**__UpperCAmelCase ) lowerCAmelCase__ = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config(**__UpperCAmelCase ) lowerCAmelCase__ = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ = 10 lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(__UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ = model(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample return sample def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCAmelCase__ = 50 lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(__UpperCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowerCAmelCase__ = model(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample lowerCAmelCase__ = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_574 ) < 1E-3 def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCAmelCase__ = self.full_loop(scheduler=__UpperCAmelCase ) lowerCAmelCase__ = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 lowerCAmelCase__ = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase__ = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase__ = self.full_loop(scheduler=__UpperCAmelCase ) lowerCAmelCase__ = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def UpperCAmelCase ( self )-> Any: '''simple docstring''' self.check_over_configs(thresholding=__UpperCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__UpperCAmelCase , prediction_type=__UpperCAmelCase , sample_max_value=__UpperCAmelCase , algorithm_type="dpmsolver++" , solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , ) def UpperCAmelCase ( self )-> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , algorithm_type=__UpperCAmelCase , ) lowerCAmelCase__ = self.full_loop( solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , algorithm_type=__UpperCAmelCase , ) assert not torch.isnan(__UpperCAmelCase ).any(), "Samples have nan numbers" def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' self.check_over_configs(lower_order_final=__UpperCAmelCase ) self.check_over_configs(lower_order_final=__UpperCAmelCase ) def UpperCAmelCase ( self )-> int: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' self.check_over_configs(variance_type=__UpperCAmelCase ) self.check_over_configs(variance_type="learned_range" ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__UpperCAmelCase , time_step=0 ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.full_loop() lowerCAmelCase__ = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = self.full_loop(use_karras_sigmas=__UpperCAmelCase ) lowerCAmelCase__ = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.2_248 ) < 1E-3 def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.full_loop(prediction_type="v_prediction" ) lowerCAmelCase__ = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.1_453 ) < 1E-3 def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=__UpperCAmelCase ) lowerCAmelCase__ = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_mean.item() - 0.0_649 ) < 1E-3 def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config(thresholding=__UpperCAmelCase , dynamic_thresholding_ratio=0 ) lowerCAmelCase__ = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ = 10 lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter.half() scheduler.set_timesteps(__UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ = model(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample assert sample.dtype == torch.floataa
340
from __future__ import annotations from cmath import sqrt def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowerCAmelCase__ = b * b - 4 * a * c lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a) lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
340
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """tokenizer"""] a_ ="""LayoutLMv2ImageProcessor""" a_ =("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> Tuple: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , **__UpperCAmelCase , )-> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor lowerCAmelCase__ = self.image_processor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase__ = features["words"] lowerCAmelCase__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) # add pixel values lowerCAmelCase__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCAmelCase__ = self.get_overflowing_images(__UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) lowerCAmelCase__ = images return encoded_inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(__UpperCAmelCase )} and {len(__UpperCAmelCase )}" ) return images_with_overflow def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Dict: '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self )-> str: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
340
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( UpperCamelCase_ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(UpperCamelCase_ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) lowerCAmelCase__ = QuantumRegister(UpperCamelCase_ , "qr" ) lowerCAmelCase__ = ClassicalRegister(UpperCamelCase_ , "cr" ) lowerCAmelCase__ = QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = number_of_qubits for i in range(UpperCamelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCamelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCamelCase_ , UpperCamelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCamelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCamelCase_ , UpperCamelCase_ ) # simulate with 10000 shots lowerCAmelCase__ = Aer.get_backend("qasm_simulator" ) lowerCAmelCase__ = execute(UpperCamelCase_ , UpperCamelCase_ , shots=10_000 ) return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
340
1
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a_ = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) a_ = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : List[str] ) -> Dict: """simple docstring""" lowerCAmelCase__ = SavedModel() lowerCAmelCase__ = [] with open(os.path.join(UpperCamelCase_ , "utils" , "tf_ops" , "onnx.json" ) ) as f: lowerCAmelCase__ = json.load(UpperCamelCase_ )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(UpperCamelCase_ )] ) with open(UpperCamelCase_ , "rb" ) as f: saved_model.ParseFromString(f.read() ) lowerCAmelCase__ = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want lowerCAmelCase__ = sorted(UpperCamelCase_ ) lowerCAmelCase__ = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(UpperCamelCase_ ) if strict and len(UpperCamelCase_ ) > 0: raise Exception(F"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(UpperCamelCase_ ) > 0: print(F"Found the following incompatible ops for the opset {opset}:" ) print(*UpperCamelCase_ , sep="\n" ) else: print(F"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) a_ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
340
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowercase__ ( _UpperCAmelCase ): a_ ="""char""" a_ ="""bpe""" a_ ="""wp""" a_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowercase__ ( _UpperCAmelCase ): a_ =["""image_processor""", """char_tokenizer"""] a_ ="""ViTImageProcessor""" a_ ="""MgpstrTokenizer""" def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) lowerCAmelCase__ = tokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" ) lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase )-> List[Any]: '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: lowerCAmelCase__ = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None: lowerCAmelCase__ = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase__ = encodings["input_ids"] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = sequences lowerCAmelCase__ = char_preds.size(0 ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "char" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "bpe" ) lowerCAmelCase__ , lowerCAmelCase__ = self._decode_helper(__UpperCAmelCase , "wp" ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i in range(__UpperCAmelCase ): lowerCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCAmelCase__ = scores.index(max(__UpperCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCAmelCase__ = {} lowerCAmelCase__ = final_strs lowerCAmelCase__ = final_scores lowerCAmelCase__ = char_strs lowerCAmelCase__ = bpe_strs lowerCAmelCase__ = wp_strs return out def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' if format == DecodeType.CHARACTER: lowerCAmelCase__ = self.char_decode lowerCAmelCase__ = 1 lowerCAmelCase__ = "[s]" elif format == DecodeType.BPE: lowerCAmelCase__ = self.bpe_decode lowerCAmelCase__ = 2 lowerCAmelCase__ = "#" elif format == DecodeType.WORDPIECE: lowerCAmelCase__ = self.wp_decode lowerCAmelCase__ = 102 lowerCAmelCase__ = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) lowerCAmelCase__ , lowerCAmelCase__ = [], [] lowerCAmelCase__ = pred_logits.size(0 ) lowerCAmelCase__ = pred_logits.size(1 ) lowerCAmelCase__ , lowerCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase ) lowerCAmelCase__ = preds_index.view(-1 , __UpperCAmelCase )[:, 1:] lowerCAmelCase__ = decoder(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 ) lowerCAmelCase__ = preds_max_prob[:, 1:] for index in range(__UpperCAmelCase ): lowerCAmelCase__ = preds_str[index].find(__UpperCAmelCase ) lowerCAmelCase__ = preds_str[index][:pred_eos] lowerCAmelCase__ = preds_index[index].cpu().tolist() lowerCAmelCase__ = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1 lowerCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1] lowerCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__UpperCAmelCase ) conf_scores.append(__UpperCAmelCase ) return dec_strs, conf_scores def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[Any]: '''simple docstring''' return self.bpe_tokenizer.batch_decode(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )] return decode_strs
340
1
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList a_ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowercase__ ( _UpperCAmelCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=1 )-> Tuple: '''simple docstring''' lowerCAmelCase__ = tokenizer lowerCAmelCase__ = dataset lowerCAmelCase__ = len(__UpperCAmelCase ) if n_tasks is None else n_tasks lowerCAmelCase__ = n_copies def __iter__( self )-> str: '''simple docstring''' lowerCAmelCase__ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowercase__ ( _UpperCAmelCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' lowerCAmelCase__ = start_length lowerCAmelCase__ = eof_strings lowerCAmelCase__ = tokenizer def __call__( self , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCAmelCase__ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__UpperCAmelCase ) def _a ( UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = re.split("(%s)" % "|".join(UpperCamelCase_ ) , UpperCamelCase_ ) # last string should be "" return "".join(string_list[:-2] ) def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any]=20 , **UpperCamelCase_ : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = defaultdict(UpperCamelCase_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(UpperCamelCase_ ) ): with torch.no_grad(): lowerCAmelCase__ = batch["ids"].shape[-1] lowerCAmelCase__ = accelerator.unwrap_model(UpperCamelCase_ ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=UpperCamelCase_ , **UpperCamelCase_ ) # each task is generated batch_size times lowerCAmelCase__ = batch["task_id"].repeat(UpperCamelCase_ ) lowerCAmelCase__ = accelerator.pad_across_processes( UpperCamelCase_ , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((generated_tokens, generated_tasks) ) lowerCAmelCase__ = generated_tokens.cpu().numpy() lowerCAmelCase__ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(UpperCamelCase_ , UpperCamelCase_ ): gen_token_dict[task].append(UpperCamelCase_ ) lowerCAmelCase__ = [[] for _ in range(UpperCamelCase_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCAmelCase__ = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) code_gens[task].append(remove_last_block(UpperCamelCase_ ) ) return code_gens def _a ( ) -> Dict: """simple docstring""" lowerCAmelCase__ = HfArgumentParser(UpperCamelCase_ ) lowerCAmelCase__ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCAmelCase__ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCAmelCase__ = "false" if args.num_workers is None: lowerCAmelCase__ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCAmelCase__ = Accelerator() set_seed(args.seed , device_specific=UpperCamelCase_ ) # Load model and tokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCAmelCase__ = tokenizer.eos_token lowerCAmelCase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCAmelCase__ = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , UpperCamelCase_ , UpperCamelCase_ )] ), } # Load evaluation dataset and metric lowerCAmelCase__ = load_dataset("openai_humaneval" ) lowerCAmelCase__ = load_metric("code_eval" ) lowerCAmelCase__ = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) lowerCAmelCase__ = args.n_samples // args.batch_size lowerCAmelCase__ = TokenizedDataset(UpperCamelCase_ , human_eval["test"] , n_copies=UpperCamelCase_ , n_tasks=UpperCamelCase_ ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCAmelCase__ = DataLoader(UpperCamelCase_ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCAmelCase__ = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = complete_code( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , n_tasks=UpperCamelCase_ , batch_size=args.batch_size , **UpperCamelCase_ , ) if accelerator.is_main_process: lowerCAmelCase__ = [] for task in tqdm(range(UpperCamelCase_ ) ): lowerCAmelCase__ = human_eval["test"][task]["test"] lowerCAmelCase__ = F"check({human_eval['test'][task]['entry_point']})" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric lowerCAmelCase__ , lowerCAmelCase__ = code_eval_metric.compute( references=UpperCamelCase_ , predictions=UpperCamelCase_ , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
340
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
1
def _a ( UpperCamelCase_ : str ) -> list: """simple docstring""" if n_term == "": return [] lowerCAmelCase__ = [] for temp in range(int(UpperCamelCase_ ) ): series.append(F"1/{temp + 1}" if series else "1" ) return series if __name__ == "__main__": a_ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
340
from collections import defaultdict def _a ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = True for v in tree[start]: if v not in visited: ret += dfs(UpperCamelCase_ ) if ret % 2 == 0: cuts.append(UpperCamelCase_ ) return ret def _a ( ) -> Optional[Any]: """simple docstring""" dfs(1 ) if __name__ == "__main__": a_, a_ = 10, 9 a_ = defaultdict(list) a_ = {} a_ = [] a_ = 0 a_ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
340
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""", """False""" ) ) is not True, reason="""Skipping test because should only be run when releasing minor transformers version""", ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class lowercase__ ( unittest.TestCase ): def UpperCAmelCase ( self )-> Any: '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__UpperCAmelCase , ) assert hasattr(self , "env" ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Dict: '''simple docstring''' lowerCAmelCase__ = { "enabled": True, "processes_per_host": 8, } lowerCAmelCase__ = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCAmelCase__ = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCAmelCase__ = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" , instance_count=__UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCAmelCase , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=__UpperCAmelCase , py_version="py36" , ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' TrainingJobAnalytics(__UpperCAmelCase ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) @parameterized.expand([(1,)] ) def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = self.create_estimator(__UpperCAmelCase ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __UpperCAmelCase )
340
import requests from bsa import BeautifulSoup def _a ( UpperCamelCase_ : str = "AAPL" ) -> str: """simple docstring""" lowerCAmelCase__ = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" lowerCAmelCase__ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" ) lowerCAmelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
340
1
def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str ) -> Dict: """simple docstring""" lowerCAmelCase__ = [False] * len(UpperCamelCase_ ) lowerCAmelCase__ = [] queue.append(UpperCamelCase_ ) lowerCAmelCase__ = True while queue: lowerCAmelCase__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCamelCase_ ) lowerCAmelCase__ = True lowerCAmelCase__ = u return visited[t] def _a ( UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str ) -> Dict: """simple docstring""" lowerCAmelCase__ = [-1] * (len(UpperCamelCase_ )) lowerCAmelCase__ = 0 while bfs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = float("Inf" ) lowerCAmelCase__ = sink while s != source: # Find the minimum value in select path lowerCAmelCase__ = min(UpperCamelCase_ , graph[parent[s]][s] ) lowerCAmelCase__ = parent[s] max_flow += path_flow lowerCAmelCase__ = sink while v != source: lowerCAmelCase__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCAmelCase__ = parent[v] return max_flow a_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] a_, a_ = 0, 5 print(ford_fulkerson(graph, source, sink))
340
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ = (3, 9, -11, 0, 7, 5, 1, -1) a_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowercase__ : a_ =42 a_ =42 class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): lowerCAmelCase__ = Node(__UpperCAmelCase , self.head ) def __iter__( self )-> Iterator[int]: '''simple docstring''' lowerCAmelCase__ = self.head while node: yield node.data lowerCAmelCase__ = node.next_node def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self )-> str: '''simple docstring''' return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
340
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): lowerCAmelCase__ = "segformer.encoder." + key if key.startswith("backbone" ): lowerCAmelCase__ = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase__ = key[key.find("patch_embed" ) + len("patch_embed" )] lowerCAmelCase__ = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(UpperCamelCase_ )-1}" ) if "norm" in key: lowerCAmelCase__ = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase__ = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] lowerCAmelCase__ = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(UpperCamelCase_ )-1}" ) if "layer_norm1" in key: lowerCAmelCase__ = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: lowerCAmelCase__ = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase__ = key[key.find("block" ) + len("block" )] lowerCAmelCase__ = key.replace(F"block{idx}" , F"block.{int(UpperCamelCase_ )-1}" ) if "attn.q" in key: lowerCAmelCase__ = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: lowerCAmelCase__ = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: lowerCAmelCase__ = key.replace("attn" , "attention.self" ) if "fc1" in key: lowerCAmelCase__ = key.replace("fc1" , "dense1" ) if "fc2" in key: lowerCAmelCase__ = key.replace("fc2" , "dense2" ) if "linear_pred" in key: lowerCAmelCase__ = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: lowerCAmelCase__ = key.replace("linear_fuse.conv" , "linear_fuse" ) lowerCAmelCase__ = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase__ = key[key.find("linear_c" ) + len("linear_c" )] lowerCAmelCase__ = key.replace(F"linear_c{idx}" , F"linear_c.{int(UpperCamelCase_ )-1}" ) if key.startswith("head" ): lowerCAmelCase__ = key.replace("head" , "classifier" ) lowerCAmelCase__ = value return new_state_dict def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase__ = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" ) lowerCAmelCase__ = state_dict.pop(F"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict lowerCAmelCase__ = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase__ = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase__ = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase__ = kv_bias[ config.hidden_sizes[i] : ] def _a ( ) -> Dict: """simple docstring""" lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return image @torch.no_grad() def _a ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ) -> Dict: """simple docstring""" lowerCAmelCase__ = SegformerConfig() lowerCAmelCase__ = False # set attributes based on model_name lowerCAmelCase__ = "huggingface/label-files" if "segformer" in model_name: lowerCAmelCase__ = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: lowerCAmelCase__ = 150 lowerCAmelCase__ = "ade20k-id2label.json" lowerCAmelCase__ = (1, 150, 128, 128) elif "city" in model_name: lowerCAmelCase__ = 19 lowerCAmelCase__ = "cityscapes-id2label.json" lowerCAmelCase__ = (1, 19, 128, 128) else: raise ValueError(F"Model {model_name} not supported" ) elif "mit" in model_name: lowerCAmelCase__ = True lowerCAmelCase__ = model_name[4:6] lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = (1, 1_000) else: raise ValueError(F"Model {model_name} not supported" ) # set config attributes lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowerCAmelCase__ = [64, 128, 320, 512] lowerCAmelCase__ = 256 elif size == "b2": lowerCAmelCase__ = [64, 128, 320, 512] lowerCAmelCase__ = 768 lowerCAmelCase__ = [3, 4, 6, 3] elif size == "b3": lowerCAmelCase__ = [64, 128, 320, 512] lowerCAmelCase__ = 768 lowerCAmelCase__ = [3, 4, 18, 3] elif size == "b4": lowerCAmelCase__ = [64, 128, 320, 512] lowerCAmelCase__ = 768 lowerCAmelCase__ = [3, 8, 27, 3] elif size == "b5": lowerCAmelCase__ = [64, 128, 320, 512] lowerCAmelCase__ = 768 lowerCAmelCase__ = [3, 6, 40, 3] else: raise ValueError(F"Size {size} not supported" ) # load image processor (only resize + normalize) lowerCAmelCase__ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_ ) # prepare image lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict if encoder_only: lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location=torch.device("cpu" ) ) else: lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location=torch.device("cpu" ) )["state_dict"] # rename keys lowerCAmelCase__ = rename_keys(UpperCamelCase_ , encoder_only=UpperCamelCase_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(UpperCamelCase_ , UpperCamelCase_ ) # create HuggingFace model and load state dict if encoder_only: lowerCAmelCase__ = False lowerCAmelCase__ = SegformerForImageClassification(UpperCamelCase_ ) else: lowerCAmelCase__ = SegformerForSemanticSegmentation(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() # forward pass lowerCAmelCase__ = model(UpperCamelCase_ ) lowerCAmelCase__ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowerCAmelCase__ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowerCAmelCase__ = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowerCAmelCase__ = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowerCAmelCase__ = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowerCAmelCase__ = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowerCAmelCase__ = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowerCAmelCase__ = torch.tensor( [ [ [-1.1_3_7_2e0_1, -1.2_7_8_7e0_1, -1.3_4_7_7e0_1], [-1.2_5_3_6e0_1, -1.4_1_9_4e0_1, -1.4_4_0_9e0_1], [-1.3_2_1_7e0_1, -1.4_8_8_8e0_1, -1.5_3_2_7e0_1], ], [ [-1.4_7_9_1e0_1, -1.7_1_2_2e0_1, -1.8_2_7_7e0_1], [-1.7_1_6_3e0_1, -1.9_1_9_2e0_1, -1.9_5_3_3e0_1], [-1.7_8_9_7e0_1, -1.9_9_9_1e0_1, -2.0_3_1_5e0_1], ], [ [7.6_7_2_3e-0_1, 4.1_9_2_1e-0_1, -7.7_8_7_8e-0_2], [4.7_7_7_2e-0_1, 9.5_5_5_7e-0_3, -2.8_0_8_2e-0_1], [3.6_0_3_2e-0_1, -2.4_8_2_6e-0_1, -5.1_1_6_8e-0_1], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowerCAmelCase__ = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: lowerCAmelCase__ = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) a_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
340
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } a_ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: lowerCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value elif weight_type == "running_mean": lowerCAmelCase__ = value elif weight_type == "running_var": lowerCAmelCase__ = value elif weight_type == "num_batches_tracked": lowerCAmelCase__ = value elif weight_type == "inv_freq": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(UpperCamelCase_ )[0].split("." )[-2] lowerCAmelCase__ = mapped_key.replace("*" , UpperCamelCase_ ) if "pos_bias_u" in name: lowerCAmelCase__ = None elif "pos_bias_v" in name: lowerCAmelCase__ = None elif "weight_g" in name: lowerCAmelCase__ = "weight_g" elif "weight_v" in name: lowerCAmelCase__ = "weight_v" elif "bias" in name: lowerCAmelCase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ = "weight" elif "running_mean" in name: lowerCAmelCase__ = "running_mean" elif "inv_freq" in name: lowerCAmelCase__ = "inv_freq" elif "running_var" in name: lowerCAmelCase__ = "running_var" elif "num_batches_tracked" in name: lowerCAmelCase__ = "num_batches_tracked" else: lowerCAmelCase__ = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def _a ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = full_name.split("conv_layers." )[-1] lowerCAmelCase__ = name.split("." ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) lowerCAmelCase__ = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) lowerCAmelCase__ = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) lowerCAmelCase__ = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) lowerCAmelCase__ = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCamelCase_ ) @torch.no_grad() def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Any=True ) -> Any: """simple docstring""" if config_path is not None: lowerCAmelCase__ = WavaVecaConformerConfig.from_pretrained(UpperCamelCase_ , hidden_act="swish" ) else: lowerCAmelCase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCAmelCase__ = "rotary" if is_finetuned: if dict_path: lowerCAmelCase__ = Dictionary.load(UpperCamelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.eos_index lowerCAmelCase__ = len(target_dict.symbols ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "vocab.json" ) if not os.path.isdir(UpperCamelCase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCamelCase_ ) ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) lowerCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = WavaVecaCTCTokenizer( UpperCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCamelCase_ , ) lowerCAmelCase__ = True if config.feat_extract_norm == "layer" else False lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) processor.save_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = WavaVecaConformerForCTC(UpperCamelCase_ ) else: lowerCAmelCase__ = WavaVecaConformerForPreTraining(UpperCamelCase_ ) if is_finetuned: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowerCAmelCase__ = argparse.Namespace(task="audio_pretraining" ) lowerCAmelCase__ = fairseq.tasks.setup_task(UpperCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCamelCase_ ) lowerCAmelCase__ = model[0].eval() recursively_load_weights(UpperCamelCase_ , UpperCamelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a_ = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
340
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ = '''src/transformers''' a_ = '''docs/source/en/tasks''' def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Find the start prompt. lowerCAmelCase__ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase__ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(TRANSFORMERS_PATH) a_ = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) lowerCAmelCase__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
340
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow a_ = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) a_ = logging.getLogger() def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("-f" ) lowerCAmelCase__ = parser.parse_args() return args.f def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int="eval" ) -> Dict: """simple docstring""" lowerCAmelCase__ = os.path.join(UpperCamelCase_ , F"{split}_results.json" ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F"can't find {path}" ) a_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase__ ( _UpperCAmelCase ): def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(__UpperCAmelCase , "argv" , __UpperCAmelCase ): run_flax_glue.main() lowerCAmelCase__ = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(__UpperCAmelCase , "argv" , __UpperCAmelCase ): run_clm_flax.main() lowerCAmelCase__ = get_results(__UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(__UpperCAmelCase , "argv" , __UpperCAmelCase ): run_summarization_flax.main() lowerCAmelCase__ = get_results(__UpperCAmelCase , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(__UpperCAmelCase , "argv" , __UpperCAmelCase ): run_mlm_flax.main() lowerCAmelCase__ = get_results(__UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(__UpperCAmelCase , "argv" , __UpperCAmelCase ): run_ta_mlm_flax.main() lowerCAmelCase__ = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(__UpperCAmelCase , "argv" , __UpperCAmelCase ): run_flax_ner.main() lowerCAmelCase__ = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = F"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(__UpperCAmelCase , "argv" , __UpperCAmelCase ): run_qa.main() lowerCAmelCase__ = get_results(__UpperCAmelCase ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
340
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: lowerCAmelCase__ = TOKENIZER_CLASSES else: lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase__ = True if checkpoint_name is None: lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase__ = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: lowerCAmelCase__ = checkpoint lowerCAmelCase__ = dump_path else: lowerCAmelCase__ = None lowerCAmelCase__ = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) lowerCAmelCase__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(UpperCamelCase_ ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) a_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
340
1
from graphs.minimum_spanning_tree_kruskal import kruskal def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = 9 lowerCAmelCase__ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCAmelCase__ = kruskal(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(UpperCamelCase_ ) == sorted(UpperCamelCase_ )
340
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _a ( UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=1_024 , UpperCamelCase_ : Dict=1_024 , UpperCamelCase_ : List[str]=False , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="train" , **UpperCamelCase_ ) lowerCAmelCase__ = tok.pad_token_id def get_lens(UpperCamelCase_ : str ): lowerCAmelCase__ = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) lowerCAmelCase__ = [] for batch in dl: lowerCAmelCase__ = batch["input_ids"].ne(UpperCamelCase_ ).sum(1 ).tolist() lowerCAmelCase__ = batch["labels"].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens lowerCAmelCase__ = get_lens(UpperCamelCase_ ) lowerCAmelCase__ = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="val" , **UpperCamelCase_ ) lowerCAmelCase__ = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
340
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase=None , __UpperCAmelCase=2 , )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 1 def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = ViTModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = ViTForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = ViTForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = ViTForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = ViTForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase ): a_ =( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) a_ =( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) a_ =True a_ =False a_ =False a_ =False def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = ViTModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' pass def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(__UpperCAmelCase ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = ViTModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _a ( ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self )-> str: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__UpperCAmelCase ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**__UpperCAmelCase ) # verify the logits lowerCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) lowerCAmelCase__ = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__UpperCAmelCase ) lowerCAmelCase__ = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" ) lowerCAmelCase__ = inputs.pixel_values.to(__UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(__UpperCAmelCase , interpolate_pos_encoding=__UpperCAmelCase ) # verify the logits lowerCAmelCase__ = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __UpperCAmelCase ) lowerCAmelCase__ = torch.tensor( [[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=__UpperCAmelCase , return_tensors="pt" ) lowerCAmelCase__ = inputs.pixel_values.to(__UpperCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowerCAmelCase__ = model(__UpperCAmelCase )
340
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase__ ( _UpperCAmelCase ): a_ ="""xlnet""" a_ =["""mems"""] a_ ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __UpperCAmelCase=32000 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , )-> int: '''simple docstring''' lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) lowerCAmelCase__ = d_model // n_head lowerCAmelCase__ = ff_activation lowerCAmelCase__ = d_inner lowerCAmelCase__ = untie_r lowerCAmelCase__ = attn_type lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = dropout lowerCAmelCase__ = mem_len lowerCAmelCase__ = reuse_len lowerCAmelCase__ = bi_data lowerCAmelCase__ = clamp_len lowerCAmelCase__ = same_length lowerCAmelCase__ = summary_type lowerCAmelCase__ = summary_use_proj lowerCAmelCase__ = summary_activation lowerCAmelCase__ = summary_last_dropout lowerCAmelCase__ = start_n_top lowerCAmelCase__ = end_n_top lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , __UpperCAmelCase , ) lowerCAmelCase__ = kwargs["use_cache"] lowerCAmelCase__ = use_mems_eval lowerCAmelCase__ = use_mems_train super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
340
1
from __future__ import annotations def _a ( UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> list: """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ , lowerCAmelCase__ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowerCAmelCase__ = result + left + right return input_list def _a ( UpperCamelCase_ : list ) -> list: """simple docstring""" if len(UpperCamelCase_ ) <= 1: return input_list lowerCAmelCase__ = list(UpperCamelCase_ ) # iteration for two-way merging lowerCAmelCase__ = 2 while p <= len(UpperCamelCase_ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(UpperCamelCase_ ) , UpperCamelCase_ ): lowerCAmelCase__ = i lowerCAmelCase__ = i + p - 1 lowerCAmelCase__ = (low + high + 1) // 2 lowerCAmelCase__ = merge(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # final merge of last two parts if p * 2 >= len(UpperCamelCase_ ): lowerCAmelCase__ = i lowerCAmelCase__ = merge(UpperCamelCase_ , 0 , UpperCamelCase_ , len(UpperCamelCase_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() if user_input == "": a_ = [] else: a_ = [int(item.strip()) for item in user_input.split(''',''')] print(iter_merge_sort(unsorted))
340
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False ) -> Tuple: """simple docstring""" lowerCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : str=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ = "" else: lowerCAmelCase__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _a ( UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = dct.pop(UpperCamelCase_ ) lowerCAmelCase__ = val def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ = ViTMSNConfig() lowerCAmelCase__ = 1_000 lowerCAmelCase__ = "datasets/huggingface/label-files" lowerCAmelCase__ = "imagenet-1k-id2label.json" lowerCAmelCase__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) , "r" ) ) lowerCAmelCase__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase__ = 384 lowerCAmelCase__ = 1_536 lowerCAmelCase__ = 6 elif "l16" in checkpoint_url: lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase__ = 4 elif "l7" in checkpoint_url: lowerCAmelCase__ = 7 lowerCAmelCase__ = 1_024 lowerCAmelCase__ = 4_096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = ViTMSNModel(UpperCamelCase_ ) lowerCAmelCase__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="cpu" )["target_encoder"] lowerCAmelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase_ ) lowerCAmelCase__ = create_rename_keys(UpperCamelCase_ , base_model=UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_ , UpperCamelCase_ , base_model=UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) lowerCAmelCase__ = ViTImageProcessor( size=config.image_size , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ ) lowerCAmelCase__ = image_processor(images=UpperCamelCase_ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCAmelCase__ = model(**UpperCamelCase_ ) lowerCAmelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: lowerCAmelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: lowerCAmelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCamelCase_ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
340
1
def _a ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCAmelCase__ = abs(UpperCamelCase_ ) lowerCAmelCase__ = 0 while n > 0: res += n % 10 n //= 10 return res def _a ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCAmelCase__ = abs(UpperCamelCase_ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _a ( UpperCamelCase_ : int ) -> int: """simple docstring""" return sum(int(UpperCamelCase_ ) for c in str(abs(UpperCamelCase_ ) ) ) def _a ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCamelCase_ : Callable , UpperCamelCase_ : int ) -> None: lowerCAmelCase__ = F"{func.__name__}({value})" lowerCAmelCase__ = timeit(F"__main__.{call}" , setup="import __main__" ) print(F"{call:56} = {func(UpperCamelCase_ )} -- {timing:.4f} seconds" ) for value in (262_144, 1_125_899_906_842_624, 1_267_650_600_228_229_401_496_703_205_376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(UpperCamelCase_ , UpperCamelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
340
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = {} if "candidate_labels" in kwargs: lowerCAmelCase__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCAmelCase__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = load_image(__UpperCAmelCase ) lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ = candidate_labels lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase ) lowerCAmelCase__ = [text_inputs] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = model_inputs.pop("candidate_labels" ) lowerCAmelCase__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __UpperCAmelCase ): lowerCAmelCase__ = text_inputs[0] else: # Batching case. lowerCAmelCase__ = text_inputs[0][0] lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = model_outputs.pop("candidate_labels" ) lowerCAmelCase__ = model_outputs["logits"][0] if self.framework == "pt": lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ = probs.tolist() if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [scores] elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 ) lowerCAmelCase__ = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCAmelCase__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] ) ] return result
340
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) a_ = '''bert-base-cased''' a_ = '''fp16''' a_ = '''bf16''' a_ = [FPaa, BFaa] @require_fsdp @require_cuda class lowercase__ ( _UpperCAmelCase ): def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase__ = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__UpperCAmelCase ): lowerCAmelCase__ = self.dist_env.copy() lowerCAmelCase__ = F"{i + 1}" lowerCAmelCase__ = strategy with mockenv_context(**__UpperCAmelCase ): lowerCAmelCase__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__UpperCAmelCase ): lowerCAmelCase__ = self.dist_env.copy() lowerCAmelCase__ = prefetch_policy with mockenv_context(**__UpperCAmelCase ): lowerCAmelCase__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__UpperCAmelCase ): lowerCAmelCase__ = self.dist_env.copy() lowerCAmelCase__ = state_dict_type with mockenv_context(**__UpperCAmelCase ): lowerCAmelCase__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = AutoModel.from_pretrained(__UpperCAmelCase ) for policy in FSDP_AUTO_WRAP_POLICY: lowerCAmelCase__ = self.dist_env.copy() lowerCAmelCase__ = policy if policy == "TRANSFORMER_BASED_WRAP": lowerCAmelCase__ = "BertLayer" elif policy == "SIZE_BASED_WRAP": lowerCAmelCase__ = "2000" with mockenv_context(**__UpperCAmelCase ): lowerCAmelCase__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__UpperCAmelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) lowerCAmelCase__ = self.dist_env.copy() lowerCAmelCase__ = "TRANSFORMER_BASED_WRAP" lowerCAmelCase__ = "T5Layer" with mockenv_context(**__UpperCAmelCase ): lowerCAmelCase__ = FullyShardedDataParallelPlugin() with self.assertRaises(__UpperCAmelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(__UpperCAmelCase ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) lowerCAmelCase__ = self.dist_env.copy() lowerCAmelCase__ = "SIZE_BASED_WRAP" lowerCAmelCase__ = "0" with mockenv_context(**__UpperCAmelCase ): lowerCAmelCase__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__UpperCAmelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def UpperCAmelCase ( self )-> Any: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowerCAmelCase__ = self.dist_env.copy() lowerCAmelCase__ = mp_dtype with mockenv_context(**__UpperCAmelCase ): lowerCAmelCase__ = Accelerator() if mp_dtype == "fp16": lowerCAmelCase__ = torch.floataa elif mp_dtype == "bf16": lowerCAmelCase__ = torch.bfloataa lowerCAmelCase__ = MixedPrecision(param_dtype=__UpperCAmelCase , reduce_dtype=__UpperCAmelCase , buffer_dtype=__UpperCAmelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __UpperCAmelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __UpperCAmelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__UpperCAmelCase ) def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowerCAmelCase__ = self.dist_env.copy() lowerCAmelCase__ = str(__UpperCAmelCase ).lower() with mockenv_context(**__UpperCAmelCase ): lowerCAmelCase__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__UpperCAmelCase ) ) @require_fsdp @require_multi_gpu @slow class lowercase__ ( _UpperCAmelCase ): def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' super().setUp() lowerCAmelCase__ = 0.82 lowerCAmelCase__ = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] lowerCAmelCase__ = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowerCAmelCase__ = 160 lowerCAmelCase__ = 160 lowerCAmelCase__ = inspect.getfile(accelerate.test_utils ) lowerCAmelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = os.path.join(self.test_scripts_folder , "test_performance.py" ) lowerCAmelCase__ = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: lowerCAmelCase__ = cmd.copy() for i, strategy in enumerate(__UpperCAmelCase ): if strategy.lower() in config: cmd_config.append(F"--fsdp_sharding_strategy={i+1}" ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"--fsdp_auto_wrap_policy={policy}" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"--output_dir={self.tmpdir}", F"--performance_lower_bound={self.performance_lower_bound}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) def UpperCAmelCase ( self )-> int: '''simple docstring''' lowerCAmelCase__ = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) lowerCAmelCase__ = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(__UpperCAmelCase ): lowerCAmelCase__ = cmd.copy() cmd_config.append(F"--fsdp_sharding_strategy={i+1}" ) if strategy != "FULL_SHARD": continue lowerCAmelCase__ = len(__UpperCAmelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: lowerCAmelCase__ = cmd_config[:state_dict_config_index] cmd_config.append(F"--fsdp_state_dict_type={state_dict_type}" ) cmd_config.extend( [ self.test_file_path, F"--output_dir={self.tmpdir}", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) lowerCAmelCase__ = cmd_config[:-1] lowerCAmelCase__ = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ F"--resume_from_checkpoint={resume_from_checkpoint}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) def UpperCAmelCase ( self )-> str: '''simple docstring''' lowerCAmelCase__ = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) lowerCAmelCase__ = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowerCAmelCase__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(__UpperCAmelCase ): if strategy.lower() in spec: cmd_config.append(F"--fsdp_sharding_strategy={i+1}" ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"--fsdp_auto_wrap_policy={policy}" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"--output_dir={self.tmpdir}", F"--peak_memory_upper_bound={peak_mem_upper_bound}", F"--n_train={self.n_train}", F"--n_val={self.n_val}", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() )
340
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class lowercase__ ( _UpperCAmelCase, unittest.TestCase ): a_ =BartphoTokenizer a_ =False a_ =True def UpperCAmelCase ( self )-> Dict: '''simple docstring''' super().setUp() lowerCAmelCase__ = ["▁This", "▁is", "▁a", "▁t", "est"] lowerCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ = {"unk_token": "<unk>"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"{token} {vocab_tokens[token]}\n" ) lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = BartphoTokenizer(__UpperCAmelCase , self.monolingual_vocab_file , **self.special_tokens_map ) lowerCAmelCase__ = "This is a là test" lowerCAmelCase__ = "▁This ▁is ▁a ▁l à ▁t est".split() lowerCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase )
340
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _a ( UpperCamelCase_ : Namespace ) -> Optional[int]: """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) a_ = ''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class lowercase__ ( _UpperCAmelCase ): @staticmethod def UpperCAmelCase ( __UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=__UpperCAmelCase , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=__UpperCAmelCase , default=__UpperCAmelCase , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=__UpperCAmelCase ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = logging.get_logger("transformers-cli/converting" ) self._logger.info(F"Loading model {model_type}" ) lowerCAmelCase__ = model_type lowerCAmelCase__ = tf_checkpoint lowerCAmelCase__ = pytorch_dump_output lowerCAmelCase__ = config lowerCAmelCase__ = finetuning_task_name def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): lowerCAmelCase__ = self._tf_checkpoint lowerCAmelCase__ = "" else: lowerCAmelCase__ = self._tf_checkpoint lowerCAmelCase__ = "" convert_transfo_xl_checkpoint_to_pytorch( __UpperCAmelCase , self._config , self._pytorch_dump_output , __UpperCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
340
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } a_ = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } a_ = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =["""input_ids""", """attention_mask"""] a_ =DistilBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> List[str]: '''simple docstring''' super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase ) lowerCAmelCase__ = do_lower_case def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[str]: '''simple docstring''' lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
340
1